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ABSTRACT

Efficient plant phenotyping methods are necessary in order to accel-
erate the development of high yield biofuel crops. Manual measure-
ment of plant phenotypes, such as width, is slow and error-prone.
We propose a novel approach to estimating the width of corn and
sorghum stems from color and depth images obtained by mounting
a camera on a robot which traverses through plots of plants. We
use deep learning to detect individual stems and employ filters, mor-
phological operations, and Random Sample Consensus to model the
boundary of each stem and estimate the pixel width and metric width
of each stem. This approach results in 13.5% absolute error in the
pixel domain on corn and 13.2% metric absolute error on phantom
sorghum.

Index Terms— Computer vision, Image processing, Genomics,
Morphological operations, Image edge detection

1. INTRODUCTION

Understanding the relationship between genotypes and phenotypes
of plants is essential for improving clean energy and optimizing bio-
fuel production. By collecting physiological traits of plants, it is
possible to find links between plant gene sequences and biomass
yield. Sorghum and corn plants have been demonstrated to be suit-
able sources for fuel in practice [1, 2]. To determine the genotype-
phenotype map for sorghum and corn, rapid phenotyping methods
are necessary for efficient data collection. Currently, measurement
of plant phenotypes, such as width, is often done manually by hand.
However, this process is slow and often leads to erroneous results
due to human error. Therefore, it is essential to develop algorithms
that can accurately and efficiently phenotype in situ plants [3].

We propose a practical, robust method that phenotypes sorghum
and corn grown in outdoor conditions from RGB (color) and depth
images. Specifically, we estimate the width of plant stems using
data collected from an outdoor setup measured by an Intel RealSense
R200 camera, a stereo camera system that can collect RGB, infrared,
and stereoscopic depth images at a relatively low cost [4]. This
camera is mounted onto a mobile robotic platform, which traverses
through rows of densely positioned plants.

Our proposed algorithm detects individual plant stems, estimates
the width of each stem in pixels, and converts these pixel widths to
metric widths using depth data. For detection, we train a Region-
based Convolutional Neural Network (R-CNN) to propose bounding
boxes for individual stems. Given a region within which a stem lies,
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Fig. 1. Sensor setup for measuring in situ plants.

we employ edge detection, multi-resolution morphological opera-
tions, and Random Sample Consensus (RANSAC) in order to model
the boundary of each stem and estimate stem widths.

In our experimental setup, a robot with a mounted stereo cam-
era moves in the space between two rows of a given plot, collecting
images at a fixed rate, as shown in Figure 1. Each plot contains a
unique genetic plant strain, and since geneticists are primarily inter-
ested in comparing statistical parameters of phenotypes across plots,
our goal is to estimate the histogram of stem widths for each plot. As
such, we have designed our algorithm to identify and discard width
estimates with low confidence values so as not to adversely affect
the statistical characterization of a plot. Since each row of a plot has
50 plants, discarding low confidence estimates is unlikely to signifi-
cantly alter the estimated histogram.

2. RELATED WORK

Previous work to estimate widths of biofuel plant stems in outdoor
settings models the shape of stems in order to produce width esti-
mates. Notably, [5] develops a width estimation algorithm from 2.5D
infrared images by employing Frangi filters to locate the tubular, nar-
row shapes of stems within an image and applying a Hough trans-
form to compute the lines that outline the boundary of each stem.

Similar to [5], we propose a method which first identifies indi-
vidual stems in each image, and then models the boundary of each
stem using two lines. However, rather than hand-tuning an image
transformation to accentuate plant stems, we implicitly learn this
transformation through backpropogation on known data, similar to
[6]. We also deploy RANSAC, which has been shown to outperform
Hough transforms in cases involving line-fitting from noisy observa-
tions, in both accuracy and computational speed [7, 8].

Rather than using images, some plant phenotyping methods
model stems by constructing 3D point clouds from data obtained
from a time-of-flight (ToF) sensor [9, 10]. Despite promising results,
this method is limited by the cost of 3D ToF sensors, as well as the
computational cost of generating and operating on point clouds. For
this reason, we opt to process RGB and depth information obtained



Fig. 2. Diagram of the proposed approach. Inputs from the stereo camera are indicated in bold.

directly from a stereo camera.
Previous works phenotype one type of plant, with the most em-

phasis on phenotyping sorghum [5, 9, 11, 12]. The disadvantage of
this approach is that it may not generalize to multiple kinds of plants,
which is important for ease and robustness of use. Thus, we provide
results on both corn and sorghum.

The rest of the paper is organized as follows: in Section 3, we
outline our proposed approach; in Section 4, we describe the exper-
imental setup and results of our algorithm on two datasets; and in
Section 5, we discuss implications of our findings and future work.

3. PROPOSED APPROACH

As shown in Figure 2, our proposed algorithm consists of four main
stages: stem detection, major axis detection, pixel width estimation,
and metric width estimation. The stem detection stage uses Faster
R-CNN, a Convolutional Neural Network that can predict bounding
boxes around objects of interest, in order to identify general loca-
tions of individual stems [13]. Second, the major axis estimation
stage applies a low-resolution morphological closing operation to
the edge profile of an individual stem in order to estimate the major
axis of the stem. Third, the pixel width estimation stage uses points
on either side of the stem and fits them to lines on opposing sides of
the stem using RANSAC. These lines are evaluated for whether they
are nearly parallel, and if so they are used to generate an estimate for
the pixel width of the stem; otherwise, no estimate is generated for
the stem. Lastly, depth data and knowledge of the camera parameters
are used to generate a metric width estimate for the given stem.

3.1. Stem Detection with Faster R-CNN

Since we aim to estimate the width of each individual plant, our
algorithm first isolates individual stems. This is achieved by feeding
RGB images captured by the stereo camera, each containing one or
more plants, into a pre-trained Faster R-CNN model. The novelty of
Faster R-CNN is best identified by the design of its deep convolution
layers, which are used to deduce region proposals [13].

We leverage an existing pre-trained model, Faster R-CNN with
ResNet101 [14], and fine-tune it with 2000 images of corn and
sorghum crops. The Faster R-CNN outputs a list of bounding box
coordinates and corresponding confidence levels corresponding to
regions of interest which indicate plant stems, as shown in Figure
3. We use these predictions to crop the original RGB image and its
corresponding depth image into areas solely focusing on individual
stems. These cropped images of detected stems are fed into the
subsequent steps of the algorithm.

3.2. Stem Major Axis Estimation

After detecting stems with Faster R-CNN, we estimate the major axis
of each stem to represent its location and orientation. First, we en-
hance the edges of each stem with an adaptive low-pass Wiener filter

Fig. 3. An example of corn stems as detected by Faster R-CNN.

[15]. Next, a Canny edge detector is used to generate an edge profile
for each stem, such as the one shown in Figure 4(a). Canny edge
detection is well-suited for this since it discourages disconnected
edges, which are not of use when representing a stem outline [16].

Given a binary image representation of an edge profile, we
would like to extract a larger structure from this image, under the
assumption that a stem is the most prominent structure present, sur-
rounded by smaller obfuscating structures such as leaves. Thus, we
desire a low-resolution representation of the stem which preserves
larger structures. We use a morphological closing operation applied
to the complement of the binary image [17]. By using a large, rect-
angular structuring element of size 30 × 15, we can extract large
structures from the edge profile of the stem, such as in Figure 4(b).

Assuming the stem is the primary structure in the image, it
should be represented by one of the remaining connected compo-
nents after applying morphological closing. If there are multiple
connected components, a component that is large, near the center
of the image, and near-vertical is most likely represent the stem.
In practice, this can enforced by calculating a weighted average of
these features for each component and selecting the component with
the highest average. Given a chosen component, its location and
orientation can be used to obtain a major axis line which resembles
the stem’s major axis. Figure 4(c) illustrates a connected component
closer to the center being chosen to represent the stem, along with a
superimposed major axis line.

Fig. 4. (a) Canny edge profile of a stem; (b) result of coarse-
resolution morphological closing; (c) proposed stem major axis.

3.3. Stem Boundary Estimation

The boundary of the stem can be represented by edge points on ei-
ther side of the stem. Since the Canny edge profile demonstrated in



Fig. 5. (a) Canny edge profile of the stem in the region of the major
axis; (b) result of applying fine-resolution morphological closing; (c)
candidate points on either side of the major axis.

Figures 4(a) and 5(a) is too noisy to accurately represent the bound-
ary of the stem, we apply another morphological closing operation.
In order to obtain a finer resolution image representation than that
illustrated in Figure 4(b), we use a smaller structuring element of
size 12× 4, as shown in Figure 5(b). We next superimpose the ma-
jor axis on this new edge profile and draw lines perpendicular to the
axis with equidistant spacing along the length of the axis. Points on
either side of the axis at which these lines first intersect an edge are
chosen as candidate boundary points, such as in Figure 5(c).

3.4. RANSAC and Pixel Width Estimation

Having generated candidate points that delineate the boundary of a
stem, we seek to estimate the final width of the stem. Given that
these proposed points are derived from a possibly noisy edge profile
of the detected stem, it is often the case that some points do not truly
represent the boundary of the stem, such as the candidate points on
the left side of the stem in Figure 6(a). Thus, we wish remove out-
liers from the points on both sides of the stem and use the remaining
points to represent the stem boundary. Random Sample Consensus
(RANSAC) is a robust method for removing outliers and modeling
data from remaining inlier points [18]. Given that stems of corn and
sorghum have almost no curvature, we represent the boundary of the
stem with a line on each side of the stem. Thus, we use RANSAC in-
dependently on each side of the stem, finding a linear fit to the data
which ignores outlier candidate points, as demonstrated in Figures
6(b) and 6(c). The pixel width of the stem is computed by finding
the average distance between the two segments found by RANSAC.

Fig. 6. (a) Candidate points on boundary of the stem; (b) lines pro-
posed by RANSAC superimposed on a fine-resolution morphologi-
cal representation; (c) lines proposed by RANSAC superimposed on
the original RGB image.

3.5. Discarding Low-Confidence Estimates

The proposed methods rely on the assumption that the edge profile of
a stem accurately represents the stem’s physical outline. In practice,
this may not always hold, due to multiple factors, such as obfuscat-

Fig. 7. (a) A blurry RGB image of a stem; (b) Canny edge profile
of the stem; (c) proposed low-confidence lines for boundary of the
stem.

ing leaves or blurry images due to shaky robot movement. A case
of a blurry image and its corresponding noisy edge profile is shown
in Figures 7(a) and 7(b). In these cases, we cannot be confident in
our width estimate. In order to detect the presence of these factors,
we compute the angle between the two line segments proposed by
RANSAC. Since actual sorghum and corn plants should have paral-
lel edges, we can discard our estimated width if the angle between
the two lines are sufficiently large, i.e. greater than 5 degrees, such
as in Figure 7(c). Additionally, since our final goal is to statistically
characterize the stem width of an entire plot of plants of a single ge-
netic strain, even if we do not generate width estimates for all stems
in a plot, we can still characterize the phenotype of a given strain.

3.6. Metric Width Estimation

Lastly, we determine the metric width of a stem given its bound-
ary and corresponding depth data from the depth camera. RGB im-
ages and depth images obtained by the camera may not be aligned,
so a manual alignment scheme such as shifting all depth pixels by
some constant value is employed. This shift may vary according to
the speed of the robot, so it must be hand-tuned to each individual
dataset. Next, to account for noise in depth measurements, we av-
erage the depth values of all pixels enclosed by the boundary of the
stem to estimate the distance between the stem and the camera. Once
an average depth is obtained, this depth, the camera’s focal length,
the estimated pixel width, and the distance from the stem to the cen-
ter of the image are used to compute the metric width of the stem.

4. RESULTS

We present two experiments to test different components of the pro-
posed algorithm. First, we use data from in situ corn plants in out-
door conditions to test pixel width estimation methods. Second, we
use phantom sorghum plants placed in an outdoor setting to evaluate
our metric width estimation in comparison to pixel width estimation.

4.1. Corn Width Estimation

The data collected for testing corn width estimates was obtained
from a RealSense R200 camera mounted on a robot, which traversed
through 6 rows of distinct corn plots, with the setup described in Sec-
tion 1. Due to difficulties with hand-labeling metric stem widths on
a large number of plants, we opt to use ground truth data in the pixel
domain by labeling the pixel width of each stem after being detected
by Faster R-CNN at three locations along the stem and averaging
these measurements.

Our pre-trained Faster R-CNN model generated 531 individual
bounding box images, from which our algorithm generated pixel
width estimates for 153 images, achieving a discard rate of 71%. Our
results are in Table 1. “Average % Error” in column 2 is obtained by
calculating the signed percent error of each individual pixel width



Plot Average
% Error

Average %
Absolute Error

% Mean
Width Error

%
Discarded

1 8.4 10.6 8.4 55 (40/73)
2 8.9 15.8 7.2 64 (87/135)
3 3.4 10.9 3.4 73 (77/106)
4 3.3 17.8 0.8 70 (52/74)
5 -2.7 10.2 -2.0 85 (64/75)
6 -3.3 13.3 -4.7 85 (55/65)

All 5.3 13.5 4.1 71 (378/531)

Table 1. Pixel width estimation of detected in situ corn plants.

Fig. 8. An RGB image of phantom sorghum plants captured by the
stereo camera.

estimate and averaging this error across images, while “Average %
Absolute Error” in column 3 is obtained by determining the absolute
percent error of each estimate and averaging this error across images.
“Mean % Error” in column 4 is calculated by calculating the mean
pixel width of all stems in a given plot and comparing this mean to
the mean of the ground truth pixel widths for that plot. Despite dis-
carding a large proportion of images, we are able to characterize the
width for each plot to a high accuracy.

4.2. Phantom Sorghum Width Estimation

Since no ground truth metric width measurements were collected in
the field, we opt to also evaluate the performance of our algorithm
on an additional dataset, obtained by moving a stereo depth camera
moved across five closely-positioned phantom sorghum plants in 117
frames, such as in Figure 8. Ground truth metric data was acquired
using caliper measurements of each phantom at three locations along
the stem and averaging these measurements, while ground truth pixel
data was acquired in the same manner as in Section 4.1.

From the 117 captured frames, Faster R-CNN detected 390 por-
tions of stems. From these 390 detected stem images, our algorithm
generated pixel and metric width estimates for 149 images, achiev-
ing a discard rate of 62%. Individual estimates were then manually
matched against individual stems to evaluate the quality of estimates
for each stem. Pixel width estimation results are shown in Table 2,
while metric width estimation results are shown in Table 3.

Plant Average %
Error

Average %
Absolute

Error

%
Variation

in GT

%
Discarded

1 -0.1 10.1 4.3 41 (23/56)
2 9.8 9.8 9.8 97 (32/33)
3 -14.3 15.1 7.0 63 (74/118)
4 -6.5 13.1 4.6 48 (39/81)
5 0.2 22.0 6.1 72 (73/102)

All -6.0 14.7 6.4 62 (241/390)

Table 2. Pixel width estimation of detected phantom sorghum plants.
“GT” in column 4 stands for ground truth.

Plant Average %
Error

Average %
Absolute Error

% Variation
in GT

1 1.4 9.4 1.7
2 0.9 0.9 5.8
3 -12.8 13.7 1.3
4 -7.8 13.6 4.7
5 3.5 16.8 8.0

All -5.0 13.2 4.3

Table 3. Metric width estimation of detected phantom sorghum
plants. “GT” in column 4 stands for ground truth.

Fig. 9. (a) Image of plant 2 with leaf on the right side; (b) coarse-
resolution morphological representation.

Percent variation in ground truth in Tables 2 and 3 is defined as
the average percent absolute difference of each individual measure-
ment from the mean of all three measurements of a stem. The final
row represents the percent variation in ground truth measurements
averaged across all five stems. From Table 2, we see that even in
the portion of a stem that is detected by Fast R-CNN, there is high
variability in the stem’s pixel width in the ground truthing process.
Additionally, from Table 3, it is clear that along an entire individ-
ual stem, there are large variations in metric width. Thus, it appears
likely that a significant proportion of our estimation error can be ex-
plained by variability of the width of an individual stem, both for
pixel width estimates and for metric width estimates.

As shown in Table 2, for plant 2, only 1 estimate was gener-
ated out of the 33 different instances it was detected. Discarding
often was due to an obfuscating leaf, which negatively impacts ma-
jor axis detection, an essential component accurate width estimation,
as shown in Figure 9. However, the single estimate that was gener-
ated for plant 2 was accurate, which indicates that we can accurately
phenotype plants even when we discard a large proportion of images.

5. DISCUSSION

The results confirm that our algorithm performs as well on sorghum
as it does on corn. In comparing our results in the pixel domain to
those in the metric domain, we also find that the vast majority of our
error is in the pixel width estimation step, specifically in detecting
the boundary of the stem. As a result, future work could develop
more modern approaches to detecting stem boundaries, such as a
deep learning approach to segmentation. In addition, manual depth-
RGB alignment must also be replaced by automatic methods.

While not explored here, tracking individual stems across frames
is also important for characterizing phenotypes of plants. Tracking
can be used to prevent counting the same stem multiple times when
generating a statistical characterization of a plot. Methods for track-
ing stems across frames have previously been explored and could be
implemented to make our algorithm more robust.
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