
TREE DETECTION IN AERIAL LIDAR AND IMAGE DATA

John Secord and Avideh Zakhor

University of California, Berkeley
Electrical Engineering and Computer Science Department

{secord,avz}@eecs.berkeley.edu

ABSTRACT

In this paper, we present an approach to detecting trees in regis-
tered aerial image and range data obtained via LiDAR. The mo-
tivation for this problem comes from automated city modeling, in
which such data is used to generate the models. Representing the
trees in these models is problematic because the data are usually too
sparsely sampled in tree regions to create an accurate 3-D model of
the trees. Furthermore, including the tree data points interferes with
the polygonization step of the building roof top models. Therefore,
it is advantageous to detect and remove points that represent trees
in both LiDAR and aerial imagery. In this paper we propose a two-
step method for tree detection consisting of segmentation followed
by classification. The segmentation is done using a simple region-
growing algorithm using weighted features from aerial image and
LiDAR, such as height, texture map, height variation, and normal
vector estimates. The weights for the features are determined using
a learning method on random walks. The classification is done using
weighted support vector machines (SVM), allowing us to control the
misclassification rate. The overall problem is formulated as a binary
detection problem, and the results are presented as receiver operating
characteristic curves are shown to validate our approach.

1. INTRODUCTION

There has been a great deal of interest in the construction of 3-D
models of urban and suburban environments. Traditionally, stereo
imaging methods have been used since aerial imagery is readily
available and relatively inexpensive to obtain[1]. However, interest
in using aerial LiDAR data is beginning to emerge due to the higher
achievable accuracy and the increased number of algorithms to pro-
cesses the data. One such approach has been developed in the Video
and Image Processing Lab at the University of California, Berkeley
over the past five years[2]. This approach involves segmenting aerial
LiDAR data, and applying RANSAC-like polygonization technique
to delineate roofs of individual buildings. While this approach works
well on urban regions with few trees, there is substantial perfor-
mance degradation in suburban regions with a large number of trees.
Therefore, it is conceivable to improve the accuracy and appearance
of the overall models by removing all data points corresponding to
trees from the aerial imagery and LiDAR data prior to applying the
RANSAC-based polygonization algorithm.

In this paper, we propose a new approach to detecting trees in
aerial imagery registered with airborne LiDAR data. Our proposed
algorithm consists of segmentation followed by classification. The
segmentation is a region growing algorithm that grows if adjacent
data points have a point-wise similarity above a threshold, and stops
if the similarity is below the threshold. The similarity is calculated
from weighted features, such as height, color, and normal vector,

with the weights being determined by a learning algorithm on a ran-
dom walk [3].

The segments resulting from the region growing algorithm are
then classified using support vector machines (SVM). Features for
the SVM algorithm are calculated for each segment. The resulting
segments from the segmentation step vary in size from two points
to over a thousand points. Since the same features calculated for
segments that contain two points and those that contain hundreds of
points are usually quite different, segments are separated into four
different bins depending on their size. The training and classifica-
tion is then carried out on each bin separately to improve results.

The outline of this paper is as follows: Section 2 explains how
the LiDAR data is acquired and stored. In Sections 3 and 4 we de-
scribe the segmentation and classification algorithms, respectively.
Lastly, Section 5 presents the experimental results.

2. DATA STRUCTURE

The LiDAR data used in this paper, obtained by Airborne 1 Incor-
porated, represents a large 3.5km× 3.5km area of Berkeley, Cali-
fornia, including residential, commercial, and University of Califor-
nia, Berkeley campus areas. The density of the scan points used in
this paper is roughly four points per square meter. The scan density
is high enough to discern large objects, such as buildings, but too
sparse to model trees and irregular geometries.

The format of the data acquired by Airborne 1, is an unstruc-
tured point cloud, and each point represented by a simple coordi-
nate system,(x, y, z). The resulting point cloud is then processed as
follows.First, a grid of 0.5m× 0.5m is superimposed on the region
covered by the airborne LiDAR, and thez value associated with each
scan point is re-gridded accordingly. If multiple points fall into the
same grid square, the highest and lowestz values are stored. If a grid
square has no scan points, it is assigned thez value from its nearest
neighbor.

The next step in processing the LiDAR data is texture mapping
the DSM using aerial photography. The aerial photographs are shot
from a helicopter using a Nikon digital camera. The LiDAR data and
aerial photography acquisitions were carried out at different times,
resulting in discrepancies between the LiDAR data and the aerial
image. While these discrepancies can affect the tree detection, we
anticipate the effect to be minimal for our data set.

3. SEGMENTATION

3.1. The Segmentation Algorithm

Our proposed segmentation algorithm selects a points,p, in the data
that has not been previously assigned to a segment, and assigns a
new segment identifier to it. The algorithm then analyzes the eight

neighboring points ofp. If a neighbor point top is already in a seg-
ment, the algorithm moves on to the next neighboring point. When it
identifes a neighboring point not yet assigned to a segment, it com-
putes the similarity between it andp. The similarity between points
i andj is defined by [3]:

Sij = e−(fvi−fvj)T ∗diag(λ)∗(fvi−fvj), (1)

wherefvi is a vector of features for point i, anddiag(λ) is a ma-
trix whose diagonal entries are the weights in the vectorλ for each
feature, to be discussed shortly.

If the similarity is greater than the threshold the neighbor is
added to the segmentp belongs to. The algorithm continues until
all eight neighboring points ofp are processed, after which it iterates
the above steps for each of the points newly added to the segment
until no new points are added to this particular segment. Then, the
algorithm once again, identifies a data point that has not been as-
signed to a segment, and continues this process until all points in the
data set have been assigned to a segment.

The parameters in the above algorithm include features, the as-
sociated weights and the similarity threshold. Ideally, the features
should correspond to physical quantities that help identify differ-
ences between tree and non-tree data points. The weights should
be derived to provide more emphasis to the traits that are the most
distinguishing, and less emphasis to those that are less important.
Adjusting the threshold controls the average segment size. On aver-
age, the lower the threshold, the larger the segments.

3.2. Feature Selection

Feature selection is important as meaningful features facilitate accu-
rate segmentation of the data. We have chosen three features, hue
(h), saturation (s), and value (v) from the aerial imagery, and four
features from the LiDAR data, namely height value (z), local height
variation (hv), and thex, andy component of a normal vector de-
noted bynx andny.

Height variation is calculated as the difference between the max-
imum and minimum height value over a1.5m× 1.5m area[4]. This
is a meaningful feature as it is common for the laser from the LiDAR
to pierce the top canopy of a tree, and reflect off a lower part of the
tree or even the ground. This results in a larger height variation for
trees than for a solid object, such as a building.nx andny are esti-
mated using finite differences. Thus, the resulting feature vector for
each point is given by,

fv = [z h s v hv nx ny]T (2)

We now need to find the optimal weights to combine these features.

3.3. Feature Weights

Since, no known methods for optimizing the feature weights in the
region-growing algorithm exist, we proceed indirectly. Parameter
optimization methods, also known as learning methods, do exist for
other segmentation algorithms; such as spectral clustering. There
are a number of approaches to parameter learning for this class of
segmentation[3, 5]. The learning method detailed in [3], has been
applied to a specific spectral clustering algorithm known as normal-
ized cuts [6]. We have chosen the learning method in [3] to arrive at a
set of feature weights to be used in our region growing segmentation
algorithm.

The framework for the learning method for normalized cuts is as
follows[3]: A similarity measure is defined as a binary operator on

pairs of points. A similarity matrixS may then be constructed for the
data set of interest,I, where entrysij corresponds to the similarity
between pointsi andj. In our case, the data set is the LiDAR data,
and the similarity measure is identical to the one used in the region-
growing segmentation as defined in (1). This assignment results in
similarity matrix,

S = [Sij]. (3)

Each row in the similarity matrix is then normalized such that each
row sums to one. The ”normalized” similarity matrix therefore sat-
isfies the requirements of a stochastic matrix, and consequently may
be treated as the transition probability matrix,P , of a discrete-time
Markov chain.

An ”ideal” or target transition probability matrix,̂P , is defined
as:

P̂ij =

{
0, j 6 ε A
1
|A| , j ε A (4)

where pointi is assumed to belong to segmentA with |A| elements.
The segmentA corresponds to either the tree segment or the non-tree
segment in the training data which is assumed to be manually gen-
erated. Given the observed transition probability matrixP , and the
target transition probability matrix̂P described above, we minimize
of the Kullback-Leibler (KL) divergence between the two to obtain
feature vector weights. SincêP is fixed, minimizing the KL diver-
gence simplifies to maximizing the cross entropy betweenP andP̂ ,
i.e. max J , where

J =
∑
iεI

1

|I|
∑
jεI

P̂ij log Pij . (5)

We use a standard gradient descent method to maximizeJ with re-
spect to the weight parametersλ. The gradient is calculated by,

∂J

∂λn
=

1

|I|

(∑
ij

P̂ijfv
n
ij −

∑
ij

Pijfv
n
ij

)
(6)

whereλn andfvn
ij are thenth elements ofλ andfvi − fvj respec-

tively.

4. CLASSIFICATION

4.1. The SVM Algorithm

To classify the resulting segments from the region growing algo-
rithm, we use the support vector machine (SVM) algorithm. The
SVM was originally proposed by Boser, et. al. [7], and has been
a centerpiece in much work on classification and regression. Since
the SVM algorithm also requires a feature vector for each item to be
classified, a new feature vector needs to be defined for each segment
obtained in the segmentation step.

Specifically, weighted SVM, with a class specific misclassifica-
tion parametersC±1, is used to classify the segments. By changing
the weights ofC±1 it is possible to traverse a receiver operating char-
acteristic (ROC) curve, exploring the tradeoff between the false and
true positives.

4.2. Feature Selection

To use SVM to classify, we need to define the features for each seg-
ment; segmenti being assigned feature vectorxi. Even though we
have already defined a feature vector for each data point in a seg-
ment, we now need to define a feature vector for each segment. Our

Bin Num. Num. of Data Pts.
1 2-4
2 5-10
3 11-30
4 31+

Table 1. Binning of Data Segments

approach is to use the statistics of the point-wise features over a seg-
ment to arrive at the features for that segment. Examples of segment
features include the variance of the heightz, or the mean of the hue
h. Since, the segment sizes range from two to over a thousand data
points, we divide the segments into four bins, as shown in Table 1.
Also, it is possible to compute averages of a given feature over either
an entire segment or to first compute it over ann × n window fol-
lowed by averaging over an entire segment. For bins 1 and 2 we have
empirically found the later approach, withn = 3, to outperform the
former approach, as it results in better spatial separation in our seg-
ment feature space. For bins 3 and 4 however, we only compute the
average over each point in a segment.

Our feature vector for each segment has a total of five features,
given by the mean of the hueµh, saturationµs, valueµv, and height
variationµhv, and the variance of the heightvarz,

xi = [µh µs µv µhv varz]
T . (7)

Intuitively speaking,(x, y) location of the points in a segment are
not useful as trees and building are nearly uniformly distributed over
the ground. We have also empirically found the normal vector data
not to be useful in the classification process.

4.3. SVM Implementation

We implement the SVM algorithm with the LIBSVM software[8].
We select the radial basis function, or Gaussian kernel for SVM:

K(xi, xj) = e−γ||xi−xj ||2 (8)

To obtain optimal values ofC andγ we perform a grid search of
10×10 in which we compute the cross-validation accuracy for each
point in the grid. The software is run in parallel on a four processor
server. Cross-validation accuracy and training, over the complete
(C, γ) grid is calculated within two hours. For data sets of roughly
700,000 points, run nearly 100 times to generate ROC curves, the
classification is completed in less than an hour.

In an-fold cross-validation, the training data is first divided into
n equally sized subsets. The classifier is trained onn−1 subsets and
then tested on the remaining subset. This is done over all combina-
tions such that every subset is tested once by a classifier trained on
the othern− 1 subsets. The cross-validation accuracy (CVA) is the
percentage of points that are correctly classified over all the subsets
when they were used as the testing subset. In the binary case, one
can break down the cross-validation accuracy into its two compo-
nents: correct classification of class -1 and correct classification of
class +1. Letyi ε {±1} be the true class of training data pointi and
ŷi ε {±1} be the class assigned to the point by the SVM. Then the

CVA can be written as follows:

CVA =




∑
ŷi s.t. yi=−1

1(ŷi = yi)

∑
yi

1(yi = −1)







∑
yi

1(yi = −1)

Total # of points


 +

(9)


∑
ŷi s.t. yi=1

1(ŷi = yi)

∑
yi

1(yi = 1)







∑
yi

1(yi = 1)

Total # of points




The first term represents the true negative percentage and the second
term represents the false negative term. These are the actual terms
we are interested in as we pose our problem as a binary detection
problem. For the grid search overC andγ we calculate the cross-
validation accuracy as the true negative and true positive terms. The
(C, γ) grid is composed of exponentially growing values ofC and
γ, e.g.,C = 2−5, 2−3, ..., 215, γ = 2−15, 2−13, ..., 23. Note, the
grid search is necessary because the CVA over(C, γ) set is not con-
vex. The grid search is done in parallel, reducing the computation
time. Furthermore, to decrease computation time, a course grid is
explored first, followed by a finer grid in regions that have better
cross-validation accuracy. OnceC andγ for each bin have been se-
lected, they are used in conjunction with the entire training set, to
determine the optimal hyperplane for each bin to be used as the clas-
sifier. The resulting model parameters for each bin are then used to
classify all the segments.

5. RESULTS AND DISCUSSION

We run our algorithm as follows: the LiDAR is preprocessed by Air-
borne 1 Inc. to define data points as ground or structure. Two data
sets are constructed. The first is a 600m× 700m area over a sub-
urban region of Berkeley, California, and the second is a 700m×
680m area over the University of California, Berkeley campus. For
these two data sets, a ground truth is constructed by hand for perfor-
mance characterization purposes. Only structure points are consid-
ered in our algorithm. For each structure point,i, a feature vector
fvi is created. Then the segmentation is carried out using optimal
weights determined from the learning spectral clustering algorithm,
as described in Section 3. DSM and the segmentation results for
residential data are shown in Fig. 1. Large segments corresponding
to building structures are easily discernable in Fig. 1(b). These seg-
ments are then sorted into bins, new features are determined for each
segment, and the SVM algorithm is used to classify the segments as
described in Section 4.

The segment data for each bin is shown in Table 2. The training
data is taken from the ground truth constructed for each data set. As
seen in the fourth and last rows of Table 2, the training segments
represent at most 4.6% of the total number of segments. Since we
are doing a binary classification, we present it as a binary detection
problem and calculate the ROC curves. A false positive is considered
a non-tree point being classified as a tree point, and the true positive
is a tree point being classified as a tree point. The computation of
the ROC curves is done by adjusting theC−1 andC+1 parameters
centered around the optimalC found by the grid search over the
(C, γ) parameter space as described in Section 4.3. Each point on
the ROC curve can be calculated independent of the others, reducing
computation time by parallel processing.

The ROC curves for each bin in the residential and the cam-
pus data set are are shown in Figs. 2(a) and 2(b), respectively. As
seen, the classification performance improves with bin size. This is

(a) (b)

Fig. 1. Residential data set DSM visualization (a) original and (b)
after segmentation.

Data Set 1 All Segs Bin 1 Bin 2 Bin 3 Bin 4
Total Segs 83331 60242 15257 5653 2179
Non-tree Segs 53871 37535 10430 4160 1746
Tree Segs 29460 22707 4827 1493 433
Training Segs 1400 1000 200 100 100

Data Set 2 All Segs Bin 1 Bin 2 Bin 3 Bin 4
Total Segs 113137 84479 19235 6844 2579
Non-tree Segs 42416 28174 8741 3805 1696
Tree Segs 70721 56305 10494 3039 883
Training Segs 1500 1000 300 100 100

Table 2. Segment data for both data sets

to be expected since the smaller segments use fewer data points for
segment feature calculations, resulting in noisier features. For com-
parison, a point-wise technique similar to the one described in [4],
is examined by applying SVM classifiers directly to features of in-
dividual data points in our data set on a point-wise basis, bypassing
the segmentation step. The ROC curves comparing the segmenta-
tion followed by classification method, and the point-wise method
are shown in Figs. 3(a) and 3(b), for the residential and campus data
sets respectively. It can clearly be seen from these figures that the
segmentation followed by classification outperforms the point-wise
method.

A natural question that arises is whether or not point-wise SVM
data can be used to correct misclassified segments, thereby improv-
ing overall performance. Another possibility is to use point-wise
SVM classification to trigger misclassified segments. We have em-
pirically found that in practice, point-wise SVM data cannot be used
to significantly improve overall performance of our segmentation
based scheme [9].

6. REFERENCES

[1] David Fr̀ere, Jan Vandekerckhove, Theo Moons, and Luc Van
Gool, “Automatic modeling and 3d reconstruction of urban
buildings from aerial imagery,” inIEEE International Geo-
science and Remote Sensing Symposium Proceedings, Seattle,
WA, 1998, pp. 2593–2596.

[2] Christian Frueh and Avideh Zakhor, “Constructing 3d city mod-
els by merging ground-based and airborne views,” inConfer-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Bin 4: 31+ Points Per Segment
Bin 3: 11−30 Points Per Segment
Bin 2: 5−10 Points Per Segment
Bin 1: 2−4 Points Per Segment

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

SVM on Data Set 2 Segments with Pointwise ROC for Bins 1−4

Bin 4: 31+ Points Per Segment
Bin 3: 11−30 Pointss Per Segment
Bin 2: 5−10 Points Per Segment
Bin 1: 2−4 Points Per Segment

(b)

Fig. 2. ROC curves obtained by segmentation followed by classifi-
cation for different bin sizes for (a) the residential data set and (b)
the campus data set.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate
T

ru
e

P
os

iti
ve

 R
at

e

Point−wise ROC for SVM with Segmented Data

Point−wise ROC for SVM with Point−wise Data

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Point−wise ROC for SVM with Segmented Data
Point−wise ROC for SVM with Point−wise Data

(b)

Fig. 3. ROC curves comparing segmentation followed by classifica-
tion versus point-wise classification for all bins combined for (a) the
residential data set and (b) the campus data set.

ence on Computer Vision and Pattern Recognition, 2003, pp.
562–569.

[3] Marina Maila and Jianbo Shi, “Learning segmentation with ran-
dom walk,” in Neural Information Processing Systems (NIPS)
2001, 2001.

[4] Amin P. Charaniya, Roberto Manduchi, and Suresh K. Lodha,
“Supervised parametric classification of aerial lidar data,” in
IEEE Workshop on Real-Time 3D Sensors, 2004, pp. 25–32.

[5] Francis R. Bach and Michael I. Jordan, “Learning spectral clus-
tering,” in Advances in Neural Information Processing Systems
(NIPS), 2003.

[6] Jianbo Shi and Jitendra Malik, “Normalized cuts and image
segmentation,” vol. 22, pp. 888–905, Aug. 2000.

[7] Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik, “A
training algorithm for optimal margin classifiers,” inComputa-
tional Learing Theory, 1992, pp. 144–152.

[8] Chih-Chung Chang and Chih-Jen Lin,LIBSVM: a library
for support vector machines, 2001, Software available at
http://www.csie.ntu.edu.tw/c̃jlin/libsvm.

[9] John Michael Secord, “Tree detection in aerial lidar and image
data,” M.S. thesis, University of California at Berkeley, Berke-
ley, CA, 2005.

