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The Double Loop Sigma Delta Modulator 
with Unstable Filter Dynamics: 

Stability Analysis and Tone Behavior 
Mariam Motamed, Seth Sanders, and Avideh Zakhor 

Abstract-Conventional TA modulators suffer from idle tones. 
In order to alleviate the tone problem, TA modulators with 
unstable filter dynamics have been proposed. In this paper we 
present an analysis of the saturation characteristics and tone 
behavior of the double loop EA modulator with unstable filter 
dynamics. We begin by deriving stability boundaries for the 
double loop EA modulator with unstable filter dynamics which 
yield bounds on maximum internal signal levels. We then show via 
simulations and steady state analysis that while tonal properties 
are improved by using unstable filter dynamics, idle tones are 
not completely removed. Specifically, we show that some unstable 
limit cycles have an attractor region in their neighborhood which 
resultsin tones in the spectrum corresponding to the fundamental 
or harmonics of these limit cycles. 

I. INTRODUCTION 

VERSAMPLED EA modulators are becoming increas- 0 ingly important in data conversion applications. Their 
advantage over conventional conversion methods lies in their 
robustness to circuit imperfections and component nonide- 
alities. The principle behind their operation is to tradeoff 
sampling rate with amplitude resolution. Specifically, EA 
modulators sample signals many times faster than the Nyquist 
rate, but only with one bit of amplitude resolution. Low-pass 
filtering is typically used to recover the signal from the high 
speed stream of one bit amplitude quantized output. 

An important factor affecting the performance of EA mod- 
ulators is their tone behavior. Tones are spectral peaks in the 
signal baseband that especially limit the use of EA modulators 
in demanding audio applications, such as in compact disc 
players. It has been shown that single loop and double loop 
modulators, and possibly other classes of encoders, exhibit 
nonwhite, discrete quantization noise spectra for dc inputs [I], 
[2]. In the case of single loop modulators, the location and 
relative power of these tones have been derived analytically 
[l], while for double loop modulators, the evidence is mostly 
empirical [2]. Even though the tone problem is generally 
considered to be less severe for higher order modulators, they 
are not immune from basic tone problems associated with 
lower order ones [3]. 

The traditional tone removal technique consists of using 

of EA modulators [3]. A more recent approach to alleviate 
the tone problem consists of using unstable filters in EA 
modulators. This approach stems from ielating the discrete 
tones in the quantization noise spectra OS EA modulators to 
their limit cycle behavior. Consequently, the tone mitigation 
problem may be treated as that of preventing the internal 
states of the modulator from locking into periodic orbits. 
Specifically, for the first-order modulator, Feely [4] has shown 
that while an integrator pole inside the unit circle results in 
asymptotically stable limit cycles, moving the pole outside the 
unit circle results in unstable limit cycles'. 

Recently, there has been a number of new results on 
improving the tone behavior by using TA structures with 
unstable filter dynamics2 [5]-[ll]. In [5] we present simulation 
results showing that the tone properties of higher order EA 
modulators are influenced by the location of the poles of the 
open loop transfer function. In [6], we discuss the tradeoff 
between tones, saturation and Signal-to-Noise Ratio (SNR) 
of the double loop modulator with respect to pole location, 
and obtain saturation bounds on the integrator states. Schreier 
[7] discusses the tradeoff between SNR and tonality of first- 
and second-order modulators as a function of pole location. 
Hein [SI obtains an approximate measure of tone persistence 
in double loop EA modulators as a function of pole location, 
and extends the bounding technique of [I21 to obtain bounds 
on state variables. In our previous paper [$I], we investigate the 
tonal behavior of the double loop EA modulator with unstable 
filter dynamics. Risbo [ 101 suggests introducing an all-pass 
term with a zero near -1 in the noise transfer function pro- 
totype of EA modulators in order to alletiate high frequency 
tones. The stability of this method is achieved by increasing 
the modulator's order. Reference [l 11 shows simulation results 
comparing the performance of EA modulators with open loop 
poles outside the unit circle to that of dithered modulators. 

In this paper, we present an analysis of double loop EA 
modulators with unstable filter dynamics with the specific 
goal of determining their saturation characteristics and tonal 
properties. The first part of this paper is concerned with 
stability of the internal states of the double loop modulator. 

additive dither signals to randomize the bit pattern at the output 
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Specifically, we obtain two Continuous time approximations 
to the double loop modulator whose asymptotic behaviors are 
solved numerically, and show that the asymptotic behavior of 
the continuous time systems provides stability boundaries for 
the intemal states of the discrete time modulator. We then 
investigate the tonal properties of the double loop modulator. 
We find that while moving the open loop poles outside the unit 
circle improves tonal content, it does not completely remove 
idle tones. We identify a mechanism causing spectral tones, 
outline a numerical method to study this mechanism, and 
illustrate our points by considering a zero dc input example. In 
all that follows, our analysis and simulations assume constant 
encoder input. This assumption follows from the fact that the 
input to the modulator is oversampled and therefore may be 
approximated by a constant. In addition, it has been shown that 
the tone behavior is worse when the input to the modulator is 
constant or slowly varying. 

The paper is organized as follows. In Section 11, we present 
a brief overview of the problem considered in this paper. In 
Sections I11 and IV we discuss the saturation properties of the 
double loop EA modulator with unstable filter dynamics, and 
obtain bounds on the intemal signal levels. In Section V, we 
discuss the effect of pole location on the maximum allowable 
input dynamic range and SNR performance. In Section VI we 
analyze the tone behavior in the modulator with unstable filter 
dynamics by analyzing the steady state behavior about unstable 
limit cycles. Finally, in Section VI1 we present a summary of 
our results. All simulations are done with MATLAB. 

11. LIMIT CYCLE STABILITY 

Consider the double loop EA modulator shown in Fig. 1. 
The modulator consists of two integrators, and a 1-b quantizer 
Q, embedded in a negative feedback loop. Signals U(.) and 
w(n) denote the states, D denotes a unit delay element, and 
p1 and p2 are the open loop poles. The quantizer is specified 
by Q(u) = +l for U > 0, and & ( U )  = -1 for U 5 0. The 
constant input X is assumed to be in the range X E (-1,l). 
An estimate of the input is typically obtained by low-pass 
filtering the output sequence y( n) .  The state space equations 
describing the dynamics of the encoder shown in Fig. 1 are 

where F = p']. i  = [-a, -1IT, h' = [X, XIT and T 
denotes the transpose operation. The term &?(U(.)) in (1) is 
+g or -9' depending on the sign of U .  This translates into 
dividing the U - v phase-plane into two regions determined 
by the sign of U(.), with the switching line, So, defined by 
the line U = 0. On each side of So the state space equations 
are Linear and Time-Invariant (LTI), with eigenvalues at p1 
and 132. Traditionally, EA modulators are built and analyzed 
assuming ideal integrators or equivalently assuming that the 
open loop poles are on the unit circle. However, in practice 
circuit nonidealities result in imperfect or leaky integrations, 
i.e., lpll < 1 and lp2/ < 1 [4]. Tones in these modulators are 
attributed to the states being locked in a periodic orbit [13]. 

0 PI  

Fig. 1. Double loop EA modulator 

When either of the poles of the system in Fig. 1 are outside 
the unit circle, lpll > 1 and/or lp21 > 1, all periodic orbits of 
the system become unstable3; thus precluding spectral peaks 
caused by stable periodic motion in the state space. The steady 
state behavior for this case is analyzed in Sections I11 and IV, 
while the tone behavior is studied in Section VI. In all that 
follows, we assume that both p l  and p2 are outside the unit 
circle. However, our analysis may be applied when only one 
of the integrator poles is moved outside the unit circle while 
the other is kept inside the unit circle. 

111. UNBOUNDEDNESS BOUNDARY 

One of the main side effects of moving the open loop poles 
outside the unit circle is the possibility of state trajectories 
becoming unbounded. For instance, it is easy to check via 
computer simulations, that the states of the double loop EA 
modulator with poles at 1.02 and zero initial conditions are 
bounded for a constant input of 0.4, and become unbounded 
when the input is increased to X = 0.9. In this section, we 
derive a system of continuous time differential equations that 
approximates the behavior of the states of the double loop 
modulator. We then characterize the steady state behavior of 
the continuous time system and prove that when the continuous 
time system exhibits an unstable limit cycle, the limit cycle 
provides us with a saturation measure on the states of the 
double loop modulator. A similar approach was proposed in 
[ 141 to obtain saturation bounds for the double loop modulator 
with poles on the unit circle. Other references on characterizing 
stability boundaries for the double loop EA modulator include 
[ 151 and [ 161. Reference [ 151 determines bounds on the states 
of the double loop modulator with poles on the unit circle and 
dc inputs, while [16] determines bounds on the internal states 
of the double loop modulator with zero dc input and poles 
outside the unit circle. 

Here, it is important to distinguish between limit cycle 
instability and encoder saturation4. While limit cycle instability 
is determined by the behavior due to small perturbations in 
the state trajectory, encoder saturation is determined by the 
magnitude of the intemal variables of the system. Specifically, 
the encoder becomes saturated if the states of the integrators 
become excessively large or unbounded. 

3To see this, note that the nonlinearity, &(.), in system (1) is insensitive 
to small perturbations of the trajectories. Hence, the overall stability of limit 
cycles of the system is governed by powers of the eigenvalues of the open 
loop system. This result first appeared in Bulzacchelli, Chaos in Oversampled 
Analog-to-Digital Convertors, Area Exam Report, Massachusetts Institute of 
Technology, April 1992. 

4Note that encoder saturation is at times referred to as encoder stability in 
1121. 
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concept for differential equations with discontinuous RHS 
was proposed by Filippov [19]. Below, we give an intuitive 
description of the dynamics at SO by examining the directions 
of the vector fields on each side of the discontinuity, for a 
formal treatment refer to [19]. Fig. 2 illustrates a typical flow 
diagram for the continuous trajectories of (2) with both poles 
outside the unit circle. The arrows show the direction of flow 
of the continuous time trajectories. The solid rays denoted by 
11, and 12 are the boundary about which $ 51 changes sign in 
S-, and S+, respectively, 

11: Cbl - c1 - a1252 1 5 1 3 5 2  1x1 = 
a l l  -1 

and / A - - - -  

-b l  - ~1 - ~ 1 2 x 2  
a l l  

so 
Fig. 2. Typical direction of flow of the continuous time vector fields. 

A. Geometric Analysis of an Associated 
Continuous Rme System 

Let S- and S+ in Fig. 2 denote the regions in space divided 
by the switching line, So as defined in Section 11. On each 
side of So, the discrete time trajectories may be thought of as 
samples of smooth continuous time trajectories. Equivalently, 
if we consider the discrete time system on each side of SO, as 
a sampled-data model [ 171 for a continuous time system, then 
we can associate a LTI continuous time system of differential 
equations with the discrete time trajectories of (1) 

d ,  z x ( t )  = AZ(t) + gs + c" 
= .fa4 (2) 

where 2 contains the states %f the continuous time system, 

(F - I)-'log(F)A,I denotes the identity matrix, s = +I 
when 5 1  > 0, and s = -1 when x1 5 0'. f$(.') denotes the 
vector field in S+, while j?: (2) denotes the vector field in S- . 
Given the continuous time system (2), the discrete time system 
matrix, F, is obtained by taking the matrix exponential of A,  
i.e., F = eAT. Sampling the trajectories defined by (2), with 
sampling rate T = 1, results in the discrete time trajectories 
of the EA modulator, provided the switching boundary SO is 
not crossed. 

Equation (2) describes a piecewise continuous differential 
equation with the right-hand side (RHS) discontinuous across 
SO. On each side of SO, the solutions to the differential 
equations are unique and smooth curves in R2. The solution 

3 = [ x ~ , x ~ ] ~ , A  = log(F), bs = (F - I)-'log(F)g's,Z = 

510g(F) is computed in terms of the values of log(.) on the spectrum of F 
[18]. log(.) is a nonunique function, however, since the underlying discrete 
time system has real eigenvalues, we use the solution to log( F) that possesses 
eigenvalues on the real axis. Thus, for p 1  = p 2  = p the values of A, b and 
c' are 

- 

and 

provided that log(p) is defined. Similar expressions are obtained when 
P1 f P 2 .  

Similarly, the dashed rays denoted by k1  and lc2 are the 
boundary about which the vector field changes direction in 
the x2 direction in S+ and S- respectively, 

and 

4 

where a,j, b i ,  and ci denote the respectivja elements of A; b ,  
and Z. Note that, as p l  + 1, the 22 intercepts of k l  and k2 
tend to foo and -00, respectively. 

Points T1 and T2 in Fig. 2 denote the: 2 2  intercept of 11 
and 12, respectively. Near the switching line with 5 2  > T2, 
the trajectories in the left-half plane point toward SO, while 
those in the right-half plane point away from SO. Thus, the 
solution to the differential equations is continued across the 
discontinuity in this region. Similarly, the solutions to the 
differential equations are continued through the discontinuity 
for 5 2  < T I .  In the region on the z2-axis between T1 and 
T2, however, the trajectories on both sides; of SO point toward 
the discontinuity. Intuitively, imperfections of the switching 
mechanism cause the state trajectories in tlhis region to chatter 
on the switching line. This stable chattering motion converges 
toward an equilibrium point of an averaged model of the 
system6 [19]. The direction of the vector field in S+ above 
k l ,  and in S- below k2 imply that once a continuous time 
trajectory is in either of these regions, it will grow to infinity. 

The above discussion points to the possibility of two types 
of asymptotic behavior in the continuous time state space, one 

'The switching boundary in system (2) is defined by SO = { .cl, z2 I 
zL = 01. Let A+(?) = for 7 E S+ and A-(?) = d t  for 
.? E S-.A+(.?) and A-(.?) denote the rate of change of SO along the 
trajectories of .T$(?j and f : (Z) ,  respectively. Let 20 be a point on the 
switching boundary between T1 and T2, then, A + @ )  = l i rns-~o A+(?); 
and A-(.') = limz-Eo A-(Z). The direction of I:he vector field on either 
side of the x2-axis between T1 and T2 in Fig. 2 translates into having 
A+(&)  < 0 and A-(?o) > 0. By Lemma 3 of 1191, the dynamics 
on So between T1 and T2 are governed by an average value between 
,f$(.) and f:(.j, $So( t )  = L1.g(:?o) = - A + ( . z o ) - A - ( ' o & ~ ~ )  A-('o) + 

namics is obtained by solving &,.,(So) = 0 for 30. " 0  = [ c ,  b 2 o b I c 2  1 .  
A+(so) -A- (so)  A+("o)  fr(.?"). - The equilibrium point, T o ,  of this averaged dy- 

b i a a z - o i 2 b 2  
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characterized by stable chattering motion on the switching line, 
and the other by the states growing to infinity. 

Proposition 1: When system (2) exhibits a chattering re- 
gion and a region where the states go unbounded, then system 
(2) also exhibits an unstable limit cycle outside of which 
continuous time trajectories grow to infinity. 

(See the Appendix for proof.) 
In all that follows, we refer to this unstable limit cycle as the 

unstable boundary limit cycle or the unboundedness boundary. 
A limit cycle of system (2) is obtained when a trajectory r- 
in S- intersects a trajectory I?+ in S+ at two points on the 
switching line. Note that since we consider a system with 
real poles, r- and r'+ can intersect at, at most 2 points 
[20]. Uniqueness properties7 of LTI differential equations in 
RK2 imply that all continuous time trajectories starting inside 
the unstable boundary limit cycle always remain inside, while 
trajectories starting outside the unstable limit cycle will remain 
outside. Furthermore, from Proposition 1, trajectories starting 
outside the unstable boundary limit cycle will go to infinity. 

B. Boundedness of the Discrete Time System 

On either side of So, the discrete time trajectories follow 
the direction of flow of the vector field of the continuous 
time system. Therefore, the continuous time trajectories trace 
through the discrete time trajectories as long as the switching 
line is not crossed. The main difference between the contin- 
uous time and the discrete time systems can be explained by 
noting that the differential equations have continuous solutions 
through the switching line ( 2 1  = 0) outside of 5 2  E [TI; T2]. 

The discrete time trajectories, however, will in general jump 
over the switching line and follow a different orbit than the 
continuous time system. In this subsection we prove that when 
a discrete time trajectory is outside the unstable boundary 
limit cycle, it will remain outside this boundary and become 
unbounded. 

Recall from Section 3.1 that the arcs in S- and S+ defining 
the unstable boundary limit cycle intersect on the switching 
line. Denote these arcs along with their continuation through 
the switching line by r- and I'+, as shown in Fig. 3. r- in 
Fig. 3 is a solution to the differential equation, f' (Z) ,  in S-, 
where fL(2) is applied even when r- is in S+. Similarly, 
r+ is a solution to &(?), where f$(Z) is applied even when 
r- is in S+. The portion of r- that is strictly in S- along 
with the portion of r+ that is strictly in S+ constitute the 
unstable boundary limit cycle. From the uniqueness properties* 
of ordinary differential equations in R2, we deduce that as a 
discrete time trajectory outside of the unstable boundary limit 
cycle crosses the switching line from S- to S+, it will stay 
above arc r'- before following the direction of vector field in 
S+; hence, it will remain outside the boundary defined by the 

+ 

7Here, we are referring to uniqueness of solutions o f  LTI systems of 
differential equations in %" 

Specifically, continuous time trajectories following the direction of 
,{: (.F)(fL ( F ) )  cannot intersect. Since the discrete time trajectories in 
S+( S-) are samples of the continuous time trajectories in S+ ( S -  ), a discrete 
time trajectory in S+ (S- ) cannot be in such a way that its corresponding 
continuous time trajectory would cross another continuous time trajectory 
following the direction of the vector field in S+(S-). 

S+ x 2  t S- 

kl 

........................................... ) e., c ........................................ ( tT1 I1 

..................... ' I  a 

Fig. 3. Unboundedness boundary 

unstable limit cycle. Similarly a discre : time trajec 

x1 

3ry outside 
of the unstable boundary limit cycle crossing the switching 
line from S+ to S- will stay below arc r'+, and will remain 
outside the boundary. A typical discrete time trajectory outside 
of the unstable boundary limit cycle is shown by the dots in 
Fig. 3. It is important to note that, discrete time trajectories 
inside the unstable boundary limit cycle may jump outside the 
boundary defined by the unstable limit cycle as they cross the 
switching line, however once such a trajectory is outside the 
boundary, it will remain outside. Furthermore, since discrete 
time trajectories follow the direction of the vector field of 
continuous time trajectories, a discrete time trajectory outside 
the unstable boundary limit cycle grows to infinity. Thus, 
we can use the unstable boundary limit cycle to check for 
unboundedness of the discrete time trajectories. 

Fig. 4 shows the steady state behavior of the discrete time 
double loop EA modulator with both poles at 1.02, a constant 
input of X = 0.4, and two different initial conditions. The 
closed orbit in this figure corresponds to the unstable boundary 
limit cycle of the associated continuous time system. For an 
initial condition at u(0)  = 0.5, and v(0) = 7.5, the trajectory 
converges to a region near the center of the U - U plane. 
Once in this region, it appears to follow a random pattern. 
The trajectories near the center of the U - v plane are globally 
bounded. Recall that a pole outside the unit circle precludes the 
existence of stable periodic trajectories. From the definition of 
a strange attractor' in [21], the region near the center of the 
U - v plane in Fig. 4 appears to behave as an attractor. When 
the initial condition is moved to u(0)  = 0, and v(0) = 7.5, the 
discrete time trajectory jumps over the unstable boundary limit 
cycle after 1 time step, and becomes unbounded as n -+ 30. 

IV. TRAPPING REGION 
The continuous time trajectories of system (2) reach the 

switching line before experiencing a change in the direction 
of vector field. The discrete time trajectories of the double XA 

converge 1211. 
9 A  strange attractor is a region in state space to which chaotic trajectories 
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Fig. 4. State Space Trajectories, 1.: i.c. = ( O S ,  7.9 ,  x x : i.c. = (0, 7.5). 

modulator, however, take discrete steps and hence jump over 
the switching line before changing direction of vector field. 
In this section we determine how far a discrete time trajectory 
can jump over the switching line and utilize this information to 
derive a second continuous time approximation for the discrete 
time modulator. The properties of this second continuous time 
system provide a bound on maximum signal levels. 

A. Behavior of the Discrete Time System 
About the Switching Line 

Let m l  be the ray obtained by solving (1) subject to 
U(.) = 0 andu(n f1 )  > 0 , m l :  {u.v  1 u > 0 and v = U-12, 
and R1 correspond to the region in 71, - ?I plane that lies above 
ml,  R1: {u,v I U > 0 and v 2 U - 1). Similarly, let m2 
be the ray obtained by solving (1) subject to u(n)  = 0+" 
and ~ ( n  + 1) < 0, m 2 :  { u , u  I 71, < 0 and v = U + l}, 
and R2 denote the region below m2 in the U - I I  plane 
R2: { U , U  I u < 0 and 'U 5 U + l}, as shown in Fig. 5.  

Proposition 2: A discrete time trajectory following the di- 
rection of the vector field in S-(S+) must land in region 
Rl (R2)  as it crosses the switching line, at which point it will 
follow the direction of the vector field in S+ (S- ). 

Pro08 In order to prove Proposition 2 for trajectories 
crossing the switching line from S- to S+ we need to show 
that 'v'(u(n),w(n)) such that u(n)  5 0 and u ( n  + 1) > 
0, ( ~ ( n  + 1). v(n + 1)) lies in region RI, or, equivalently, 
v(n + 1) - I L ( ~  + 1) + 1 2 0. Substituting in for u(n + I ) ,  
and ~ ( n  + 1) from Eq. (1) we get 

v(n + 1) - u(n + 1) + 1 = p1u(n )  - Q(u(71)) + x - p z U ( n )  
- p1v(n) + 2Q(Un) - x + 1 

= --p477,) 2 0 

with equality achieved when ~ ( 7 1 )  = 0. 0 
The proof is similar for trajectories crossing the switching 

line from S+ to S-. Line ml(m2) provides a bound on the 
jumps that discrete time trajectories make as they cross from 
S-(S+) to S+(S_). 

" 7 ~  = O+ denotes the line { u, 1) I U = d}, where rS IS an infinitesimal 
positive number. 

Fig. 5. Jumping effect of the discrete time system 

B. Continuous Time System with Hysteresis 

In this subsection, we modify the continuous time approx- 
imation of Section 111 to incorporate the jumping effect of 
discrete time trajectories and show that a limit cycle of the 
modified continuous time system defines a trapping region for 
the discrete time trajectories. The "worst case jumping effect" 
of the discrete time trajectories is capturjzd by imposing the 
following hysteretic switching mechanism on the continuous 
time approxim2tion: continuous time trajectories following the 
direction of fy(2) are forced to change direction of vector 
field on line ml ,  and continuous+time trajectories following 
the direction of the vector field, f t ( ? ) ,  are forced to change 
direction of vector field on line m2. The continuous time 
system with this switching logic approximates a discrete time 
modulator whose trajectories always reach the line U = 0. 

A limit cycle of the continuous time syst_em with hyste+resis 
is obtained by searching for trajectories of f $  (2) and of f? (2) 
that intersect on lines m l  and m2. A typical limit cycle of 
the continuous time system with hysteresis is illustrated by 
arcs 4: and 4; in Fig. 5. The results developed in Section 
4.1 along with uniqueness of solutions to ordinary differential 
equations in 8' imply that a limit cycle of the continuous time 
system with hysteresis defines a trapping region for the discrete 
time trajectories. To see this, note that as a discrete time 
trajectory inside the limit cycle of this imodified continuous 
time system crosses the switching line from S- to S+, it 
will land in the shaded region R1 below arc 4; before 
following the direction of the vector field in S+, hence, it will 
remain inside the boundary defined by the limit cycle of the 
modified continuous time system. Similarly, a discrete time 
trajectory inside this limit cycle crossing the switching line 
from S+ to S- will land in the shaded region R2 above arc 
4$, and will remain inside the boundary of the closed orbit. 
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Fig. 6. 
and X = 0.5. 

Trapping region and unboundedness boundary for p i  = p 2  = 1.02. 

TABLE I 
MAXIMUM ALLOWABLE INPUT X FOR A GIVEN p 1  = p2  

U1 = ?I'> s 
I 1 -  

1 02 0 8  
1 03 0 8  
104  0 7  
1 06 0 5  
I08  0 2  
1 09 0 

Therefore, a limit cycle of the continuous time system with 
hysteresis provides a trapping region or boundedness boundary 
for discrete time trajectories. We note that it is possible for a 
discrete time trajectory outside the trapping region to cross 
to the inside as it jumps over the switching line. However, 
once inside, the trajectory will remain inside and will exhibit 
unstable but bounded behavior. Thus, all initial conditions 
inside the trapping region result in bounded behavior. 

Recall that discrete time trajectories outside the unbound- 
edness boundary defined in Section I11 remain outside this 
boundary and grow to infinity. This implies that the trapping 
region will always be inside the unboundedness boundary. 
In fact, the unboundedness boundary contains the basin of 
attraction of the discrete time attractor, which itself contains 
the trapping region. Fig. 6 shows the stability boundaries for 
p l  = p2 ~ 1 . 0 2  and X = 0.5. The closed orbits denoted 
by 4 and I' in Fig. 6 correspond to the trapping region and 
unboundedness boundary, respectively. Also shown in the 
same figure is the discrete time attractor. 

V. INPUT DYNAMIC RANGE AND SNR PERFORMANCE 

In this section we consider the performance of the double 
loop EA modulator with poles outside the unit circle. We 
begin by obtaining numerical results on the largest positive 
input values for which the states of the EA modulator remain 
bounded for a given pole location. These results are presented 
in Table I. The first column in Table I corresponds to the pole 
location, and the second to the largest constant input, to within 
& 0.1, that remain bounded for 16000 time steps. Hence, we 
can conclude that as the poles of the double loop modulator 
move outside the unit circle, the maximum dc value that does 
not result in saturation decreases. 

90, I 

-12 -10 -8 -6 4 2 0 
Input Amplitude d~ 

Fig. 7. Signal-to-noise ratio versus input amplitude, top curve: 
11 = pi = p:, =1, curve below: p =1.02, curve below: p ~ 1 . 0 4 ,  
curve below: p = I  .06. 

Moving the poles outside the unit circle not only reduces 
the dynamic range but also affects the noise shaping charac- 
teristics of the EA modulator. Fig. 7 indicates that the SNR 
performance of the double loop modulator degenerates as the 
poles move further away from the unit circle. This figure is 
obtained by using a sinusoidal input with frequency at half the 
baseband and oversampling ratio of 128. 

VI. TONE BEHAVIOR 

When a limit cycle is asymptotically stable, periodicity 
occurs because the states (u ,v)  move from one point on 
the limit cycle to another in a periodic fashion, resulting 
in tones. Moving the poles of the EA modulator outside 
the unit circle destabilizes any limit cycles thus preventing 
tones due to stable periodic motion of the state trajectories. 
While this approach improves the tone behavior, it does not 
completely remove idle tones. Consider the periodogram of 
the double loop EA modulator with X = 0 , p l  = pa = 1.01, 
and initial conditions (1.1051, 0.7462), shown in Fig. 8. This 
periodogram was obtained by averaging over 6 FFT's, each 
65536 points long, of the output bit stream, and is plotted 
in the frequency range [0, T ] .  Observe that the periodogram 
in Fig. 8 is broadband, but also has discrete components 
indicating predominant frequencies of the output sequence 
with period 8. Even though the idle tones in the periodogram 
are outside the signal baseband, there is no guarantee that tones 
in the modulator with unstable filter dynamics will always fall 
outside the baseband of interest with different inputs, initial 
conditions or pole values. It is therefore important to study the 
nature of tones in the modulator with unstable filter dynamics. 

In this section we consider the tone behavior of double 
loop EA modulators whose steady state behavior is inside 
the trapping region. We will show that for some unstable limit 
cycles, periodicity and therefore tones occur because the state 
( U ,  v) persistently moves from the neighborhood of one point 
on the limit cycle to the neighborhood of another point on the 
limit cycle. We refer to these neighborhoods as attractors", 
and to their associated unstable limit cycles as dominant 
limit cycles. We will develop a technique to approximate the 

"Trajectories appear to be chaotic within such an attractor 
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-20 - jectory of (1) by N ,  results in the trajectjory of (4). Locally, 
the behavior in the neighborhood of P' is determined by the 
eigenvalues and eigenvectors of the Jacobian of fc,  i.e., FN. 

Since fg  is LTI, we can further describe the local dynamics 

about 9, by considering the behavior of an associated contin- 
uous time system. Specifically, the discrete time trajectories 

boundaries of these attractors. In all that follows, we assume 
that the limit cycles under consideration are generic, i.e., that 
no points on the limit cycles lie on the switching point of the 
quantizer. 

A. Small Signal Behavior 

In this subsection, we expand the approach in Section 111-A 
and show that the local behavior of the state trajectories around 
different points on an unstable limit cycle can be described by 
continuous time LTI systems. Note that, we are only concerned 
with the unstable limit cycles that are inside the trapping region 
discussed in Section IV. 

Given a limit cycle of period N with corresponding N bit 
sequence s(.), multiplying by appropriate powers of F and 
summing (1)  over the limit cycle we obtain" 

( 3 )  

for 1 L: k 5 N ,  where I denotes the 2 x 2 identity matrix. 
Using (3) we can check for the existence of a given unstable 
limit cycle of period N by Tsypkin's method [22]: 

1) Select a candidate bit sequence s(.). 
2) Solve (3) for ~ ( k )  and w(k), k = 1 ; . . . , N .  
3) The candidate limit cycle is a valid periodic orbit of the 

system if the polarities of U (  k ) ,  for k = 1, . . . , N ,  are 
consistent with the assumed bit sequence s (.). 

Let L denote an unstable limit cycle of period N and P' be 
a point on L.  We denote by SF(.) the N point sequence of 
+l's and -1's that, if substituted for & ( U ( . ) )  in (l) ,  results in 
[ ~~~~~~] = r' when [ = 3. Note that P' is the equilibrium v ( k )  
point of fE( . ) ,  the Nth sample point return map with sp(.) 
substituted for Q(u( . ) )  in (1). Mathematically, fc (.) is given 
by 

I2Equation (3) is obtained by assuming that { u ( k j ,  u ( k ) }  obtained by 
substituting $(.) for & ( U ( . ) )  in (1) is periodic with period N ,  that is, 
u(k + N )  = ~ ( k )  and o(k  + A T )  = v ( k j ,  and solving for { ~ ( k ) ,  u ( k ) }  
for k = 1 ; .  . . , N. 

( 5 )  

where Zss contains the states of the continuous time sys- 
tem, Z = [ X ~ ~ , X ~ ~ ] ~ , B  = log(FN), and Zsi: = (FN - 
I)-lB E,"=, FN-'{(s'sp(i) + i}. We use the subscript S F  to 
stress that (5 )  describes the local behavisr about point r' on 
the limit cycle. Note that, (5) has an equilibrium point at 2. 
For poles outside the unit circle with p1 + p 3  P corresponds 
to an unstable node, while for p1 = p2  > 1, P corresponds to 
an unstable improper node [20]. 

The local descriptions in (4) and (5) are valid as long as 
bit sequence sp describes the global behavior of the system 
correctly. For example, let 4 be the point closest to the 
switching line on the left of the switching line, i.e., the point 
on the unstable limit cycle that lies to the left of the switching 
line and whose distance from the switchjng line is less than 
that of all other points of the unstable limit cycle to the 
left of the switching line. Let denote the corresponding 
bit s_equence. Consider a local trajec_tory in the neighborhood 
of F', that is moving away from Pl in lthe direction of the 
switching line. Once this local trajectory crosses the switching 
line, the dynamics governing the large signal behavior change 
since the sequence si;l is no longer the resulting bit pattern. 
Thus, as long as the switching line is not crossed by this 
local trajectory of ?,, the global behavior is described by the 
trajectory jumping from the neighborhood of one point on the 
limit cycle to the neighborhood of another with (5)  describing 
the local behavior about point P' on the limit cycle. 

The effect of the switching line on the local behavior about 
points on the unstable limit cycle translates into boundaries 
about each point on the limit cycle. Within these boundaries 
the local behavior about a point $i on the limit cycle can be 
described by (4) or by the associated continuous time system 
of (5) with ~ 3 %  substituted for S F .  The switching line itself 
provides the left or right boundary for the points on the limit 
cycle that are closest to the switching line on the right or left 
of the switching line, respectively. For other points on the 
limit cycle, propagating the line U = 0-"' backward in timeI4 

d ,  zics3((t) = BZ(t) + &, 

13Recall that U = 0- denotes the line { u , v  I U = -6}, where 6 
is an infinitesimal positive number. Similarly, ti = O+ denotes the line 

14Propagating the line U = 0- backward in time through (1) translates 
into["(")] = F - l [ ~ ~ ~ ~ ~ ) ) ]  - h', for n = 0 , - 1 , . . .  . The 
sequence sp (. j is substituted in for sflL (.) when prclpagating the line U = O+ 
backward in time, where I', denotes the point on the limit cycle closest to 
the switching line that lies to the right of the switching line. 

{ U ,  2) 1 U = +a}. 

4") 
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through (l), defines the bound to their right. Since U = 0- 
is a straight line, this bound is also a straight line. Similarly, 
propagating the line 7~ = O+,  backward in time through (1) 
defines the bound to the left of these points. This bound is 
also a straight line. In what follows, we refer to the bounds 
obtained by propagating the switching line backward in time 
through (1) as virtual switching lines. Since the rate of growth 
is the same for all points on the limit cycle, we only need to 
consider the local trajectories of points closest to the switching 
line on the left or right of the switching line. 

As an illustrative example, consider an unstable limit cycle 
of the double loop modulator with X- = 0, and pl = p2 = 
1.01. Using Tsypkin's method, we have found an unstable 
limit cycle of period N = 8. The X ' S  in Fig. 9(a) denote 
this unstable limit cycle, the directed arcs in the same figure 
describe the trajectory of the limit cycle, while the dashed 
vertical line denotes the switching line. For convenience we 
have labeled some of the points on the limit cycle. pl is 
the point on the limit cycle that is closest to the switching 
line that lies to the left of the switching line. Motion in 
a neighborhood of $1 is defined by (4) with SA (.) = 
(-1,1,1, -1, -1,1, -1,l). Fig. 9(b) shows the associated 
continuous time trajectories around F1. This phase portrait 
is typical for unstable improper nodes. Fig. 9(b) was obtained 
by starting on points on the switching line and the virtual 
switching line 1111, and running (5) backward in time. As per 
our discussion in the previous paragraph, (4) with spl (.) is 
valid in describing the behavior of local trajectories that move 
to the right of 61, as long as the switching line is not crossed. 
Similarly, the behavior of the local trajectories that are repelled 
away from $1 to the left is correctly described by (4) with 
s g ( . )  = s~ (.) as long as the virtual switching line, 7111, is not 
crossed. The virtual switching line wll is shown as the solid 
line in Fig. 9(b). 

B. Large Signal Behavior: Discrete 
Time Attractors 

Given an initial condition in a neighborhood of an unstable 
limit cycle, the global behavior is temporarily described by 
the states ( U ,  U) moving from the neighborhood of a point on 
the unstable limit cycle to the neighborhood of another point 
on the limit cycle in a periodic fashion resulting in a periodic 
bit sequence at the output of the quantizer. This periodicity 
is interrupted once the local trajectory in the neighborhood 
of any point r' on the limit cycle crosses the switching or 
virtual switching line. What is the global behavior once a 
local trajectory crosses the switching or virtual switching line? 
Will the states escape from the neighborhood of the unstable 
limit cycle altogether or will they get folded back to the 
neighborhood of the same unstable limit cycle? We will answer 
these questions for the unstable limit cycle of Fig. 9(a) by 
examining the local vector field about points $1 and @3 and 
show that at least in this particular example, the trajectory folds 
back rather than escapes. Throughout this section, we focus 
on the unstable limit cycle of Fig. 9(a) to illustrate our main 
points; however, the steps outlined below can be generalized 
to an arbitrary unstable limit cycle. 

-1 5 I I I I 
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(b) U 

Fig. 9. 
(b) Behavior of perturbations about point 

S = 0.111 = p.2 = 1.01; (a) Unstable limit cycle of period N = 8. 
on the limit cycle. 

C. Stability Analysis 

In this subsection, we will show that the unstable limit 
cycle of Fig. 9(a) has an attractor in its neighborhood and 
that within this attractor the steady state behavior is such that 
the bit sequence at the output of the quantizer is intermittently 
periodic, hence explaining the broadband character and the 
discrete components of the output periodogram shown in 
Fig. 8. Specifically, we will show that the bit sequence at the 
output of the quantizer is periodic except for occasional breaks 
in periodicity. 

We begin by describing the local behavior in the neigh- 
borhoods of PI and @3'5 as shown in Fig. 1O(a). Point k l  
in Fig. lO(a) defines the point on the switching line at which 
a local trajectory, S3, in the neighborhood of @3 is tangent 
to the switching line16. Denote the corresponding trajectory 
about $1 by S1. Below x2 = k l  the direction of the vector 
field to the left of P3 and to the right of the switching line 
points toward the switching line, while in the same region 
above 2 2  = k l  the direction of the vector field points away 
from the switching line. Similarly, k 2  in Fig. lO(a) denotes 
the point on the switchingJine at which a local trajectory, TI, 
in the neighborhood of PI is tangent to the switching line. 
Arc T3 denotes the local trajectory about ?3 that corresponds 
to TI. Below 2 2  = k2  the direction of the vector field to 
the right of PI and to the left of the switching line points 
away from the switching line, while in the same region above 
2 2  = k l  the direction of the vector field points toward the 
switching line. In the region defined by k2 < 2 2  < k l ,  the 
vector field immediately to the left and right the switching 

15Note that $2 is two time steps shifted from $1. 

I6Here, the tangent curve is not unique to the limit cycle under consider- 
ation. Recall that for p1 = p 2 ,  the equilibrium point of (5) is an unstable 
improper node, thus the tangent curve will exist for points on any other limit 
cycle of the double loop modulator with p1 = p2. 
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move upward as they chatter along the switching line and 
eventually escape from the neighborhood of the unstable limit 
cycle. Below point E in Fig. 10(a), the local trajectories move 

I 
I 

I l l  

switching line and lands either to the left of T1 or between 
T1 and L1, where L1 denotes the local trajectory about $l 
that passes through the point E as shown in Fig. 10(a)I8. The 
former again results in the periodic behavior described above; 
the latter results in a local trajectory that chatters downward 
along the switching line and eventually gets interjected back 
inside arc T 1, hence causing periodic behavior. Therefore, 
both in the former and latter cases the behavior of local 
trajectories is a succession of periodic behavior and chattering. 

Putting these together we conclude that a trajectory starting 
between points E and k.2 on the switching line will stay 
bounded in the neighborhood of the unstable limit cycle and 
will exhibit periodic behavior followed by chattering followed 
by periodic behavior. This results in an output bit sequence 
that is periodic except for occasional breaks in periodicity and 
is responsible for the peaks in the periodogram of Fig. 8. 

We also conclude that the unstable limit cycle of Fig. 9(a) 
has an attractor in its neighborhood. Furthermore, the portion 
of the attractor about $1 is bounded below by the arc TI and 
above by the arc L1, as shown in Fig. 1O(b). 

D. Remarks 
The attractor about the unstable limit cycle of Fig. 9(a) 

consists of the union of the attracting regions about each 
point on the limit cycle, and is shown in Fig. 11. The x's in 
this figure correspond to the unstable limit cycle of Fig. 9(a), 

"To see that, we examine the direction of the vector field immediately to 
the left and to the right of the switching line. It can be shown that the direction 
of the vector field to the lcft of F,i and to the right of the switching line is such 
that the local trajectory of @, at X.2 moves to thz left of arc T1. Furthermore, 
the discrete jumps that the local trajectories of PI that are above arc T1 make 
as they cross the switching line, fall above the line 1 )  = h.2. In fact in can be 
shown that these discrete jumps are bounded by a line corresponding to the 
image of the switching line under map (4) with substituted for s?. This 
line intersects the switching line at point 11 = k 2 .  Thus local trajectories will 
eventually fall inside T1 as they chatter between points E and X-2. 

I8This is explained by noting that arc T3 crosses the switching line above 
point k2. 
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Fig. IO. 
Attractor about point r', . 

(a) Local behavior about points on the unstable limit cycle. (b) 

and what appear to be lines going through the x's are 
actually the attractor itself". As described earlier, the global 
behavior described by the states ( u , ~ )  consists of moving 
from the neighborhood of one point on the limit cycle to 
the neighborhood of another point in a periodic fashion with 
occasional breaks in the periodicity. An estimate of the output 
periodogram corresponding to the state space trajectory shown 
in Fig. 11 is shown in Fig. 8. As expected, the spectral 
peaks are in agreement with the fact that the limit cycle has 
period 8. 

As the poles of the modulator are moved further out from 
the unit circle, the tonal content improves, however, the high 
frequency peaks persist. For instance, for the above example, 
the tone at w = T in Fig. 8 persists as the poles are moved 
away from the unit circle. Finally, we note that it is possible 

"Note that the attractor in Fig. 1 1  fills out a small dense portion of the 
state space in the neighborhood of the unstable lilrit cycle. This is typical of 
the attractors exhibited in the double loop modulator with zero input. Discrete 
time attractors for nonzero inputs, however, tend to fill out a larger portion of 
the state space. 
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0, and p1  = p2  = 1.01. 

Attractor about the unstable limit cycle of period .Y = 8, for S = 

for the state space trajectories to exhibit more complicated 
behavior that results in spectral peaks that are incommensurate. 

VII. CONCLUDING REMARKS 

We have considered the saturation and tone behavior of 
the double loop EA modulator with unstable filter dynamics. 
We have shown that with poles outside the unit circle: (1) 
there is the possibility of the encoder becoming saturated, (2) 
the dynamic range of the encoder is reduced, (3) there is a 
loss in SNR. To avoid saturation, we studied two continuous 
time approximations to the discrete time modulator. The 
continuous time analysis provides us with an approximate 
stability boundary in the state space. We have also shown that 
while the tone behavior of the double loop EA modulator is 
improved when poles are moved outside the unit circle, not 
all spectral peaks are removed. We have explored the steady 
state behavior of the double loop modulator within its stability 
region, and have found that dominant unstable limit cycles 
determine repeating patterns in the state space and result in 
tones. We have presented a numerical method to determine 
which unstable limit cycle results in tones. Future direction of 
research is to uncover the exact relation between tonal strength 
and pole moduli, and to extend our results to the case where 
a dither signal is present. 

APPENDIX 
Proof of Proposition 1: Consider the flow diagram shown 

in Fig. 2. Let So, be the portion of the z2-axis between the 5 2 -  

intercept of k l  and the za-intercept of 12, SO,: ( 2  E R2 I 21 = 
0, 5 2 2  5 *}. There exists a subset, 0 c SO,, 
such that the trajectones of system (2) that emanate from 0 
following the direction of the vector field in S+ are returned 
to SO, following the vector field in S- . We prove proposition 
1 by considering the Poincare map, P:  0 + So,, under the 
flow defined by system (2), and showing that P ( y )  = y for at 
least one y E 0. This is equivalent to showing that P(.)  has 

$ 2 2  

at least one fixed point in 0 or that the underlying continuous 
time system (2) has at least one limit cycle that intercepts the 
x2-axis in 0 [21, ch. 21. The slope of P( . )  at the point(s) 
where P ( y )  = y determines the stability of the underlying 
limit cycle(s). 

We derive the Poincare map for p1 = p2 = p ,  a similar 
expression is obtained when pole values are not equal. For 
trajectories of system (2) that emanate from 0 fol1owi;g the 
direction of {:(.') and return to SO, following the of fF((. ' ) ,  
the first return map is 

where 71 is the time it takes for a trajectory emanating from 
0 to cross the %z-axis at a point w below the z2-intercept of 
I l ,  and 7 2  is the time it takes for this trajectory to return to 
SO, from w. Time variables, 7 1  and 7 2 ,  are found by solving 
transcedental equations involving y( k )  , 

and 

where 2' = [zf 1 , 2 2 1  -+ = A-'(-: - z) and 2- = 

[z,,~;]' = A-l(b - c', are the equilibrium points of 
f$( . )  and fz ( . ) ,  respectively. Since the vector field on each 
side of the switching line are transversal to 0, the flows 
corresponding to these vector fields are diffeomorphisms, and 
the solutions to the systems of differential equations on each 
side of the switching line are continuous with respect to the 
initial condition, P(.)  is a diffeomorphism [21]. 

Consider the flow diagram shown in Fig. 2, and let y" 
denote the point in SO, that is mapped to point T2 through the 
Poincare map defined above. Note that y" E 0, P(y")  = T2, 
and T2 < g",  thus P(yy") - y" < 0. Similarly, let y' 
be the point in 0 that is mapped to the z2-intercept of 
k l ,  through P( . ) .  Then P(y') - yl > 0. Note that y" and 
y' exist for the flow diagram shown in Fig. 2 since the 
flows corresponding to the vector fields on both sides of 
the switching line are diffeomorphisms. Now, since P ( y )  is 
continuous in y, the intermediate value theorem requires that 
for some y E O , P ( y )  = y. Note that trajectories of system 
(2) emanating from the z2-axis above point y' will grow to 
infinity and that any limit cycle of system (2) must intersect 
the x2-axis below yl. 

Now, let y" be the point closest to y' such that P(y") = y", 
then the slope of P ( . )  at y" is greater that onezo. Thus, the 
limit cycle of system (2) corresponding to P(y") = y" is 
unstable. Furthermore, continuous time trajectories of system 

0 (2) outside this unstable limit cycle grow to infinity. 

20This follows from the fact that P( . )  is smooth and P ( y ' )  > y' 
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