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Abstract

In this paper, we present an approach to detecting trees in registered aerial image and range data

obtained via LiDAR. The motivation for this problem comes from automated city modeling, in which

such data is used to generate textured 3-D models. Representing the trees in these models is problematic

because the data is usually too sparsely sampled in tree regions to create an accurate 3-D model of the

trees. Furthermore, including the tree data points interferes with the polygonization step of the building

roof top models. Therefore, it is advantageous to detect and remove points that represent trees in both

LiDAR and aerial imagery. In this paper, we propose a two-step method for tree detection consisting

of segmentation followed by classification. The segmentation is done using a simple region-growing

algorithm using weighted features from aerial image and LiDAR, such as height, texture map, height

variation, and normal vector estimates. The weights for the features are determined using a learning

method on random walks. The classification is done using weighted support vector machines (SVM),

allowing us to control the misclassification rate. The overall problem is formulated as a binary detection

problem, and receiver operating characteristic curves are shown to validate our approach.

Index Terms

LiDAR, segmentation, classification, normalized cuts, SVM.

I. I NTRODUCTION

Recently, there has been a great deal of interest in the construction of 3-D models of urban

and suburban environments. Some applications for such models include urban planning, virtual

exploration, and propagation models of radio waves for television and cellular phones. Large

internet companies are also enhancing their on-line mapping applications by adding 3-D features

and functionalities [1]. In these applications, the user can dynamically interact with virtual models
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of earth by zooming, rotating, tilting and panning a virtual camera all over the globe, down to

the level of buildings and streets in cites. It is conceivable to enhance such applications by

adding 3-D models rather than 2-D photographs, allowing the user to experience 3-D virtual

walk-throughs, drive-throughs and fly-throughs in any region of the world. At the heart of any

such application is the need to to generate 3-D models easily, accurately, photorealistically, and

automatically.

Traditionally, stereo imaging methods have been used to create 3-D models since aerial

imagery is readily available and relatively inexpensive to obtain. Such stereo imaging methods use

aerial imagery captured by an aircraft [2] or a satellite [3] to build the models. Automated stereo

imaging methods usually suffer from poor performance, whereas the non-automated approaches

are quite labor intensive. As such, there is growing interest in active sensors, such as LiDAR,

which can generate accurate models in a fairly automated way [4]–[12]. However, one drawback

of active sensing approaches as compared to passive sensing, such as aerial imagery, is higher

cost of data acquisition.

In recent years, an entire end to end automated 3-D city modeling scheme has been developed

at the Video and Image Processing Lab at the University of California, Berkeley [4]–[7]. This

approach uses airborne imagery and LiDAR, as well as ground based data acquired by range

scanners mounted on top of a truck driven under normal traffic conditions along the area to be

modeled. In this scheme, airborne LiDAR data is re-sampled on a grid, and is then polygonized

using a RANSAC-like algorithm in order to delineate rooftops of buildings [6].

While this approach works well on urban regions with few trees, the quality of resulting

models in suburban regions with large numbers of trees is poor due to the way in which tree

data points are processed. Specifically, the airborne LiDAR data is first segmented based on

height differences, and smaller segments are removed. This works well to remove tree data

points because in urban regions, buildings usually result in much larger segments than trees do,

such that removing smaller segments typically results in removing trees. In suburban regions,

however, smaller segmented regions do not necessarily capture all the trees. Hence, the remaining

data points corresponding to trees interfere with the RANSAC polygonization step of delineating

rooftops, degrading the resulting 3-D models. Therefore, it is possible to improve the accuracy

and appearance of the overall models by removing from the LiDAR data all points corresponding

to trees prior to applying the RANSAC-based polygonization algorithm.
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Previous work on processing LiDAR data ranges from simple tasks, such as classifying the

data into terrain and non-terrain points, to estimating terrain models [13], to the complex task of

classifying the data into different classes, such as buildings, trees, roads, and grass [14]. Previous

work on LiDAR data segmentation includes segmentation using height data and texture [15],

and point clustering on non-gridded data [16].

In this paper, we propose a new approach to detecting trees in aerial imagery registered with

airborne LiDAR data. Our proposed algorithm consists of segmentation followed by classifica-

tion. The segmentation is a region-growing algorithm that grows if adjacent data points have a

point-wise similarity above a threshold, and stops if the similarity is below the threshold. The

similarity is calculated from weighted features, such as height, color, and normal vector, with

the weights being determined by a learning algorithm on a random walk [17].

The segments resulting from the region growing algorithm are then classified using Support

Vector Machines (SVM). Features for the SVM algorithm are calculated for each segment. The

resulting segments from the segmentation step vary in size from two points to greater than one

thousand points. Since the features calculated for segments that contain two points and those that

contain hundreds of points are usually quite different, segments are separated into four different

bins depending on their size. The training and classification is then carried out separately on

each bin, improving the results.

We formulate the overall problem as a binary detection problem: given observations, i.e.

features of a segment, a decision is made as to which class it belongs, i.e. tree or non-tree. A

ground truth is manually constructed to determine the accuracy of the classification. As with

other binary detection problems, there is a tradeoff between true positives, i.e. tree points being

classified as tree points, and false positives, i.e. non-tree points being classified as tree points.

The visualization of this tradeoff is usually in the form of a Receiver Operating Characteristic

(ROC) curve. We present our results using ROC curves to demonstrate this tradeoff, and to

characterize the performance of our approach.

The outline of this paper is as follows: Section II explains how the LiDAR data is acquired

and stored. In Sections III and IV, we describe the segmentation and classification algorithms,

respectively. Section V presents the experimental results, and Section VI presents our conclusions.
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II. DATA REPRESENTATION

The LiDAR data used in this paper, obtained by Airborne 1 Incorporated, represents a large

3.5km× 3.5km area of Berkeley, California, including residential, commercial, and University

of California, Berkeley campus areas. The basic acquisition system is comprised of a 2-D laser

scanner, a differential global positioning system (GPS), and an inertial navigation system (INS).

The 2D laser scanner mounted underneath the aircraft sends down infrared laser pulses of roughly

1000nm wavelength. The scanner measures and records the time it takes for a pulse to be reflected

back. This time of flight is then used to determine the distance to the point where the laser pulse

hits the ground. To compute the absolutex, y andz coordinates of the point, the position and

orientation of the airplane must be computed using the differential GPS and INS. To obtain a

dense scan field, tens of thousands of laser pulses are sent each second. The pulses are swept

from side to side by a rotating mirror in front of the laser. Thus, as the plane moves forward a

relatively large area under the plane is scanned. For a description of the accuracy of this data

refer to [18].

The density of the scan points used in this paper is roughly four points per square meter. Since

the scanner sweeps an arc and has no prior knowledge of the distance to the ground, the scan

points are randomly distributed. Thus, the data can be represented as a point cloud, as shown

in Figure 1. The scan density is high enough to discern large objects, such as buildings, but too

sparse to model trees and irregular geometries.

Fig. 1. Raw aerial LiDAR data in the form of a point cloud.
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This point cloud is preprocessed by Airborne 1 Inc. into three separate groups: ground points,

structure points, and first return points. The ground points and structure points are self explanatory

from their names. The first-return points can be explained by considering that a laser beam

becomes less coherent and hence has a larger pulse radius with distance. Thus, the laser beam

emitted from the scanner may strike and subsequently return off multiple objects. The first return

is the first pulse to return, corresponding to the object it hits first. This implies that the set of

first return points is a subset of the structure and ground points. In this work, we do not take

advantage of the knowledge of first return points. However, prior knowledge of ground points

is useful as they can be eliminated from the input to the 3-D modeling algorithm, which is

primarily responsible for modeling structure.

The resulting structure point cloud is then processed as follows: first, a grid of 0.5m× 0.5m

is superimposed on the region covered by the airborne LiDAR, and thez value associated with

each scan point is re-gridded accordingly. If multiple points fall into the same grid square, the

highest and lowestz values are stored. For this work, the highestz values are used in order to

make the trees appear more complete. If a grid square has no scan points, it is assigned thez

value from its nearest neighbor. The result of this processing, shown in Figs. 2(a) and 3(a), are

Digital Surface Models (DSMs).

The next step in processing the LiDAR data is texture mapping the DSM using aerial pho-

tography. The aerial photographs are shot from a helicopter using a Nikon digital camera. The

LiDAR data and aerial photography acquisitions were carried out at different times, resulting

in discrepancies between the LiDAR data and the aerial image. While these discrepancies can

affect the tree detection, we anticipate the effect on our data set to be minimal. The result of

the texture-mapped DSMs are shown in Figs. 2(b) and 3(b).

We have manually registered two subregions of the entire airborne LiDAR data set with aerial

photography and textured mapped them. The two resulting data sets, referred to as residential

and campus, are 600m× 700m, and 780m× 600m respectively, and a ground truth is manually

constructed for each one to separate tree from non-tree points. Of the labeled data, 1-5% is used

for training, with the rest being used for testing.

The diversity of the scanned areas leads to different challenges in creating 3-D models of the

data. The commercial regions, such as downtown, have larger buildings, usually with Manhattan

geometries that are significantly taller than the trees. The buildings in the campus areas are
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(a) (b)

Fig. 2. The residential data set (a) DSM and (b) the corresponding texture map. For DSM the darker the pixel, the lower the

height.

(a) (b)

Fig. 3. The campus data set (a) DSM and (b) the corresponding texture map. For DSM the darker the pixel, the lower the

height.
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usually large but not square. The residential buildings are usually the smallest, and roughly the

same height as the trees. There are fewer trees in the urban area than in the residential and

campus areas.

III. SEGMENTATION

Our approach to segmentation is a fast region-growing algorithm whereby, the weights for

the similarity measure are obtained via a learning method on a spectral clustering algorithm,

i.e. normalized cuts [19]. Even though the weights are optimized for a different algorithm, our

results show that they perform reasonably well in the region growing algorithm. This can be

intuitively explained by considering the fact that both algorithms work best when the similarity

between points in the same class is high, and the similarity between points in different classes

is low. The region growing algorithm and learning method are explained in more detail below.

A. The Segmentation Algorithm

Our proposed segmentation algorithm selects a point,p, in the data that has not been previously

assigned to a segment, and assigns a new segment identifier to it. The algorithm then analyzes

the eight neighboring points ofp. If a neighboring point top is already in a segment, it moves

on to the next neighboring point. When it identifies a neighboring point not yet assigned to a

segment, it computes the similarity between it andp. The similarity between two points,i and

j, is defined by

Sij = e−(fvi−fvj)
T ∗diag(λ)∗(fvi−fvj), (1)

where fvi is a vector of features for pointi, and diag(λ) is a matrix whose diagonal entries

are the weights in the vectorλ for each feature, to be discussed shortly. Notice the similarity

measure takes on values(0, 1], with the value 1 corresponding to identical feature vectors, and

0 to dissimilar ones. This similarity measure is used in [17] and is also presented in [20]. If

fv ε Rn andλ ε Rn, then (1) can be written as,

Sij = e−
∑n

q=1 λq(fvq
ij)

2

, (2)
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wherefvq
ij is the qth element offvi − fvj and λq is the qth element ofλ. Whenever there is

a large difference between two feature vector elements, the exponent becomes a large negative

number, forcing similarity to be near zero. Similarly, the closer the difference is to zero, the

closer the similarity is to one.

Returning to the segmentation algorithm, if the similarity is greater than the threshold, the

neighbor is added to the segment to whichp belongs. The algorithm continues until all eight

neighboring points ofp are processed, after which it iterates the above steps for each of the

points newly added to the segment until no new points are added to this particular segment. The

algorithm then identifies a data point that has not been assigned to a segment, and continues

this process until all points in the data set have been assigned to a segment.

The parameters in the above algorithm include features, the associated weights and the simi-

larity threshold. Ideally, the features should correspond to physical quantities that help identify

differences between tree and non-tree data points. The weights should be derived to provide

more emphasis to the traits that are the most distinguishing, and less emphasis to those that are

less important. Adjusting the threshold controls the average segment size. On average, the lower

the threshold, the larger the segments. In what follows we discuss each of these parameters in

detail.

B. Feature Selection

Feature selection is important because meaningful features facilitate accurate segmentation of

the data. We have chosen three features, hue (h), saturation (s), and value (v) from the aerial

imagery, and four features from the LiDAR data, namely height value (z), local height variation

(hv), and thex andy component of a normal vector denoted bynx andny. Height variation is

calculated as the difference between the maximum and minimum height value over a1.5m ×
1.5m area [14]. This is a meaningful feature as it is common for the laser from the LiDAR to

pierce the top canopy of a tree, and reflect off a lower part of the tree or even the ground. This

results in a larger height variation for trees than for a solid object, such as a building.nx andny

are estimated using finite differences. Thus, the resulting feature vector for each point is given

by,

fv = [z h s v hv nx ny]
T (3)
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We now need to find the optimal weights to combine these features.

C. Feature Weights

Since no known methods for optimizing the feature weights in the region-growing algorithm

exist, we proceed indirectly. Parameter optimization methods, also known as learning methods,

do exist for other segmentation algorithms, such as spectral clustering [17], [21]. The learning

method detailed in [17] has been applied to a specific spectral clustering algorithm known as

normalized cuts [19]. For ease of implementation purposes, we choose the learning method in

[17] to arrive at a set of feature weights to be used in our region growing segmentation algorithm.

Normalized cuts is a segmentation algorithm based on the graph theoretic segmentation of

graph cuts [19]. Each data point in the data to be segmented is treated as a vertex in a weighted

graph, and the similarity between points is treated as the weighted edges. A similarity matrix is

constructed to represent the graph, which is then used in a generalized eigenvalue system whose

solution determines the segmentation. This is sometimes referred to as a spectral clustering

problem.

The framework for the learning method for normalized cuts is as follows [17]: a similarity

measure is defined as a binary operator on pairs of points. A similarity matrixS may then be

constructed for the data set of interest,I, where entrysij corresponds to the similarity between

pointsi andj. In our case, the data set is the LiDAR data, and the similarity measure is identical

to the one used in the region-growing segmentation as defined in Equation (1). This assignment

results in similarity matrix,

S = [Sij]. (4)

Each row in the similarity matrix is then normalized such that each row sums to one. The

”normalized” similarity matrix therefore satisfies the requirements of a stochastic matrix, and

consequently may be treated as the transition probability matrix,P , of a discrete-time Markov

chain. This is necessary for the cost function, described below, which operates on probability

distributions.

An ”ideal” or target transition probability matrix,̂P , generated from training data is defined
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as

P̂ij =





0, j 6 ε A

1
|A| , j ε A

(5)

where pointi is assumed to belong to segmentA with |A| elements. The segmentA corresponds

to either the tree segment or the non-tree segment in the training data, which is assumed to be

manually generated. Given the observed transition probability matrixP , and the target transition

probability matrix P̂ described above, we minimize of the Kullback-Leibler (KL) divergence

between the two to obtain feature vector weights. SinceP̂ is fixed, minimizing the KL divergence

simplifies to maximizing the cross entropy betweenP and P̂ , i.e. max J , where

J =
∑
iεI

1

|I|
∑
jεI

P̂ij log Pij. (6)

We use a standard gradient descent method to maximizeJ with respect to the weight parameters

λ. The gradient is calculated by,

∂J

∂λn
=

1

|I|

(∑
ij

P̂ijfvn
ij −

∑
ij

Pijfvn
ij

)
(7)

whereλn andfvn
ij are thenth elements ofλ and fvi − fvj respectively.

D. Segmentation

The segmentation utilizes the fact that trees are spatially coherent, in other words it is quite

unlikely to find an isolated tree point. A segment combines similar points into a single unit for

which a new set of features is computed for classification purposes. Thus, an ideal segmentation

would segment the data into homogenous segments of two or more points comprised of either

tree or non-tree points. It would not be necessary for a segment to represent a complete tree or

building. For example, a single tree could be broken up into multiple segments so long as the

segments only contain tree points. With this idea of ideal segmentation in mind, two issues are

now examined: (a) the tradeoffs governed by the similarity threshold parameter in the region

growing algorithm; (b) the way optimal weights obtained for the normalized cuts segmentation

algorithm are applied to a region growing segmentation algorithm.

The similarity threshold parameter governs the average segment size. Decreasing the similarity

threshold combines into the same segment points which would have been assigned to differ-

ent segments, thereby increasing the average segment size. Increasing the similarity threshold
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separates into different segments points that would have been in the same segment, thereby

decreasing the average segment size. At one extreme, the segment sizes could become so small

that a segment consists of a single point. This reduces our problem to a point-wise detection

problem and consequently destroys spatial coherency. At the other extreme, as the segments

become larger, they become more non-homogenous, i.e., contain both tree and non-tree points.

This destroys spacial coherency, and results in point-wise classification error. Therefore, a balance

must be reached between the segment size and the number of non-homogenous segments.

One metric that can be used to examine this tradeoff is the number of unclassifiable points,

which can be defined as follows: if a non-homogenous segment is classified by majority voting of

its points, then each minority point in it is defined to be unclassifiable. For example, a five-point

segment with three non-tree points and two tree points would be classified as a non-tree segment,

and the two tree points would be considered unclassifiable. By this definition, the number of

unclassifiable points in all segments of a data set is the lower bound on the total number of

misclassifications for that data set. In Section V-A, we present results relating the percentage of

unclassifiable points to the average size of nonhomogeneous segments.

Even though the computed weights in Section III-C are optimal for the given features in

the normalized cuts algorithm, using normalized cuts for our large data set is computationally

prohibitive. Instead we use the weights obtained in Section III-C in conjunction with a region

growing segmentation algorithm. Segmentation results are presented in Section V.

IV. CLASSIFICATION

To classify the resulting segments from the region growing algorithm, we use the SVM

algorithm. The SVM was originally proposed by Boser, et. al. [22], and has been the centerpiece

in much work on classification and regression. Since the SVM algorithm also requires its own

feature vector for each item to be classified, a new feature vector needs to be defined for each

segment obtained in the segmentation step.

A. The SVM Algorithm

The central idea underlying SVM is separating data into binary classes using affine hyperplanes

in an inner product space [23]. An affine hyperplane,y(w, b), with normal vectorw ε H, and
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offset b ε R is the set

{x : 〈w,x〉+ b = 0}. (8)

where〈., .〉 represents the inner product operator.

Let Y be the set of all affine hyperplanes,

Y = {y(w, b) : w ε H, b ε R} (9)

Consider training data(xi, yi), wherexi is the observation, or feature vector, andyi ε {±1}
is the class to whichxi is assigned. If the training data was separable by a hyperplane, then

there would exist a unique hyperplane inY that would result in the largest margin of separation

between any training point,xi, and the hyperplane. This unique hyperplane is considered the

optimal classifier for the data set, and can be constructed by solving the following minimization

problem,

min
w ε H, b ε R

τ(w) =
1

2
‖w‖2 (10)

subject toyi(〈w, φ(xi)〉+ b) ≥ 1, (11)

whereφ is a function, known as the kernel, that mapsxi into H, and yi ε {±1} is the class

thatxi belongs to, i.e.non-tree ≡ −1 andtree ≡ 1. However, it is rarely the case that a data

set is separable by a hyperplane, and that the constraint in (11) is fully satisfied. As such, slack

variables,ξi ≥ 0 for all i = 1, ..., m, are introduced to prevent (11) from being violated,

yi(〈w, φ(xi)〉+ b) ≥ 1− ξi for all i = 1, ..., m. (12)

wherem represents the number of training points.

The introduction of the slack variables results in what is termed a soft margin classifier. The

standard cost function that is optimized for a soft margin classifier is the following:

min
w ε H, b ε R

τ(w, ξ) =
1

2
‖w‖2 + C

m∑
i=1

ξi, (13)

subject to the constraint,

yi(〈w, φ(xi)〉+ b) ≥ 1− ξi for all i = 1, ..., m (14)

where ξi ≥ 0 for all i = 1, ..., m,
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where the constantC > 0 determines the trade-off between margin maximization and training

error minimization.

For our problem, we need to be able to tradeoff between the number of true positives and

false positives, or equivalently between true positives and true negatives. To accomplish this, the

parameter,C, is modified to be class specific, i.e.C−1 andC+1 [24], resulting in the final cost

function,

min
w ε H, b ε R

τ(w, ξ) =
1

2
‖w‖2 +

m∑
i=1

Cyi
ξi. (15)

For example, forC−1 ¿ C+1 more non-tree points are classified as tree points, increasing the

number of false negatives.

This cost function has a dual form as follows,

min
α

1

2
αT Qα− eT α (16)

subject to 0 ≤ αi ≤ C−1, if yi = −1,

subject to 0 ≤ αi ≤ C+1, if yi = 1,

yT α = 0,

wheree is a vector of all ones,Q is anm by m positive semidefinite matrix,Qij ≡ yiyjK (xi,xj),

and K (xi,xj) ≡ φ(xi)
T φ(xj) is the kernel. Note thatC−1 and C+1 are upper bounds forαi

depending on whetheryi is +1 or −1. Eq. (16) is a quadratic programming problem and can

be solved using convex optimization with multiple solutions [25]. We discuss our particular

implementation in Section IV-C.

B. Feature Selection for SVM

To use SVM to classify, we need to define the features for each segment, with feature vector

xi assigned to segmenti. Although we have already defined a feature vector for each data point

in a segment, we now need to define a feature vector for each segment as a whole. Our approach

uses statistics of the point-wise features over a segment to arrive at the features for that segment.

Examples of segment features include the variance of the height,z, or the mean of the hue,h.

Since the segment sizes range from two to greater than one thousand data points, we divide the

segments into four bins, as shown in Table I. Moreover, it is possible to compute averages of
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Bin Num. Num. of Data Pts.

1 2-4

2 5-10

3 11-30

4 31+

TABLE I

BINNING OF DATA SEGMENTS

a given feature over an entire segment or to first compute it over ann × n window followed

by averaging over an entire segment. Depending on the relative value ofn and the size of the

segments, these two approaches would result in different performances. For bins 1 and 2, we

have empirically found the latter approach, withn = 3, to outperform the former approach, as

it results in better spatial separation in our segment feature space. For bins 3 and 4, however,

we only compute the average over each point in a segment.

Our proposed feature vector for each segment has a total of five features, given by the mean

of the hue,µh, saturation,µs, value,µv, and height variation,µhv, and the variance of the height,

varz,

xi = [µh µs µv µhv varz]
T . (17)

Intuitively speaking, the(x, y) location of the points in a segment are not useful because trees

and building are nearly uniformly distributed over the ground. We have also empirically found

the normal vector data not to be useful in the classification process.

C. SVM Implementation

We implement the SVM algorithm with the LIBSVM software [26]. The quadratic program

used to solve the problem in (16) is a decomposition method called Sequential Minimal Opti-

mization (SMO) [27]. We have selected the radial basis function, or Gaussian kernel for SVM:

K(xi, xj) = e−γ||xi−xj ||2 , (18)
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whereγ determines the width of the Gaussian. To obtain optimal values ofC andγ we perform

a grid search of10 × 10 in which we compute the cross-validation accuracy for each point in

the grid. Once the optimal value forC is found the values forC−1 and C+1 are incremented

and decremented, or vice versa, uniformly aroundC to generate the ROC curves. For example,

to move one direction on the ROC curve we setC−1 = C + δk and C+1 = C − δk where

δ is a constant andk = 0, 1, 2... is an integer multiplier. The software is run in parallel on a

four-processor server. Cross-validation accuracy and training, over the complete(C, γ) grid is

calculated for 1500 training points within two hours. For data sets of roughly 700,000 points,

run nearly 100 times to generate ROC curves, the classification is completed in less than an

hour.

In a n-fold cross-validation the training data is first divided inton equally sized subsets. For

our purposes we choosen = 4. The classifier is trained onn − 1 subsets and then tested on

the remaining subset. This is done over all combinations such that every subset is tested once

by a classifier trained on the othern − 1 subsets. The cross-validation accuracy (CVA) is the

percentage of points that are correctly classified, averaged over all the subsets when they were

used as the testing subset. In the binary case, one can divide the cross-validation accuracy into

its two components: correct classification of class -1 and correct classification of class +1. Let

yi ε {±1} be the true class of training data pointi and ŷi ε {±1} be the class assigned to the

point by the SVM. Then the CVA can be written as follows:

CVA =




∑
ŷi s.t. yi=−1

1(ŷi = yi)

∑
yi

1(yi = −1)







∑
yi

1(yi = −1)

Total # of points


 + (19)




∑
ŷi s.t. yi=1

1(ŷi = yi)

∑
yi

1(yi = 1)







∑
yi

1(yi = 1)

Total # of points




The first term represents the true negative percentage, i.e. the percentage of non-tree points

correctly classified. It is represented as the product of the percentage of correctly classified

non-tree points and the percentage of the total points that are non-tree points. Similarly, the

second term represents the true positive percentage, i.e. the percentage of tree points that are

correctly classified. It is represented as the product of the percentage of correctly classified

tree points and the percentage of the the total points that are tree points. These are the actual

terms we use as we pose our problem as a binary detection problem. For the grid search over
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C and γ we calculate the cross-validation accuracy as the sum of the true negative and true

positive terms. The(C, γ) grid is composed of exponentially growing values ofC andγ, e.g.,

C = 2−5, 2−3, ..., 215, γ = 2−15, 2−13, ..., 23. A example of the(C, γ) grid is shown in Table II.

C\γ 2−7 2−5 2−3 2−1 2+1 2+3

True Positive 77.8% 75.8% 66.0% 65.8% 66.4% 68.6%

2+1 True Negative 57.6% 64.4% 76.0% 82.4% 84.6% 86.6%

CVA 67.7% 70.1% 71.0% 74.1% 75.5% 77.6%

True Positive 75.8% 66.8% 67.2% 65.8% 65.6% 69.2%

2+3 True Negative 64.4% 74.8% 81.8% 82.2% 86.6% 88.2%

CVA 70.1% 70.8% 74.5% 74.0% 76.1% 78.7%

True Positive 68.2% 66.2% 66.6% 67.2% 67.6% 70.0%

2+5 True Negative 72.8% 75.8% 81.6% 83.4% 86.6% 85.6%

CVA 70.5% 71.0% 74.4% 75.3% 77.1% 77.8%

True Positive 66.4% 68.0% 67.2% 67.6% 66.4% 72.0%

2+7 True Negative 74.6% 81.4% 81.4% 84.6% 87.4% 83.8%

CVA 70.5% 74.7% 74.3% 76.1% 76.9% 77.9%

True Positive 66.6% 67.0% 65.8% 65.8% 67.4% 72.2%

2+9 True Negative 75.2% 81.4% 82.4% 85.6% 87.6% 84.8%

CVA 70.9% 74.2% 74.1% 75.7% 77.5% 78.5%

True Positive 68.6% 67.6% 68.0% 65.8% 68.0% 72.8%

2+11 True Negative 81.2% 80.8% 82.8% 86.2% 87.0% 84.0%

CVA 74.9% 74.2% 75.4% 76.0% 77.5% 78.4%

TABLE II

EXAMPLE OF THE (C, γ) GRID.

Note that the grid search is necessary because the CVA over(C, γ) set is not convex. The grid
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search is done in parallel, reducing the computation time. Furthermore, to decrease computation

time, a course grid is explored first, followed by a finer grid in regions that have better cross-

validation accuracy. OnceC andγ for each bin have been selected, we vary theC−1 andC+1

around the optimalC to generate the optimal ROC curve. They are then used in conjunction

with the entire training set, to determine the optimal hyperplane for each bin to be used as the

classifier. The resulting model parameters for each bin are then used to classify all the segments.

V. RESULTS AND DISCUSSION

Our algorithm is run as follows: the LiDAR is preprocessed by Airborne 1 Inc. to define data

points as ground or structure. Two data sets are constructed. The first is a 600m× 700m area

over a suburban region of Berkeley, California, and is shown in Fig. 2. The second is a 700m×
680m area over the University of California, Berkeley campus, and is shown in Fig. 3. For these

two data sets, a ground truth is constructed by hand to separate tree points from non-tree points

for performance characterization purposes. Only structure points are considered in our algorithm.

For each structure point,i, a feature vectorfvi is created. Then the segmentation is carried out

using optimal weights determined from the learning spectral clustering algorithm, as described

in Section III. These segments are then sorted into bins, new features are determined for each

segment, and the SVM algorithm is used to classify the segments as described in Section IV.

A. Segmentation Results

The weights used for region-growing segmentation are computed using learning algorithm

defined in Section III-C with 10,000 training data points from the residential data set. We have

empirically found that the same weights work well for the campus data set. The normalized

weights are shown in Table III. Note the small weight for hue and large weight for height

variation. While hue seems to be a good cue for segmentation, in practice the shadows from

buildings fall onto the trees and vice versa, thereby limiting its usefulness.

The similarity threshold for the segmentation algorithm is determined by examining the

tradeoff between unclassifiable points and average non-homogeneous segment size. As shown

in Figure 4, the percentage of unclassifiable points increases with the average number of points

per non-homogenous segment, as well as with the average segment size. We select the similarity
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Feature Weight

z 0.15787

hue 0.000053

saturation 0.105247

value 0.000105

height variation 0.5262

normalx 0.105246

normaly 0.105246

TABLE III

OPTIMAL WEIGHTS FOR SEGMENTATION FEATURES USING THE LEARNING ALGORITHM ON NORMALIZED CUTS INSECTION

III-C

threshold in such a way that the percentage of the unclassifiable points is below 1%, leading to

an average segment size of 14 points. This implies that if the classification were to be perfect,

that is we were to use majority voting within each segment with the class for each point being

determined by the ground truth, the total accuracy would be 99%.

The resulting segments are then divided into different bins depending on their size as shown

in Table I. The distribution of the non-tree and tree segments and data points for various bins are

shown in Tables IV and V, respectively. The training data, shown in the fifth and tenth rows of

Table IV, is used to train the SVM, and will be discussed in Section V-B. Although the number

of segments decreases with bin number, the number of points in the bins is roughly constant,

with bins 1 and 4 containing more data points than bins 2 and 3. The DSMs for the residential

and campus data sets contain 1,680,000, and of 1,872,000 points, respectively. However, since

we only process structure points in the LiDAR data, the total number of points reported for the

residential and campus data sets in Table V are 777,958 and 813,904 respectively. This implies

that more than half the points in each data set are ground points.

For the residential data set shown in Table V, the number of tree points is considerably
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Fig. 4. Percentage of unclassifiable points versus average non-homogenous segment size.

smaller than the number of non-tree points. As expected, the residential data set corresponds

to a suburban region in Berkeley. In addition to having fewer tree points, the tree regions are

smaller, and more evenly distributed. On the other hand, the campus data set corresponds to the

University of California, Berkeley, campus, and has a much higher number of tree points and

larger tree regions.

Fig. 5 depicts the percentage of minority points in non-homogenous segments for different

segment sizes. As the segment size increases, the percentage of minority points decreases. This

can be explained by the fact that in a region-growing algorithm most of the minority points occur

near the edges of the segments, where there is a boundary between tree and non-tree segments.

As a result, a segment with a larger area is likely to have a smaller percentage of minority

points. Overall, the small percentage of minority points indicates reasonable performance of our

segmentation algorithm. The actual segmentation of the residential and campus data are shown

in Figs. 6(b) and 7(b), respectively. These figures reflect the data shown in Table IV, in that the

larger segments often correspond to buildings, and that the trees are often represented by smaller

segments.

B. Classification Results

The SVM algorithm uses training data to learn the hyperplane to be used as the classifier for

each bin. The training data is taken from the ground truth constructed for each data set. As seen
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Residential Data Set All Segs Bin 1 Bin 2 Bin 3 Bin 4

Total Segs 83,331 60,242 15,257 5653 2179

Non-tree Segs 53,871 37,535 10,430 4160 1746

Tree Segs 29,460 22,707 4827 1493 433

Training Segs 1400 1000 200 100 100

Campus Data Set All Segs Bin 1 Bin 2 Bin 3 Bin 4

Total Segs 113,137 84,479 19,235 6844 2579

Non-tree Segs 42,416 28,174 8741 3805 1696

Tree Segs 70,721 56,305 10,494 3039 883

Training Segs 1500 1000 300 100 100

TABLE IV

DISTRIBUTION OF NON-TREE AND TREE SEGMENTS FOR VARIOUS BINS IN THE RESIDENTIAL AND CAMPUS DATA SETS

ASSUMING GROUND TRUTH AND MAJORITY VOTING WITHIN EACH SEGMENT.

Residential Data Set All Pts Bin 1 Bin 2 Bin 3 Bin 4

Total Pts 777,958 153,695 101,002 92,539 430,722

Non-tree Pts 635,189 98,602 70,412 68,872 397,303

Tree Pts 142,769 55,093 30,590 23,667 33,419

Campus Data Set All Pts Bin 1 Bin 2 Bin 3 Bin 4

Total Pts 813,904 213,923 126,568 113,413 361,000

Non-tree Pts 489,604 73,327 58,813 63,744 293,720

Tree Pts 325,300 140,596 67,755 49,669 67,280

TABLE V

DISTRIBUTION OF NON-TREE AND TREE POINTS FOR SEGMENTS IN VARIOUS BINS FOR THE RESIDENTIAL AND CAMPUS

DATA SETS USING GROUND TRUTH.
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Fig. 5. Percentage of Minority Points in Non-homogeneous Segments for (a) the residential data set and (b) campus data set.

in the fifth and last rows of Table IV, the training segments represent at most 4.6% of the total

amount of segments. We have found empirically that using the training data for the residential

data set to classify the campus data set results in substantial performance degradation. This is

due to the fact that not only do the two sets of data have a different distribution of trees and

buildings, but also, the aerial photography for the data sets were taken at different times.

We now report on the ROC curves for our binary detection problem. A false positive is defined

as a non-tree point classified as a tree point, and the true positive is a tree point classified as a tree

point. The computation of the ROC curves is done by adjusting theC−1 and C+1 parameters

centered around the optimalC found by the grid search over the(C, γ) parameter space as

described in Section IV-C. Each point on the ROC curve can be calculated independent of the

others, reducing computation time by parallel processing.

In order to take segmentation errors into consideration, the ROC curves for each bin are

computed point-wise rather than segment-wise. This means that the class defined for each point

in a segment by the ground truth is compared to the class assigned to the segment by the SVM

to obtain true and false positive rates shown in Figs. 8(a) and 8(b) for the residential and campus

data sets respectively. As seen in Fig. 8, larger segments tend to outperform smaller segments.

This can be explained by considering that smaller segments use fewer data points for the segment
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(a) (b)

(c) (d)

Fig. 6. Residential data set DSM visualization (a) original, (b) after segmentation, (c) with ground truth, and (d) after

classification. For the classification, green correspond to true positives, purple to false positives, and blue to false negatives.
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(a) (b)

(c) (d)

Fig. 7. Campus data set DSM visualization (a) original, (b) after segmentation, (c) with ground truth, and (d) after classification.

For the classification, green correspond to true positives, purple to false positives, and blue to false negatives.
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feature calculations, resulting in noisier features.

For comparison, a point-wise technique similar to the one described in [14], is examined

by applying SVM classifiers directly to features of individual data points in our data set on a

point-wise basis, bypassing the segmentation step. The ROC curves comparing the segmentation

followed by classification method, and the point-wise method for all bins are shown in Figs. 9

and 10, for the residential and campus data sets respectively. It can clearly be seen from these

figures that the segmentation followed by classification outperforms the point-wise method in

every bin, and the only time the point-wise method is comparable is at high false positive rates

and extremely low true positive rates.

Since in our application, we need to detect trees so as to prevent the 3-D modeling algorithm

from trying to fit polygons to them, it is desirable to achieve a low false positive rate. On

the other hand, removing false positive points means that non-tree data would not be used in

the modeling algorithm, which could potentially result in buildings or other structures having

holes. The optimal operating point on the ROC curve resulting in the best model is not currently

known, and is the subject of future work. Examining the ROC curves in Figs. 9(e) and 10(e),

it is clear that for low false positive rates, segmentation followed by classification outperforms

the point-wise method.

While it is clear that segmentation followed by classification outperforms the point-wise

method, a natural question that arises is whether or not the point-wise SVM data can be used to

correct misclassified segments, thereby improving overall performance. Another natural question

is whether or not point-wise SVM classification can be used to trigger misclassified segments.

For instance if point-wise classification followed by majority voting is applied to each segment,

it is possible to compute the percentage,r, of minority points in each segment, and user as a

measure to trigger segments that are likely to be misclassified. As shown in the Appendix we

have empirically found that point-wise SVM data cannot be used to significantly improve the

overall performance of our segmentation based scheme.

Visualization of the DSMs and the resulting segmentation and classification for the residential

and campus data sets are shown in Figs. 6 and 7 respectively. These figures show the original

DSMs, the segmented DSM, the ground truth with trees in green, and the classification results.

A key observation in Figs 6(d) and 7(d), where green corresponds to true positives, purple to

false positives, and blue to false negatives, is that there are a few large sections of building that

January 20, 2006 DRAFT



25

are misclassified as tree. Each of these large sections are usually comprised of only one segment.

This would suggest that even though the large segments are almost all homogenous, a single

error in the classification of segments can potentially lead to rather large errors on the point-wise

level. One way to deal with this problem is to break up the larger segments by re-running the

segmentation with a higher threshold, or subdivide bin 4 into multiple bins so that the SVM

training can be further fine tuned to segment sizes.
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Fig. 8. ROC curves obtained by segmentation followed by classification for different bin sizes for (a) the residential data set

and (b) the campus data set.

VI. CONCLUSION AND FUTURE WORK

We have applied a segmentation algorithm followed by a classification algorithm to classify

aerial LiDAR data. The segmentation proves useful in taking advantage of the spatial correlation

between tree and non-tree data. We have shown that by traversing a ROC curve, one can adjust

the trade off between false positives and true positives.

For ease of comparison to other detection methods, the results are also shown using a point-

wise algorithm. Also, the ROC curve can be easily be used to obtain confusion matrices for

comparison to other methods. Little training data is used in our method to minimize the time

spent on manual input, and to simplify the implementation of our method.
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Fig. 9. ROC curves comparing segmentation followed by classification versus point-wise classification for (a) bin 1, (b) 2, (c)

3, (d) 4, and (e) all bins combined for the residential data set.
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Fig. 10. ROC curves comparing segmentation followed by classification versus point-wise classification for (a) bins 1, (b) 2,

(c) 3, (d) 4, and (e) all bins combined for the campus data set.
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A number of techniques to improve our method could be explored. First, a more sophisticated

method for estimating normal vectors, such as [28], could be employed. Improved normal vector

estimation would have the potential to improve segmentation results by increasing the quality

of the feature. It could also be used as a feature in SVM if it becomes a distinguishing feature

for classification. Second, infrared photography could also be employed for the same purpose.

Third, designing custom kernels for the SVM algorithm can be used to improve SVM results

[29].

Also, we have applied only one method for the segmentation and classification each. It would

be interesting to apply different segmentation and classification methods to the data and compare

to current results. The methods chosen in this paper have been chosen for the fast processing

time and ease of implementation. So, any improvements obtained by different algorithms would

be at the cost of the speed of the implementation.

The subsequent step in the research is to use the classified data to improve the 3-D modeling

algorithm. The classified data can be used as an input parameter into the 3-D modeling algorithm

to remove the tree points so that the RANSAC polygonization can result in better delineation

of rooftops.

APPENDIX

EXPLOTING POINT-WISE CLASSIFICATION

In this Appendix we explore possible ways in which point-wise classification can be used to

either correct or trigger misclassified segments.

While it is clear that segmentation followed by classification outperforms the point-wise

method, a natural question that arises is whether or not the point-wise SVM data can be used

to correct misclassified segments, thereby improving overall performance. By point-wise SVM,

we mean an approach in which we apply a point-wise classification to all the points within a

segment, and then apply majority voting within each segment in order to classify it. To examine

this possibility, for each bin, the number of misclassified segments using SVM is compared

to the number of misclassified segments using the point-wise SVM classifications, followed by

majority voting for each segment. This is shown in Tables VI and VII. As seen in the third and

fourth row of the table for each bin, the point-wise majority voting scheme consistently results
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in higher misclassification rates than simply applying SVM to the segments. Furthermore, the

last row of the Table for each bin represents the number of segments that are misclassified by

segment-wise SVM but correctly classified by point-wise majority voting. As seen, point-wise

majority voting can correct anywhere between 7% to 30% of the misclassified segments of

segment-wise SVM if the segments misclassified by segment-wise SVM were somehow known

or detected.

Another natural question that arises is whether or not point-wise SVM classification can

be used to trigger misclassified segments. For instance if point-wise classification followed by

majority voting is applied to each segment, it is possible to compute the percentage,r, of

minority points in each segment. It is thus conceivable user as a measure to trigger segments

that are likely to be misclassified. Figures 11 and 12 show the histogram of segments as a

function of the percentage of minority points in each segment for different bins, where minority

points are defined via point-wise classification. As seen, the ratio between correctly classified

segments to misclassified ones decreases asr becomes large. Therefore, if for large values ofr,

sayr > 40%, the number of incorrectly classified segments were to be significantly larger than

correctly classified segments,r could potentially be used as a trigger to identify misclassified

segments. However, as seen in Figures 11 and 12, the ratio of correctly classified to misclassified

segments forr > 40% remains as high as 50% for bin 3 in the campus data set and near 100%

for most of the bins, indicating thatr is not a reasonable trigger to tag misclassified segments.

For completion, Tables VIII and IX classification results forr > 40% in bin 4 of each data

set. As seen in rows one and three of Tables VIII and IX, segment-wise SVM classification

outperforms point-wise SVM majority voting classification in terms of correctly classified seg-

ments. Rows two, four, and five for each table show that segment-wise SVM outperforms both

point-wise SVM majority voting, and direct point-wise SVM. Thus, even forr > 40% point-wise

classification data cannot be used to improve the performance of the segment-wise classification

scheme.
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Bin 1 Total Homogeneous Non-homogeneous

Num. of Segs. 60,242 58,048 2194

Misclass. seg-wise 18,838 18,444 394 18,838/60,242≈ 31%

Misclass. pt-wise 26,821 26,159 662 26,821/60,242≈ 45%

Fixed by pt-wise 1354 1291 163 1354/18,838≈ 7%

Bin 2 Total Homogeneous Non-homogenous

Num. of Segs. 15,257 14,259 998

Misclass. seg-wise 4844 4485 359 4844/15,257≈ 32%

Misclass. pt-wise 6213 5645 568 6213/15,257≈ 41%

Fixed by pt-wise 516 467 49 516/4844≈ 11%

Bin 3 Total Homogeneous Non-homogenous

Num. of Segs. 5653 5195 458

Misclass. seg-wise 1486 1328 158 1486/5653≈ 26%

Misclass. pt-wise 1675 1512 163 1675/5653≈ 30%

Fixed by pt-wise 444 416 28 444/1486≈ 30%

Bin 4 Total Homogeneous Non-homogenous

Num. of Segs. 2179 1954 225

Misclass. seg-wise 360 301 59 360/2179≈ 17%

Misclass. pt-wise 501 426 75 501/2179≈ 23%

Fixed by pt-wise 78 67 11 78/360≈ 22%

TABLE VI

DISTRIBUTION OF MISCLASSIFIED HOMOGENEOUS AND NON-HOMOGENOUS SEGMENTS FOR THE RESIDENTIAL DATA SET.

THE MISCLASSIFICATIONS ARE CALCULATED FOR USINGSVM DIRECTLY ON THE SEGMENTS, AND USING POINT-WISE

SVM DATA AND MAJORITY VOTING TO CLASSIFY THE SEGMENTS. THE LAST ROW FOR EACH BIN CORRESPONDS TO THE

NUMBER OF SEGMENTS MISCLASSIFIED BYSVM THAT WOULD HAVE BEEN CORRECTLY CLASSIFIED BY THE MAJORITY

VOTING.
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Bin 1 Total Homogeneous Non-homogeneous

Num. of Segs. 84,479 84,097 382

Miss seg-wise 20,859 20,704 155 20,859/84,479≈ 25%

Miss pt-wise 28,174 27,991 183 28,174/84,479≈ 33%

Fixed by pt-wise 4023 3968 65 4023/20,859≈ 19%

Bin 2 Total Homogeneous Non-homogenous

Num. of Segs. 19,235 19,235 174

Miss seg-wise 4286 4286 84 42,86/19,235≈ 22%

Miss pt-wise 5407 5325 82 5407/19,235≈ 28%

Fixed by pt-wise 777 753 24 777/4286≈ 18%

Bin 3 Total Homogeneous Non-homogenous

Num. of Segs. 6844 6755 89

Miss seg-wise 916 875 41 916/6844≈ 13%

Miss pt-wise 1271 1211 60 1271/6844≈ 19%

Fixed by pt-wise 160 146 14 160/916≈ 17%

Bin 4 Total Homogeneous Non-homogenous

Num. of Segs. 2579 2526 53

Miss seg-wise 306 286 20 306/2579≈ 12%

Miss pt-wise 487 459 28 487/2579≈ 19%

Fixed by pt-wise 21 17 4 21/306≈ 7%

TABLE VII

DISTRIBUTION OF MISCLASSIFIED HOMOGENEOUS AND NON-HOMOGENOUS SEGMENTS FOR THE CAMPUS DATA SET. THE

MISCLASSIFICATIONS ARE CALCULATED FOR USINGSVM DIRECTLY ON THE SEGMENTS, AND USING POINT-WISE SVM

DATA AND MAJORITY VOTING TO CLASSIFY THE SEGMENTS. THE LAST ROW FOR EACH BIN CORRESPONDS TO THE NUMBER

OF SEGMENTS MISCLASSIFIED BYSVM THAT WOULD HAVE BEEN CORRECTLY CLASSIFIED BY THE MAJORITY VOTING.
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Total Misclass. Segs. Correct Segs.

Classification via SW SVM 14 7 7

Misclass. Pts using SW SVM 428 247 181

Total Pts using SW SVM 837 403 434

Segment Classification via PW Maj. Vote 14 10 4

Misclass. Pts using PW Maj. Vote 467 361 106

Misclass. Pts using PW SVM 437 214 223

TABLE VIII

RESULTS OF CLASSIFICATION FOR NON-HOMOGENEOUS SEGMENTS INBIN 4 OF THE RESIDENTIAL DATA SET WITH

r > 40% USING THREE CLASSIFICATION METHODS: SEGMENT-WISE SVM, MAJORITY VOTING OF POINT-WISE SVM, AND

DIRECT POINT-WISE SVM.

Total Misclass. Segs. Correct Segs.

Classification vis SW SVM 4 2 2

Misclass. Pts using SW SVM 75 39 36

Total Pts using SW SVM 152 64 88

Segment Classification vis PW Maj. Vote 4 3 1

Misclass. Pts using PW Maj. Vote 92 72 20

Misclass. Pts using PW SVM 95 65 30

TABLE IX

RESULTS OF CLASSIFICATION FOR NON-HOMOGENEOUS SEGMENTS INBIN 4 OF THE CAMPUS DATA SET WITHr > 40%

USING THREE CLASSIFICATION METHODS: SEGMENT-WISE SVM, MAJORITY VOTING OF POINT-WISE SVM, AND DIRECT

POINT-WISE SVM.
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(c)

Fig. 11. Histograms of percentage of minority points in non-homogeneous segments for (a) bin 2, (b) bin 3, and (c) bin 4 in

the residential data set.
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(c)

Fig. 12. Histograms of percentage of minority points in non-homogeneous segments for (a) bin 2, (b) bin 3, and (c) bin 4 in

the campus data set.
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