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New Properties of Sigma-Delta 
Modulators with dc Inputs 

SQren Hein, Khalid Ibraham, and Avideh Zakhor, Member, IEEE 

Abstract-We derive new properties of the single- and double- 
loop sigma-delta modulators with constant inputs, by exploiting 
the inherent structure of the output sequences or codewords 
that the modulators are capable of producing. Specifically, we 
first derive upper bounds of O(.Y2) and O(-Y3) on the number 
of r -b i t  codewords for the single and double-loop modulators, 
respectively. We then derive analytical lower bounds on the 
mean squared error (MSE) obtainable by any decoder, linear 
or nonlinear, in approximating the constant input; based on 
.Y-bit codewords, the bounds are O(.Y-3) and O(AT-6) for 
the single and double-loop modulators, respectively. Optimal 
nonlinear decoders for constant inputs can be based on a table 
look-up approach which operates directly on the nonuniform 
quantization intervals. Numerical results show that if the con- 
stant input is uniformly distributed, the MSE of such nonlinear 
decoders are 0(-?*-3) and O(S-’) for the single- and double- 
loop modulators, respectively. Using simulations we find that the 
optimal nonlinear decoders perform better than linear decoders, 
by about 3 and 20 dB for the single and double-loop modulators, 
respectively. We also introduce a cascade structure specifically for 
constant inputs, and derive its corresponding decoding algorithm. 
The idea behind the cascade structure is to requantize the residue 
from each stage in order to fully utilize the dynamic range 
of the next stage. We show that for a fixed latency, the MSE 
performance of our cascade structure is 12 dB superior, and its 
throughput is twice the conventional two-stage MASH modulator. 

I. INTRODUCTION 

IGMA-DELTA (EA) modulators are becoming increas- S ingly popular for analog-to-digital (ND)  conversion ap- 
plications due to their insensitivity to circuit imperfections and 
ease of implementation [1]-[3]. They are based on the princi- 
ple of using a one-bit quantizer at the expense of operating at 
sampling rates much higher than the Nyquist rate. The inherent 
trade-off between sampling rate and resolution in amplitude 
quantization is well known, and the two-dimensional equiva- 
lent has been the subject of a recent investigation [4]: It was 
shown that reconstruction from multiple level crossings results 
in sampling schemes whose requirements on position and 
amplitude quantization can be anywhere between the extremes 
of Nyquist sampling and a zero-crossing representation. 
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1 I 

Fig. 1. Discrete-time model of the single-loop EA encoder. 

In this paper we consider the application of the single and 
double-loop EA modulators to data acquisition applications, 
in which the input is approximately constant. The results also 
provide insight into the more general case of time-varying 
inputs, since such inputs are typically heavily oversampled. 
To introduce the problems that we address, let us consider the 
discrete-time model of the single-loop EA encoder shown in 
Fig. 1.’ The encoder consists of a discrete-time integrator and 
a one-bit quantizer Q embedded in a negative feedback loop. 
The quantizer is specified by 

where b is the quantizer step size. The constant input X is 
assumed to be in the dynamic range B = ( -b ,+b),  and the 
encoder output is a binary sequence of &b’s. The integrator 
accumulates the error between the input and the quantizer 
output, and the negative feedback serves to make this error 
small. 

The task of a decoder is to produce an estimate X of the 
constant input X, given a number N of output bits; to be 
consistent with the terminology in [l] we refer to N as the 
oversampling ratio (OSR).2 The collection of estimates X that 
a given decoder is capable of producing for a given OSR and 
all constant inputs X E B is referred to as the decoder’s 
reproduction alphabet for that OSR [l]. The mean squared 
error (MSE) of a decoder is defined as 

MSE f E [ (x - X)’] . 

A simple decoder is the averaging decoder given by 
. N-1 

The size of its reproduction alphabet is N + 1 [l], and if the 
constant input has a smooth probability distribution, the MSE 

estimates of the input as a decoder, and their combination as a modulator. 
We refer to Fig. 1 as an encoder, any linear or nonlinear filter producing 

*A different definition is used for dynamic inputs. 
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of the averaging decoder is upper bounded by [l] 

4b2 
3N2 

MSE 5 -. 

For the averaging decoder, Gray [5] has also shown that if the 
input is uniformly distributed on B and N is large, the MSE 
is given by 

QI.2 LU 
MSE z -. 

3N2 

The accuracy of the single-loop modulator as an N D  converter 
is intuitively linked to the number of output values, that is, the 
size of the reproduction alphabet at the disposal of its decoder. 
For instance, the size of the reproduction alphabet is 0 ( N2) 
for a decoder consisting of an N-tap FIR filter with triangular 
impulse response, commonly referred to as a sinc2 filter. 
This decoder achieves an asymptotic MSE of 0 ( N P 3 ) .  It is 
conceivable that there exist a variety of other decoders with 
larger reproduction alphabets and smaller MSE. The question 
arises as to the fundamental limits on reproduction alphabet 
size and MSE performance of the single-loop modulator, as 
well as more general modulators, with constant inputs. 

In this paper we show that the answer to this question can 
be found by decoupling the encoder and decoder, and studying 
separately the structure of the output sequences that the 
encoder is capable of producing. The N-bit output sequences 
that an encoder can generate for fixed initial integrator states 
as the constant input ranges over ( -b ,  +b) will be referred to 
as the codewords for the given initial states, or codewords 
for short. The size of a modulator’s reproduction alphabet 
is upper-bounded by the number of different N-bit output 
sequences or codewords that the encoder can produce for 
constant inputs X E B. The number of codewords is clearly 
bounded, since there are at most 2N of them, but we find 
that for given initial integrator states, many of the 2ly binary 
N-bit sequences are not codewords. The resolution and hence 
the MSE performance of a modulator is bounded by the fact 
that each codeword can be generated by a range of constant 
inputs, and no decoder can distinguish between constant inputs 
in such ranges. In principle, an optimal nonlinear decoder 
could be based on a table look-up approach in which each 
codeword is mapped to the mean value of the input over the 
range corresponding to the codeword. These comments are 
applicable to general EA modulators, including interpolative 
ones [6], but we restrict our analysis to the single and double- 
loop modulators. 

Our focus on N-bit codewords and the case of zero or 
at least known initial integrator states bears some similarity 
to the approach in [7]. In that paper, N-tap linear decoders 
are derived which are in some sense optimal. However, the 
work in [7] is based on an assumption of white, uncorrelated 
quantization noise-an assumption which is now known not 
to be valid for low-order encoders with one-bit quantizers [l]. 

This paper is organized as follows. In Section 11, we derive 
an upper bound of O ( N 2 )  on the number of codewords 
for the single-loop encoder, and an O(N-3)  lower bound 
on the MSE performance of any single-loop decoder with 
constant inputs. We present simulation results to show that an 

MSE performance of O ( N - 3 )  is achievable with the optimal 
nonlinear decoder, as well as with a number of linear filters. 
Similar analysis and simulation results for the double-loop 
encoder are presented in Section 111. In Section IV, we first 
derive the MSE performance of the averaging decoder for 
the single-loop encoder. Even though the expression for the 
MSE is known [5] ,  our particular derivation enables us to 
develop a decoding scheme for a modified cascade structure 
with dc inputs; the structure may be viewed as a modification 
of the multistage noise-shaping (MASH) modulator [8 ] .  In 
Section IV, we discuss this modified cascade structure and 
its corresponding decoding algorithm. We also compare its 
performance to that of the MASH modulator with linear de- 
coding. Finally, Section V contains conclusions and directions 
for future research. 

11. THE SINGLE- LOOP ENCODER 
In section 11-A we derive an upper bound on the number of 

codewords of the single-loop EA encoder with constant inputs 
and a fixed initial integrator state, and compare the bound 
to simulation results. In Section 11-B we use the results of 
Section 11-A to derive a lower bound on the MSE performance 
of any decoder, and compare the bound to the simulated 
performance of an optimal nonlinear decoder and two linear 
decoders. 

A.  Codewords 

In Section 11-AI) we derive an upper bound on the number 
of codewords, and in Section 11-A2) we show simulation 
results on the actual number of codwords. 

I )  Upper Bound on Number of Codewords: Our approach 
is to examine the behavior of the encoder state variable U,, 
in Fig. 1. From the figure, the nonlinear difference equation 
relating U, to U,-l is 

U,, = X - &(U,,-1) + Un-1 (2) 

where X is the constant input. It has been shown [l] that if the 
initial integrator state U, is in the range ( X  - b,  X + b) ,  then 
the integrator state remains in the same range at all future 
times. that is 

U0 E ( X  - b. x + b )  * U, E ( X  - b, x + b )  
for all n > 0. 

To gain some intuition about the behavior of the state variable, 
Fig. 2 shows a typical time sequence for U,. Equation (2) 
states that if UTL-1 is positive, the state variable is decremented 
by b - X in the next time step, whereas if Un-l is negative, 
the state variable is incremented by b + X = 2b - ( b  - X ) .  
Thus the state variable is always decremented by b - X ,  but if 

< 0, it is additionally incremented by 2b, and a negative 
output bit is generated. To satisfy (3), the number of negative 
bits j among the first n output bits must therefore satisfy 

(3 )  

X - b < U o - n ( b - X ) + 2 j b i X + b .  (4) 

In Appendix A.l  we show that equation (4) leads to the 
following conclusions for a given value of N. The dynamic 
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Typical waveforms for: (a) the state variable L V n ,  (b)  the quantizer Fig. 2. 
output Q( LTn ) . 

TABLE I 
TRANSITION POINTS FOR = 12 AND L-0 = 0. THE POINTS ARE NORMALIZED BY b 

PJ 1 2 3 4 1 6 1 6 9 10 

2 0 
3 113 -113 
4 112 0 -112 
J 315 115 -115 -315 

i 517 317 117 -117 -317 - j / i  

6 213 113 0 -113 -213 

6 314 112 114 0 -111 -112 -314 
9 i / 9  519 113 119 -119 -113 -519 -719 
10 415 315 2 1 5  115 0 -I/j - 2 1 5  -313 -115 
11 9/11 7/11 5/13 3/11 1/11 -1111 -3111 -5111 -7111 -9111 

range (-b. +b) is divided into quantization intervals whose 
width and position depend on UO. Within each interval, all 
constant inputs generate the same N-bit codeword, but distinct 
intervals correspond to distinct codewords. The edges of the 
quantization intervals, referred to as transitions points, are 
given by 

pb - ( 2 j b  + Uo) X =  
P 

where 1 5 p 5 N - 1, and j is a positive integer in the 
appropriate range such that X E (-b. +b). As an example, 
the transition points for N = 12 and an initial state of 
U0 = 0 are shown in Table I. By counting the number of 
parameter combinations ( p , j )  in (5) ,  we find that the number 
of quantization intervals, hence the number of codewords, is 
upper bounded by 

# (6) 

This is an O ( N 2 )  upper bound. Clearly, the number of 
codewords is a diminishingly small fraction of 2” for large 
oversampling ratios. 

The actual number of codewords may be less than indicated 
by (6), since some parameter combinations may correspond to 
the same transition point. Such “degeneration” occurs only if 
Uolb  is rational, which happens with probability zero if U0 has 
a smooth probability distribution on ( X  - b. X + b) .  If Uo/b is 

LN(N - 1) + 1 c,,,, = { T y N ( N  - 1)(N - 2) + 1 U0 0 ’  

irrational, the exact number of codewords is + N ( N  - 1) + 1. 
In the special case U0 = 0, the transition points of equation 
(5 )  are known as the Farey series of number theory [9], and 
an asymptotic expansion of their number is available [9], 

3 
I? 

C -+ -N2 + O ( N  log N )  z 0.304N2 

a s N + m .  (7) 

The upper bound (6) is thus asymptotically 65% too high for 
the case U0 = 0, but it has the correct dependence on N .  

2) Numerical Results: For the special case of zero initial 
integrator state, U0 = 0, we have used computer simulations 
to find the actual number of codewords for the single-loop 
encoder as a function of oversampling ratio. Fig. 3 shows the 
results, as well as the upper bound derived in Section 11-A1). 
The upper bound is seen to be rather tight. The analytical 
approximation (7) is not plotted, since it is indistinguishable 
from the simulated results. 

B. Lower Bounds on MSE 

In Section 11-Bl) we use the results of Section 11-A to derive 
a number of lower bounds on the MSE obtainable with any 
decoder operating on a single-loop encoder. In Section 11-B2) 
we show numerical results on the actual MSE of a number 
of decoders. 

I )  Lower Bounds: Our first lower bound on the MSE follows 
directly from the upper bound on the number of codewords 
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ratio 

Fig. 3. Single-loop encoder: Actual number of codewords and the upper 
bound (6) as functions of the oversampling ratio. 

derived in Section 11-Al). To state the bound, we quote a well- 
known result from quantization theory [lo]: If the constant 
input X is restricted to ( -b ,  +b) and has probability density 
function p(x), then the minimum MSE obtainable with a large 
number C of quantization levels is 

If in particular X is uniformly distributed on ( -b ,  +b) ,  the 
minimum MSE is b 2 / ( 3 C 2 ) .  Since the single-loop EA en- 
coder has a maximum of O ( N 2 )  codewords, (8) implies that 
a lower bound on its MSE for any given p ( x )  is O(N- ' ) .  If 
the input is uniformly distributed on ( -b ,  +b),  the following 
O ( N - 4 )  lower bound holds on the MSE: 

A h2 T" 
MSE,ni, = -. 

3N4 

We now derive an O ( r 3 )  lower bound on the MSE by 
considering in more detail the quantization intervals of the 
single-loop encoder. If the number of codewords C is large, 
and the density function p(x) is smooth, then the constant input 
X is approximately uniformly distributed on each quantization 
interval I,, 1 5 i 5 C. An optimal decoder will therefore 
decode any codeword into the midpoint of the corresponding 
quantization interval. Denoting the width of the ith interval by 
di,  a lower bound on the MSE is thus 

i=l i=l 

where the last equality holds if X is uniformly distributed 
on ( -b ,  +b).  Clearly, the optimal MSE is lower bounded by 
an expression similar to (9) in which only some of the C 
terms are included. Our strategy for lower-bounding the MSE 
is therefore to find a few large interval widths di of order 
O ( N - l ) .  As long as there is nonzero probability of inputs 
in these intervals, we arrive at an O ( N - 3 )  lower bound on 
the MSE, but for simplicity we state the MSE bounds for 
the case of uniformly distributed input. Appendix A.2 shows 
that if the initial state is zero, the two intervals closest to the 

0.12 o. lO/  

0.08 

0.061 1 

0.02 

Codeword no 40 60 

Fig. 4. Single-loop encoder: Width of the quantization interval associated 
with the zth codeword versus i for an oversampling ratio of Y = 16. Widths 
are normalized by b. 

extreme inputs -b and +b are the largest intervals, and they 
have widths 

2b 
d l  = d c  = - 

N - 1  

while the two intervals immediately above and below X = 0 
have widths 

Including only the four terms corresponding to (10) and (11) 
in (9), we thus find the O ( W 3 )  lower bound 

d: + d& + d$ + d$++l 3b2 
L 

24b 4(N - 1)3 
MSEoptimal 2 

0.75b2 
N 3  

N rc.- 

As an aside, it is also shown in Appendix A.2 that the smallest 
quantization intervals are located next to the two largest ones, 
near +b and -b, and have widths 

This shows that the ratio between the largest and smallest in- 
terval widths is N - 2 ,  and gives a bound on the nonuniformity 
of the quantization intervals of the single-loop encoder. 

The O ( N P 3 )  lower bound (12) on the MSE was based on 
the assumption U0 = 0. For U0 # 0 a similar bound can be 
obtained, although the intervals of width O(N- ' )  are harder 
to find. To demonstrate their existence, Appendix A.2 shows 
that for U0 > 0, the interval near +b has width 

b 
d l  = - U0 . N - 1  

A similar result holds for d c  if U0 < 0. 
2) Numerical Results: To illustrate the results in (lo), (ll), 

and (13), Fig. 4 shows a plot of quantization interval widths 
for an oversampling ratio of 16 under the assumption of zero 
initial state. The results seem to be in excellent agreement with 
the experimental results in [ll]. The figure indicates that the 
single-loop encoder is a highly nonuniform quantizer. 
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Mean Squared Error 
Lower bound (1 2 )  
Nonlinear decoder (9 )  
FIR filter MSE 
Residual MSE 
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3o 3oo Oversamplingraiio 1E-9 

Fig. 5. Single-loop encoder: MSE performance (9) of the optimal nonlinear 
decoder as a function of oversampling ratio. Also shown is the lower bound 
(12), and the residual MSE obtained by discarding the two large edge intervals. 
The last curve shows the performance achievable with the asymptotically 
optimal linear decoder derived by Gray [5]. The MSE is normalized by b2 .  

Fig. 5 shows several curves of MSE performance versus 
oversampling ratio, assuming the input to be uniformly dis- 
tributed on (-b) +b). One curve shows the actual performance 
of the optimal nonlinear decoder whose MSE is given by (9); 
numerically, we find that 

Another curve shows the lower bound (12), which is rather 
tight. This indicates that the four terms used to derive (12) 
contribute most of the error to the MSE summation (9). A third 
curve shows the residual MSE obtained by ignoring the con- 
tributions from the edge intervals d l  and d c ,  corresponding to 
a slight decrease in dynamic range. The reduction in dynamic 
range improves the MSE by 5.8 dB, but the performance 
remains at O ( N - 3 ) ,  in part because of the intervals of width 
O(N-’ )  in (11). 

The last curve in Fig. 5 shows the MSE performance 
achievable with a specific linear N-tap finite impulse response 
(FIR) filter as the decoder; the filter was derived by Gray 
[5] as the asymptotically optimal linear decoder for constant 
inputs. The MSE of the FIR filter is asymptotically 2b2/N3 for 
large N .  At a fixed oversampling ratio, the optimal nonlinear 
decoder is 3.4 dB superior to the optimal linear decoder, 

The optimal linear and nonlinear decoders are not the only 
decoders with 0 ( N - 3 )  MSE characteristic. Gray showed in 
[ 11 that for uniform input distribution and large oversampling 
ratio, the MSE associated with the ideal low-pass filter with 
cutoff frequency 1 / N  is 2n2b2/(9N3) z 2.2b2/N3.  The 
particular proportionality constant should not be compared 
directly to that of our nonlinear decoder, since our decoder 
only has access to N output bits at a time. 

The simulation results presented in this section assume that 
U0 = 0. If we had chosen a different, but known initial state, 
the codewords and transition points would have changed, but 
similar conclusions would have been reached. Specifically, the 
bounds of O ( N 2 )  on the number of codewords and 0(IV3) 
on the MSE of any decoder would still hold. Choosing U0 = 0 
is merely a convenient way to ensure that U0 E ( X  - b ,  X + b) 
for any input X E ( - b ,  +b). 

I I 
Fig. 6. Discrete-time model of the double-loop 21 encoder. 

111. THE DOUBLE LOOP ENCODER 
In this section we consider the double-loop EA encoder 

whose discrete-time model is shown in Fig. 6. In Section 111- 
A we derive an upper bound on the number of codewords of 
the double-loop encoder with constant inputs and a fixed initial 
integrator state, and compare the bound to simulation results. 
In Section 111-B we use the results of Section 111-A to derive 
lower bounds on the MSE performance of any decoder. 

A .  Codewords 

Section 111-A1) contains an upper bound on the number of 
codewords, and Section 111-A2) contains simulation results on 
the actual number of codewords. 

I )  Upper Bound on Number of Codewords: Our approach is 
to examine the state variables U, and V, in Fig. 6. We obtain 
the state equations 

Appendix B contains a derivation of an expression for the 
transition points, analogous to (5) for the single-loop encoder. 
For all transition points there exist integers ( j .  n)  such that 

+n(n + 1)b - ( 2 j b  + U0 + nVo) 
+n(n - 1) 

X =  1 

2 5 n 5 N - 1  (17) 

where U, and VO are initial integrator states. Unlike for the 
single-loop encoder, (17) only gives the values of the constant 
input X that might be transition points, but any transition point 
corresponds to some parameter set ( j .7~) .  The absence of a 
better formula is due to the fact that no result analogous to (3) 
exists for the double-loop encoder. 

From (17) we can find the range of integers j such that 
X E B. Counting the number of possible parameter sets 
( p ,  j), we obtain the following upper bound on the number 
of codewords, derived in more detail in Appendix 3.1: 

This is an O ( N 3 )  upper bound, in contrast with the upper 
bound of O ( N 2 )  for the single-loop encoder. For large N ,  
the upper bound is a diminishingly small fraction of 2”. 

2) Numerical Results: We have used computer simulations 
to find the actual number of codewords for the case U0 = VO = 
0. Fig. 7 shows the results, as well as the 0 ( N 3 )  upper bound 
derived in Section 111-Al). The actual number of codewords is 
seen to also be O ( N 3 ) ;  the upper bound is about three times 
larger than the actual count. 
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Fig 7. Double-loop encoder. Actual number of codewords and the upper 
bound (18) as functions of the oversampling ratio 

B. Lower Bounds on MSE 

In Section 111-B1) we derive lower bounds on the MSE ob- 
tainable with any decoder operating on a double-loop encoder. 
In Section 111-B2) we show numerical results on the actual 
MSE of the optimal nonlinear decoder. 

1) Lower Bounds: Our first lower bound is based on (8) as 
for the single-loop encoder. Since the number of codewords 
is upper bounded by O ( N 3 ) ,  the minimum MSE is lower- 
bounded by O(N-‘). If in particular the constant input X is 
uniformly distributed on ( -b ,  +6) ,  then 

We next derive a tighter lower bound on the MSE by finding 
the widths of some actual quantization intervals. Appendix 
B shows that for initial integrator states U0 = V0 = 0, the 
intervals closest to the extreme inputs are the largest intervals, 
and they have widths 

2b 
N - 2 ’  

d l  = d c  = - 

We can use these interval widths in (9) to derive the following 
O p 3 )  lower bound on the MSE, assuming uniformly 
distributed input: 

0.676’ 
%- 

2b’ 
M S E Z -  2:6[ 2 i l y 2 i i 2 ) 3 ]  - = 3 ( ~ - 2 ) ~  N 3  ’ 

At first sight, this bound is disappointing since it does not 
improve on the O ( N P 3 )  lower bound for the single-loop 
encoder, except for a proportionality constant. However, if 
we restrict the dynamic range of the input so that the two 
largest quantization intervals in the neighborhood of +6 and 
-b are avoided, the performance can be improved drastically, 
as shown in the next section. 

2) Numerical Results: To demonstrate the nonuniformity of 
the double-loop encoder, Fig. 8 shows a plot of the quantiza- 
tion interval widths for an oversampling ratio of 16 under the 
assumption of zero initial states. Comparing with Fig. 4 for the 
single-loop encoder, we see that the double-loop encoder is a 

Interval width 

-----I---- 

h n 

nnnL 
‘Codeword no 50 100 150 

/- 1 

Fig. 8. Double-loop encoder: Width of the quantization interval associated 
with the ath codeword versus 1 for an oversampling ratio of -Y = 16. Widths 
are normalized by h. 

Fig. 9. Double-loop encoder: MSE performance of the optimal nonlinear 
decoder as a function of oversampling ratio, and O(.V-’) lower bound (20). 
Also shown is the O(.\--”) residual MSE obtained by limiting the dynamic 
range by 10%. For comparison, a curve shows the residual MSE of sinc:’ 
decoder. The last curve shows the O(.V-G) lower bound (19). The MSE is 
normalized by b2 .  

more uniform quantizer, the only significant non-uniformities 
being located at the edges of the dynamic range. 

Fig. 9 shows a number of theoretical and computed MSE 
curves for the double-loop encoder, assuming uniformly dis- 
tributed input. One curve shows the performance of an optimal 
nonlinear decoder with an MSE computed from (9) using the 
actual interval widths. Another curve represents the 0 (W3) 
lower bound of (20). The lower bound and the simulated 
curve are extremely close, indicating that almost all the MSE 
comes from the two edge intervals with widths O ( N - l ) .  
The MSE can be significantly reduced by excluding these 
two edge intervals. A third curve in Fig. 9 shows simulated 
values of the residual MSE obtained by limiting the dynamic 
range to (-0.96. +0.9b); this curve is denoted by “residual 
MSE, nonlin” in Fig. 9. The corresponding MSE performance 
is approximately 0 ( N P 5 ) .  The improvement provides a quan- 
titative reason for not fully utilizing the dynamic range, since 
avoiding the edge intervals is an advantageous sacrifice of 
dynamic range for resolution. For comparison, another curve 
shows the MSE performance of the sinc3 decoder with N taps. 
At a given oversampling ratio, the optimum nonlinear decoder 
is about 20 dB better than the sinc3 decoder. Finally, the fifth 
curve in the figure corresponds to the O ( N - 6 )  lower bound 
of (19). 
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IV. A MODIFIED CASCADE STRUCTURE FOR dc INPUTS 

In Section IV-A we present a derivation of the MSE perfor- 
mance of the single-loop encoder with an averaging decoder. 
Although the result is known for the general case of arbitrary 
FIR filtering [ 5 ] ,  our derivation is necessary to understand 
the cascade structure introduced in the following sections. In 
Sections IV-B and C we describe a modified cascade encoder 
structure suitable for dc inputs, and a decoding algorithm for 
it. The encoder structure can have arbitrarily many stages, but 
for convenience we only consider two stages. Section IV-D 
contains numerical results for the structure. We compare our 
structure to the MASH modulator [8] which is applicable to 
more general band-limited inputs, and not designed specifically 
for dc inputs. Similar to the MASH modulator, our structure 
does not suffer from instability problems since it consists of 
stable single-loop encoders. 

A. MSE Analysis of the Averaging Decoder 

into an integer multiple P of the step size 
We begin by decomposing the constant input X E ( -b ,  +b) 

A=?! 
N 

and a residue R in the range [O. A). Specifically, 

X = -b + P A  - R. (21 ) 

From (21), 

For large values of N ,  the random variable R is uniformly 
distributed on [O. A). The residue can be considered the 
quantization error in representing the input X by the integer P. 

Consider now the single-loop encoder with state variable 
U,. We assume that the initial state U0 is uniformly distributed 
on the range ( X  - b. X + b ) .  Equation (3) then shows that 
U N  E ( X  - b. X + b) .  From (4), the number of negative 
output bits A in an N-bit codeword is specified by 

lJLv = U0 - N(b - X )  + 2 A b .  

R N  = U, - U,- - 2b(N - P - A).  

(22) 

Using the decomposition (21), (22) can be rewritten 

(23) 

The product RN is in the range [ 0 , 2 b ) ,  and since both U, and 
V,v are in the range ( X  - b, X + b ) ,  their difference is in the 
range ( -2b.  +2b) .  The last term on the right-hand side of (23) 
is an integer multiple of 2b. We therefore find that 

or more concisely, 

Inserting (24) in (23), 

where the random variable 0 takes on the values 0 and 1. The 
following three theorems investigate the statistical properties 
of 0; their proofs can be found in Appendix C. 

Theorem I :  If U0 is uniformly distributed on ( X  - b. X + b ) ,  
then for a given input X ,  

R 
a P [ 0  = 11x1 = -. 

Theorem 2: If U0 is uniformly distributed on (X - b,  X +  b) ,  
then for large oversampling ratios, the MSE of the averaging 
decoder (1) for a given X is given by 

. P[O =OlX]  = R(A - R) .  

Theorem 3: If the constant input X has a smooth probability 
distribution of ( -b .  +b),  and the initial state U0 is uniformly 
distributed on (X - b. X + b) ,  then for large values of N ,  the 
MSE of the averaging decoder is 

A2 
MSE = E [  ( X  - X-,’] = 7 

The result of Theorem 3 agrees with that of [SI. However, 
in [5] the input is assumed to be uniformly distributed on 
( -b .  +b) ,  whereas we assume smoothly distributed input; 
furthermore the result in [5] is independent of the distribution 
of U,, while we assume U, to be uniformly distributed. There 
are also fundamental differences between our MSE derivation 
and those in [2], [3], [11]. The latter derivations assume that 
the error sequence {U,  - Q ( U T L ) }  is white. Gray showed in 
[5] that in fact this assumption does not hold true in situations 
where Q quantizes to as few bits as one. 

B. Cascade Encoder Structure 

In this section we describe a cascade structure specifically 
for constant inputs, based on the derivations of Section IV- 
A. The idea is to feed a constant input X 1  into a single-loop 
encoder with an oversampling ratio of N I ,  and subsequently 
use a residual error of this first stage as the constant input 
X2 to another single-loop encoder with oversampling ratio 
N 2 .  Using the output sequences of both encoders, the input 
X 1  can be estimated with greater accuracy than if only the 
output of the first stage is used. The idea generalizes easily to 
more than two stages, but we restrict attention to two stages for 
simplicity. The cascade structure may be viewed as a variation 
on the MASH encoder proposed by Uchimura et al. [8]. 

We recall that by (21), any constant input X I  to a single- 
loop encoder with oversampling ratio N I  can be decomposed 
as 

For large oversampling ratios and a smoothly distributed 
constant input X I ,  the residue RI is uniformly distributed on 
[O,A1), so the random variable 

X2 RlNl - h (27) 
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. I  I 
SINGLE LOOP 
EA ENCODER P2 

SINGLE LOOP 
EA ENCODER U 1  

I 
N I  bits Q(Uo - U N ~ )  N z  bits 

DECODER 

(b) 

Fig. 10. Cascade structure: (a) One single-loop encoder performs the func- 
tions of both stages, controlled by a switch; (b) Two single-loop encoders 
are cascaded, and the first one passes a requantized residue as the constant 
input to the second one. 

is uniformly distributed on ( -b ,  +b). It can therefore be used 
as the constant input to a second single-loop encoder. We refer 
to X2 as the requantized residue. Denoting the state variable 
of the single-loop encoder by U,, the requantized residue can 
be written 

x2 = (U0 - U N , )  - Q(U0 - U N , ) .  (28) 

To calculate X 2  we therefore need access to U N , ,  which 
is immediately available, and UO, which can be stored in a 
sample-and-hold circuit. Alternatively, U0 can be initialized 
to zero at the beginning at each conversion cycle; in that case, 
the residue X2 is simply given by Q ( U N , )  - U,., . In either 
case, the requantizer residue is used as the constant input to 
the second stage over N2 cycles. The set-up can be contrasted 
with that of the two-stage MASH encoder, in which the input 
to the second stage is the quantization error of the first stage 
at each time step, that is 

X2,n = &(U,) - U,. 

To summarize, the operation of the modified cascade encoder 
structure is as follows. 

1) The constant input X 1  to the first stage gives rise to an 
NI-bit codeword. 

2) The requantized residue X2 is found using (28) and used 
as the constant input to the second stage over Nz samples. 

Decoding for this encoder is described in the following 
section. Our described cascade structure is shown in Fig. 10. In 
Fig. lO(a) the same single-loop encoder is used to perform the 
tasks of both stages, controlled by the position of the switch. In 
Fig. 10(b) two separate single-loop encoders are used, and the 
first encoder can start encoding the next input while the second 
encoder is encoding the requantized version of the first input. 

C. Decoding 

In this section we derive a decoding scheme for the cascade 
structure described in Section IV-B. By (26) we need to 

determine the integer number of steps PI and estimate the 
residue RI in order to achieve our goal of estimating the 
constant input X I .  Using (25), PI is given by 

where the number of negative bits A1 is easily counted, and 
Q(U0 - U N ~ )  is already used to find the requantized residue 
X2 in (28). Since 

. N I - 1  

(29) can also be written 

This shows that the algorithm for finding PI is linear in 
the output bits {Q(Uo),  . . . , Q(U,v,- l )} ,  and also linear in 
Q(U,v1) if U0 is initialized to zero. 

An estimate X2 of X2 can be found from the N2-bit 
codeword of the second stage using any decoder, linear or 
nonlinear. -From (26) and (27) we then obtain the following 
estimate X 1  of the input X I :  

D. MSE Performance 

In this section we consider the MSE performance of our 
proposed modified cascade structure shown in Fig. 10. From 
(27) the MSE in estimating the constant input X1 is 1/N: 
times the MSE in estimating the residue RI .  Any decoder can 
be used for the second stage, but for specificity we consider 
the optimal nonlinear decoder with MSE given by (15). The 
overall MSE is then 

where the last equality follows if N1 = N2 = N .  In this 
case, the cascade decoder can potentially process a different 
constant input every N cycles, but it takes 2 N  cycles to obtain 
an estimate of any given input. For a given number of total 
samples N1 + N2, the optimal ratio of N1 to N2 is 2 : 3. 

The decoder for the first stage of our cascade encoder is 
fixed and described in the previous section, however, we can 
use any decoder for the second stage. If we use the optimal 
N2-tap linear filter derived by Gray [5] instead of the optimal 
nonlinear decoder, we lose about 3 dB compared to (30), as 
shown in Section 11-B2). 

The MSE performance (30) can be compared to that of the 
two-stage MASH modulator. We consider the case where a 
two-stage MASH encoder is operated for N cycles, and a 
decoder must base its estimate on a total of 2 N  output bits, 
namely, N bits from each stage. Such a modulator produces an 
input estimate every N cycles and takes N cycles to obtain an 
input estimate. It thus has the same throughput as our cascade 
structure, but only half the latency. Fig. 11 shows the MSE 



1383 HElN et al.: SIGMA-DELTA MODULATORS WITH dc INPUTS 

Fig. 11. MSE curves for the cascade structure proposed in Section IV with 
optimal decoding of second stage, and for the MASH two stage modulator 
using a sinc3 filter as its decoder. The MSE is normalized by b’ . 

performance of the two cascade  modulator^.^ For the MASH 
modulator we use a standard N-tap s i x 3  filter operating on a 
linearly filtered combination of the output sequences of the two 
stages [12]. Our modified cascade structure performs about 27 
dB better than the MASH modulator for dc inputs. If we reduce 
the total number of samples used in our cascade structure such 
that it achieves the same latency as the MASH modulator, the 
modified cascade structure still performs 12 dB better than the 
MASH modulator, and has twice its throughput. 

v. CONCLUSION 

We analyzed the single and double-loop EA modulators 
as quantizers of constant inputs, in a set-up where N encoder 
output bits are available at a time to a decoder. By considering 
in detail the structure of the encoders, we derived upper 
bounds of 0 ( N 2 )  and 0 ( N 3 )  on the number of codewords for 
the single and double-loop encoders, respectively. Numerical 
results indicated that the actual numbers of codewords are 
also O ( N 2 )  and O ( N 3 ) .  These results bound the sizes of 
reproductions alphabets of all decoders operating on single and 
double-loop encoder outputs under the defined set-up. Other 
simulations showed that the single-loop encoder is a highly 
nonuniform quantizer. In fact, the ratio between the largest and 
smallest quantization interval widths is approximately equal 
to the oversampling ratio. On the other hand, the double-loop 
encoder is a more uniform quantizer than the single-loop one. 

We derived analytical lower bounds on the MSE of all 
decoders, linear or nonlinear with constant input. The bounds 
are O(NW3) for both the single and double-loop modulators, 
but if the dynamic range of the double-loop modulator is 
decreased slightly, our best lower MSE bound is O(NW6). We 
simulated the performance of an optimal nonlinear decoder, 
based on a table look-up approach in which each possible 
codeword is mapped to the midpoint of the corresponding 
quantization interval. Such a decoder, although impractical, 
represents a bound on the dc performance obtainable with 

3The dynamic range of the MASH modulator has been reduced to 
(-0.9b. +0.9b). The corresponding reduction has not been done for our 
cascade structure, since the requantized residue (28) used as input to the 
second stage would still be in the larger range ( - b .  + b ) ,  and only the decoder 
of the second stage would benefit from a reduction in dynamic range: From 
(27), the MSE in estimating the constant input X I  is independent of the 
integer PI defined in (26).  

any other decoder. Simulations indicated that the actual MSE 
performance of the optimal nonlinear decoder is 0 ( N P 3 )  for 
the single-loop modulator, and O ( N P 5 )  for the double-loop 
one when the dynamic range is slightly decreased. The same 
dependence on oversampling ratio can be obtained with linear 
decoders, but there is a constant gain in dB associated with 
the optimal decoder. The gain is independent of the OSR and 
is about 3 dB for the single-loop modulator, 20 dB for the 
double-loop encoder. 

We described a cascade structure designed specifically for 
constant inputs, consisting of two single-loop encoders. The 
idea is to coarsely estimate the constant input using essentially 
an averaging decoder, and subsequently estimate the error of 
the first stage using another modulator. For a fixed latency, 
the MSE performance of the cascade structure for constant 
inputs is about 12 dB better than that of the two-stage MASH 
modulator, and it achieves twice the throughput rate of the two- 
stage modulator. On the other hand, for the same throughput 
the modified cascade structure shows a 27 dB improvement 
over the two-stage MASH modulator, but twice the latency. 

The above conclusions are valid under the assumption 
of ideal circuit components and operating conditions. Our 
conclusions are therefore tentative, and experimental results 
are needed to demonstrate the practical applicability of the 
results in the presence of various circuit imperfections. Other 
directions for future research include nonlinear decoder design 
and analysis of the nonconstant input case. 

APPENDIX A 
DERIVATIONS FOR SINGLE LOOP ENCODER 

Appendexes A and B contain derivations to justify the 
assertions of Sections 11-AI) and 11-Bl), respectively. 

A.  Transition Points of Single-Loop Encoder 

For any given number of negative bits j ,  there are in general 
several consecutive time steps n satisfying (4). The largest of 
these time steps is the position of the ( j  + 1)st negative bit, 
denoted by nj+l. Thus, n3+1 is determined by the following 
inequalities: 

n j + l ( b  - X) 2 U, + 2 j b  
(nj+l - l ) (b  - X )  < U0 + 2 jb .  

Taken together, these two inequalities imply that the position 
of the ( j  + 1)st negative bit is 

nj+1= ____ O < j < N - l  (31) 

where [ U ]  is the smallest integer greater than or equal to 
a. To illustrate the implications of (31), let us assume that 
the initial state is U0 = 0; the first bit of any codeword is 
then Q(V0) = -b regardless of the input. We can make the 
following detailed observations. For b - < X < b, 
the corresponding N-bit codeword consists of all positive 
bits except for the first one. For X = b - &, a second 
negative bit appears at item step N - 1, and as X decreases, 
this bit advances to earlier time steps N - 2 ,  N - 3, . + . . At 
X = b - A, the second negative bit reaches time step 
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[ ( N  - 1)/21, and a third negative bit appears at item step 
N - 1. As X decreases from b - to b - A, the 
second bit moves from [ ( N  - 1)/21 to [ ( N  - 1)/31, and 
the third negative bit moves from N - 1 to [ 2 ( N  - 1)/31. 
More generally, as X crosses b = 2, the ( j  + 1)st negative 
bit reaches time step [ j ( N  - l ) / q l  for 0 < j < q ,  and the 
( q  + 1)st negative bit appears at time step N - 1. To help 
visualize the process, Table I1 shows the codewords of the 
single-loop encoder for N = 12, as the input X is swept 
from +b to -b. Note the correspondence with Table I in 
Section 11-Al). 

We can further exploit equation (31) to find an upper bound 
on the number of codewords of the single-loop encoder. From 
(31) it is clear that nj+l changes from one time step to the 
next when X passes the constant input value given by 

p b  - ( 2 j b  + U,) = p * X =  
b - X  P 

2 j  b + U0 

1 I p  5 N -  1. (32) 

This input value is referred to as a transition point, since it 
marks a change in the N-bit output sequence of the encoder. 
For any p in the permitted range of integers in (32), we can 
only allow integers j that result in values of X such that 
X E ( - b ,  +b) and U0 E ( b  - X ,  b + X ) .  For instance, we see 
that for U0 = 0, 

More generally, the requirements X E (-b.+b),  U0 E 
( X  - b. X + b )  imply that 

O I j < p ,  I < p < N - l  U o > 0  
1 I j < ~ ,  l < p < N - l  U o = 0 .  (33) 
l I j < p ,  1 L p l N - 1  u,<0 

The number of transition points is at most the number of 
permitted parameter sets ( j , p )  in (33); there may be fewer 
transition points than that, since some parameter sets may 
correspond to the same transition point in (32). The number 
of codewords is the number of transition points plus one. For 
U0 = 0 we therefore have a maximum of 

codewords. More generally, the maximum number of code- 
words the single-loop EA encoder can generate is 

L N ( N  - 1) + 1 
T ( N  - 1)(N - 2 )  + 1 

U0 # 0 
U0 = 0 ‘  c m a x  = { 1 

Let us further consider the “degenerate case” where two 
parameters sets ( j l ,  P I ) ,  and ( j z ,  p z )  lead to the same transition 
point. From (32), this occurs if and only if 

~ i b  - ( 2 j i b  + Uo) - P z b  - ( 2 j z b  + uo) 
Pl Pz 

uo 
* b  - 

* j2Pl  - j l P z  
Pz  - Pl 

The right-hand side of this expression is rational, so degen- 
eration can only occur when Uo/b is rational. If that is not 
the case, all transition points are distinct, and the number of 
codewords is exactly + N ( N  - 1) + 1. 

B. Interval Widths for Single-Loop Encoder 

there are transition points at 
We assume U0 = 0. Setting p = N - 1 in (9, we see that 

Thus no quantization interval can be larger than 2b/(N - 1). 
On the other hand, the largest transition point is obtained by 
setting ( j , p )  = (1, N - 1) in (9, since b - X = 2 j b / p  is 
minimized by this choice. Therefore the interval near X = +b 
has width dl  = 2 b / ( N  - l ) ,  that is, it is a quantization interval 
of maximal width. The same holds for the quantization interval 
near X = -b, so d l  = clc. 

Consider next the intervals close to X = 0. Equation (5 )  
shows that ( j . p )  = ( 1 , 2 )  leads to a transition point at X = 0 
for any oversampling ratio N 2 3. The smallest positive 
transition point is found by maximizing the denominator 
and minimizing the denominator of (5) while keeping it 
positive. This leads to ( j , p )  = ( ( N  - 2 ) / 2 : N  - 1) and 
( ( N  - 3 ) / 2 ,  N - 1) for N even and N odd, respectively, 
and the interval widths are b / ( N  - 1) and 2 b / ( N  - 1). By 
symmetry, the same holds on the other side of X = 0. We 
thus have del2 = Dcp+l 2 b/ (N - 1). 

Consider now two pairs ( j l ,  p 1 )  and ( jz,  p z )  satisfying (33). 
The distance between the corresponding transition points is 

pi - 2 j i b  ~2 - 2 j z b  - 2 b ~ 1 j 2  - ~2.1’1 

Pl Pz PlP2 

If p l  = p z ,  the smallest absolute distance is 2 b / ( N  - 1). 
If p l  # p ~ ,  the largest product of p l  and p2 is ( N  - 
1 ) ( N  - a ) ,  and the smallest positive values of the numerator 
is 1. These extremes are simultaneously achieved by choosing 
( j 1 , p l )  = (1; N - 1) and ( 3 2 . ~ 2 )  = (1,N - 2 ) .  Therefore, 
the width of the shortest quantization interval is dmin = 
2 b / [ ( N  - 1)(N - a ) ] ,  and one interval of this minimal width 
is adjacent to the interval near X = +b. Another interval of the 
same width is located near X = -6, so de-1 = d2 = dmir,. 

Finally, let us assume that U0 > 0. The largest transition 
point in (5) occurs at ( j , p )  = (0 ,N  - 1).  The quantization 
interval near X = +b thus has width dl  = Uob/(N - 1) 
which is of order O ( N - ’ ) .  

APPENDIX B 
DERIVATIONS FOR DOUBLE-LOOP ENCODER 

Appendexes A and B contain derivations to justify the 
assertions of Sections 111-A1) and 111-Bl), respectively. 

A. Transition Points of Double-Loop Encoder 

Equation (16) can be rewritten 
n 

i=l 
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a-1 n-1 

i=O i=O 
n 

vn = vo + (v, - 4-1) 
3=1 

j=1 

Summing the left-hand side of (35) we get 

(35) 

n-1 n-1 
1 V ,  = nVo + -n(n - l )X - 
2 (n  - l )Q(Uz).  

1=1 z=o 
n 2 1. (36) 

Inserting (36) in (34) we find 

1 
U, = U0 + nVo + -n(n - l )X - Q(U0) 

2 
n-1 

- (n  - i + l)Q(Ui), 
k l  

n 2 1. (37) 

For the single-loop encoder, we now used the fact (3). Unfortu- 
nately, a similar fact does not hold for the double-loop encoder, 
necessitating a less detailed manipulation of (37). Its last 
two terms involving quantizer outputs are more conveniently 
written 

n-1 

Q(U0) + ( n  - i + l)Q(Ui) = L n ( n  + 1 ) b  - 2 j b  (38) 
2 i = l  

where j is an integer in the range 0 5 j 5 +n(n + 1). 
The extreme sequences consisting of all +b's or all -b's 
correspond to j = 0 and j = N - 1, respectively. There are 
values of j between 0 and N - I for which no N-bit codeword 
exists, but for any codeword there exists a j between 0 and 
N - 1. Inserting (38) in (37), we find 

1 1 
2 2 

U, = U0 + ~ V O  + -n(n - 1)X - -n(n + 1 ) b  + 2jb. 

(39) 

The quantizer transition points are the values of X E ( -b ,  +b) 
which result in U, = 0 at some time step n between 1 
and N - 1. Unfortunately, the variable j in (39) has no 
simple interpretation as in the single-loop case. Hence, we 
can only solve (39) for values of X that might be transition 
points. Counting the number of parameter sets ( j .  n )  for which 
U, = 0 has a solution X E ( -b ,+b)  will result in an upper 
bound on the number of transition points. Setting U, in (39) 
to zero, we obtain 

+n(n + 1 ) b  - (2jb + U0 + nVo) 
X =  

+n(n - 1) 
2 5 n l  N -  1. (40) 

For n = 0 and n = 1 there are no transition points, since U0 
and U1 are independent of X. Equation (40) is analogous to 
(5) for the single-loop encoder. 

We now determine an upper bound on the number of 
codewords. Considering that X must be in the range (-b. +b), 
it follows from (40) that j must satisfy 

' (41) 
n - (U0 + nVo)/b < < n2 - (U0 + nVo)/b 

2 2 
The number of integer values of j satisfying (41) is 5 

( n2 - n)  . Therefore, the number of codewords is upper 
bounded by 

N-1 - 
1 1 

6 C,,, 5 1 + y ( n 2  - TI,) = -N(N - I ) ( N  - 2) + 1, 
n=2 

N 2 3. 

B. Interval Widths for Double-Loop Encoder 

We assume for convenience that the initial states are U0 = 
Vo = 0, and show that the largest positive transition point 
occurs at X = (N - 4)b/(N - 2). Equations (16) together 
with the initial states imply that 

&(U,) = -b U1 = +b VI 1 X - b 

Q(U1) = +b U2 = X - b < 0 Q(U2) = -b.  

This states that the first three output bits are ( - b ,  +b, +b) 
regardless of the input. At times n 2 3, the quantizer produces 
only positive bits until U, becomes negative-the closer X 
is to +b, the longer it takes to generate the first negative 
bit. We will find the value of X which results in the first 
negative bit appearing at time N - 1; this input corresponds to 
the most positive transition point. Assuming Q(U3) = . . . = 
Q(U.y-2) = +b, we find from (37) that 

1 
2 

U.v-1 = - ( N  - 1 ) .  [ ( N  - 2 ) X  - (N - 4)b]. 

Setting U,.-, to zero, we conclude that the most positive 
transition point is at X = (N-4)b/(N-2). The corresponding 
quantization interval has width 2b/(N - 2). By symmetry, a 
similar interval exists from -b to - ( N  - 4)b/(N - 2). 

VIII. APPENDIX C 
PROOFS OF THEOREMS 1, 2 AND 3 

Proof of Theorem 1: From 25, the number of negative bits 
A on an N-bit codeword is given by 

A = N - P + O .  

The averaging decoder estimate is therefore 

~ ( N - A ) - A  
b = - b + ( P - @ ) A  

N 
X =  

so 

X - X = @A - R. (42) 

On the other hand, we can use (21) in (22) to show that 

U N  - U0 x = -b+  ( P -  @)A + ~ 

N 
so 

A u,.-uo x-x=- 
N '  
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TABLE I1 
CODEWORDS AND TRANSITION POINTS FOR THE SINGLE Loop ENCODER AT AN OVERSAMPLING RATIO OF .Y = 12; IT IS ASSUMED THAT CO = 0. As X 

CROSSES A TRANSITION POINT FROM ABOVE, THE OUTPUT SEQUENCE CHANGES FROM THE CODEWORD ON THE LINE ABOVE TO THE ONE 
ON THE LINE CONTAINING THE TRANSITION POINT TRANSITION POINTS ARE NORMALIZED BY b, AND THE BITS ARE SHOWN AS + AND - 

Transition point 0 1 2 3 4 5 6 7 8 9 10 11 

1 
9/11 
4/ 5 
719 

517 
213 

519 
112 

5/11 
317 
215 

114 
115 
117 

1/11 

-1111 
-119 
-117 
-115 
- 114 

- 2 1 5  

-5111 
-112 
-519 

-7111 

-517 

- 719 
-415 

-9111 

314 

7/11 
315 

113 
3/11 

119 

0 

-3111 
-113 

-317 

-315 

-213 

-314 

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 

Since U0 is uniformly distributed by assumption, and (22) can 
be shown to imply that UN is also uniformly distributed, we 

Proof of Theorem 3: The random variable R is uniformly 
distributed on [0, A), so E R  = 9 and ER2 = $. Now 

have E [ ( X  - k)lX] = 0. By (42), this implies 

which shows the theorem. 
Proof of Theorem 2: Using (42), 

R 

= (I - %)(-R)’+ - (A .  R 
A 

= R(A  - R).  

E [ (x - x )  ‘1 = E [. [ (X - x>1 1 XI] 

= E[R(A - R)] 
- - . A - -  A A2 
- 

2 3 
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