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Abstract—In this paper we extend our previous results on WiFi
and image localization to include magnetic sensing for multi-
modal indoor localization. A two-step process is proposed that
performs an initial localization estimate, followed by particle
filter based tracking. Initial localization is performed using
WiFi and image observations. For tracking we fuse information
from WiFi, magnetic, and inertial sensors. We demonstrate the
feasibility of this system using fingerprint maps that are collected
with a single walkthrough of the building at normal walking
pace. Further we reduce our database generation method from
previous works to require only a smartphone and a foot mounted
inertial measurement unit (IMU). Only a smartphone is needed
for positioning after database generation. We present results for
two locations: the Stoneridge Mall in Pleasanton, California, and
the Doe Library at the UC Berkeley campus. We achieve an
average location error of 2.6m across both locations.

I. INTRODUCTION

In recent years, indoor localization has received a great deal
of attention [1]. It has a number of useful applications such
as location-aware intelligent shopping assistants and indoor
real-time navigation. However it is a technically challenging
problem due to the lack of GPS signals indoors. Further, in
practice it is important to use very little additional hardware
and not require extensive modeling of building characteristics.

One approach to indoor positioning is to apply inertial dead
reckoning using an inertial measurement unit commonly found
in today’s mobile devices [2]. A commonly adopted method
is to detect steps and then estimate the corresponding step
lengths [3], [4]. A more accurate method is to use a foot-
mounted sensor to track movement [5]. This utilizes the zero-
velocity state of the foot when walking to estimate biases
of the sensor and provides accurate positioning but requires
additional hardware.

Another common approach is to use the WiFi infrastructure
that is already prevalent inside most modern buildings. A
popular method for utilizing this infrastructure is to construct
a database of WiFi Received Signal Strength Indicator (RSSI)
fingerprints for the building [7], [8]. A major advantage of
this method is its prevalence as hardware infrastructure and
the ubiquity of WiFi scanning capability on mobile phones
and consumer electronic devices. A disadvantage is that the
location dependency of RSSI is subject to interference and
signals can be very similar in wide-open spaces.

Recently an image-based indoor localization scheme [9],
[10] has been proposed for mobile devices with cameras using

a locally georeferenced database of images. The Scale Invari-
ant Feature Transform (SIFT) [11] allows accurate matching of
images from a client side mobile device with those contained
in the database. Its performance is degraded when the query
image has few distinguishing features, or when the pictures
are of low quality due to out-of-focus and/or motion blur.

Lastly there have been recent efforts to perform localization
using distortions in the earths magnetic field caused by metal
structures in buildings. If these distortions are mapped, it is
possible to use them for localization [12], [13]. The advantages
to using magnetic data are the prevalence of these sensors
in mobile devices and that no new hardware infrastructure is
required. One disadvantage though is that it takes about 10m
of walking to generate a reasonable estimate of position, which
is undesirable for many applications.

In this paper we extend our previous results on WiFi and
image localization to include magnetic sensing for indoor
localization. The outline of this paper is as follows: In Section
2 we present a method of database generation combining foot
mounted Inertial Measurement Unit (IMU)-based pedestrian
dead reckoning (PDR) and a mobile device. In Section 3
we propose a two-step localization initialization and realtime
tracking method that combines information from magnetic,
WiFi, accelerometer, gyroscope, and image-based sensors. In
Section 4 we show results for two locations; the Stoneridge
Mall in Pleasanton, California, and the Doe Library on the UC
Berkeley campus.

II. DATABASE GENERATION

To generate our fingerprint database a smartphone is carried
throughout the building in a single walkthrough at normal
walking pace. A single foot mounted IMU that is capable of
tracking movement over long distances is used to determine
the location of the smartphone during data collection. The
phone is held in front of the user with a constant orientation
so a known offset with respect to the direction of walk can be
determined. Positions recorded from this system are manually
aligned with a floor plan to provide fingerprint locations in the
common coordinate frame.

We use the technique described in [16] and [10] to collect
wifi and image databases respectively. As the fingerprinting
smartphone is carried through the building we record scans
that consist of access point MAC addresses and the observed
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signal strength for each access point. A scan contains mea-
surements for all access points viewable by the device during
the duration of the scan. Each scan is associated with a single
location in the map. This results in a fingerprint which is stored
in a SQL database on a local server. The image database is
made up of images, camera positions, and sparse depth maps
[10]. To collect images during the walkthrough the phone
is held vertically with the camera pointing perpendicular to
the direction of walk. Images are collected at a frequency of
roughly 1Hz. A sparse depth map is then computed for each
image using the method proposed in [10].

A magnetic database consists of observed magnetic vectors
that have been rotated back to a global coordinate frame.
We average sensor readings around positions reported by
the foot mounted IMU in order to obtain the observation at
that position. Then we perform tilt-compensation using the
onboard accelerometer. The tilt-compensated magnetic vector
is determined by:

cx = mxcos(ay)+mysin(ax)sin(ay)−mzcos(ax)sin(ay) (1)
cy = mycos(ax)−mzsin(ax) (2)
cz = mxsin(ay)+mzcos(ax)cos(ay)−mycos(ay)sin(ax) (3)

where ~m = [mx,my,mz]
T is the original magnetic vector, ax

and ay are the acceleration values of the x and y axis, and
~c = [cx,cy,cz]

T is the tilt compensated magnetic vector. This
allows us to remove effects of minor changes in pitch and roll
that can occur while the user walks through the building.

To obtain the magnetic vector in the database coordinate
frame we also need to determine the yaw of the phone. While
the phone reports an orientation from its IMU, this orientation
is dependent on the magnetic vector at that location, making it
an inappropriate choice for determining the pose with respect
to the database coordinate frame. Rather we opt to infer the
yaw of the phone from successive positions reported by the
foot mounted IMU.

III. GLOBAL LOCALIZATION AND TRACKING

We fuse two sensing modalities, WiFi and Image, to arrive
at the global location initialization. For the image modality
the user takes a picture of the area around them. This image
is then sent to our server for pose computation using the
method presented in [10]. This finds a matching image in
the database and computes the camera pose of the query
image. For WiFi, the initial estimate is determined using the
clustering method proposed in [16]. The centroid of the cluster
is returned representing an estimate of the position of the
mobile device.

We use a particle filter based tracking method whereby the
particles state vector consists of the x and y position and yaw
orientation of the particle [15]. The initial locations of the
particles are samples from a 2D Gaussian distribution with
a mean equal to that of the location estimate provided by
either WiFi or image based initialization. If both WiFi and
image initialization report reasonable confidence values then

half the particles are sampled from each distribution. Initial
yaw estimates are sampled uniformly in the range [0,360). The
location reported by the filter at each interval is the weighted
average position of all particles.

For the propagation of the particle filter we perform step
detection on the mobile device and propagate the particles
at each step. Algorithms presented in [17] are used to detect
steps and estimate their lengths from accelerometer readings.
A change in yaw is determined from gyroscope measurements.
For each particle, we add a random noise to both the rotation
and translation of each step. If a step causes a particle to cross
a wall in the floorplan then it is assumed that the particle
cannot have represented a true location and it is eliminated.

WiFi scans are collected continuously as the user walks. At
the completion of each scan the observations are sent to the
server where the normalized Redpin score for each fingerprint
is computed. When a response is received by the server
particles are weighted by the score of the fingerprint closest
their position at the time at which the scan was recorded.

The onboard digital compass of the mobile device is used
to record the magnetic vector. Though we assume the phone
is held at a fairly constant orientation, we know that it would
be impossible to keep the phone perfectly stationary and so
we perform tilt compensation on the magnetic reading using
the same method as in the database generation. For each
particle we then find the closest fingerprint in the database
using a quad-tree search. The magnitude of the observation
is compared to the magnitude of the closest fingerprint.
The probability is assumed to be Gaussian centered at the
magnitude of the fingerprint. This represents the probability
that a particle is at the correct position.

To determine the probability that a particle is at the correct
orientation we project both the observed magnetic vector and
the database magnetic vector to the X-Y plane. Since this value
has already been tilt compensated, this projection is merely
the X and Y components of the tilt-compensated vector. From
these values we can estimate orientation of the particle from
the measurement:

θ = tan−1((~vo × ~vd)/(~vo · ~vd)) (4)

where ~vo and ~vd are the projections of the observed and
database magnetic vectors respectively and θ is the estimated
orientation of the particle. As seen in Fig. 1, we compute the
difference between the estimated orientation, determined from
the yaw angle between the database vector and the observed
vector, to the orientation of the particle. If this difference is
large, represented by particle ”A”, the particle is assigned a
low probability. A small difference, represented by particle
”B”, results in a high probability. The probability is assumed to
be Gaussian centered at the expected orientation. The particle
is weighted by the product of the location and orientation
probabilities.

IV. EXPERIMENTAL RESULTS

We test our system in two locations. The first is Stoneridge
Mall in Pleasanton, California. The second is the Doe Library
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Fig. 1. Method for weighting particles based on Magnetic Observation; the
green arrow is the devices estimated orientation and the purple arrow is the
particles orientation. (a) The database vector and the observed vector are
used in Equation 1 to estimate orientation. (b) Estimated orientation θ of the
device. (c), (d) Comparison of two hypothetical particles. Particle ”B” would
be weighted with a high probability since the difference from the estimate,
denotes θ̃B, is small. Particle ”A” would receive a low probability since the
difference from the estimate is quite large.

on campus at UC Berkeley. For both test cases fingerprint
data is collected using a smartphone and a foot mounted PDR
device. Data collection is performed by one person in a single
walkthrough of the building at normal walking pace.

To characterize performance the evaluator wears the same
foot mounted PDR device in order to compare the location
estimate to a ”ground truth”. Errors are computed based on
the position error of our system every time a new location is
reported by the PDR device, which is about once per second.
While we denote the location from the PDR device as a
”ground truth”, the locations reported by this device are error
prone requiring the the ”ground truth” path to occasionally
go outside our floorplan, increasing, possibly significantly, the
estimate of our error.

TABLE I
EXPERIMENTAL RESULTS FOR THE STONERIDGE MALL.

Err. Mean(m) Err. Std.(m) 90% Err.(m) Length(m)
D1 2.15 1.21 3.7 830
D2 2.19 1.45 3.8 827
D3 2.92 1.41 5.0 835
D4 2.70 1.21 4.3 838
R1 2.64 2.69 4.0 921
R2 3.03 2.98 5.4 909
R3 2.61 1.51 4.6 892
R4 2.63 1.39 4.6 1022
R5 2.74 2.13 5.8 1006
R6 2.04 1.42 3.9 711
Avg. 2.56 1.74 4.51 879

A. Stoneridge Mall

For the Stoneridge Mall data for the database is collected
using a Samsung Galaxy S4 smartphone. The collection path
is 1417m as shown in Fig. 2(a). For testing a Google Nexus
5 phone is used to walk ten paths, each of which spanned a
majority of the mall. Table I shows results of the individual
trials. Of these ten paths, four are identical with the same
start location and path walked. These paths are labeled ”D”.
The remaining six paths each have different start locations and
trajectories. These are labeled ”R”. Fig. 2(b) shows an example

(a)

(b)

Fig. 2. Example test paths in Stoneridge Mall. Red is the ”ground truth”
as measured by the foot mounted IMU. Blue is the path estimated by our
system. ’x’s indicate locations where a WiFi update is received. (a) Database
collection path, (b) Path R5 from Nexus 5.

of a ”R” path. Average length of paths is about 880m with an
average position error of about 2.6m. There was no significant
difference in error between ”D” and ”R” paths.

For this experiment the database was collected over a month
prior to final testing. This speaks to the stability of our maps,
showing that a single walkthrough is capable of generating
maps that are valid long after the collection was performed.
Tests were performed on a Saturday, when the mall was very
busy, over the course of an entire day.

There are two main contributors of error for this experiment.
The first is that one of the two initialization methods may
return a location that is sometimes erroneous. This results in a
position being reported between the two initialization locations
until the incorrect particles die off. The other significant
contributor to error in this experiment is that our ”ground
truth” method is not quite accurate for such a large area.
Several areas report significant error due to the ”ground truth”
being reported in areas outside our floorplan.
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(a)

(b)

Fig. 3. Example test paths in Doe Library. Red is the ”ground truth” as
measured by the foot mounted IMU. Blue is the path estimated by our system.
’x’s indicate locations where a WiFi update is received. (a) Database collection
path, (b) Path D2 from Nexus 5

TABLE II
EXPERIMENTAL RESULTS FOR THE DOE LIBRARY.

Err. Mean(m) Err. Std.(m) 90% Err.(m) Length(m)
D1 N5 2.09 1.11 3.8 383
D2 N5 2.17 1.45 3.8 381
R1 N5 2.42 1.68 5.1 418
R2 N5 3.11 2.42 6.6 361
R3 N5 2.11 1.57 3.6 372
D1 S4 2.45 1.33 4.2 382
D2 S4 3.50 2.55 7.7 380
R1 S4 2.62 1.89 4.3 373
R2 S4 2.81 2.09 4.8 408
R3 S4 3.18 3.25 5.7 352
Avg. 2.65 1.93 4.96 381

B. Doe Library

For the Doe library data for the database is collected using
a Google Nexus 7 tablet. The collection path is 880m as
shown in Fig. 3(a). For testing a Google Nexus 5 phone and a
Samsung Galaxy S4 phone were each used to walk five paths
for a total of ten paths. Table II shows the results of the ten
trials. Trials taken with the Google Nexus 5 and Samsung
Galaxy S4 are labeled ”N5” and ”S4” respectively. All paths
labeled ”D” were taken along the same route as shown in

Fig. 3(b). Paths labeled ”R” are all different with different
starting points. Average length of paths is about 380m with an
average position error of about 2.7m. There was no significant
difference in error between ”D” and ”R” paths.

While our errors are in line with those obtained at the
Stoneridge Mall, drift of particles towards the center of the
room due to the low magnetic and WiFi signal variation is
likely a larger contributor to error in this location than errors
in the ”ground truth”.
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