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Abstract approach works well on urban regions with few trees, there
is substantial performance degradation in suburban region
In this paper, we present an approach to detecting trees with a large number of trees. Therefore, it is conceivable
in registered aerial image and range data obtained via Li- to improve the accuracy and appearance of the overall mod-
DAR. The motivation for this problem comes from auto- els by removing all data points corresponding to trees from
mated 3D city modeling, in which such data is used to gen-the aerial imagery and LiDAR data prior to applying the
erate the models. Representing the trees in these modelRANSAC-based polygonization algorithm.
is problematic because the data are usually too sparsely There is a large body of work on detection and classifica-
sampled in tree regions to create an accurate 3-D model tion of LIDAR data and aerial imagery. In [2], classification
of the trees. Furthermore, including the tree data points of land cover into four different classes, namely building,
interferes with the polygonization step of the buildingfroo tree, grassland, and bare soil is achieved by combining Li-
top models. Therefore, it is advantageous to detect and re-DAR data and multispectral images and fusing data based
move points that represent trees in both LIDAR and aerial on the theory of Dempster - Shafer. In [3], the authors use a
imagery. In this paper we propose a two-step method for vegetation index called the Normalized Difference, detive
tree detection consisting of segmentation followed by-clas from the first and last pulse data to classify both trees and
sification. The segmentation is done using a simple region-buildings. In [4], a segment based classification method has
growing algorithm using weighted features from aerial im- been developed, which applies fuzzy logic to features of
age and LiDAR, such as height, texture map, height vari- each segment in order to obtain a reliable classification of
ation, and normal vector estimates. The weights for the building, vegetation, and terrain.
features are determined using a learning method on ran-  In this paper, we propose a new approach to detecting
dom walks. The classification is done using weighted sup-trees in aerial imagery registered with airborne LiDAR data
port vector machines (SVM), allowing us to control the mis- Our proposed algorithm consists of segmentation followed
classification rate. The overall problem is formulated as a by classification. The segmentation is a region growing
binary detection problem, and the results presented as re-algorithm that grows if adjacent data points have a point-
ceiver operating characteristic curves are shown to vatida ~ wise similarity above a threshold, and stops if the sintjari
our approach. is below the threshold. The similarity is calculated from
weighted features, such as height, color, and normal viector
1 Introduction with the weights being determined by a learning algorithm
. , on a random walk [10].
_ There has been a great deal of interest in thg construc-  the segments resulting from the region growing algo-
tion of 3-D models of urban and suburban environments. jjihm are then classified using Support Vector Machines
Traditionally, stereo imaging methods have been used sincqgyv)(6]. Features for the SVM algorithm are calculated
aerial imagery is readily available and relatively inexpen o each segment. The resulting segments from the segmen-
sive to_obtaln[l]. HOW(_ever, mter_est in aerial LIDAR datg IS tation step vary in size from two points to over a thousand
emerging due to the higher achievable accuracy than in the, ginis. - Since the statistical properties of a given segment
past, and the increased number of algorithms to process theaature such as mean hue, vary widely as a function of seg-
data. One such approach has been developed in the Videg, oyt size, we separate our segments into four different bins
and Image Processing Lab at the University of California, genending on their size. The training and classification is
Berkeley over the past five years[9]. This approach in- yan carried out on each bin separately to improve results.
volves segmenting aerial LIDAR data, and applying RAN- e gutline of this paper is as follows: Section 2 explains

dom SAmple Consensus (RANSAC) polygonization algo- o,y the LIDAR data is acquired and stored. In Sections 3
rithm to delineate roofs of individual buildings. While ¢hi



and 4 we describe the segmentation and classification algoment, and assigns a new segment identifier to it. The al-
rithms, respectively. Lastly, Section 5 presents the @xper gorithm then analyzes the eight neighboring pointg.olff
mental results. a neighbor point t already belongs to a segment, the al-
2 Data Structure gorithm moves on to the next neighboring point. When it

The LIDAR data used in this paper was acquired in a identifies a neighboring point not yet assigned to a segment,
flight in Fall of 2002 by Airborne 1 Incorporated, and rep- it computes the similarity between it apd The similarity
resents a 3.5knx 3.5km area of Berkeley, California, in- between points and; is defined by [10]:
cluding residential, commercial, and University of Catifo
nia, Berkeley campus areas. In this paper, we use two sub-

sets of the al_aove .data for testing our algorithms: Campus, herefv, is a vector of features for point i, amdag(\) is a
data, and residential data. Our previous papers address thg, 5trix whose diagonal entries are the weights in the vector
problem of 3D urban modeling for commercial regions such y tor each feature. to be discussed shortly.

as downtown Berkeley[9]. The residential data set is t0 |t he similarity is greater than the threshold the neighbor

the southwest of the U.C. Berkeley campus, and consistSig 5qded to the segmepbelongs to. The algorithm contin-
mostly of residential homes with trees in their yatd§he ues until all eight neighboring points @f are processed,

tree variety in both residential and campus data sets are Vargger which it iterates the above steps for each of the points
ied, and include Eucalyptus, Redwood, Oak, and Pine. Theneyly added to the segment until no new points are added
density of the scan points used in this paper is roughly four 1, 1his particular segment. Then, the algorithm once again,
points per square meter. The scan density is high enoughyengifies a data point that has not been assigned to a seg-

to discern and model large objects, such as buildings, butyhent and continues this process until all points in the data
too sparse to arrive at accurate 3D models for individual got have been assigned to a segment.

trees and irregular geometries to enable photorealistic vi The parameters in the above algorithm include features,

tual walk-throughs. _ _ _ the associated weights and the similarity threshold. Ide-
The format of the data acquired by Airborne 1, is an )y the features should correspond to physical quastitie
unstructured point cloud, and each point is represented by ot help identify differences between tree and non-trée da
a simple coordinate syster(y, y, z). The resulting point  h5ints. The weights should be derived to provide more em-
cloud is then processed as follows. First, a grid of 0.6m  ypagis 10 the traits that are the most distinguishing, assl le
0.5m is superimposed on the region covered by the a'rbomeemphasis to those that are less important. Adjusting the

LIDAR, and the: value associated with each scan pointis ,reshold controls the average segment size. On average,
re-gridded accordingly. If multiple points fall into thersa the lower the threshold, the larger the segments.
grid square, the highest and lowesvalues are stored. If

a grid square has no scan points, it is assigned withzthe 3.2 Feature Selection

value from its nearest neighbor. Feature selection is important as meaningful features fa-
The next step in processing the LIDAR data is texture Cilitate accurate segmentation of the data. We have chosen

mapping the Digital Surface Model (DSM) using aerial three features, hue:, saturation £), and value ¢) from

photography. The aerial photographs are shot from a heli-the aerial imagery, and four features from the LiDAR data,

copter using Nikon digital camera. The resolution of images namely height value, local height variation/{v), and the

is between one and two mega pixels, with density of aboutz, andy component of a normal vector denotedsby and

12 pixels per square meter. The LiDAR data and aerial pho-7y-

tography acquisitions were carried out at different times i Height variation is calculated as the difference between

within few months of each other, resulting in discrepancies the maximum and minimum height value oved &m x

between the LIDAR data and the aerial image. While these 1.5m area[8]. This is a meaningful feature as it is com-

discrepancies can affect the tree detection, we anticipate  mon for the laser from the LIDAR to pierce the top canopy

Sij _ e—(fvl-—fvj)T*diag()\)*(fvi—fvj)’ (1)

effect to be minimal for our data set. of a tree, and reflect off a lower part of the tree or even
_ the ground. This results in a larger height variation for
3 Segmentation trees than for a solid object, such as a building, and

n, are estimated using finite differences. Thus, the re-

] ] ) sulting feature vector for each point is given iy =
Our proposed segmentation algorithm selects a ppint, > 1, s v ho n, n,]”. We now need to find the opti-
in the data that has not been previously assigned to a segma| weights to combine these features.

3.1 The Segmentation Algorithm

1To view the relative locations of residential, campus, andmtown 3.3 Feature Weights
Berkeley data, interested reader can view the 3D modelsesfetlareas . L
inserted into Google Earth by downloading the followingtphifwww- Since, no known methods for optimizing the feature

video.eecs.berkeley.edidvz/DowntownResidential Campus.kmz weights in the region-growing algorithm exist, we proceed



indirectly. Parameter optimization methods, also known 4 Classification

as _Iearnl.ng methods, do exist for _other segmentation al—4.1 The SVM Algorithm
gorithms; such as spectral clustering. There are a num- i : _
ber of approaches to parameter learning for this class of 10 classify the resulting segments from the region grow-
segmentation[10, 5]. The learning method detailed in [10], N9 @lgorithm, we use the SVM algorithm. The SVM was
has been applied to a specific spectral clustering algorithmeriginally proposed by Boser, et. al. [6], and has been a
known as normalized cuts [12]. We have chosen the learn-centerpiece in much work on classification and regression.

ing method in [10] to arrive at a set of feature weights to be Since the SVM algorithm requires a feature vector for each
used in our region growing segmentation algorithm. item to be classified, a new feature vector needs to be de-

fined for each segment obtained in the segmentation step.

The specific SVM algorithm used is weighted SVM.
Weighted SVM makes it is possible to traverse a receiver
operating characteristic (ROC) curve, exploring the trade
off between the false and true positives.

The framework for the learning method for normalized
cuts is as follows[10]: A similarity measure is defined as
a binary operator on pairs of points. A similarity mat6x
may then be constructed for the data set of intedesthere
entrys;; corresponds to the similarity between poinhtnd
4. In our case, the data set is the LiDAR data, and the sim-4.2 Feature Selection
ilarity measure is identical to the one used in the region-  To use SVM to classify, we need to define the features
growing segmentation as defined in (1). This assignmentfor each segment; segmenbeing assigned feature vector
results in similarity matrixS = [S;;]. Each row inthe sim-  x;. Even though we have already defined a feature vector
ilarity matrix is then normalized such that each row sums to for each data point in a segment, we now need to define
one. The "normalized” similarity matrix therefore satisfie a feature vector for each segment. Our approach is to use
the requirements of a stochastic matrix, and consequentlythe statistics of the point-wise features over a segment to
may be treated as the transition probability matfx,of a  arrive at the features for that segment. Examples of segment

discrete-time Markov chain. features include the variance of the heighor the mean of
An "ideal” or target transition probability matrix?, is the hueh. Since, the segment sizes range from two to over a
defined as: thousand data points, we divide the segments into four bins
. 0, j £A as follows: first bin has segments with 2 - 4 points, second
Pij = { IT%I’ JeA (2 with 5 - 10 points, third with 11 - 30 points, and forth with

31 or more points.
Also, it is possible to compute averages of a given fea-
ture over either an entire segment or to first compute it over

segment or the non-tree segment in the training data Whicharmt>< EW'Q.dOV\:/LfOHZV;ed b}/] averaging Ovﬁr ?n egutrhe sle?-
is assumed to be manually generated. Given the observed'€"t- FOrbINS L and 2 we have empirically found the fater
" . ; " approach, witm = 3, to outperform the former approach,
transition probability matrixP, and the target transition as it results in better spatial separation in our segment fea
probability matrix P described above, we minimize of the ture space. For bins Bgnd 4 hoF\J/vever we onl cc?m ute the
Kullback-Leibler (KL) divergence between the two to ob- pace. ' y P

tain feature vector weights. Sinde is fixed, minimizing aV(ga??e(;\;e::agtz?'gr'l:cshegzeggnt has a total of five
the KL divergence simplifies to maximizing the cross en- u ure v 9 v

tropy betweerP andP, i.e. maximize/J, where features, given by the mean of the hug satgranonus,
value,,, and height variatiom,,,, and the variance of the

1 R heightvar,. Intuitively speaking,(z,y) location of the
J = Z ] Z Pijlog P;;. (3) points in a segment are not useful as trees and buildings are
iel jel nearly uniformly distributed over the ground. We have also
empirically found the normal vector data not to be useful in
We use a standard gradient descent method to maxihize the classification process.
with respect to the weight parametexs The gradient is 4.3 SVM Implementation

calculated by, ) , ,
We implement the SVM algorithm with the LIBSVM
software[7]. We use a soft margin classifier, and optimize
oJ 1 . " a standard cost function in which a paramefteis used to
x| Z Pigtviy = Zpijfvij (4) trade off between margin maximization and training error
Y Y minimization. We select the radial basis function, or Gaus-
sian kernel for SVM:

where point is assumed to belong to segmehtvith | A|
elements. The segment corresponds to either the tree

where\,, andfv?j are then'” elements of\ andfv; — fv; ,
respectively. K(xi,x;) = e wi—wz;]] (5)



To obtain optimal values o and~y we perform a grid first is a 600mx 700m area over a suburban region of
search ofl 0 x 10 in which we compute the cross-validation Berkeley, California, and the second is a 706m680m
accuracy for each point in the grid. The software is run in area over the University of California, Berkeley cam-
parallel on a four processor server. Cross-validation-accu pus. For these two data sets, a ground truth is con-
racy and training, over the complet€, ) grid is calcu- structed by hand for performance characterization pur-
lated within two hours. For data sets of roughly 700,000 poses. Only structure points are considered in our algo-
points, run nearly 100 times to generate ROC curves, therithm. For each structure point, a feature vectofv; is
classification is completed in less than an hour. created. Then the segmentation is carried out using optimal
In an-fold cross-validation, the training data is first di- weights given by = .16, hue = 0.00005, saturation =
vided inton equally sized subsets. The classifier is trained .1, value = .0001, heightvariation = .52, normal, =
onn — 1 subsets and then tested on the remaining subset.1, normal, = .10 determined from the learning spectral
This is done over all combinations such that every subset isclustering algorithm described in Section 3. As seen, hieigh
tested once by a classifier trained on the otherl subsets.  variation and height are the most influential features, avhil
The cross-validation accuracy (CVA) is the percentage of hue and value are least important. DSM and the segmenta-
points that are correctly classified over all the subsetawhe tion results for residential data are shown in Fig. 1. Large
they were used as the testing subset. In the binary case, onsegments corresponding to building structures are easily
can break down the cross-validation accuracy into its two discernable in Fig. 1(b). These segments are then sorted
components: correct classification of class -1 and correctinto bins, new features are determined for each segment,
classification of class +1. Lef; ¢ {£1} be the true class and the SVM algorithm is used to classify the segments as
of training data point andy; ¢ {41} be the class assigned described in Section 4.
to the point by the SVM. Then the CVA can be written as
follows:

> L(gi = vi) Z (y: = —1)

CVA = i s.t. yi=—1 1
S 1(y; = -1) Total # of points
Yi

(6)

> Wgi=w) Z I(y: = 1)

Ji s.t. yi=1

Sy =1) Total # of points
Yi

The first term represents the true negative percentage an
the second term represents the false negative term. Thes
are the actual terms we are interested in as we pose ou
problem as a binary detection problem. For the grid search

overC' and~ we calculate the cross-validation accuracy as @) (b)

the true negative and true positive terms. Thée~) grid

is composed of exponentially growing values@fand-, Figure 1. Residential data set DSM visualiza-
e.g.,C = 27°,273, .21 = 27152715 2% The tion (a) original and (b) after segmentation.

grid search is necessary because the CVA (er) set is

not convex. To reduce computation time, the grid search is

done in parallel. Furthermore, a course grid is exploret firs

followed by a finer grid in regions that have better cross-  The segment data for each bin is shown in Table 1. The
validation accuracy. Ono€ and-~ for each bin have been training data is taken from the ground truth constructed for

selected, they are used in conjunction with the entire train each data set. As seen in the fourth and last rows of Ta-
ing set, to determine the optimal hyperplane for each bin toble 1, the training segments represent at most 4.6% of the
be used as the classifier. The resulting model parameters fototal number of segments. Since we are doing a binary clas-

each bin are then used to classify all the segments. sification, we present it as a binary detection problem and
. . calculate the ROC curves. A false positive is considered a
5 Results and Discussion non-tree point being classified as a tree point, and the true

We run our algorithm as follows: the LIDAR is pre- positive is a tree point being classified as a tree point. The
processed by Airborne 1 Inc. to define data points ascomputation of the ROC curves is done by adjusting the pa-
ground or structure. Two data sets are constructed. Therameters in the weighted SVM algorithm [11]. Each point



Data Set 1 AllSegs | Binl Bin2 | Bin3 | Bin4
Total Segs 83331 | 60242 | 15257 5653 2179
Non-tree Segs 53871 | 37535 | 10430 | 4160 | 1746
Tree Segs 29460 | 22707 4827 | 1493 433
Training Segs 1400 1000 200 100 100
Data Set 2 AllSegs | Binl Bin2 | Bin3 | Bin4
Total Segs 113137 | 84479 | 19235 | 6844 | 2579
Non-tree Segs 42416 | 28174 8741 | 3805 | 1696
Tree Segs 70721 | 56305 | 10494 | 3039 883
Training Segs 1500 1000 300 100 100

Table 1. Segment data for both data sets

on the ROC curve can be calculated independent of the oth-
ers, reducing computation time by parallel processing.

The ROC curves for each bin in the residential and the
campus data set are shown in Figs. 2(a) and 2(b), respec-
tively. As seen, the classification mostly performance im-
proves with bin size. This is to be expected since the smaller
segments use fewer data points for segment feature calcula-
tions, resulting in noisier features. In addition, when the
false positive rate is low, the larger bins for the campua dat
outperformthe residential. This can be explained by censid
ering that the campus data consists of buildings that are far
from each other and from trees, and hence results in more
reliable segmenation than residential data, particulmy
larger bin sizes. For comparison, a point-wise technique
similar to the one described in [8], is examined by apply-
ing SVM classifiers directly to features of individual data
points in our data set on a point-wise basis, bypassing the
segmentation step. The ROC curves comparing the segmen-
tation followed by classification method, and the pointevis
method are shown in Figs. 3(a) and 3(b), for the residen-
tial and campus data sets respectively. It can clearly be see
from these figures that the segmentation followed by classi-
fication outperforms the point-wise method.

A natural question that arises is whether or not point-
wise SVM data can be used to correct misclassified seg-
ments, thereby improving overall performance. Another
possibility is to use point-wise SVM classification to trig-

True Positive Rate

True Positive Rate

ger misclassified segments. We have empirically found that (5]
in practice, point-wise SVM data cannot be used to signif- (6]

icantly improve overall performance of our segmentation
based scheme [11].
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