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Abstract

In this paper, we present an approach to detecting trees
in registered aerial image and range data obtained via Li-
DAR. The motivation for this problem comes from auto-
mated 3D city modeling, in which such data is used to gen-
erate the models. Representing the trees in these models
is problematic because the data are usually too sparsely
sampled in tree regions to create an accurate 3-D model
of the trees. Furthermore, including the tree data points
interferes with the polygonization step of the building roof
top models. Therefore, it is advantageous to detect and re-
move points that represent trees in both LiDAR and aerial
imagery. In this paper we propose a two-step method for
tree detection consisting of segmentation followed by clas-
sification. The segmentation is done using a simple region-
growing algorithm using weighted features from aerial im-
age and LiDAR, such as height, texture map, height vari-
ation, and normal vector estimates. The weights for the
features are determined using a learning method on ran-
dom walks. The classification is done using weighted sup-
port vector machines (SVM), allowing us to control the mis-
classification rate. The overall problem is formulated as a
binary detection problem, and the results presented as re-
ceiver operating characteristic curves are shown to validate
our approach.

1 Introduction
There has been a great deal of interest in the construc-

tion of 3-D models of urban and suburban environments.
Traditionally, stereo imaging methods have been used since
aerial imagery is readily available and relatively inexpen-
sive to obtain[1]. However, interest in aerial LiDAR data is
emerging due to the higher achievable accuracy than in the
past, and the increased number of algorithms to process the
data. One such approach has been developed in the Video
and Image Processing Lab at the University of California,
Berkeley over the past five years[9]. This approach in-
volves segmenting aerial LiDAR data, and applying RAN-
dom SAmple Consensus (RANSAC) polygonization algo-
rithm to delineate roofs of individual buildings. While this

approach works well on urban regions with few trees, there
is substantial performance degradation in suburban regions
with a large number of trees. Therefore, it is conceivable
to improve the accuracy and appearance of the overall mod-
els by removing all data points corresponding to trees from
the aerial imagery and LiDAR data prior to applying the
RANSAC-based polygonization algorithm.

There is a large body of work on detection and classifica-
tion of LiDAR data and aerial imagery. In [2], classification
of land cover into four different classes, namely building,
tree, grassland, and bare soil is achieved by combining Li-
DAR data and multispectral images and fusing data based
on the theory of Dempster - Shafer. In [3], the authors use a
vegetation index called the Normalized Difference, derived
from the first and last pulse data to classify both trees and
buildings. In [4], a segment based classification method has
been developed, which applies fuzzy logic to features of
each segment in order to obtain a reliable classification of
building, vegetation, and terrain.

In this paper, we propose a new approach to detecting
trees in aerial imagery registered with airborne LiDAR data.
Our proposed algorithm consists of segmentation followed
by classification. The segmentation is a region growing
algorithm that grows if adjacent data points have a point-
wise similarity above a threshold, and stops if the similarity
is below the threshold. The similarity is calculated from
weighted features, such as height, color, and normal vector,
with the weights being determined by a learning algorithm
on a random walk [10].

The segments resulting from the region growing algo-
rithm are then classified using Support Vector Machines
(SVM)[6]. Features for the SVM algorithm are calculated
for each segment. The resulting segments from the segmen-
tation step vary in size from two points to over a thousand
points. Since the statistical properties of a given segment
feature such as mean hue, vary widely as a function of seg-
ment size, we separate our segments into four different bins
depending on their size. The training and classification is
then carried out on each bin separately to improve results.

The outline of this paper is as follows: Section 2 explains
how the LiDAR data is acquired and stored. In Sections 3



and 4 we describe the segmentation and classification algo-
rithms, respectively. Lastly, Section 5 presents the experi-
mental results.

2 Data Structure
The LiDAR data used in this paper was acquired in a

flight in Fall of 2002 by Airborne 1 Incorporated, and rep-
resents a 3.5km× 3.5km area of Berkeley, California, in-
cluding residential, commercial, and University of Califor-
nia, Berkeley campus areas. In this paper, we use two sub-
sets of the above data for testing our algorithms: campus
data, and residential data. Our previous papers address the
problem of 3D urban modeling for commercial regions such
as downtown Berkeley[9]. The residential data set is to
the southwest of the U.C. Berkeley campus, and consists
mostly of residential homes with trees in their yards1. The
tree variety in both residential and campus data sets are var-
ied, and include Eucalyptus, Redwood, Oak, and Pine. The
density of the scan points used in this paper is roughly four
points per square meter. The scan density is high enough
to discern and model large objects, such as buildings, but
too sparse to arrive at accurate 3D models for individual
trees and irregular geometries to enable photorealistic vir-
tual walk-throughs.

The format of the data acquired by Airborne 1, is an
unstructured point cloud, and each point is represented by
a simple coordinate system,(x, y, z). The resulting point
cloud is then processed as follows. First, a grid of 0.5m×
0.5m is superimposed on the region covered by the airborne
LiDAR, and thez value associated with each scan point is
re-gridded accordingly. If multiple points fall into the same
grid square, the highest and lowestz values are stored. If
a grid square has no scan points, it is assigned with thez

value from its nearest neighbor.
The next step in processing the LiDAR data is texture

mapping the Digital Surface Model (DSM) using aerial
photography. The aerial photographs are shot from a heli-
copter using Nikon digital camera. The resolution of images
is between one and two mega pixels, with density of about
12 pixels per square meter. The LiDAR data and aerial pho-
tography acquisitions were carried out at different times i.e.
within few months of each other, resulting in discrepancies
between the LiDAR data and the aerial image. While these
discrepancies can affect the tree detection, we anticipatethe
effect to be minimal for our data set.

3 Segmentation

3.1 The Segmentation Algorithm

Our proposed segmentation algorithm selects a point,p,
in the data that has not been previously assigned to a seg-

1To view the relative locations of residential, campus, and downtown
Berkeley data, interested reader can view the 3D models of these areas
inserted into Google Earth by downloading the following: http://www-
video.eecs.berkeley.edu/˜avz/DowntownResidentialCampus.kmz

ment, and assigns a new segment identifier to it. The al-
gorithm then analyzes the eight neighboring points ofp. If
a neighbor point top already belongs to a segment, the al-
gorithm moves on to the next neighboring point. When it
identifies a neighboring point not yet assigned to a segment,
it computes the similarity between it andp. The similarity
between pointsi andj is defined by [10]:

Sij = e−(fvi−fvj)
T ∗diag(λ)∗(fvi−fvj), (1)

wherefvi is a vector of features for point i, anddiag(λ) is a
matrix whose diagonal entries are the weights in the vector
λ for each feature, to be discussed shortly.

If the similarity is greater than the threshold the neighbor
is added to the segmentp belongs to. The algorithm contin-
ues until all eight neighboring points ofp are processed,
after which it iterates the above steps for each of the points
newly added to the segment until no new points are added
to this particular segment. Then, the algorithm once again,
identifies a data point that has not been assigned to a seg-
ment, and continues this process until all points in the data
set have been assigned to a segment.

The parameters in the above algorithm include features,
the associated weights and the similarity threshold. Ide-
ally, the features should correspond to physical quantities
that help identify differences between tree and non-tree data
points. The weights should be derived to provide more em-
phasis to the traits that are the most distinguishing, and less
emphasis to those that are less important. Adjusting the
threshold controls the average segment size. On average,
the lower the threshold, the larger the segments.

3.2 Feature Selection

Feature selection is important as meaningful features fa-
cilitate accurate segmentation of the data. We have chosen
three features, hue (h), saturation (s), and value (v) from
the aerial imagery, and four features from the LiDAR data,
namely height value (z), local height variation (hv), and the
x, andy component of a normal vector denoted bynx and
ny.

Height variation is calculated as the difference between
the maximum and minimum height value over a1.5m ×
1.5m area[8]. This is a meaningful feature as it is com-
mon for the laser from the LiDAR to pierce the top canopy
of a tree, and reflect off a lower part of the tree or even
the ground. This results in a larger height variation for
trees than for a solid object, such as a building.nx and
ny are estimated using finite differences. Thus, the re-
sulting feature vector for each point is given byfv =
[z h s v hv nx ny]T . We now need to find the opti-
mal weights to combine these features.

3.3 Feature Weights

Since, no known methods for optimizing the feature
weights in the region-growing algorithm exist, we proceed



indirectly. Parameter optimization methods, also known
as learning methods, do exist for other segmentation al-
gorithms; such as spectral clustering. There are a num-
ber of approaches to parameter learning for this class of
segmentation[10, 5]. The learning method detailed in [10],
has been applied to a specific spectral clustering algorithm
known as normalized cuts [12]. We have chosen the learn-
ing method in [10] to arrive at a set of feature weights to be
used in our region growing segmentation algorithm.

The framework for the learning method for normalized
cuts is as follows[10]: A similarity measure is defined as
a binary operator on pairs of points. A similarity matrixS

may then be constructed for the data set of interest,I, where
entrysij corresponds to the similarity between pointsi and
j. In our case, the data set is the LiDAR data, and the sim-
ilarity measure is identical to the one used in the region-
growing segmentation as defined in (1). This assignment
results in similarity matrix,S = [Sij ]. Each row in the sim-
ilarity matrix is then normalized such that each row sums to
one. The ”normalized” similarity matrix therefore satisfies
the requirements of a stochastic matrix, and consequently
may be treated as the transition probability matrix,P , of a
discrete-time Markov chain.

An ”ideal” or target transition probability matrix,̂P , is
defined as:

P̂ij =

{

0, j 6 ε A
1
|A| , j ε A

(2)

where pointi is assumed to belong to segmentA with |A|
elements. The segmentA corresponds to either the tree
segment or the non-tree segment in the training data which
is assumed to be manually generated. Given the observed
transition probability matrixP , and the target transition
probability matrixP̂ described above, we minimize of the
Kullback-Leibler (KL) divergence between the two to ob-
tain feature vector weights. SincêP is fixed, minimizing
the KL divergence simplifies to maximizing the cross en-
tropy betweenP andP̂ , i.e. maximizeJ , where

J =
∑

iεI

1

|I|

∑

jεI

P̂ij log Pij . (3)

We use a standard gradient descent method to maximizeJ

with respect to the weight parametersλ. The gradient is
calculated by,

∂J

∂λn

=
1

|I|





∑

ij

P̂ijfv
n
ij −

∑

ij

Pijfv
n
ij



 (4)

whereλn andfv
n
ij are thenth elements ofλ andfvi − fvj

respectively.

4 Classification

4.1 The SVM Algorithm

To classify the resulting segments from the region grow-
ing algorithm, we use the SVM algorithm. The SVM was
originally proposed by Boser, et. al. [6], and has been a
centerpiece in much work on classification and regression.
Since the SVM algorithm requires a feature vector for each
item to be classified, a new feature vector needs to be de-
fined for each segment obtained in the segmentation step.

The specific SVM algorithm used is weighted SVM.
Weighted SVM makes it is possible to traverse a receiver
operating characteristic (ROC) curve, exploring the trade-
off between the false and true positives.

4.2 Feature Selection

To use SVM to classify, we need to define the features
for each segment; segmenti being assigned feature vector
xi. Even though we have already defined a feature vector
for each data point in a segment, we now need to define
a feature vector for each segment. Our approach is to use
the statistics of the point-wise features over a segment to
arrive at the features for that segment. Examples of segment
features include the variance of the heightz, or the mean of
the hueh. Since, the segment sizes range from two to over a
thousand data points, we divide the segments into four bins
as follows: first bin has segments with 2 - 4 points, second
with 5 - 10 points, third with 11 - 30 points, and forth with
31 or more points.

Also, it is possible to compute averages of a given fea-
ture over either an entire segment or to first compute it over
ann× n window followed by averaging over an entire seg-
ment. For bins 1 and 2 we have empirically found the later
approach, withn = 3, to outperform the former approach,
as it results in better spatial separation in our segment fea-
ture space. For bins 3 and 4 however, we only compute the
average over each point in a segment.

Our feature vector for each segment has a total of five
features, given by the mean of the hueµh, saturationµs,
valueµv, and height variationµhv, and the variance of the
height varz . Intuitively speaking,(x, y) location of the
points in a segment are not useful as trees and buildings are
nearly uniformly distributed over the ground. We have also
empirically found the normal vector data not to be useful in
the classification process.

4.3 SVM Implementation

We implement the SVM algorithm with the LIBSVM
software[7]. We use a soft margin classifier, and optimize
a standard cost function in which a parameterC is used to
trade off between margin maximization and training error
minimization. We select the radial basis function, or Gaus-
sian kernel for SVM:

K(xi, xj) = e−γ||xi−xj ||
2

(5)



To obtain optimal values ofC and γ we perform a grid
search of10×10 in which we compute the cross-validation
accuracy for each point in the grid. The software is run in
parallel on a four processor server. Cross-validation accu-
racy and training, over the complete(C, γ) grid is calcu-
lated within two hours. For data sets of roughly 700,000
points, run nearly 100 times to generate ROC curves, the
classification is completed in less than an hour.

In a n-fold cross-validation, the training data is first di-
vided inton equally sized subsets. The classifier is trained
on n − 1 subsets and then tested on the remaining subset.
This is done over all combinations such that every subset is
tested once by a classifier trained on the othern−1 subsets.
The cross-validation accuracy (CVA) is the percentage of
points that are correctly classified over all the subsets when
they were used as the testing subset. In the binary case, one
can break down the cross-validation accuracy into its two
components: correct classification of class -1 and correct
classification of class +1. Letyi ε {±1} be the true class
of training data pointi andŷi ε {±1} be the class assigned
to the point by the SVM. Then the CVA can be written as
follows:

CVA =







∑

ŷi s.t. yi=−1

1(ŷi = yi)

∑

yi

1(yi = −1)











∑

yi

1(yi = −1)

Total # of points



+

(6)






∑

ŷi s.t. yi=1

1(ŷi = yi)

∑

yi

1(yi = 1)











∑

yi

1(yi = 1)

Total # of points





The first term represents the true negative percentage and
the second term represents the false negative term. These
are the actual terms we are interested in as we pose our
problem as a binary detection problem. For the grid search
overC andγ we calculate the cross-validation accuracy as
the true negative and true positive terms. The(C, γ) grid
is composed of exponentially growing values ofC andγ,
e.g.,C = 2−5, 2−3, ..., 215, γ = 2−15, 2−13, ..., 23. The
grid search is necessary because the CVA over(C, γ) set is
not convex. To reduce computation time, the grid search is
done in parallel. Furthermore, a course grid is explored first,
followed by a finer grid in regions that have better cross-
validation accuracy. OnceC andγ for each bin have been
selected, they are used in conjunction with the entire train-
ing set, to determine the optimal hyperplane for each bin to
be used as the classifier. The resulting model parameters for
each bin are then used to classify all the segments.

5 Results and Discussion
We run our algorithm as follows: the LiDAR is pre-

processed by Airborne 1 Inc. to define data points as
ground or structure. Two data sets are constructed. The

first is a 600m× 700m area over a suburban region of
Berkeley, California, and the second is a 700m× 680m
area over the University of California, Berkeley cam-
pus. For these two data sets, a ground truth is con-
structed by hand for performance characterization pur-
poses. Only structure points are considered in our algo-
rithm. For each structure point,i, a feature vectorfvi is
created. Then the segmentation is carried out using optimal
weights given byz = .16, hue = 0.00005, saturation =
.1, value = .0001, heightvariation = .52, normalx =
.1, normaly = .10 determined from the learning spectral
clustering algorithm described in Section 3. As seen, height
variation and height are the most influential features, while
hue and value are least important. DSM and the segmenta-
tion results for residential data are shown in Fig. 1. Large
segments corresponding to building structures are easily
discernable in Fig. 1(b). These segments are then sorted
into bins, new features are determined for each segment,
and the SVM algorithm is used to classify the segments as
described in Section 4.

(a) (b)

Figure 1. Residential data set DSM visualiza-
tion (a) original and (b) after segmentation.

The segment data for each bin is shown in Table 1. The
training data is taken from the ground truth constructed for
each data set. As seen in the fourth and last rows of Ta-
ble 1, the training segments represent at most 4.6% of the
total number of segments. Since we are doing a binary clas-
sification, we present it as a binary detection problem and
calculate the ROC curves. A false positive is considered a
non-tree point being classified as a tree point, and the true
positive is a tree point being classified as a tree point. The
computation of the ROC curves is done by adjusting the pa-
rameters in the weighted SVM algorithm [11]. Each point



Data Set 1 All Segs Bin 1 Bin 2 Bin 3 Bin 4
Total Segs 83331 60242 15257 5653 2179
Non-tree Segs 53871 37535 10430 4160 1746
Tree Segs 29460 22707 4827 1493 433
Training Segs 1400 1000 200 100 100

Data Set 2 All Segs Bin 1 Bin 2 Bin 3 Bin 4
Total Segs 113137 84479 19235 6844 2579
Non-tree Segs 42416 28174 8741 3805 1696
Tree Segs 70721 56305 10494 3039 883
Training Segs 1500 1000 300 100 100

Table 1. Segment data for both data sets

on the ROC curve can be calculated independent of the oth-
ers, reducing computation time by parallel processing.

The ROC curves for each bin in the residential and the
campus data set are shown in Figs. 2(a) and 2(b), respec-
tively. As seen, the classification mostly performance im-
proves with bin size. This is to be expected since the smaller
segments use fewer data points for segment feature calcula-
tions, resulting in noisier features. In addition, when the
false positive rate is low, the larger bins for the campus data
outperform the residential. This can be explained by consid-
ering that the campus data consists of buildings that are far
from each other and from trees, and hence results in more
reliable segmenation than residential data, particularlyfor
larger bin sizes. For comparison, a point-wise technique
similar to the one described in [8], is examined by apply-
ing SVM classifiers directly to features of individual data
points in our data set on a point-wise basis, bypassing the
segmentation step. The ROC curves comparing the segmen-
tation followed by classification method, and the point-wise
method are shown in Figs. 3(a) and 3(b), for the residen-
tial and campus data sets respectively. It can clearly be seen
from these figures that the segmentation followed by classi-
fication outperforms the point-wise method.

A natural question that arises is whether or not point-
wise SVM data can be used to correct misclassified seg-
ments, thereby improving overall performance. Another
possibility is to use point-wise SVM classification to trig-
ger misclassified segments. We have empirically found that
in practice, point-wise SVM data cannot be used to signif-
icantly improve overall performance of our segmentation
based scheme [11].
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Figure 2. ROC curves obtained by segmen-
tation followed by classification for different
bin sizes for (a) the residential data set and
(b) the campus data set.
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Figure 3. ROC curves comparing segmenta-
tion followed by classification versus point-
wise classification for all bins combined for
(a) the residential data set and (b) the cam-
pus data set.
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