
758 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

Disk-Based Storage for Scalable Video
Ed Chang and Avideh Zakhor,Member, IEEE

Abstract—In this paper, we consider the placement of scalable
video data on single and multiple disks for storage and real-
time retrieval. For the single-disk case, we extend the principle of
constant frame grouping from constant bit rate (CBR) to variable
bit rate (VBR) scalable video data. When the number of admitted
users exceeds the server capacity, the rate of data sent to each
user is reduced to relieve the disk system overload, offering a
graceful degradation in comparison with nonscalable data. We
examine the qualities of video reconstructions obtained from a
real disk video server and find the scalable video more visually
appealing.

In the VBR case, scalability is also used to improve inter-
activity by reducing the delay associated with using interactive
functions in a predictive admission control environment. Finally,
we consider the multiple disk scenario and prove that periodic
interleaving results in lower system delay than striping in a
video server using round-robin scheduling. We verify the results
through detailed simulation of a four-disk array.

Index Terms—Data storage, hard disk, scalable coding, server,
video.

I. INTRODUCTION

I N this paper, we consider storage and retrieval of scal-
able video data. By scalable, we mean a video sequence

coded such that subsets of the full-resolution video bit stream
can be decoded to recreate lower-quality or lower-resolution
videos. Many applications can take advantage of a scalable
compression scheme. For example, in a video-on-demand
system, a digital cable television company may wish to provide
different customers with different levels of service: a customer
with a high-definition television (HDTV) set will want much
higher-quality and higher-resolution video than a customer
with a small conventional television. The workstation scenario
can also take advantage of scalable video. Consider a video
server connected to a network of workstations—as users open
windows of different sizes to watch video segments, the server
must provide videos with different rates and resolutions to
accommodate the different users.

In the above applications, the storage of scalable video
provides the following benefits. First, scalable compression of
video sequences is more storage efficient in that it eliminates
the need for storing multiple copies of the video at different
rates and resolutions in the server. Second, when too many
users request video from a server, the storage of scalable video

Manuscript received September 1, 1996; revised January 31, 1997. This
paper was recommended by Guest Editors B. Sheu, C.-Y Wu, H.-D. Lin, and
M. Ghanbari.

E. Chang was with the University of California, Berkeley, CA 94720 USA.
He is currently with the Digital Equipment Corporation, Cambridge Research
Lab, Cambridge, MA 02139 USA.

A. Zakhor is with the University of California, Berkeley, CA 94720 USA.
Publisher Item Identifier S 1051-8215(97)05883-7.

permits the server to gracefully degrade, i.e., to reduce the bit
rates of the videos sent to each user in order to service all
users. Without scalable video, the server would not be able to
service all of the requests simultaneously.

Keeton and Katz [12] consider the problem of scalable
video data layout on parallel disk arrays in a standard file
server environment. They examine issues of striping data
across multiple disks and evaluate their placement strategies in
simulation by measuring average request service times. Chiueh
and Katz [9] consider the specific case of storing scalable video
coded in a Laplacian or Gaussian pyramid. Their simulations
show that the use of scalable video greatly increases the
I/O rate and decreases the waiting time as compared to full-
rate nonscalable video. Chenet al. [6] propose a method of
staggering scalable data blocks in order to achieve better load
balancing and reduce buffer requirements in a conventional
file system.

The use of scalable video in interactive servers has also been
studied. We have previously presented a segment skipping
scheme to implement pause, reverse scan, and forward scan
[1]. Chen et al. have modified the segment skipping idea by
load balancing disks through offset placement and retrieval
methods [5]. In addition, they performed visual tests and
showed segment skipping as a viable means of browsing video
at different speeds. Paeket al. [13] focus on reducing the
interactivity delay of segment skipping by trading off disk uti-
lization. An alternative to segment skipping has been proposed
by Dey et al. [10]; in their system, users who browse video at
speed consume times the normal playback bandwidth.
They use statistical multiplexing to provide statistical quality
of service guarantees. In addition, they use scalability to trade
off delay in providing service.

Work has also been done on scalability and interactivity
for MPEG video. In [2], we presented one method of MPEG
frame rearranging to create a scalable bitstream. Chenet al.
[7], [8] use our frame rearrangement method for variable-
speed browsing. They account for the increased bandwidth
of browsing users by gracefully degrading the service of other
users. Paeket al. [13] also propose using our MPEG frame
rearrangement method in conjunction with frequency scaling
to reduce interactivity delay. Finally, Shenoy and Vin [14]
present a video server that allows interactive browsing of
MPEG video using a combination of temporal and frequency
scaling to reduce disk overhead. In addition, they amortize the
remaining disk overhead over an array of disks to minimize
the effect on other users.

In previous work [1], we have presented a general strategy
for scalable data placement on disk that maximizes the total
data transfer rate for an arbitrary distribution of requested data

1051–8215/97$10.00 1997 IEEE

CHANG AND ZAKHOR: DISK-BASED STORAGE FOR SCALABLE VIDEO 759

rates. That strategy consisted of two main concepts:constant
frame groupingto order data rate layers within one storage
unit on disk, andperiodic interleavingto arrange the storage
units on multiple disks. In this paper, we build on those
concepts as follows. We first present our disk model and
scalable compression scheme in Section II. In Section III, we
extend the principle of constant frame grouping to incorporate
variable bit rate (VBR) video data placement on a single disk.
In experimental tests, we exploit the scalability to demonstrate
storage efficiency and graceful degradation. We consider inter-
active VBR video in Section IV to show how scalability can
be used to reduce delays, and we consider the use of scalable
video for true VCR functions in Section V. In Section VI, we
prove that the use of periodic interleaving always results in
a lower delay than striping across multiple disks for a given
number of users. We present our conclusions in Section VII.

II. SYSTEM PARAMETERS

We begin by defining some basic assumptions about our
video server system. The periodic nature of video service
naturally leads to a round-robin scheduling scheme. We define
a service round as the smallest periodic unit of time in which
the server sends some data to each user to ensure real-time
playback capability. In each service round, the disk must
therefore perform at least one seek and one read for each
user, as we assume users do not batch requests with other
users. The server itself is composed of one or more disks and
a dual buffer system [3], [16]. In each service round, data
is read from disk and sent to one buffer, while previously-
read data is sent from the other buffer to each user at the
corresponding playback consumption rate. At the end of each
service round, the buffers switch roles. Thus, the start delay in
the single-disk system is one service round, the amount of time
required to fill one buffer. Using this dual-buffer assumption,
we are not constrained to schedule the users on the disk in
any given order, other than to ensure every user is scheduled
within a given service round. We assume the user requests
in each service round are scheduled according to the SCAN
algorithm.

In Table I we list our system parameters. We model our
disk as an ideal device with a constant read rateand seek
time . Our scalable video server uses an HP C3325W hard
drive, and we measure the raw read rate to be 42 200
Kb/s. To arrive at a seek time estimate, we use conservative
bounds for both the disk seek and rotation times to ensure that
there is no possibility of disk overload, i.e., a service round in
which the time necessary to service all of the users exceeds the
round duration. To find the worst case seek time, we assume

requests are evenly spaced across the disk tracks such
that there is an equal number of tracks between each requested
read unit. The reason for doing so is that this has been shown
to maximize the total seek time under the SCAN algorithm
[16] and as such results in a conservative upper bound for
seek time. We show later in this section that we can serve at
most full-rate requests for our chosen service duration;
this results in a worst case disk track seek time of about 10
ms [3]. By adding this pessimistic seek time to the worst-case

TABLE I
SYSTEM PARAMETERS

rotation time of 11 ms for a full disk revolution, we obtain the
worst case total seek time estimate ms.

The video sequence we use is a set of scenes fromRaiders
of the Lost Ark. We concatenate five different scenes from the
movie to form a single 2496-frame sequence at 24 source input
format (SIF)-sized frames per second. To compress the video,
we use a highly-scalable three-dimensional (3-D) subband
video compression scheme [15] which results in a set of
bit rates shown in Table II; these are the constant rates for
constant bit rate (CBR) video compression and the average
rates of the corresponding VBR compression. For example,
when a user requests video at the rate of 316 Kb/s, the server
will send layer 1 at 190 Kb/s, layer 2 at ()
Kb/s, and layer 3 at () Kb/s. At the highest rate,
1330 Kb/s, the video is approximately equivalent to MPEG-1
in both bit rate and reconstructed visual quality.

The choice of service round length is a critical issue, as
previous work has shown that it greatly affects the maximum
number of users serviced by a disk as well as the amount of
buffer memory each user requires [1], [3], [16]. In this paper,
we choose our service round duration to minimize the sum
of the disk and buffer cost per user [3]. The number of users
served and hence depends on the distribution of users’
requested video bit rates. In the remainder of this section, we
find the “optimal” value of for the case when all users
request full rate video; this optimal value is used throughout
most of this paper for users requesting full rate video.

We now describe a way to compute the cost associated with
a chosen value of . Our video sequence is coded at 24
frames per second (f/s), and we have chosen to use two levels
of temporal filtering in the subband codec, resulting in each
group-of-pictures (GOP) containing four frames. If we choose
not to split any GOP’s across disk storage units, our minimum
resolution of storage is then one GOP, with a real time duration
of one-sixth of a second. To maximize disk utilization, we
allow only one seek and one read per user in each service
round. Thus, we consider service round durations of multiples
of one-sixth of a second.

Given our assumption of one read unit per service round,
we find the read time by dividing the amount of full-rate
video by the disk read rate: . We define disk
efficiency to be the ratio of read time to the sum of read and
seek times: .

With a 100% efficient disk, we could serve a number of
users equal to the ratio of disk read rate to video bit rate.
Otherwise, we multiply this ratio by the disk efficiency to

760 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

TABLE II
SCALABLE VIDEO DATA BIT RATES

Fig. 1. Constant frame grouping.

find the maximum number of users we can serve:
.

Note that this expression is equivalent to solving the service
time constraint [1], [16] for the number of users, assuming
all users request the same rate of video. This constraint
prevents disk overload by limiting the total read and seek times
required by all users in one service round to the round duration

(1)

The disk cost is found by multiplying the current price of
disk storage, $0.25 per MB, by the amount of data contained
in a two-hour movie at the full video bit rate of 1330 Kb/s,
and adding the cost of a disk controller, $200. We calculate
the buffer usage by assuming a dual-buffer system. Thus, the
buffer per user is twice the amount of data that is served at
full rate in seconds. We then assume the price of memory
to be $15 per MB and calculate the buffer cost accordingly.

Table III shows cost as a function of service round duration
using the above approach. As seen, the total system cost
is minimized at of one second. Once we have chosen
the service round duration, the number of frames per service
round, , is also fixed at 24. This value, , will be shown
to influence the data placement strategy in Section III. Finally,
our choice of results in rounds of video for our
2496-frame sequence.

III. D ATA PLACEMENT FOR SCALABLE VIDEO

To analyze data placement for scalable video, we first
consider the basic case of CBR video. Our primary goal is to
maximize the bit rate throughput and number of users serviced
simultaneously. Thus, we must maximize the disk efficiency,
or equivalently, the percentage of time the disk spends reading
data. The principle of constant frame grouping [1] accom-
plishes this goal by grouping together frames of each layer,

TABLE III
COST PER FULL-RATE STREAM AS A FUNCTION OF TSR

as shown in Fig. 1. This strategy allows optimal disk operation
for each user in each service round by performing one seek
and a contiguous read of the exact amount of data requested.

We now consider the more complex case of VBR video. We
have shown in previous work [3] that the use of VBR video
can reduce the total system cost by up to a factor of three in
comparison with the strategy of padding the VBR video trace
to achieve a constant data rate. Thus, we extend the principle
of constant frame grouping to the storage of scalable VBR
video.

In general, storage of VBR video is not as straightforward as
that of CBR video. For CBR video, the data can be stored and
retrieved in constant-sized data blocks without risking jitter
free, real-time video delivery [1], [16]. For VBR data, the
block sizes to be written to and read from the disk cannot be
chosen as easily as for CBR data. The basic issue is whether
to store and retrieve data in unequal amounts to conform to the
real-time playback duration, or to store and retrieve the data
in equal-sized blocks for each user, utilizing buffer memory
to provide real-time variable bit rate for playback. We call the
first method constant time length (CTL) data placement and
the second method constant data length (CDL). Finally, we
can consider a hybrid system in which data is stored in CDL
blocks, but the number of blocks to be retrieved varies with the
playback consumption requirements. In previous work [3], we
have shown that CDL requires too much buffer, but both CTL

CHANG AND ZAKHOR: DISK-BASED STORAGE FOR SCALABLE VIDEO 761

Fig. 2. Scalable CTL data placement,Ng = 3, R = 4.

and hybrid data placement are viable strategies: CTL is slightly
more efficient, while hybrid results in lower fragmentation.

In Section III-A, we consider CTL storage of scalable data.
We then consider hybrid data placement of scalable data
in Section III-B. Finally, we present experimental results in
Section III-C.

A. Storage of Scalable VBR Video Using CTL Data Placement

We now consider CTL data placement for the scalable
VBR video sequence generated by the 3-D subband coder
described in Section II. In Section III, we defined CTL as
a data placement strategy in which stored block sizes are
proportional to their corresponding playback bit rates. For CTL
data placement, the extension of the constant frame grouping
strategy from the CBR case is straightforward. Assuming a
constant frame rate, there will be a constant number of frames,

, in each block stored on disk. To apply the constant frame
grouping strategy, we rearrange the rate layers in each stored
block such that frames of each layer are stored together,
just as in the CBR case. This is illustrated in Fig. 2 for a CTL
data block with an of three and four data layers.

As seen, the data placement is conceptually no different than
that of the CBR case as shown in Fig. 1. The only difference
is that each rate layer of each frame may be of different size.
The different frame sizes may result in service rounds with
disk overload [3]. As in the CBR case, disk overloads will
result in complete dropouts for nonscalable video but graceful
degradation for scalable video. In the VBR case, however,
the overload rounds will not happen periodically but instead
randomly with a probability distribution based on the number
of users simultaneously requesting video [3].

B. Storage of Scalable VBR Video Using
Hybrid Data Placement

CTL data placement has been shown to be highly efficient,
but it results in high fragmentation for real-time video editing
or replacement [3]. One data placement scheme that reduces
the fragmentation problem is a hybrid CTL–CDL data place-
ment scheme that stores constant-sized blocks but retrieves
a variable number of blocks for each user in each service

round [17]. The fragmentation is reduced because the blocks
are constant-sized, and varying the number of retrieved blocks
greatly reduces the amount of buffer required as compared to
a straight CDL system [3].

There are two main differences between the hybrid system
and the CTL system. First, the read units in the hybrid system
are much more coarsely quantized than those of the CTL
system; whereas each full-rate user in a CTL system can read
hundreds of contiguous 1-Kb disk sectors per round, each
full-rate user in the hybrid system reads only a few large
noncontiguous blocks of data. The other difference is that there
are no seeks between each sector of a CTL read, whereas there
is a seek before each large block of data read for a user of
the hybrid system. Specifically, hybrid system users reading
multiple blocks in one round must perform multiple seeks to
access those blocks.

For standard nonscalable hybrid data placement and re-
trieval, we begin by calculating the average bit rate of the
entire video sequence to be stored. We then choose a service
round duration and assume we read an average of one data
block in each service round. Our data block size is then equal
to the average bit rate multiplied by . We next calculate the
cumulative user data consumption and the number of blocks
that are required to be read in each round to keep up with
the consumption. Unused data at the end of each round is
buffered to be used in the next round.

One approach to storing the hybrid blocks in a scalable
format would be to use constant frame grouping on each block,
that is to sort the data within each block by resolution. In
this case, users would retrieve the same number of blocks
regardless of requested bit rate; only the amount read in each
block would vary. Since we wish to reduce the total number
of seeks, we sort the data within eachsetof blocks read by a
user in one service round. For example, if a user retrieves two
blocks of data in one round to keep up with the consumption
rate, then we sort the data to start with the lowest layer data
for both blocks, followed by the next higher layer for both
blocks, etc. An example is shown in Fig. 3 for a set of two
hybrid data blocks with four data layers.

As in the CTL case, we use an admission control based
on the statistics of the video. Thus, overload rounds will

762 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

Fig. 3. Scalable hybrid data placement,Ng = 3, R = 4.

occur randomly depending on the variation in the requested
bit traces. In the following section, we experimentally examine
the effects of these overloads.

C. Experimental Results

We use our real video server to test the consecutive frame
grouping strategy for VBR video. To demonstrate the effects
of scalability, we admit a large number of users such that
the total time required to service all users may exceed the
service round duration. Thus, we require an intelligent disk
scheduling algorithm to avoid causing a video delay or jitter
to users. The SCAN algorithm assumes that the time required
to service all of the users will not exceed the service round
duration. By admitting too many users, we no longer provide
that guarantee. Therefore, we modify the SCAN algorithm in
our video server to first calculate the total read and seek time
required by all of the users admitted on the disk, using the
worst-case seek time estimate from Section II. If this total
exceeds the service round duration, users will have their rates
reduced in a uniform fashion in round-robin sequence until the
time constraint in (1) is satisfied.

This new data scheduling algorithm handles nonscalable and
scalable video differently. For the nonscalable case, users have
their rates reduced to zero temporarily to relieve overload.
For example, if 11 users are being served, but the server
capacity is only ten users, then a user watching video will
experience a one-round dropout every ten rounds. For the
scalable case, users are scaled down to the next lower rate
by dropping the highest layer. Intuitively, users in the scalable
video system will experience more drops, but each drop will
be of smaller magnitude. We now compare the qualities of
the reconstructed scalable and nonscalable video streams. For
the nonscalable streams, we assume the video freezes during a
dropout, displaying the last transmitted frame for the duration
of the service round.

To determine the exact number of users to admit, we use a
statistical admission control strategy [3] as follows.

• Assume user requires a random amount of data with
probability density function (pdf) . For CTL, this

is measured in kilobytes; for hybrid, it is measured in
number of hybrid data blocks. The pdf’s are assumed
to be known, since the server can precisely compute the
histograms at the time the videos are stored.

• Assume users on the system, and consider admitting
user .

• Compute , the pdf of the aggregate resource
required by users by convolving their pdf’s,

.
• Integrate the aggregate pdf beyond the disk threshold limit

to find the probability of overload, . For CTL, the
disk threshold limit is ; for hybrid, it is

.
• If exceeds the chosen failure threshold, reject the

user; otherwise, admit. For our tests, we choose a failure
threshold of 10 .

We now test the scalable VBR data placement strategies
on our real disk video server by increasing the disk threshold
limit, using a value of in place of . In Fig. 4, we see
the effects of scalability on both CTL and hybrid placement.
Using nonscalable video, overloads occur approximately every
other service round. Scalable video, however, eliminates the
dropouts by reducing the peak SNR. In effect, it amortizes
the overload over all service rounds to provide a more steady
quality of service. The reconstructed video for the scalable
case is thus more visually pleasing because the scalable video
compression scheme exploits the fact that not all bits are of
equal value; each user always receives the most important bits
required in each service round. It is interesting to note that the
average bit rate each user receives islower in the scalable case
because each user requires a seek in every service round. In
the nonscalable case, users that are downgraded in any given
service round retrieve no data and thus require no disk seeks.
Thus, the scalable data results in a lower average bit rate with
higher subjective quality.

We find that, as expected, the hybrid data placement is
slightly less efficient than CTL due to the increased number
of seeks; for the 2 limit, CTL serves 34 full-rate users,
and hybrid serves 29. The scalable hybrid placement strategy,

CHANG AND ZAKHOR: DISK-BASED STORAGE FOR SCALABLE VIDEO 763

(a)

(b)

Fig. 4. PSNR of VBR video reconstructions: (a) CTL and (b) hybrid.

however, results in less degradation than the scalable CTL
strategy. As seen in Fig. 4, the average PSNR drop from
the full-rate to the scaled reconstruction is 6 dB for CTL,
as compared to 4 dB for hybrid. This occurs because in the
hybrid case the number of seeks required by each user falls
as the rate is scaled down, improving the disk efficiency and
average retrieved video bit rate. For example, in Fig. 3, users
who are served rate 1 video will only do one seek to read
one block, while users served rates 2, 3, or 4 will do two
seeks to read both blocks. In the CTL case, the number of
seeks remains constant, at one seek per read. Thus, the hybrid
scheme may become more efficient as users are served videos
of lower bit rates. To accurately compare the two schemes, we
admit the same number of users and measure the total bit rate
throughputs. By admitting 18 users to both systems, CTL has
a throughput of 23 200 Kb/s, and hybrid has a throughput of
21 700 Kb/s. By admitting 34 users to both systems, CTL has
a throughput of 12 000 Kb/s, and hybrid has a throughput of
16 900 Kb/s. The smaller drop in disk efficiency for the hybrid
scheme occurs because we apply constant frame grouping

across sets of blocks as shown in Fig. 3; if we were to sort
each block separately, the total throughput would drop more
as in the CTL case. Thus, hybrid data placement shows a
throughput advantage in high overload conditions.

IV. I NTERACTIVITY IN SCALABLE VBR VIDEO

In Section III, we demonstrated the use of scalability in
relieving overloads in VBR video. The overloads occurred
because we used a statistical admission control algorithm that
did not guarantee service. One method of guaranteeing service
assuming straightforward playback is to use a predictive data-
limit deterministic admission control [3], in which the actual
stored video bit traces are used to regulate the number of
admitted users. This guarantee fails, however, if we allow the
use of interactive functions because the server no longer has an
accurate prediction of the future amount of data requested. In
this section, we will show a way in which scalable video can
be used to reduce the readmission delay of interactive users in
the context of predictive admission control.

A. Data-Limit Deterministic Admission Control

Let us begin with a brief description of predictive data-
limit admission control as shown in Fig. 5. The basic idea
is to precompute the total number of blocks consumed by
all users in all future service rounds. Let be
the number of blocks consumed by userrequesting video

at rate and time index . Let be the
total amount of data requested from the blocks.
Finally, let be the current service round index and be
the service round in which user was admitted to the disk.
Then the time required to serve userin the current service
round is .
Because the disk system has full knowledge of the current
videos requested by all of the users, the total number of blocks
and amount of data requested for all future service rounds can
be calculateda priori. To prevent disk overload at all times,
we extend the condition from (1)

(2)

Using (2), the admission control calculates the hypothetical
future disk usage given the addition of a new request. If
the addition would result in disk overload for any service
round , the request is denied access; otherwise it is admitted.
This is shown pictorially in Fig. 5 where the bit trace for the
current users is added to that of the new user in order to
determine whether disk overload occurs. By using a worst
case seek time estimate, we guarantee that a user load which
satisfies (2) will not overload the actual disk [3]. However, this
guarantee relies on an accurate prediction of the future amount
of data requested. If we allow interactive functions, users will
invalidate the prediction and possibly cause disk overloads.

We consider the following three types of interactive func-
tions: pause, reverse scan, and forward scan. We assume that
these functions occur at the boundaries of service rounds, given
round-robin scheduling. During pause, a user does not receive

764 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

Fig. 5. Data-limit deterministic admission control.

any data from the server and therefore cannot threaten to
overload the disk. Upon readmission, however, the temporally
shifted request may violate the conditions set by the data-limit
admission control and result in disk overload. The reverse and
forward scans are implemented by skipping a constant number
of segments between each read; for example, a user scanning
forward at five times normal playback speed might retrieve
the blocks corresponding to time index 2, 7, 12, etc. Since
they retrieve data in each round, these scans may cause disk
overload during their operation in addition to the those caused
after resuming playback.

One strategy of preventing overload caused by interactive
functions is to combine bandwidth reservation with delaying
the interactive users. For all users in pause or scan, we reserve
bandwidth equal to the average bit rate of the requested
video trace to approximate the future load. In this way, we
will not admit too many new users when some current users
choose to pause or scan. In addition, the users who finish
their interactive functions must wait for the current disk load
to accommodate them before they are readmitted for normal
playback; specifically, their readmission must not violate (2).
Users in forward or reverse scan are subjected to the same
readmission delay as users in pause. However, the scan users
experience an additional delay for each round in which their
request for data would cause disk overload, since the server
delays the request to avoid overload. This does not occur
during pause because users do not retrieve data from the server
during the length of the pause.

An alternative strategy is to use scalability to reduce these
delays by scaling the requests of all users down to a pre-
specified limit. We specify the rate scaling limit by the two
following quality of service (QoS) measures. First, we limit
the maximum number of rates that a user may drop from
the requested rate in one service round. For instance, with a
maximum drop of one rate, a user that requests VBR video at
rate index 11 might receive a minimum of video at rate index
10 as given in Table II. Second, we specify a limit on the
maximum number of reductions that a user may experience
the entire video playback, where a reduction is defined by
one service round in which a user is dropped by one rate.
If a user drops two rates in one round, it is counted as two
reductions. By varying these QoS parameters, we change the
delays associated with the interactive functions. Thus, we can
achieve a spectrum of tradeoffs between delay and rate scaling.

B. Experimental Results

To measure interactive delays as a function of rate scaling,
we require a large number of trials for an accurate statistical

TABLE IV
INTERACTIVE FUNCTION 99% DELAY QUANTILES, MAX 1 SCALEDOWN/USER

sample. In previous work [3], we have shown that we can
accurately characterize our real disk video server through
simulation. We therefore use simulation in this section to
conduct each test over 10service rounds, equivalent to 280 h
of real-time operation. We assume users request full-length
VBR videos of the randomly phase-shiftedRaiderssequence at
rate index 11, as described in Section II. We choose the reverse
and forward scan speeds to be5 and 5, respectively.

Our first experiment is to characterize pause and scan delays
for the case of nonscalable data. Without loss of generality,
we can fix the request length to be the full length of 104
rounds and arbitrarily choose the pause and scan durations
to be ten rounds each. Then the interaction delay will be a
function of the number of interactions requested by each user.
We define the request frequency to be the fraction of users in
pause or scan averaged over time. For example, if all users
will request exactly one interaction at some point in playback,
the request frequency will be . We choose to test
a request frequency of 0.05 for each of the three interactive
functions and measure the 99% delay quantile; that is, 1%
of the delays exceed the quantile threshold. We measure a
threshold of 13, 15, and 16 rounds for pause, reverse, and
forward scan, respectively. As expected, the delay for the
pause function is lower than for the scan functions because
pause does not require bandwidth from the server during its
execution. However, the difference is small, indicating that
the majority of the delay results from readmission, not from
retrieving blocks in scan mode.

We next test the minimum amount of scalability by applying
the following two QoS measures. We assume that users will
agree to be scaled down by at most one rate, to rate index 10.
We then vary the limit on the maximum number of scaledowns
acceptable by each user and repeat the previous experiments.
For the pause case, we find that allowing just one scaledown
per user reduces the delay quantile from 13 to 7. Further
increases in the acceptable number of scaledowns reduces the
delay further: a delay of four at two scaledowns, and three
at four scaledowns. For reverse and forward scans, the results
are similar, but each scaledown has less effect, as shown in
Table IV.

To further increase the delay reduction, we may allow more
flexibility in scaling down current user requests. We test this
by increasing the scaledown threshold from one to two rates.
Specifically, users permit the quality of their video to drop
two rates, from rate index 11 to rate index 9. To compare
these results against those of the previous experiment using
one scaledown, we fix the number of acceptable scaledowns
for the pause case at four and for the scan cases at eight. We
find that by increasing the scaledown threshold to two rates per
user, the delay quantile drops to zero for all three interactive
functions.

CHANG AND ZAKHOR: DISK-BASED STORAGE FOR SCALABLE VIDEO 765

Fig. 6. Effect of scaledowns on PSNR.

To show the effects of these scaledowns on the perceived
reconstructed video, we plot a sample PSNR curve for a
dropdown threshold of two, with five dropdowns. As seen
in Fig. 6, the dropdowns have little effect on the PSNR. The
one-rate dropdown around frame 650 is 0.5 dB down from the
requested video, and the two-rate dropdowns around frames
840 and 910 are 2 and 1 dB down, respectively. These drops
are difficult to detect and are much less objectionable than
delays during the execution of interactive functions.

V. TRUE VCR FUNCTIONALITY

In this paper, we have considered segment skipping as the
only means of interactive browse functions. Although forward
and reverse segment skipping may be used to browse video,
it may be desirable in some applications to implement true
VCR-style scanning. This requires the server to retrieve data
from all read units over the scanning duration for smooth
motion. Without scalability, this results in the scanning user’s
bandwidth requirement increasing by a factor of the scan speed
[10]; however, scalability can be used to relieve the server
load in two ways. First, the server may elect to gracefully
degrade the video to all of the users as done in Section IV and
[7] and [14]. Alternatively, the server may limit the scanning
user to the normal playback bandwidth by degrading only the
video requested by the scanning user; this prevents scanning
users from affecting the quality of service provided to other
users. In this scheme, the choice of service round duration

determines the available scan speeds. Using the analysis in
Section II, we plot the maximum serviced bit rate as a function
of the scan speed in Fig. 7, assuming an speed scan
requires read units per round. As seen, a large increase in

is required to obtain reasonable scan speeds; this suggests
that graceful degradation or a bandwidth reservation policy
should also be used to relieve the server load for scanning
users.

VI. M ULTIPLE DISK VIDEO STORAGE

So far in this work, we have assumed that our video
server uses a single disk in a round-robin environment. In

Fig. 7. Maximum bit rates for VCR scanning.

this section, however, we consider the issues of interleaving
and striping multiple videos on a multiple disks. Many real
video servers will require multiple disks, as a 2-h movie
coded at the MPEG-1 rate of 1.2 Mb/s requires 1 Gb of
disk storage. In addition, by spreading out multiple videos
across multiple disks, the potential number of users that can
choose any one video is increased. This is useful in video-on-
demand applications in which select videos are requested far
more often than others. If each disk can serviceusers, and
there are disks, then an ideal placement strategy would
partition a popular video across the disks such that users
could access the video simultaneously under a wide range of
request patterns.

In the case of redundant arrays of inexpensive disks (RAID),
data is typically striped across multiple disks, resulting in
one user accessing many disks simultaneously. The main
benefit of redundancy is robustness in the event of disk
failure. In addition, some RAID levels allow the disk array
to provide higher aggregate throughput to individual requests.
For example, data is interleaved across disks at the bit level in
RAID-3 and at the sector level in RAID-4 and RAID-5. Thus,
one unit of video data that spans multiple sectors will span
multiple disks. As a result of the higher throughput due to
simultaneous multiple disk access, individual requests require
less time to access [11]; this has in part motivated the use
of striped disk arrays for video storage [9], [12]. For video
retrieval, the data read from different disks correspond to the
same time index of video. In the case of scalable video, the
data may correspond to different layers of one read unit [9],
[12]. A video server in which data is evenly striped across
all disks results in a perfectly load balanced disk array; upon
admission, a new user can begin access to any video in the
system.

As an alternative to striping, we consider a periodic inter-
leaving technique [1], as shown in Fig. 8. In this technique,
consecutive storage units are placed on consecutive disks
instead of being placed on the same disk. Thus, each user ac-
cesses only one disk in a service round to minimize the number
of total disk seeks required. Service rounds on different disks
are the same duration and synchronized with each other, so

766 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

Fig. 8. Periodic interleaving.

the disks operate in a lock-step manner [17]. As an example,
in Fig. 8, a user watches video 1 by reading unit 1 from disk 1
in the first round. In the second round, the user retrieves unit 2
from disk 2, and so on. After the user has retrievedunits in
this manner by cycling through the entire disk array, the user
reads unit from disk 1 in round . This pattern of
access is shown by the arrows in the figure. Switching across
disks does not require additional disk seeks and therefore does
not lower the system bit rate throughput.

Although interleaving does not affect the maximum bit rate
throughput or number of users that can be serviced, the main
benefit to interleaving videos is an increase in the flexibility
of user requests. Assuming again that each disk can service

users, users can access a single popular video with
the condition that at most users can be in phase, modulo

. For example, if , then at most users can access
rounds . Another set of users can access
rounds , etc.

In addition, users can effectively pause or browse videos at
different speeds by moving across the disks at a rate other than
one per round [1]. In the case that the video server is serving
the maximum capacity of users, these functions are limited:
pauses must be of duration rounds, and browsing must
be done at a speed of . This is necessary to keep the
interactive users in phase with the other users occupying the
full server. However, if the server is not full, there will be
more flexibility in the duration and speeds of the interactive
functions. This is equivalent to the user leaving the system and
requesting readmission starting from a different disk; we show
in the following section that this admission delay drops rapidly
as the number of available “slots” in the server increases.

Paek et al. have shown that striping and interleaving lie
at the opposite ends of a spectrum of placing videos across
multiple disks [13]. Specifically, they define a segmentation
level that specifies how many segments each read unit is
divided into. Each segment is then placed on a separate disk.
For example, in our periodic interleaving scheme, the read
units are not divided at all, and so . We will also
refer to this placement as “fully interleaved.” For a striped
scheme, each read unit is divided across alldisks in a disk
array, . We will also refer to this placement as “fully
striped.” Paeket al. show a tradeoff between admission delay
and disk utilization efficiency by varying [13], but we show

in the following section that by fixing the user capacity and
considering disk buffer delay, increasingresults ingreater
total system delay.

A. System Delay: Interleaving Versus Striping

In this section, we examine the delay of a user waiting to
access a video stored on an array of disks. We assume that
the user makes the request at the beginning of a service round
and that the disk system has capacity to handle the additional
user. There are two components of a multiple-disk system
delay: admission delay and disk buffer delay. Admission delay
is the time required for the admission control to admit the user
to the disk with the requested data. Disk buffer delay is always
one round, the time required to fill one buffer in a dual buffer
system.

In a perfectly load-balanced disk array, the admission delay
will be zero, since we have assumed that the disk array has the
capacity to handle an additional user. The admission delay only
takes on positive values when there is insufficient capacity on
disks containing the requested data; this can only occur in
an unbalanced array as follows. For admission control, we
must first determine which disks contain the first read unit
of the requested video. The user then applies for admission
on those disks, and each disk operates its own admission
control independently of the other disks. If all of the disks
contain enough capacity to handle the additional user, the user
is admitted. Otherwise, the user is rejected and applies for
admission in the next service round. In an array without perfect
load balancing, all of the users switch disks at the end of each
service round.

A user who requests data from a fully interleaved system
as shown in Fig. 8 will apply for admission at only one disk.
Without loss of generality, let us assume that the user requests
data from disk 1 at service round 1. To consider the worst case
delay scenario, assume that the system only has the capacity
for one additional user, consisting of an open “slot” at disk
2 at round 1. Then the user must wait rounds for
the current users to cycle through all of the disks and for the
slot to appear at disk 1. Thus, the maximum delay for the
fully interleaved system is rounds. Paeket al. have
shown that the maximum admission delay for a system with
segmentation level is rounds [13].

In comparing the fully interleaved system with a fully
striped system, we see that the worst case total delay of the
interleaved system is rounds, while that of the striped
system is only one round. However, the worst case scenarios
do not show that the total delay is a function of the current
user load and system capacity. We now present an analysis to
show the counterintuitive result that at any user load, a striped
system hashigher mean delay than an interleaved system,
provided they both have the same user capacities.

Consider an array of disks. We will compare two
systems: a fully interleaved system with , and a partially
striped system with , as the analysis can be extended
to compare systems with higher segmentation levels. Assume
the disk transfer rate is , and users all request CBR video
at a bit rate of .

CHANG AND ZAKHOR: DISK-BASED STORAGE FOR SCALABLE VIDEO 767

We begin by computing the maximum number of users
served for both disk systems with respect to the service round
duration . For the system, we use (1) to find the
maximum number of users we can service on one disk

(3)

Then the total number of users we can serve ondisks is

(4)

For the system, the data is striped such that each
user accesses a pair of disks in a service round. Each of the
two disks in the pair sends data at a rate of to the user
for the combined requested bit rate of . Thus, each pair of
disks can serve the following number of users:

(5)

Since there are pairs of disks in the array, the total
number of users the array can serve is

(6)

By comparing (4) and (6), we see that in order to serve the
same number of users, the system must have twice the
service round duration of the system.

Let the actual number of users on the system be
and the number of available slots be
. In the Appendix, we show that the

mean admission delay for a user seeking admission to one disk
assuming randomly distributed slots on independent
disks is rounds. Assuming the service round
duration is seconds, the total delay in seconds for the

system is

(7)

We now consider an system with service round
duration such that it can serve the same number
of users as the system. Since the system
has independent pairs of disks, the admission delay is

rounds. Thus, the total delay of the

system in seconds is

(8)

By comparing (7) and (8), we see that the total delay for
the system is always higher than that of the
system for the same user capacity and number of
available slots . The same analysis can be extended to
compare striping levels and , and ,
etc. The basic conclusion is that delay increases with striping
level.

B. Four-Disk Array Example

To verify our theory with simulation, we consider a four-
disk array, each disk having the parameters given in Section II.
We choose four evenly spaced bit rates to interleave and stripe
across the four disks: 253, 506, 759, and 1012 Kb/s. Thus,
there are four rate layers, each at 253 Kb/s. We show the data
placement patterns in Fig. 9. Different rate layers are shown by
different textures, as indicated in the legend at the left, while
each time index, corresponding to a user access, is enclosed
in dashed lines.1 For the system, we use the constant
frame grouping principle of Section III to construct data units
consisting of all four rate layers. We do no striping and place
consecutive data units on consecutive disks. Thus, the user
cycles through one disk per round, completing the cycle in
four rounds. For the system, we stripe data across a
pair of disks by storing the first two layers on one disk and
the other two layers on the other disk, as shown in Fig. 9. For
the next time index, we stripe another pair of units across the
other pair of disks. Thus, the user cycles through two disks
per round, completing the cycle in two rounds. Finally, for
the system, we fully stripe the data across the disks
by placing one layer per disk. Thus, the user retrieves data
equally from all four disks in one round.

We compare theoretical system delay curves for
, , and in Fig. 10. For each

segmentation level , we plot the total system delay
over the range of for these values of

. As seen, for all , a system
with lower segmentation level can serve more users. Since
we are allowed to choose as a parameter of the system,
in Fig. 11 we plot the minimum of the entire family of curves
generated by seconds. It
is clearly seen that a system with lower segmentation level

has a lower delay for the same number of users over the
entire range of users.

1In striped systems for scalable video, Chenet al. have shown the benefits
of staggering the data units by rotating the blocks within each time index [6].
This does not affect the performance when all users read full-rate video, as
we assume in the current example.

768 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

Fig. 9. Data placement for four-disk system.

Fig. 10. Theoretical system delay.

Fig. 11. Theoretical minimum system delay over allTSR.

We use simulations to verify the delays of the and
systems. The system is known to have no

admission delay and is thus not tested, since the total system
delay is just the disk buffer delay of one service round. We
choose a service round duration of s and assume
the user request lengths are randomly distributed between 1 s

Fig. 12. S = 1 andS = 2 system delays atTSR = 1.

and 2 h. In Fig. 12, we show the theoretical and simulation
total delays for the and systems over the range
of . As seen, the simulations confirm our
theoretical results.

VII. CONCLUSIONS

We have proposed two methods of storing VBR scalable
video using the principle of constant frame grouping and

CHANG AND ZAKHOR: DISK-BASED STORAGE FOR SCALABLE VIDEO 769

implemented our techniques on our real disk video server.
Our results demonstrated the advantages of scalability in
providing a more flexible range of user rates and also graceful
degradation in times of disk overload. For interactive VBR
video, we have shown that scalability can be used to greatly
reduce the delay arising from the use of pause and segment
skipping functions under predictive admission control.

In the multiple-disk case, we have shown that periodic
interleaving results in lower system delay than striping in
a video server using round-robin scheduling. In addition,
the use of periodic interleaving allows limited interactive
functions such as pause and segment skipping, but more work
remains to be done to improve these functions. Finally, we
have not addressed the issue of redundancy in the context of
interleaving, and this should be resolved for a commercially
viable system.

APPENDIX

MEAN ADMISSION DELAY

In this Appendix, we calculate the mean admission delay for
a user seeking admission to one disk assumingrandomly
distributed slots on independent disks. Slots are defined as
the capacity of a disk to handle additional users, i.e., if a disk
is currently servicing users but has a capacity of , then
it is said to contain slots. Without loss of generality,
we consider a user requesting admission to disk out of
the set of disks . Assuming there are
slots randomly distributed across the disks, we note that
admission occurs when at least one slot exists on disk . If
admission does not occur immediately, then in the next round
all users will cycle one disk; current users accessing disk 0
will move to disk 1, users from disk 1 will move to disk 2,
etc. The users on disk will move to disk , and
thus any slots that were on disk will now result in
admission for the user waiting on disk .

It is clear from the problem description that admission delay
is equal to the number of disks to the closest slot. Letbe
the number of disks from slot to disk ; the admission
delay is then equal to the minimum of over all . Since the
slots are assumed to be randomly distributed, we approximate
the values with continuous random variables uniformly
distributed over the range . If we define to be
the minimum of over all , then the admission delay is
approximately equal to . To find the cumulative distribution
function of , we note that if and only if
for all . Since the random variables are assumed to be
independent

(9)

Then the probability distribution function can be
found as follows:

(10)

The pdf is equal to the derivative of with
respect to

(11)

Then the mean of can be found through integration by
parts

(12)

(13)

(14)

Thus, the mean admission delay is approximately equal to
.

REFERENCES

[1] E. Chang and A. Zakhor, “Scalable video data placement on parallel
disk arrays,” inIS&T/SPIE Int. Symp. Electronic Imaging: Science and
Technology, Volume 2185: Image and Video Databases II,San Jose, CA,
Feb. 1994, pp. 208–221.

[2] , “Variable bit rate MPEG video storage on parallel disk arrays,”
in First Int. Workshop on Community Networking Integrated Multimedia
Services to the Home,San Francisco, CA, July 1994, pp. 127–137.

[3] , “Cost analyzes for VBR video servers,”IEEE Multimedia,vol.
4, no. 3, pp. 56–71, Winter 1996.

[4] E. Chang, “Storage and retrieval of compressed video,” Ph.D.
dissertation, University of California at Berkeley, 1996, http://www-
video.eecs.berkeley.edu/ changed/thesis.ps.

[5] M. S. Chen, D. Kandlur, and P. Yu, “Support for fully interactive playout
in a disk-array-based video server,” inProc. ACM Multimedia’94,San
Francisco, CA, Oct. 1994, pp. 391–398.

[6] , “Using rate staggering to store scalable video data in a disk-
array-based video server,” inMultimedia Computing and Networking
1995, SPIE,San Jose, CA, Feb. 1995, vol. SPIE-2417, pp. 338–345.

[7] H. J. Chen, A. Krishnamurthy, D. Venkatesh, and T. D. C. Little,
“A scalable video-on-demand service for the provision of VCR-like
functions,” in Proc. 2nd Int. Conf. Multimedia Computing Systems,
Washington DC, May 1995, pp. 65–72.

[8] H. Chen, T. Little, and D. Venkatesh, “A storage and retrieval tech-
nique for scalable delivery of MPEG-encoded video,”J. Parallel and
Distributed Comput.,vol. 30, no. 2, pp. 180–189, Nov. 1995.

[9] T. C. Chiueh and R. Katz, “Multi-resolution video representation for
parallel disk arrays,” inProc. ACM Multimedia’93,New York, Aug.
1993, pp. 401–409.

[10] J. K. Dey-Sircar, J. D. Salehi, J. F. Kurose, and D. Towsley, “Pro-
viding VCR capabilities in large-scale video servers,” inProc. ACM
Multimedia’94,San Francisco, CA, Oct. 1994, pp. 25–32.

[11] R. Katz, G. Gibson, and D. Patterson, “Disk system architectures for
high performance computing,”Proc. IEEE, vol. 77, pp. 1842–1858,
Dec. 1989.

[12] K. Keeton and R. Katz, “The evaluation of video layout strategies on
a high-bandwidth file server,” inFourth Int. Workshop on Network and
Operating System Support for Multimedia,UK, Nov. 1993, pp. 228–239.

[13] S. Paek, P. Bocheck, and S. F. Chang, “Scalable MPEG2 video servers
with heterogeneous QoS on parallel disk arrays,” inFifth Int. Workshop
on Network and Operating System Support for Digital Audio and Video,
Durham, NH, Apr. 1995, pp. 363–374.

[14] P. Shenoy and H. Vin, “Efficient support for scan operations in video
servers,” inProc. ACM Multimedia’95,San Francisco, CA, Nov. 1995,
pp. 131–140.

[15] D. Taubman and A. Zakhor, “Multirate 3-D subband coding of video,”
IEEE Trans. Image Processing,vol. 3, pp. 572–588, Sept. 1994.

770 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 7, NO. 5, OCTOBER 1997

[16] F. Tobagi, J. Pang, R. Baird, and M. Gang, “Streaming RAID—A disk
array management system for video files,” inProc. ACM Multimedia’93
Anaheim, CA, Aug. 1993, pp. 393–400.

[17] H. Vin, S. Rao, and P. Goyal, “Optimizing the placement of multimedia
objects on disk arrays,” inProc. Int. Conf. Multimedia Computing and
Systems,Washington, DC, May 1995, pp. 158–165.

Ed Chang received the B.S. degree from Purdue
University, W. Lafayette, IN, and the M.S. and
Ph.D. degrees from University of California, Berke-
ley, all in electrical engineering, in 1988, 1990, and
1996, respectively.

He is currently with Digital Equipment Corpora-
tion at the Cambridge Research Lab. His research
interests are in the areas of video storage, video and
image processing, and digital photography.

Dr. Chang was a National Science Foundation
Fellow from 1989 to 1992.

Avideh Zakhor (S’87–M’87) received the B.S. de-
gree from the California Institute of Technology,
Pasadena, and the M.S. and Ph.D. degrees from the
Massachusetts Institute of Technology, Cambridge,
all in electrical engineering, in 1983, 1985, and
1987, respectively.

In 1988, she joined the faculty at University
of California, Berkeley, where she is currently an
Associate Professor in the EECS Department. Her
research interests are in the general area of signal
processing and its applications to images and video.

She holds four U.S. patents.
Dr. Zakhor was the recipient of the NSF Presidential Young Investigator

Award in 1990.

