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Halftone to Continuous-Tone Conversion 
of Error-Diffusion Coded Images 

SQren Hein, Member, IEEE, and Avideh Zakhor, Member, IEEE 

Abstrucf- We consider the problem of reconstructing a 
continuous-tone (contone) image from its halftoned version, 
where the halftoning process is done by error diffusion. We 
present an iterative nonlinear decoding algorithm for halftone- 
to-contone conversion and show simulation results that compare 
the performance of the algorithm to that of conventional linear 
low-pass filtering. We find that the new technique results in 
subjectively superior reconstruction. As there is a natural 
relationship between error diffusion and EA modulation, our 
reconstruction algorithm can also be applied to the decoding 
problem for EA modulators. 

I. INTRODUCTION 
ALFTONING is the process of converting continuous- H tone (contone) images into a form suitable for display on 

binary devices [ 11-[4]. Halftoning is important because images 
such as photographs can have a large dynamic range, whereas 
display devices such as newspaper printers, laser printers, and 
some computer screens can only display binary images. The 
idea behind halftoning is to create a binary image whose low- 
frequency content approximates that of a contone image and 
whose high-frequency content is not visibly correlated with 
the low-frequency content. At a suitable distance, the human 
visual system then acts approximately as a low-pass filter. 

The halftoning process has been used in the printing industry 
for over a hundred years, and a large body of practical and 
theoretical knowledge has been accumulated [2 ] .  The work 
reported in this paper and many others [5], [6] is mainly 
concemed with digital or electronic halftoning rather than 
manual halftoning, which involves contact screens. In the 
former problem type, an image is manipulated as a 2-D 
array of discrete samples, whereas in the latter problem type, 
parameters such as the sizes and shapes of ink dots can 
be varied. For simplicity, we only consider black-and-white 
(B/W) contone images. 

A number of algorithms 'for halftoning images are available. 
The reader is referred to reviews such as [2]-[4] for a detailed 
discussion of the relative merits of these algorithms. In this 
paper, we consider the, error diffusion (ED) algorithm [7] 
and address the problem of reconstructing a contone image 
from its halftoned version. This problem arises when high- 
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quality images are needed for immediate viewing or when the 
underlying contone image needs to be decimated, interpolated, 
extrapolated, linearly or nonlinearly filtered and enhanced, 
compressed [8], or manipulated in any other way. In these 
situations, it is natural to reconstruct the contone image, 
perform the desired operations on it, and halftone the result. 
Finally, in many applications such as facsimile and desk-top 
publishing, it may be desired to convert back and forth between 
different halftone images for display on printers and monitors 
with varying dynamic range and resolution characteristics. 

There are several existing approaches to halftone-to-contone 
conversion. Fan [9] describes a logic-filtering approach for 
screened halftone images. In [8], Ting and Riskin present, 
among other results, a novel conversion approach based on 
error-diffused halftone images. Their approach is to decode 
each halftoned pixel based on the 3 x 3 neighborhood of 
the pixel; the decoded contone pixel value is obtained from a 
look-up table whose contents have previously been optimized 
through training on a suite of test images. 

The most common approach to halftone-to-contone con- 
version is low-pass filtering [2]. However, there is more 
information in a halftone image than is extracted by a linear 
filter because linear filtering does not use knowledge of the de- 
tailed mechanism by which the halftone image was generated. 
Our goal is to use this extra information to obtain sharper and 
more pleasing contone reconstructions. This goal is achieved 
with an iterative, nonlinear algorithm based on projections 
onto convex sets (POCS) [lo]. Our simulations show that the 
algorithm results in higher reconstruction quality than linear 
filtering. The theory of POCS has previously been applied to 
many signal and image reconstruction problems [ 1 11, including 
reconstruction of contone images from screened halftones [6], 

Our proposed algorithm is inspired by our work on nonlinear 
decoding for EA modulators [12], [13]. We thus exploit the 
relationship between ED and EA modulation first noted in [ 11. 

The paper is organized as follows. Section I1 describes 
ED, and Section I11 describes our proposed reconstruction 
algorithm. Section IV shows sample results of our proposed 
algorithm, and Section V contains a summary. 

~91. 

11. MODIFIED ERROR DIFFUSION 

In Section 11-A, we give a brief, general introduction to error 
diffusion, and in Sections 11-B and C, we lay the groundwork 
for the reconstruction algorithm described in Section 111. In 
Section 11-B, we discuss the choice of a computational proce- 
dure (CP) for ED halftoning. Although our chosen CP differs 
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Fig. 1 .  Discrete-time model of an error diffusion encoder. 
10 5 3 0  t 

(a) (b) 

Fig. 3. (a) Input and (b) output masks for the filter G in the Floyd-Steinberg 
ED encoder. The filter maps {e(nl.ng)} into { f ( n i ,  n z ) }  in Fig. 1. 

Fig. 2. Discrete-time model of the interpolative YA encoder. 

slightly from the traditional one, it tremendously simplifies 
our reconstruction algorithm. In Section 11-C, we derive the 
space-domain description of ED that results from our choice 
of CP. 

A. Introduction 

Fig. 1 shows a diagram of an ED encoder that is a 2- 
D discrete-time system. For comparison, Fig. 2 shows an 
interpolative EA modulator that is a 1-D system used in 
analog-to-digital conversion. Similar to a EA encoder, an ED 
encoder contains a 1-b quantizer Q and a linear filter G in a 
negative feedback loop and has a continuous-amplitude input 
and binary output. Q is given by 

where Lhigh = 255 and Lmid = $Lhigh = 127$, as we 
consider 8-b images. To be implementable, the 2-D filter 
G( z1 ,z2)  must have finite-extent input and output masks, and 
the system must be recursively computable [14]. For G, we 
will use the original Floyd-Steinberg input and output masks 
shown in Fig. 3 [7]. The equation for this ED filter is 

f(n1,np) = e ( w , n 2 )  

-k &[7f(ni - 1, n2) -k f ( n i  - 1, n 2  - 1)  
f sf(n1, 722 - 1 )  f 3 f ( n i  f 1,122 - I)]. 

The impulse response of the filter G has the infinite-extent 
region of support (ROS) R, shown in Fig. 4(a). A number 
of improved filters with larger masks have been proposed to 
overcome problems with halftoning artifacts [4]. However, for 
simplicity, we use the original filter throughout this paper. We 
assume that the masks are known. If this is not the case, an 
interesting filter estimation problem arises. For an approach to 
a similar problem, see [6]. 

B.  Computational Procedure for Modified Error Diffusion 
A 2-D discrete-time system such as an ED encoder requires 

a computational procedure that describes how to compute the 
system output from the encoder input [ 141. In this section, we 
define the particular CP that we will use, which is slightly 
modified from the standard one in order to significantly 

I + R k  
(a) (b) 

Fig. 4. (a) Region of support R, for the impulse response of G(z1, 22);  
(b) region of support R, for the input, shown with dotted lines and wholly 
contained in the larger region R’, over which the filter output must be 
calculated. 

reduce the complexity of our reconstruction algorithm. The 
modification does not affect the quality of the halftoning. 
Our CP is inspired by the general procedure described in 
Lim [14] for linear systems and is outlined below. Using 
our procedure, we derive a space-domain description of the 
ED encoder relating the unknown encoder input {z(nl,n2)}, 
the known encoder output { y ( n l , n 2 ) } ,  and known space- 
invariant impulse responses determined by G. 

To compute the output of the ED encoder for a given input, 
we must specify both boundary conditions and a recursive 
computational order [14]. We will begin with the boundary 
conditions that specify the region over which the encoder 
output is guaranteed to be zero, given that the encoder input 
is restricted to a specified region of support R, [14]. We will 
set R, = ((n1,na)lO 5 n1 5 N - 1 , O  5 712 5 N - l } ,  
where N is the image size. Let us pretend for a moment that 
the quantizer Q in Fig. 1 is replaced by an open connection. 
As the filter input mask is a Kronecker 6 function, the ROS 
of { f (n l ,na)}  is also R,. Therefore, both the filter output 
f (n1,  n 2 )  and the variable ~ ( 1 ~ 1 ,  n2) are zero in the boundary 
condition region RBC defined as the complement of R,. Now, 
because Q(0) = 0, reinserting Q into the encoder over the 
region RgC does not alter the encoder function over R g C :  

u(n1,n2) and, hence, y ( n l , n 2 )  remain equal to zero over 
R g C .  Therefore, the boundary condition region remains RBC 
when Q is inserted. 

Having specified boundary conditions, we now complete our 
CP for the ED encoder by specifying a recursively computable 
order [14] in which encoder input samples can be processed. 
A natural order of computation through Rg would be line by 
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line. However, we only need the ED output over the region 
R, shown in Fig. 4(b). We can therefore discard any lines 
above R, in the nz direction as well as any samples with 
large enough values of n1 so that they do not affect the encoder 
output over R,. To calculate the encoder output over R,, it 
thus suffices to go line by line through the finite region RL 
shown in Fig. 4(b). In contrast, the standard CP forces the 
quantization error to be zero outside of R,, which leads to a 
violation of the governing difference equations over R,; here, 
we have defined R, to be the part of Rk that does not overlap 
with R,. 

Although our proposed CP simplifies the reconstruction, it 
has one potential problem: The decoder only has access to the 
encoder output over R,, and due to the feedback, this encoder 
output may be affected by encoder outputs over R,. However, 
we show in Appendix A that for our encoder, an encoder 
output sample is necessarily zero whenever the corresponding 
encoder input sample is zero. Therefore, the discarded encoder 
outputs over R, carry no information. 

Although our proposed CP generates the same binary image 
over R, as the standard CP does, it generates a different image 
over R,. This is because our procedure requires the encoder 
to process all of RL, rather than only R,, which affects the 
encoder states. Therefore, even though the encoder output is 
zero over R,, the diffused errors are nonzero, and this affects 
the encoder outputs over the entire image. Nevertheless, we 
find that the two halftoning techniques result in subjectively 
similar quality. 

C .  Resulting Space-Domain Description 

We now derive a space-domain description of the ED 
encoder. Referring to Fig. 1, we will write the quantizer 
input u(n1,nz) as a linear combination of input samples 
(z(nl ,n2)} and output samples {y(nl,nz)}. For given filter 
input and output masks, we can use standard methods [14] to 
calculate the space-invariant impulse response (g,(nl, nz)} 
from the encoder input { z ( n ~ , n z ) }  to the quantizer input 
(u(n1, n2)} and, similarly, the impulse response {gy(nl,  n2)} 
from the encoder output (y(n1, n2)} to the quantizer input 
(u(n1, n ~ ) } .  By definition of these impulse responses, we then 
have 

u(n1, 712) = 7, X [ g x ( n l  - m1, nz - m2)2(m1, m2) 
ml m2 

+ gy(n1 - m1,nz - mz)y(m1,m2)] ( 2 )  

where the sums run from -cc to +cc. Even though the 
quantizer Q is nonlinear, the relationship (2) is linear. By 
inspection, g,(O, 0) = 1, gy(O, 0) = 0, and for (121,122) # 
(0, o),  g,(nl,nz) + gy(nl ,n2)  = 0.' The summation limits in 
(2) can be reduced by making use of knowledge of the ROS's 
for the involved sequences. First, we have x(m1, mz) = 0 for 
(ml ,  mz) 6 R,. Second, we have the less obvious result that 
y(m1, m ~ )  = 0 for (ml ,  mz) 6 R,, as shown in Appendix A; 
this is a form of stability result because it follows from the 
boundedness of the quantization error. Finally, the ROS's of 

'When using the standard CP, the quantizer input still depends linearly on 
encoder input and output. 

the impulse responses can be calculated for given filter input 
and output masks. For instance, g, and gy for the masks shown 
in Fig. 3 are both zero whenever n2 < 0 or n l+nz  < 0. Putting 
these facts together, we find that for our particular ED encoder 

where MI = min{nl+ n~ - mz, N - l} and M2 = min(n2, 
N - 1). 

111. RECONSTRUCTION ALGORITHM 

Our proposed algorithm for halftone-to-contone conversion 
is based on the theory of POCS [lo]. We thus altemate between 
a space-domain projection PI onto a set S1 and a frequency- 
domain projection P 2  onto a set S 2  to find an image invariant 
under both. The set S1 contains all contone images that result 
in a specific, observed ED halftone image, and the set s 2  

contains all band-limited contone images. The two sets are 
easily shown to be convex.2 To extract all information from an 
observed halftone image, we must find a signal 3 E SI n Sa. 
According to the theory of POCS, such an element can be 
found from any initial guess 50 by the iteration [lo] 

zn+l = (P2 0 P1)zn, n 2 0 ,k  = P1k = Pzk = lim zn. 
n-o3 

In contrast, the traditional method of contone reconstruction 
is to apply a low-pass filter. This approach corresponds to 
enforcing the band limitation constraint and neglecting the 
space-domain constraint. In Sections 111-A and B, we describe 
the two projections in more detail. 

A .  Space-Domain Projection 
In this section, we present a matrix space-domain descrip- 

tion of the error diffusion encoder based on (3). We then show 
that the projection PI of an image onto the image set S1 is a 
quadratic programming (QP) problem. 

We only have access to the encoder output image (y(n1, 
nz)} and not the quantizer input sequence {u(nl,nz)}. 
Through (1) and (2) ,  the halftone image thus provides us 
with a series of bounds on linear combinations of encoder 
input samples (2(nl ,n2)} of the form 

* A  set S is convex if for all a, b E S ,  cya + (1 - a ) b  E S for any 0 < a  < 
1. 
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- Go 0 . . .  0 0 -  
G1 Go . . .  0 0  . .  . .  . . >  G, = 

G N - ~  G N - ~  ... Go 0 
- G N - ~  G N - ~  ... G1 Go- 

This equation can be written more succinctly in matrix nota- 
ti or^.^ To this end, we introduce the N2-dimensional vectors 

( 5 )  

Z = (20, ' ' ' , zN2-1) I 

= (z(0, O),  . . * , z(0, N - 1); 

. . . iz(N - 1, O),  . . ., z ( N  - 1, N - l)}' 

?./=(yo, " ' 1  yN2-l}t 

= (y(0, O),  . . . , y(0, N - 1)i 

. . :y(N - 1, 0), .. . , y ( N  - 1, N - l)}t 

where zt denotes the transpose of 2. We also define the 
N 2  x N2 block-Toeplitz lower-triangular matrix 

where the inequality sign is to be taken coordinate wise. 
The space-domain projection problem can now be stated as 
follows: Given an arbitrary image vector 2, find a vector 
2 that satisfies (6) and minimizes the 2-norm distance ( 1  
P --z 11;. This is a linearly constrained QP problem that can be 
solved with techniques available in the literature [ 151. The QP 
problem is of the exact same form as the one stated in [12] 
for EA encoding. Therefore, the methods described in [12] 
for approximately solving the QP problem while drastically 
reducing computational complexity are directly applicable. 
Specifically, we can solve a number of QP subproblems of 
size LQP rather than one QP problem of size N 2 .  We can also 
employ the idea described in [ 121 of overlapping QP subblocks 
in order to more closely approximate the solution to the actual 
N2-dimensional QP problem. 

B.  Frequency-Domain Projection 

The fundamental mathematical requirement on the 
frequency-domain projection P 2  is that it should be a 2- 
norm projection. Furthermore, for good performance, the 
projection should be able to discriminate between images and 
"nonimages." Unfortunately, no such operator is presently 

3With the conventional CP for error diffusion, the halftone image still 
induces bounds on linear combinations of encoder input samples. However, 
the structure of the bounds is simplified by our modification. 

~ 
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known. There is no inherent requirement that the desired 
operator be a frequency-domain based one [16]. However, 
we find a frequency-domain approach most attractive due to 
the approximate low-pass nature of many naturally occumng 
images [16]. 

We have considered using the discrete cosine transform 
(DCT) as the basis of a projection. Specifically, we can take 
the 2-D DCT of an image, set all but the low-frequency 
coefficients to zero, and take an inverse DCT. We have 
also considered a novel linear singular value decomposition 
(SVD)-based transform [ 171. The SVD-based method for band 
limitation operates analogously to the DCT-based one and 
enjoys a certain maximal energy concentration property [ 171. 
As we found that the SVD-based method performed better than 
the DCT-based one while requiring fewer coefficients [13], we 
discarded the DCT-based method. 

We also considered linear filtering [ 181 and replaced the 
frequency-domain projection with the 9 x 9 Gaussian fil- 
ter given by h(n1,nz) = exp [(n; + n i ) / ( 2 u 2 ) ] / K ,  where 
-4 5 n1, nz 5 +4, (T is the width, and K is a normal- 
ization constant such that the tap values add up to one. As 
such linear filtering is not a projection, the theory of POCS 
does not guarantee convergence to an image invariant under 
both projections simultaneously, but subjectively good quality 
might nonetheless be achieved. Interestingly, the resulting 
iterative algorithm can actually be viewed as exactly solv- 
ing an optimization problem associated with the space- and 
frequency-domain operators [ 191. The idea is that the output of 
the composition of the two operators converges, even though 
the output of the individual operators does not. 

IV. RESULTS 

In this section, we illustrate the performance of our re- 
construction algorithm. We use the 512 x 512 Lenna image 
in Fig. 5 as our test case. For all POCS results, the QP 
block size for the space-domain projection is set to LQP = 
64 with an overlap of 50% between blocks. Whenever the 
frequency-domain projection is SVD-based, it is calculated as 
described in Apendix B. The number of POCS iterations is ten; 
a significantly smaller number of iterations results in worse 
performance. The Peak SNR (PSNR) between two N x N 
images z and 2 is defined as 

- . 11.1 =o n2=0 

Fig. 6 shows the effect of bandlimiting the Lenna image 
using the SVD-based projection. We find that the subjective 
quality of Fig. 6 is close to that of Fig. 5, although some detail 
is lost in the straws on the hat and in the hair falling down on 
the right. In addition, some ringing is introduced by the upper 
right edge of the hat brim. 

Fig. 7 shows the halftoned version of Fig. 5 from which 
the reconstruction is done. We have also considered halftoning 
the SVD-limited image rather than the original image in order 
to ensure that at least one image is invariant under both the 
space- and frequency-domain projections so that the theory of 
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Fig. 5 .  Original 512 x 512 8-b Lenna image. Fig. 7. Halftoned Lenna image. 

Fig. 6.  
dB. 

SVD-limited Lenna image. The PSNR with respect to Fig. 5 is 32.3 

POCS guarantees convergence. Such an approach would not 
be realistic in practice but would facilitate the investigation. 
We found that the results thus obtained were very close to the 
shown results. 

Fig. 8 shows the effect of low-pass filtering the halftone 
image in Fig. 7 using a Gaussian 9 x 9 filter with (T = 2.0. 
We find empirically that o = 2.0 results in the subjectively 
best low-pass filtering; choosing a larger (T results in a more 
blurred image, whereas choosing a smaller o results in a more 

Fig. 8. 
PSNR with respect to Fig. 5 is 27.4 dB. 

Halftoned Lenna image filtered with a 9 x 9 Gaussian filter. The 

grainy appearance. Comparing Figs. 5 and 8, we see that linear 
filtering results in a visually pleasing but quite blurred image. 
Note for instance the blurring of the straws on the hat, the 
eyebrows, the eyes, and the upper brim of the hat. Note also the 
graininess of the left-most part of the cheek and the contouring 
in the background to the right of the cheek. The image in Fig. 8 
is the benchmark against which we will compare the results 
of our reconstruction algorithm. 
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Fig. 9. 
The PSNR with respect to Fig. 5 is 30.4 dB. 

Result of ten POCS iterations using the SVD as the band limitation. 

Fig. 9 shows the result of applying the POCS algorithm to 
Fig. 7 using the SVD-based method as the band limitation. The 
reconstruction is quite sharp and visually pleasing compared 
with Fig. 8. In large magnification, however, Fig. 9 exhibits 
some visually objectionable artifacts in the form of a grainy 
texture in the lower right part of the face. In addition, ringing is 
present along the upper right edge of the hat brim as in Fig. 6. 

Figs. 10 and 11 show the results of applying the POCS 
algorithm with two different frequency-domain projections, 
both based on a 9 x 9 linear Gaussian filter whose 5 depends 
on the iteration number. The idea of varying 5 is inspired by 
[6]. By starting with a large CT, the initial iterations become 
quite low-pass and blurred, thus filtering out the halftone 
artifacts. Subsequently, decreasing 5 reduces the effect of the 
filter. In Fig. 10, we choose 

where n is the iteration number, and in Fig. 11, we choose 

As expected, the image in Fig. 11 is somewhat more blurred 
than the one in Fig. 10 because ~ ( n )  in (8) is larger than 
~ ( n )  in (7). On the other hand, Fig. 10 has a “pearly” 
appearance, with white dots appearing along the edges of the 
hat among other places. We ascribe this to the fact that as 5 

decreases, the effect of the filter also decreases, and therefore, 
the space-domain projection dominates the algorithm. As the 
space-domain projection is not restricted to make smooth 
modifications to the iterates, the local white dots arise. The 
pearliness is absent in Fig. 11 due to the smaller bandwidth 

Fig. 10. 
limitation. The PSNR with respect to Fig. 5 is 29.4 dB. 

Result of ten POCS iterations using linear filtering as the band 

Fig. 11. Result of ten POCS iterations using a more narrow-band form of 
linear filtering as the band limitation. The PSNR with respect to Fig. 5 is 
29.3 dB. 

of the filter employed. The choice of ~ ( n )  is thus a tradeoff 
between sharpness and pearliness. Both images are less sharp 
than Fig. 9. However, Figs. 10 and 11 are less grainy than 
Fig. 9 in large magnification. 

It is interesting to compare Figs. 10 and 11 with Fig. 8, even 
though the bandwidths of the Gaussian filters used are not the 
same. Both Figs. 10 and 11 are sharper than Fig. 8 and do not 



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4, NO. 2, FEBRUARY 1995 214 

Figure 

8 

9 

10 

11 

12 

Fig. 12. 
SVD as the band limitation. The PSNR with respect to Fig. 5 is 29.3 dB. 

Result of ten POCS iterations using both linear filtering and the 

Sharpness 

low 

high 

high 

medium 

high 

suffer from the graininess of Fig. 9. Using the POCS algorithm 
rather than linear filtering thus improves the reconstruction 
quality on both these counts. In addition, the filter used in 
the POCS iteration can be chosen to avoid pearly artifacts as 
discussed above. 

Finally, Fig. 12 shows the result of applying the POCS 
algorithm with a mixed band limitation, namely, the linear 
filter characterized by (7), followed by the SVD-based method. 
The purpose of this is to combine the best of the SVD 
method and linear filtering for band limitation, namely, the 
convergence and sharpness properties of the SVD method and 
the smoothing effect of linear filtering. We find the image in 
Fig. 12 to be subjectively pleasing. The main artifacts of the 
image are in the white dots on the chin and the dark shade 
to the right of the nose. In addition, there is some graininess 
in the facial skin. On the other hand, Fig. 12 is sharper than 
Fig. 1 1 .  We find that although Fig. 12 is a good reconstruction, 
the best reconstructed image shown in this section is Fig. 8. 

To give some quantitative measure of the convergence 
rates involved in the above reconstructions, Fig. 13 shows the 
energy modification due to the frequency-domain projection 
as a function of iteration number for four variations on the 
frequency-domain projection, namely, the pure SVD method, 
linear filtering based on (7) and on (8), and the mixed 
band limitation. As expected, the pure SVD method has the 
best convergence curve. The other three frequency-domain 
operations all have about the same convergence performance. 
Neither of these curves correspond to converging algorithms, 
as linear filtering is not a projection. We emphasize that 
although it is mathematically desirable for an reconstruction 
algorithm to converge, an image processing algorithm should 
be judged primarily on its visual qualities and secondarily on 
strict convergence properties. 

Ener mod. 
EQCSSYD 
POCS-LPFl 
EWS-LPF2 
POCS-mixed 1 e7 

*...' , 
*<>\ ' , 

\&->- - --=---I--- 

Iteration no. 

Fig. 13. Convergence curves for four band limitations as a function of 
POCS iteration number. Linear 1) and linear 2 )  curves refer to (7) and (8). 
respectively. 

TABLE I 
SUMMARY OF IMAC RECONSTRUC 

Artifacts 

graininess 

ringing 

pearliness 

low 

low 

ION QUALITY 

Convergence 

N I  A 

Yes 

no 

no 

no 

The subjective reconstruction quality of the presented im- 
ages is tabulated in Table I. In summary, low-pass filtering 
can be used on its own as in Fig. 8, but this results in either 
graininess or blurriness, depending on the filter bandwidth. In 
contrast, Figs. 10 and 1 1  show the effect of linear filtering 
in a POCS iteration; the blurriness is clearly reduced, but 
pearliness results if the filter bandwidth is too large. Using 
the SVD method in a POCS iteration also reduces blurriness 
and results in fast convergence but introduces some ringing 
artifacts. Finally, in our opinion, a combination of the SVD 
method and linear filtering in a POCS iteration results in a 
reasonable compromise between sharpness and artifact-free 
images, as shown in Fig. 12. 

V. SUMMARY 

We have described a POCS-based iterative algorithm for 
reconstructing a contone image from its ED-encoded version. 
We showed simulation results that demonstrate that the pro- 
posed algorithm provides subjectively superior reconstruction 
to conventional linear filtering. 

Alhtough this paper presents the mathematical framework 
for our algorithm and demonstrates its feasibility, it does 
not provide definitive answers to the contone reconstruction 
problem. Our conclusions are thus tentative and require psy- 
chovisual test for verification. In addition, the behavior of the 
algorithm with a number of different error diffusion filters 
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could fruitfully be examined. Other questions include the 
optimal design of ED filters in the context of the presented 
algorithm and the problem of reconstruction when the ED 
filter is unknown. Reducing' the computational complexity of 
the algorithm, particularly the space-domain projection, is also 
an interesting problem. The techniques presented in [20] may 
be relevant in this respect. Finally, the absence of a completely 
satisfactory frequency-domain projection is a problem whose 
solution would have implications not only for our algorithm 
but for other applications 2s well. 

APPENDIX A 
STABILITY OF ERROR DIFFUSION ENCODERS 

We will show that the quantization error in an ED encoder 

1) The input mask is a Kronecker &function. 
2) The absolute sum of the output mask coefficients is at 

3) All input samples are in the range 10, Lhigh]. 

is bounded, provided the following: 

most 1. 

Using the same technique, we then show that if an input 
sample z(n1, n 2 )  equals zero, the corresponding output sample 
y(n1,na) also equals zero. 

We show the claims by induction. We first note that if (nl, 
n2) E RBC, then e(n1, n2) = 0, which belongs to the interval 

the induction step. Consider the evaluation of a particular 
quantizer input sample u(n1, nz). The largest possible value of 
~ ( n l ,  n2) occurs if the corresponding input sample z(n1, n2) 

and the contributions of the quantization errors through G( z1, 

22) are all as large as possible. Thus, abbreviating "output 
mask coefficient" by "o.m.c.," we have 

[Lmid - Lhigh, Lmid] = [-Lmid, -k Lmid]. w e  next establish 

4 7 2 1 ,  .2) = 2(m,  n2) 
+ 0.m.c. -e(ml ,  mz) 
ml ,mz 

I maxz(n1,nz) 
+ max (e(m1, m2)l. lo.m.c.1 
ml ,mz 

m1 ,m2 

= Lhigh + Lmid, (9) 

where we have used the upper bound on z(n1, n2), the upper 
and lower bounds on the quantization error, and the upper 
bound on the absolute sum of the output mask coefficients. 
Similarly, we find that 

4n1,  n 2 )  = 4 7 1 1 ,  n 2 )  

+ 0.m.c.. e(m1, mz) 

2 minz(n1, n2) 

ml ,m 

Combining (9) and (lo), we get that u(nl, n2) E [-Lmid, 
Lhigh + Lmid]. Now, for all quantizer inputs in this range, we 
have that e(n1, 712) = &(U) - U E [-Lmid, + Lmid], which 
establishes the induction step and shows that the absolute 

error le(n1, n2)l is no larger than Lmid under the stated 
assumptions. 

Consider next the case of a zero input sample, z(n1, n2) = 
0, as occurs for any pair (711, n2) $Z R,. The upper bound (9) 
on u(n1,nz) can then be strengthened to ~ ( 7 1 1 , ~ ~ )  5 Lmid. 
As the quantizer output is zero for any quantizer input less 
than or equal to Lmid, the bound on u(n1, nz) establishes that 
y(n1, n2) = 0. In the absence of this result, the halftone outputs 
y ( n 1 ,  n2) outside of R, would carry information necessary to 
derive bounds on the input image from (3), and thus, it would 
not be possible to perform the time-domain projection using 
only { y ( n l ,  712)) Over R,. 

APPENDIX B 
TWO-DIMENSIONAL SVD BAND LIMITATION 

In this appendix, we describe the generalization to two 
dimensions of the SVD-based band limitation method pre- 
sented in [17] for 1-D signals. As in [17], we denote the 
1 -D truncated discrete prolate spheroidal sequences (DPSS's) 
corresponding to a particular bandwidth and sample size N 
by {uc, , . . . ,  UN-1). The SVD transform {X(ml, mz)} of 
an image (z(n1, n2)} is then given by 

with the inversion formula 

The image (x(n1, nz)} can be bandlimited by restricting the 
summation limits in (12). In the special case of a separable 
band limitation, that is, if the summation limits on ml and 
m2 are independent, the image {z(nl, n 2 ) )  can be bandlimited 
successively in the two dimensions as follows: 

This is the form in which we will use the SVD band limitation. 
The method is characterized by the bandwidth, the sample 
size N defining the DPSS's, and the number of vectors T .  

Unlike most 1-D signals, there is no natural bandwidth for a 
given image; therefore, choosing the bandwidth must be done 
empirically. We find that a bandwidth oversampling factor [ 171 
of 2.5 and a number T = 210 of singular vectors gives adequate 
results for an image size of N x N = 512 x 512. 
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