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Abstract— Autonomous nano-quadcopters possess large po-
tential for indoor use. Existing works on autonomous flight
however rely on large amounts of compute, therefore resulting
in heavy and bulky platforms that can only be deployed
outdoors. We present a monocular depth estimation method
for autonomous obstacle avoidance and waypoint navigation
of nano-quadcopters indoors demonstrated on the Bitcraze
Crazyflie 2.1 which weighs a mere 33g. Our depth estimation
model has 1.56 million parameters and is 4 MB, which after
quantization becomes 1 MB. We transmit the images via
WiFi from the onboard grayscale camera on the Bitcraze
to a laptop, which then runs the 1 MB quantized model to
generate small-size depth maps. Subsequently, we run our
navigation algorithms on a laptop and transmit high-level
motion commands back to the drone. We demonstrate obstacle
avoidance capability of this end-to-end system through real-
world flights in a variety of indoor environments.

I. INTRODUCTION

Autonomous drones have gained significant traction in
recent years, with a variety of applications ranging from
aerial mapping and surveillance to sensing or search and
rescue missions. Different environments and use cases neces-
sitate vastly different hardware and software configurations.
Specifically for indoor flights, the constraints of a denser
environment limit the size and weight of the drone while
simultaneously requiring higher precision and computation-
ally efficient obstacle avoidance and navigation algorithms.
In order to unlock the potential reduced risk of injury and
increased responsiveness, the drone ideally needs to be able
to autonomously navigate through an environment with min-
imal human intervention. So far most existing works on au-
tonomous drone navigation and obstacle avoidance however
mainly focus on larger drones with powerful hardware and
sensor arrays, such as GPS, LIDAR, and multiple cameras.
It is therefore imperative to develop efficient and lightweight
systems that can enable autonomous flight on compact and
low-compute hardware platforms without requiring diverse
sensor inputs. In this work, we propose a low compute
monocular vision-based autonomous obstacle avoidance and
waypoint navigation flight system for a nano-quadcopter,
which is designed to operate in indoor environments with
limited computational resources and sparse sensory data. We
use the Bitcraze Crazyflie 2.1 nano-quadcopter as experiment
demonstration platform shown in Fig. 1 and pair the drone
with two extension PCBs: 1) the AI Deck, which provides
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Fig. 1: The Bitcraze Crazyflie 2.1 facing away from the
camera with the AI Deck and Flow Deck v2 attached.

a monocular grayscale camera, an ultra-low power GAP8
RISC-V based microprocessor with 9 compute cores and
an ESP32 WiFi AP and 2) the Flow Deck v2 extension
board, supplying an downwards facing ToF sensor and an
optical-flow-based positioning system. This allows us to
design and deploy a system capable of autonomous flight
on a platform, that weighs merely 33g and spans 11cm in
diameter. At the center of our system lies a monocular depth
estimation model, which is designed to be lightweight and
computationally efficient, and is tailored to the specific 8-
bit integer quantization constraints of the nano-quadcopter
platform. We further demonstrate the efficacy of our depth
estimation model by implementing an 1) obstacle avoid-
ance flight algorithm and 2) a waypoint-oriented navigation
flight algorithm in a series of real-world experiments. In
the following, we first review related work in the field of
autonomous drone flight and monocular depth estimation,
and then detail the architecture and training of our monocular
depth estimation model. We then describe the design and
implementation of our obstacle and waypoint navigation
algorithms and finally present the results of our real-world
experiments and discuss the significance of our work.

II. RELATED WORK

A. Autonomous Drone Flight & Obstacle Avoidance

A multitude of different approaches have been investigated
to enable autonomous flight and obstacle avoidance for a
drone. Currently, the two most common ways to imple-
ment autonomous flight and obstacle avoidance on a drone
are either classical perception [1], [2], planning [3], [4]
and control [5], [6] systems, or end-to-end deep RL-based



approaches [7]–[9]. Latter approaches have demonstrated
impressive ability to learn complex flight behaviors and
obstacle avoidance strategies. This includes the ability to fly
complex acrobatic trajectories [7] as well as the ability to
fly at high speeds through cluttered outdoor environments
such as forests [9] and high-speed drone racing [8]. These
approaches however all rely on order of magnitudes heavier
and larger quadcopter platforms and are intended for outdoor
or large empty indoor environments with heavy onboard
compute such as a Jetson TX2, which is not suited for
tight indoor environments. One example is Loquercio et
al. [10] who demonstrated the ability to leverage existing
driving footage to train an end-to-end model that outputs a
simple steering angle and collision probability for a drone.
This closed-loop approach however is not only limited to
outdoor environments, but also not capable or modifiable
for waypoint-oriented flight. Yang et al. [11] implements a
depth prediction and obstacle avoidance system on a drone
and also deploys it in a real-world indoor environment. The
used custom built drone which houses the required Intel NUC
and Jetson AGX Xavier compute onboard however measures
60cm in width excluding rotors, making the system infeasible
for safe real-world indoor use. Related works that build on
the Bitcraze Crazyflie 2.1 or comparable size platforms either
focus on less compute-intensive tasks such as localization
[12], [13], other sensing tasks [14] unrelated to flight control,
or obstacle avoidance [15], [16]. Palossi et al. [17] imple-
mented a custom PULP expansion board to the Crazyflie 2.1
to enable a deep neural network-based obstacle avoidance
flight for nano-drones, however the system’s ability to avoid
obstacles is only theoretically analyzed based on timing of
a stop signal. Finally, none of the above mentioned works
demonstrate the ability to implement waypoint-oriented flight
on a nano-quadcopter, which is a crucial ability for many
indoor drone applications such as indoor monitoring and
security or indoor space mapping.

B. Monocular Depth Estimation

Monocular or single image depth estimation has emerged
as a pivotal task in computer vision, facilitating various ap-
plications such as autonomous navigation, augmented reality,
and scene understanding. Single Image Depth Estimation
(SIDE), or more specifically, Relative Depth Estimation
(RDE), a task predicting the relative distances between ob-
jects in an image, producing a depth map with farther objects
appearing brighter and closer objects darker, are particularly
challenging problems. As we aim to infer spatial depth
information for every single pixel in an image, we require an
output dimensionality of thousands of pixels mapped from
0-255 and a model that learns robust features to extract
accurate depth information from a variety of potential image
representations of the same depth space. Some of the first
explorations into SIDE started with Saxena et al. [18], who
utilized hand-crafted features and Markov Random Fields
to generate relative depth maps for arbitrary image inputs.
Modern approaches to SIDE involve deep-learning multi-
layer CNNs and training routines using large-scale datasets

such as NYUv2 [19] and SUN RGB-D [20].
Notably, seminal works like Eigen et al.’s [21] pioneering

use of CNNs for depth prediction laid the groundwork
for subsequent advancements. In this model, a two-tiered
approach was utilized by running input images through
coarse and fine networks to extract depth features. Following
this, Laina et al. [22] constructed a new model based off of
ResNet-50 [23]. While containing fewer parameters due to
the model’s fully convolutional architecture, overall context
is retained through use of residual connections. The invention
of the Transformer [24] and subsequently the Vision Trans-
former [25] gave rise to a new suite of SIDE models whose
accuracy quickly made them the state of the art (SotA).
Specifically, the Dense Prediction Transformer (DPT) [26]
model utilizes Vision Transformers as its backbone, and adds
a custom head to aid in SIDE. While the aforementioned
models have excellent accuracy, their large size and com-
plexity make their use in low-compute embedded systems
challenging. Thus, models such as FastDepth [27] have
gained prominence due to their compact architecture and
reduced computational demands. Through its fully convolu-
tional architecture and usage of lightweight encoder models
like MobileNet [28], FastDepth [27] retains strong accuracy
while making deployment on embedded systems possible.

III. METHODOLOGY

While many systems with relatively high complexity ex-
ist to implement autonomous flight of an UAV, our pro-
posed system enables autonomous indoor obstacle avoid-
ance and waypoint-based flight of a nano-quadcopter with
a lightweight inference pipeline and sparse sensory data
consisting of a monocular camera, a optical flow relative
positioning system and an IMU. In order to accomplish
such a task, we divide the problem into two main steps:
We first generate a depth map from the onboard monocular
camera frame through our SIDE model on a laptop and
then subsequently supply the depth information to respec-
tive obstacle avoidance and waypoint-based flight navigation
algorithms running on a laptop that yield high-level flight
action commands which our Crazyflie platform can execute.
Communication between the Bitcraze and the laptop is
established via WiFi for the image stream, and radio for
the high-level motion commands and radio connection. The
obstacle avoidance and waypoint navigation algorithms are
designed to be lightweight and computationally efficient
given the specific constraints of the Crazyflie 2.1 nano-
quadcopter platform and output either a required yaw rate or
a desired forward velocity flight command. Fig. 2 provides
an overview of the obstacle avoidance and waypoint-based
flight system’s respective steps and components.

A. Monocular Depth Estimation

1) Model Architecture: To achieve the desired task of effi-
cient depth-estimation based autonomous obstacle avoidance,
we propose a fully convolutional encoder-decoder architec-
ture inspired by FastDepth [27], and is shown in the pink box
in Fig. 2. We use a lightweight encoder featuring pointwise



Fig. 2: System overview for depth-estimation based obstacle avoidance and waypoint navigation segmented into SIDE
pipeline (orange), obstacle avoidance algorithm (green) and waypoint-based flight (gray) where {xt, yt} are the goal

coordinates, {xc, yc} are the drone’s position, and γc is the drone’s heading. γhead is yaw change and v forward velocity.
Obs Avoidance is illustrated in algorithm 1, Edge Det refers to to algorithm 2, and Bias Mask is defined in Equation 3.

and depthwise convolution blocks from MobileNet [28] to
increase feature richness while minimizing excessive com-
putational complexity. In Fig. 2, the ”Joint-Encoder Block”
is a multilayered block consisting of 5 sets of depthwise and
pointwise convolutions, gradually increasing filter count from
128 to 512. Our decoder facilitates reconstruction of depth
information from the encoded features through use of upsam-
pling and convolution in a similar fashion to FastDepth [27].
The ”Joint-Decoder Block” respectively consists of 5 sets of
depthwise and pointwise convolutions, gradually decreasing
filter count from 512 to 128. Before each convolution in the
decoder, we additionally use a nearest-neighbor interpolation
algorithm to upsample images according to sizes of the
corresponding encoder layer and use residual connections
between the encoder and decoder to aid in reconstruction.

Our approach diverges from many SotA architectures
by deliberately imposing limitations on our model’s size,
constraining the number of parameters to 1.56 million. Con-
sequently, the resolution of the resulting depth map is smaller
by a factor of 4 in each dimension compared to grayscale
input image. More specifically, the model was trained on
image/label pairs of size (244×324) while the output depth-
map is of size (62×82). This choice balances computa-
tional efficiency and depth estimation precision, facilitating
integration into resource-constrained environments without
compromising performance. Table I puts our model’s size
in perspective to SotA depth estimation models DPT-Large
[26], DPT-Hybrid [26], Adabins [29] and the lightweight
model FastDepth [27].

2) Dataset Acquisition: To train our depth estimation
model, we assemble a diverse training dataset comprised of
various indoor image datasets. In total, we train on 190,361
image-label pairs, with 50,000 coming from NYUv2 [19],

TABLE I: Model Binary Size Comparison

Model Name Model Binary Size (MB) Params. (Mil.)
DPT-Large 1290 343

DPT-Hybrid 470 123
Adabins 300 78.20

FastDepth 15 3.96
Ours 4 1.56

Our Quantized 1 1.56

70,496 from Stanford 2D-3D [30], 5065 from ICL-NUIMS
[31], and 64,800 from Matterport3D [32]. The NYUv2
[19] dataset provides multiple indoor scenes captured from
various perspectives, and also has well constructed and
accurate ground truth values for the corresponding depth
maps. Additionally, our depth estimation model employs
a reponse-based knowledge distillation technique [33] to
refine its training process, leveraging depth-maps generated
by DPT-Large [26] as reference labels to guide the training
of our model on all datasets except NYUv2 [19] to achieve
consistency in training data resolution and dynamic range.

3) Training Specifications: We train our model with a
80/20 train-test split across the joint dataset over a total
span of 500 epochs. Our loss function is constructed from
a convex combination of Mean Squared Error (MSE) and
Structural Similar Index Measure (SSIM) and defined as:

L(x, y) = λ∗(1−SSIM(x, y))+(1−λ)∗MSE(x, y) (1)

where λ ∈ [0, 1]. We set λ = 0.8. Choosing this value allows
us to retain the significance SSIM gives to retaining structural
representation while also minimizing pixel value discrepancy
through use of MSE. Additionally, we retain numerical
stability throughout the training process by normalizing both
input and ground-truth depth images.

4) Deployment and Inference: We convert our model
using TensorFlow Lite (TFLite) as it excels in providing



fast inference for deep-learning models while maintaining
usable accuracy. To further compress the model’s size and
to match the GAP8 processor’s environment, we apply a full
8-bit integer post-training static quantization, in which both
model weights and activation layers are quantized to an 8-
bit resolution, and parameter calibration is achieved through
use of a representative dataset. During flight we establish a
camera stream from the drone to a remote laptop where we
run inference and subsequently return the algorithm’s flight
action commands through a radio link to the Crazyflie.

B. Obstacle Avoidance Flight Algorithm

A depth map-based obstacle avoidance flight algorithm
especially tailored for our low-compute hardware constraints
constitutes the core of our autonomous flight abilities. The
obstacle avoidance flight algorithm fundamentally attempts
to point the drone towards the deepest point in its view and is
designed to be lightweight and computationally efficient for
successful deployment on the GAP8 RISC-V processor post
model inference. Algorithm 1 shows the high-level steps of
the obstacle avoidance flight algorithm.

Algorithm 1: Obstacle Avoidance
Input:
Depth Map M
im width W
forward velocity v
camera fov α
center threshold px tcenter

min head chg β
edge contrast threshold tedgeDet

edge correction constant cedge
Algorithm:
while no interrupt do

Mcutout ← cutout center(M, 10× 82);
indicescandidates ← max val indices(Mcutout);
target← closest to center(indicescandidate);
target← edge corr(target, tedgeDet,M, cedge);
γyaw ← map index to angle(target, w, α);
γhead ← max(β, γyaw)
if target < W

2
–tcenter then

turn left(γhead);
else

if target > W
2

+ tcenter then
turn right(γhead);

else
continue straight(v);

end
end

end

Configuring the drone to move at a predetermined constant
height, the algorithm first extracts the center 10×82 pixels
of the 62×82 depth map input as a reduced proxy for the
drone’s direct forward environment occupancy information.
We subsequently calculate the ideal yaw angle off of the
drone’s current heading to steer the drone towards the
deepest point in its view and therefore away from any
close by obstacles. To accomplish this, we first search for
the set of maximum values in the reduced frame cutout
representing the deepest points indicescandidate, and hence

all the desired headings, and then select the one positioned
closest to the center to minimize turning movement. Once the
desired depth index target is identified, we then calculate
the corresponding relative yaw change γhead based on the
target’s position in the width of frame and the drone’s field
of view α. To prevent the drone from making many small
maneuvers without meaningful impact on the overall flight
path, we furthermore apply a minimum yaw angle change β:

γhead =

{
max(α2

|target−W
2 |

W
2

, β), |target− W
2 | ≥ tcenter

0, otherwise
(2)

where W is the width of the the depth map. To account for
the depth-based approach’s inherent tendency to cut turns
close to corners and edges that sit right next to the deepest
point in the depth map, we additionally design an edge
correction algorithm to compensate and smooth out turns,
explained shortly. Should the deepest point target now be
at least tcenter pixels away from the center of the frame,
then the drone turns according to γhead, otherwise it will
continue forward preventing unnecessary small turns. Table
II shows the chosen parameters for the obstacle avoidance
flight algorithm on our experimental platform.

TABLE II: Obstacle Avoidance Flight Algorithm Parameters

Parameter Value
Depth map Image Width (H ×W ) 62×82

Reduced Frame Cutout Size (H ×W ) 10×82
Forward velocity v 0.4 m/s

Camera field of view α 96°
Center Threshold per side tcenter 4 px

Min. Yaw Angle Change β 5°
Min. pixel contrast for edge tedgeDet 35px

Edge Correction Pixel Shift cedge 2px

1) Edge Detection and Yaw Angle Correction: One char-
acteristic specific to indoor environments is that the deepest
areas in the drone’s view are often located right next to or
partially occluded by an corner or edge, especially applying
to hallway corners or general office space layouts. Leading
the drone towards the deepest point in its field of view
therefore often unnecessarily results in headings very close
to corners and an increased collision risk. To allow for the
depth map based obstacle avoidance algorithm to account
for this, we include an edge detection algorithm that detects
the presence of an edge next to the target point in the
depth map and subsequently biases the intended yaw angle
away from the edge, leading to more natural and smoother
headings. Algorithm 2 illustrates this edge detection and
correction processing step. The edge detection’s sensitivity
is determined by the deployed depth map model’s specific
contrast and controlled through the edge contrast threshold
tedgeDet. With target representing the width-index with the
brightest pixel in the depth map M at height j, we calculate
the difference of brightness in between Mtarget,j and the
respective horizontal right and left values Mtarget±2,j . Fig.
3 illustrates an depth map output containing an edge and the
corresponding calculation checks for an edge left of target



Fig. 3: Crop of example inference frame with identified edge
left of target and subsequent target correction by 2 pixels
towards the right to the green position.

marked as black cross. In this example the difference in
between Mtarget−2,j and Mtarget,j i.e. the depth difference
between the red and black cross in Fig. 3, exceeds the edge
contrast threshold defined by tedgeDet while the same does
not hold for Mtarget+2,j – Mtarget,j corresponding to the
difference in between the black and green cross in Fig. 3.
We thus identify an edge to the left and subsequently shift the
target point for the yaw correction by 2 pixels away from the
edge towards the right to avoid close headings to the edge.
In the case in which we detect edges on both sides, the target
point is left unchanged to not increase the risk of a collision.

Algorithm 2: Edge Detection and Correction
Input:
Depth Map M
im width W
target X index target
edge contrast threshold tedgeDet

edge correction constant cedge
Algorithm:
correct right← false;
correct left← false;
if |M [target]–M [max(0, target− 2)]| > tedgeDet then

correct right← true;
end
if |M [target]–M [min(W–1, target+ 2)]| > tedgeDet

then
correct left← true;

end
if correct right then

if correct left then
target← target;

else
target← max(target+ cedge,W–1);

end
else

if correct left then
target← min(0, target− cedge);

end
end

C. Waypoint Navigation Flight Algorithm

Expanding on the obstacle avoidance flight algorithm,
we develop an efficient waypoint-based navigation flight
algorithm that not only enables the nano-quadcopter to avoid
obstacles in an indoor environment but also simultaneously
navigate T-junction turns towards a predetermined waypoint.
This is realized by leveraging the Crazyflie’s onboard op-
tical flow-based relative position and heading estimates in
conjunction with addition of a mask value nj to each pixel
in column j of the depth image to the inference depth

map, biasing the drone’s flight path towards the intended
waypoint by artificially increasing the perceived spatial depth
of the desired heading direction while preserving obstacle
avoidance properties. An example bias mask is illustrated in
Fig. 4 for a goal waypoint to the right of the drone outside of
its field of view. The bias mask for flight towards a distinct
waypoint given depthmap M with dimensions H × W is
calculated as follows:

Mi,j,biased = Mi,j + nj , ∀ 0 ≤ i ≤ H, 0 ≤ j ≤ W (3)

where nj is dependent on the angle γ between the drone’s
current heading and the vector pointing from the drone’s
current position to the goal waypoint. We define γ as negative
should the goal waypoint be towards the left of the drone and
positive for a goal waypoint towards the right. nj is then
calculated as follows:

nj =


min

(
maxbias, fbias × W−j

W × tan (γ)
)
, if γ < 0

min
(
maxbias, fbias × j

W × tan (γ)
)
, if γ ≥ 0

(4)
The maxbias parameter is a threshold value that limits the
maximum bias that can be added to the depth map to prevent
erasure of depth features, and the fbias parameter is a scaling
factor that determines the strength of the bias added to the
depth map. Intuitively speaking, as seen in Fig. 4, the Mask
bias function results in a straight ramp line at an angle γ until
it reaches the maximum maxbias, after which it flattens to
a constant value to prevent full erasure of the underlying
spatial depth features. As the waypoint is to the right of the
drone in the example in Fig 4, the ramp starts at 0 from
the left side of the image and increases from left to right to
incentivize the drone to head towards the waypoint.

Fig. 4: Example bias mask added to inference depth map.
Should the drone approach a T-junction or a crossroad,

the added bias mask component to the depth map will
therefore influence the drone to prefer the path towards the
waypoint by increasing that path’s perceived spatial depth
without erasing general depth map information and obstacle
avoidance capabilities.

IV. EXPERIMENTS

We analyze our SIDE model performance as well as
validate the autonomous obstacle avoidance and waypoint
based flight navigation algorithms. While the SIDE model is
qualitatively evaluated on its ability to accurately generate



depth maps, the obstacle avoidance and waypoint naviga-
tion flight algorithms are tested in previously unseen real-
world controlled indoor environments. We use the Bitcraze
Crazyflie 2.1 nano-quadcopter with the AI Deck and a
Flow Deck v2 extension boards attached as our experiment
platform. Leveraging the WiFi module on the Crazyflie 2.1,
we are able to stream the onboard camera feed to a laptop
and visualize the depth map and the flight path of the drone.

A. Inference Analysis

Our SIDE model proves to perform well on a variety of
indoor scenes even given its tiny size. Across all inference
outputs, the spatial depth correlates with pixel brightness.
In Fig. 5, we provide sample inference frames extracted
from our joint datasets for the fully int8-quantized as well
as unquantized model respectively. The model consistently
discerns the deepest point in each image, whether in quan-
tized or unquantized states, as demonstrated by all example
frames. Moreover, in the second and fourth images, the
model not only identifies the deepest point but also detects a
directional gradient associated with it. In Fig. 6, we analyze
never before seen frames from the actual drone camera
alongside their respective inference output obtained from
our experimental settings. Once again, it is apparent that the
model generalizes well to new and noisy environments and
effectively identifies the deepest points in each frame, as well
as any required directional depth-gradient.

(a) Input Frame (b) Ground truth (c) Unquant. Output (d) Quant. Output

Fig. 5: Various examples of SIDE on images from our aggre-
gated datasets. Top-Down: NYUv2, Matterport3D, Stanford
2D-3D, ICL-NUIMS. Ground-truth for Matterport3D, Stan-
ford 2D-3D, ICL-NUIMS generated via DPT-Large.

B. Obstacle Avoidance Flight Algorithm

We test the obstacle avoidance flight algorithm with the
Crazyflie in a controlled indoor obstacle course environment.
Fig. 7 shows the obstacle course setup and a top-down view
is shown in Fig 9. The course is specifically challenging as
the wooden boards and boxes are placed tightly together,

(a) Input Frame (b) Unquant. Output (c) Quant. Output

Fig. 6: Visualizations of our SIDE’s model’s performance on
unseen test images. Frames were sourced from various local
indoor hallway experiment environments.

Fig. 7: Obstacle course setup. Drone at starting position 2.

fully cover the background from the drone’s point of view
and have sharp corners that require a well tuned edge
detection and correction algorithm to avoid collisions. In
order to evaluate the obstacle avoidance flight algorithm, we
let the Crazyflie repeatedly fly through the obstacle course
from different starting positions for a total of 15 runs per
configuration and observe its ability to autonomously avoid
obstacles. Table III shows the success rate of the runs,
demonstrating the system’s ability to successfully navigate
the obstacle course using both unquantized and quantized
states of the model with the parameters shown in Table IV.

As expected, the unquantized model has a slightly higher
success rate than the quantized one. Also, without edge
correction the success rate is considerably lower than with
correction. A video of a successful run of the drone in
the obstacle course can be found here: https://youtu.
be/63pnnYmZl3g The starting positions were specifically
chosen with occluding objects in front of the start position
to force the drone into obstacle avoiding maneuvers. Fig.
8 illustrate a sample raw camera frame as well as the
corresponding inference depth map output from the int8-

https://youtu.be/63pnnYmZl3g
https://youtu.be/63pnnYmZl3g


TABLE III: Obstacle Avoidance Experiment Success Rates

Success Rate/Runs – Percentage
Starting Position: quantized + no edge corr. unquantized + no edge corr. quantized + edge corr. unquantized + edge corr.

1 0/3 – 0% 0/3 – 0% 4/5 – 80% 5/5 – 100%
2 1/3 – 33% 0/3 – 0% 5/5 – 100% 5/5 – 100%
3 0/3 – 0% 1/3 – 33% 5/5 – 100% 5/5 – 100%

TABLE IV: Experiment Algorithm Parameter Configuration

Parameter Value
Center Threshold per side tcenter 4 px

Min. Yaw Angle Change β 5°
Min. pixel contrast for edge tedgeDet 35px

Edge Correction Pixel Shift cedge 2px
Bias Mask Maximum maxbias 128
Bias Mask Scaling Factor fbias 128

quantized model during an instance of the obstacle avoidance
flight algorithm. It becomes clear, that the int8-quantized

(a) Camera grayscale input frame (b) Computed inference depth map

Fig. 8: Captured input frame and corresponding depth map.

instance of the model is able to generate precise-enough
depth maps to clearly discern in between the obstacles at
different depth levels. Fig. 9 shows the different starting
positions and examples of flight paths observed during our
experiment runs.

(a) Starting position 1, y = 0 (b) Starting position 1, y = 0

(c) Starting position 2, y = -0.2 (d) Starting position 3, y = 1

Fig. 9: Selection of flight paths at different starting positions
for obstacle avoidance.

(a) Original frame (b) Inference result (c) Biased depth map

Fig. 10: Biasing of depth map through goal waypoint to the
right outside of the drone’s field of view.

C. Waypoint Navigation Flight Algorithm

We further analyze the waypoint flight algorithm with the
drone in multiple previously unseen hallway T-junctions with
differing geometries that would by themselves not cause the
drone to head towards the waypoint. Fig. 10 shows a sample
raw camera frame of the drone as well as the correspond-
ing inference depth map output that is successfully biased
towards the right due to the goal waypoint sitting at a 50°
heading on the right side outside the visible frame.

We test the waypoint navigation flight algorithm with
the Crazyflie drone and the quantized model running edge
correction on three different hallway segment geometries and
are able to navigate to our desired waypoints as intended. A
video of a successful run of the drone in the hallway envi-
ronment 1 can be found here: https://www.youtube.
com/watch?v=TOU0lIeJPug Fig. 11 illustrates the en-
vironment layout as well as resulting flight paths. We observe

(a) Hallway Env 1 (b) Hallway Env 2

(c) Hallway Env 1

Fig. 11: Hallway geometries and flight path results for
waypoint-based flight.
that the drone successfully heads towards the respective
waypoints while avoiding the corner as obstacle solely based
on the SIDE inference output and our fast algorithm.

https://www.youtube.com/watch?v=TOU0lIeJPug
https://www.youtube.com/watch?v=TOU0lIeJPug


V. CONCLUSION

We successfully demonstrate the ability for a nano-
quadcopter solely equipped with a monocular camera and
optical flow sensor to autonomously navigate through indoor
environments using a lightweight depth estimation model
and obstacle avoidance and waypoint navigation flight al-
gorithms. Our compact depth estimation model is able to
generate depth maps in real time and our obstacle avoid-
ance and waypoint navigation flight algorithms are able to
successfully guide the drone through a variety of indoor
environments. Experiments show that the required integer
quantization of the model for deployment on the Crazyflie
2.1 nano-quadcopter slightly impacts the algorithm’s reliabil-
ity. Priority when choosing or developing hardware platforms
could therefore be given to those allowing for more precise
quantization or even floating point operations.
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