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On the Stability of Sigma Delta Modulators 
Sgren Hein, Member, IEEE, and Avideh Zakhor, Member, IEEE 

Abstract-In this paper we propose a framework for stability 
analysis of EA modulators, and argue that limit cycles for con- 
stant inputs are natural objects to investigate in this context. 
We present a number of analytical and approximate techniques 
to aid the stability analysis of the double loop and interpolative 
modulators, and use these techniques to propose ways of im- 
proved design that explicitly take stability into account. 

I. INTRODUCTION 
IGMA delta (ZA) modulators are playing an increas- S ingly important role in analog-to-digital conversion. 

They are capable of achieving the same resolution as 
Nyquist-rate multibit quantizers by employing a one-bit 
quantizer operating at many times the Nyquist rate. The 
modulators generally require fewer and simpler compo- 
nents than Nyquist-rate converters, and are more robust 
against circuit imperfections. As a result they are ideal for 
on-chip VLSI implementation in relatively low-band- 
width applications such as audio. They have also recently 
been used in higher bandwidth applications [ 1 1 ,  [2]. 

Historically, single-loop [3] and double-loop [4] EA 
modulators were the first to be introduced, analyzed, and 
implemented. In recent years substantial work has been 
done on variations of the basic architecture to improve the 
tradeoff between signal-to-noise ratio (SNR) and over- 
sampling ratio (OSR). These efforts have been focused on 
complex modulators, as measured by the number of in- 
tegrators, and as a result two trends have emerged: 
Higher-order single loop or interpolative modulators [ 5 ] ,  
and multistage (MASH) or cascaded modulators consist- 
ing of cascades of a number of single and double loop 
modulators [ 6 ] ,  [7]. Within these broad categories, a 
number of designs have been proposed and implemented 
to meet varying requirements on signal bandwidth, sam- 
pling rate, SNR, dynamic range, and other specifications 
[8], [9]. The main limitation of cascaded structures is their 
sensitivity to component mismatch between individual 
stages, while the main limitation of interpolative modu- 
lators, especially higher order ones, is their stability prob- 
lems. 
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The purpose of this paper is to discuss stability as an 
integral part of analysis and design of EA modulators. It 
may be argued that the design effort should first concen- 
trate on SNR performance, and that stability problems can 
be solved by subsequently scaling circuit coefficients. We 
argue instead that scaling by itself does not entirely solve 
the instability problem, and that some sacrifice of SNR 
may be necessary in addition to scaling to stabilize higher 
order modulators. Specifically, we will demonstrate a 
tradeoff between SNR and stability for interpolative mod- 
ulators, and show that stability concepts can be applied 
even to the double loop modulator which is usually la- 
beled as stable. We do not claim to provide definitive an- 
swers to all questions of optimal design, but intend to give 
a frame of reference for stability considerations, as well 
as to present a number of analytical techniques to aid de- 
sign. 

Our approach to the stability problem throughout the 
paper is to examine the large-amplitude limit cycle be- 
havior of the double loop and interpolative modulators for 
constant inputs. The approach is justified in more detail 
in Section 11, but the main motivation is that constant in- 
puts are a special case of more general inputs, and that 
limit cycles characterize the long-term behavior of the 
modulators under constant inputs. Therefore stability un- 
der constant inputs is a necessary condition for stability 
under more general inputs. Furthermore, we will show 
that results from limit cycle analysis can be used in the 
design process. 

The paper is organized as follows. Section I1 contains 
a general discussion of stability issues, and proposes an 
operational definition of stability. Section I11 addresses 
stability issues for the double loop modulator; this mod- 
ulator is in itself of interest, and is also important because 
it serves as a building block in cascaded modulators. Sec- 
tion IV considers the class of interpolative modulators, 
and Section V contains a summary and conclusions. Some 
variations of architectures proposed in the literature [ 11, 
[8] may be accommodated by correspondingly minor 
modifications in the analysis, while others may require 
more substantive changes. 

11. GENERAL CONSIDERATIONS 
In this section we first briefly consider the effect of in- 

tegrator clipping. In Section 11-A we suggest a definition 
of stability which appears to be more operational and bet- 
ter suited to CA modulators than the definitions of tradi- 
tional nonlinear systems theory. In Section 11-B we argue 
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that the study of limit cycles for constant inputs provides 
insight into stability issues. 

EA modulators are generally built around a number of 
integrators; an example is the double loop modulator 
shown in Fig. 3 which contains two integrators. Integrator 
limiting or clipping is an important practical effect which 
occurs because of voltage saturation in the operational 
amplifiers of internal integrators. A simple clipping model 
employs a saturation characteristic of the form 

for 1x1 5 L 
(1) 

where L is the clipping level, and sign ( e )  is the signum 
function. Modulators are typically designed so that the 
clipping level is not much larger than the feedback volt- 
age; for instance, the single-loop modulator in Fig. 2 
would have L close to b. Clipping entails loss of state 
variable information and hence performance degradation: 
All other things being equal, it should be avoided. We 
will refer to practical modulators suffering from clipping 
as clipped modulators, and modulators with ideal integra- 
tors, that is, modulators with no clipping, as unclipped 
modulators. Comparing the clipped and unclipped mod- 
ulators, it is clear that the added nonlinearity shown in (1) 
in each integrator further complicates analytical attacks 
on the already nonlinear system. This necessitates a high 
degree of reliance on computer simulations to assess per- 
formance and emphasizes the need for accurate behavioral 
models of circuit nonidealities [ 101. To circumvent these 
complications, we suggest in Section 11-A a way to ad- 
dress the stability problem analytically which avoids in- 
troducing the nonlinearity (1). 

[x L sign (x)  otherwise 
sat (x) = 

A .  Scaling and Stability 
For a given EA modulator, the only way to avoid clip- 

ping is to scale integrator gains, feedback coefficients, and 
other circuit parameters to keep the signal levels through- 
out the modulator below saturation most of the time. This 
description of scaling, however, is vague in two respects: 

1) The maximum values of signal levels depend not 
only upon the modulator, but also upon the class of its 
input signals. 

2) There is an important distinction between scaling 
which preserves the functionality of the modulator, and 
one that modifies it.  More explicitly, by the functionality 
of a modulator we mean the transformation it applies to 
its input to produce the output bit stream. For instance, 
the functionality of the double loop modulator in Fig. 3 
is not affected if we multiply G and b by the same number; 
we refer to this case as equivalent scaling. On the other 
hand, changing only G or b affects the functionality; we 
refer to this case as functional scaling. In Section I11 we 
discuss the difference in more detail. 

These two points are treated separately here and in the 
following section. Equivalent scaling is straightforward 
and may sufficiently reduce signal levels that clipping oc- 
curs infrequently under normal operation. There is a sim- 

ple connection between signal levels at the nodes of the 
unscaled and scaled, unclipped modulators, since care is 
taken that the performed scaling at each node only affects 
the signal level at that node. The main problem with the 
limited approach of equivalent scaling is that the required 
scale factors may be excessive: In practice, very large or 
small loop coefficients are not easily implementable as ca- 
pacitor ratios. A more attractive option is to first use func- 
tional scaling to improve stability, typically at the cost of 
some SNR performance, and subsequently use equivalent 
scaling to further reduce the signal levels so that clipping 
rarely occurs. We take the latter approach in this paper. 
However, functional scaling also has its problems: First, 
the effects of scaling on signal levels are more unpredict- 
able than those of equivalent scaling, since scaling at some 
node is no longer restricted to only have local conse- 
quences for that node. Second, the effects of functional 
scaling on such performance parameters as SNR are not 
easily predictable, since linearized analyses may be mis- 
leading. To use functional scaling appropriately, it is nec- 
essary to examine the tradeoffs involved between SNR 
performance and stability. This trddeoff is a central theme 
of Sections I11 and IV. 

In order to better address the problems of functional 
scaling, we propose to define the stability of EA modu- 
lators in terms of the maximum signal levels occurring 
throughout the unclipped system, i.e.,  we consider sta- 
bility to be a matter of degrees. We \hiill call a system 
K-stable if the signal levels are bounded in absolute value 
by K for a given class of input signals. We will also call 
a system very stable or very unstable according to whether 
maximum signal levels in the corresponding unclipped 
system are very much smaller or larger than the clipping 
level, for a given class of inputs. This definition is rea- 
sonable because the signal levels dictate whether clipping 
occurs. The definition is in contrast to traditional stability 
definitions such as bounded input bounded output (BIBO) 
and bounded input bounded state (BIBS) stability which 
are only concerned with categorizing systems as either 
stable or unstable [ 1 I]. Although the input dependence is 
present in traditional stability theorems [ 111, these typi- 
cally assume bounded, square integrable o r  summable in- 
puts, and allow for no way of distinguishing between, say, 
two different constant inputs. In contrast we consider the 
dependence of stability upon DC level or sinusoidal am- 
plitude to be extremely important. 

The described viewpoint on stability avoids dealing 
with the nonlinear clipping operation which would require 
a nonlinear analysis, and suggests that stability can be as- 
sessed by judging the ratio between the maximum signal 
levels in unclipped systems and the clipping level. The 
viewpoint appears to be more useful in the present context 
than traditional definitions of stability: For instance, real 
EA modulators are always stable in  the BIBO and BIBS 
sense, in  that clipping keeps all voltages bounded. The 
viewpoint means that stability can be seen as an integral 
part of the design process for any EA modulator, even a 
second-order one. We thus argue that clipping should be 
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(b) 
Fig. 1. (a) Continuous-time interpolative modulator with CT filter HCT(s), sample-and-hold A/D converter, 1-b digital quan- 
tizer, and ideal D/A converter. (b) Equivalent discrete-time modulator with DT filter HDT(z) and CT prefilter H & ( s ) ,  both 
depending only upon HCT (s). 

precluded by design, and our goal is to guide designs with 
that objective. This is in contrast with the existing ap- 
proach [9] where specialized circuitry is used to detect 
saturation of integrators and reset these. 

B. Limit Cycles 
This section discusses the applicability of limit cycle 

analysis to stability investigations. As described above, 
the purpose of scaling is to keep the maximum values of 
integrator outputs below the clipping level. Of course, too 
much downscaling will decrease the ratio between signal 
and circuit noise levels excessively, and thus will ad- 
versely affect performance. In practice a tradeoff must 
therefore be found between the frequency and effect of 
clipping on one side, and noise sensitivity on the other. 
This may be viewed as designing for the right amount of 
stability. 

For a given modulator, the signal levels depend on the 
input signal class. To eliminate transient phenomena and 
to focus on long-term behavior, we will consider limit 
cycles or periodicities for constant inputs. The following 
arguments justify this. 

1) Limit cycles are essential to the operation of EA 
modulators, as evidenced by their prominent position in 
several papers, including [2], [12], and [13]. In [ 141 and 
other places is shown that for the single and double loop 
modulators, limit cycles occur only when the constant in- 
put is a rational fraction of the quantizer step size. Limit 
cycles can thus be seen as a natural result of approximat- 
ing constant inputs using EA modulators. Furthermore, a 
recent paper [15] shows that for a single loop modulator 
whose integrator has its pole inside the unit circle, almost 
all constant inputs generate limit cycles. 

2) The oversampling of the input in practical situations 
implies that it appears approximately constant to the mod- 
ulator. 

3) Any modulator designed for dynamic inputs must be 
able to handle constant inputs as a special case; therefore 
stability under constant inputs is a necessary condition for 
stability under more general conditions. 

4) The assumption of constant input allows us to make 
statements which hold for both continuous-time (CT) and 
discrete-time (DT) EA modulators. This is because it can 
be shown that any CT modulator can be converted into a 
DT modulator [16]; to make the two modulators equiva- 
lent, the CT input must be converted into a DT sequence 
by prefiltering it with a CT filter and then sampling it, as 
shown in Fig. 1 .  The required CT filter depends on the 
specific CT modulator. However, the prefilter can simply 
be represented by a constant gain for analysis of DC in- 
puts. 

5 )  Constant inputs simplify analytical attacks; indeed, 
a number of illuminative results have been based on this 
simplifying assumption [ 141, [ 171. 

Based on the above discussion, our approach in the fol- 
lowing sections is to use limit cycle analysis for constant 
inputs to find maximum signal levels in EA modulators. 
We also examine functional scaling as a way of trading 
off SNR performance for stability. 

C. Comparison with Existing Work 
In this section we compare our stability approach to 

previous results on delta modulation. 
Gersho [ 181 considers single-integration delta modu- 

lation with stochastic stationary input processes, and 
either perfect or leaky integration. The stability concept 
underlying his approach is consistent with the approach 
of this paper. For the modulator, he derives upper bounds 
on the error signal. The corresponding stability result for 
single-loop EA modulators with ideal integration is well 
known, and is stated in Section I11 below. Gersho's 
method does not appear to generalize to higher order mod- 
ulators. 

Nielsen [19] considers a special form of double-inte- 
gration delta modulation with zero input, and examines 
the specific limit cycle type consisting of a number of pos- 
itive output bits followed by the same number of negative 
bits. He states that the limit cycle length is a measure of 
the stability, and he numerically optimizes a particular 
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I I 

Fig. 2 .  Discrete-time model of the single loop EA modulator 

1 r 
Fig. 3 .  Discrete-time model of the double loop EA modulator 

modulator parameter for stability. The approach is less 
general than the one presented in this paper, because we 
consider general constant inputs and arbitrary limit cycles, 
as well as more general modulators. 

Finally, Steele [20] considers double-integration delta 
modulation with ideal integration. For the case of zero 
input, he derives the peak-to-peak value of the feedback 
signal. He then introduces prediction around the second 
integrator to reduce feedback oscillations. Due to the spe- 
cial form of the double-loop EA modulator with two feed- 
back paths for the quantizer output, Steele’s results are 
not applicable to our problem. 

111. DOUBLE LOOP MODULATOR 
In this section we discuss the stability issues for the 

double loop EA modulator within the framework of Sec- 
tion 11. Section 111-A includes a number of exact analyti- 
cal methods for investigating the limit cycle behavior of 
the modulator. In Section 111-B we derive exact upper 
bounds on the largest integrator outputs occurring on limit 
cycles. This is used to arrive at a design and scaling tech- 
nique for double loop modulators which results in a more 
favorable SNR performance than the standard one. 

Some of the results of this section may be viewed as 
extensions of results for the single loop modulator given 
in [17] and other papers. For completeness we provide a 
concise overview of these results in the language of the 
present paper, drawing also on the results in [14]. Fig. 2 
shows the block diagram of the single loop modulator with 
constant discrete-time input X :  D represents a unit delay, 
and Q is a one-bit quantizer or ADC given by 

> 0 lies in the interval [ X  - b, X + b] provided that the 
initial state at time 0 lies in the same range. This essen- 
tially resolves the stability issue for the single loop mod- 
ulator: b must be chosen such that 2b is less than the clip- 
ping level of the integrator. If the constant input X equals 
some irreducible fraction p / q  of the DAC feedback volt- 
age b, there exists exactly one limit cycle. It has period 
2q if either p or q is even, and period q otherwise; the 
average of the quantizer outputs Q ( U J  over one period 
equals the normalized input X / b  [ 141. The limit cycles or 
periodicities show up as spikes in the spectrum of the 
quantization error sequence [2 11. 

A block diagram of the double loop modulator is shown 
in Fig. 3; it contains four scaling factors, namely, two for 
the integrators and two for the DAC feedback. The ones 
corresponding to the outer integrator are denoted by the 
uppercase letters B and G, and the inner integrator factors 
are denoted by the lowercase letters b and g .  The double 
loop modulator is superior to the single loop one because 
it only requires a moderate increase in circuit complexity, 
and yet it achieves a 15 dB/octave tradeoff between SNR 
and OSR, whereas the single loop modulator achieves only 
9 dB/octave. The double loop modulator is of interest in 
itself; its analysis and implementation have been de- 
scribed in a number of papers, including [22] and [23]. 
However, it is also important as a building block in higher 
order cascaded modulators, as evidenced in [8], [24], and 
other papers. Linearizing the modulator, it can be viewed 
as a two-pole digital filter in a feedback loop, and consid- 
ering measures such as phase margin, it may loosely be 
characterized as “barely stable. ” 

+1 for U > 0 

-1 for U I 0. 

A .  Detection of Specijic Limit Cycles 
In this section we consider in detail the limit cycles of 

the canonical unclipped double loop modulator, i .e.,  the 
modulator shown in Fig. 3 with b = B = g = G = 1 and 
ideal integrators. The methods readily translate to the 
more general structure. In Sections 111-A1 and A2 we-ad- 
dress the following problem: Given a P-bit sequence Y = 

Q(u> = [ 
The block labeled b represents a digital-to-analog con- 
verter (DAC) whose input is 51 and whose output is b 
times its input. It is shown in [17] that for any constant 
input X E ( -b ,  +b),  the state variable U,, at any time n 
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{YO,  * - * , Yp - I}, does there exist a cpnstant input X and 
a limit cycle with period P such that Y corresponds to the 
modulator output sequence { Q (U,), . Q ( ~ P -  I)}? If 
so, what are the largest values of the state variables oc- 
curring as the modulator goes through a period of the limit 
cycle? We define a limit cycle to exist if all internal state 
variable sequences of the modulator, i .e.,  U,, and V,,, are 
periodic. Our technique for solving these problems makes 
use of the standard Tsypkin method of “opening the loop” 
and thus circumventing the nonlinearity [25] .  A similar 
approach was used in [26] for the specific case of zero- 
input symmetric limit cycles with a number of positive 
bits followed by the same number of negative bits. In Sec- 
tion 111-A3 we present a numerical technique to assess the 
regions in state space that are parts of limit cycles. 

1) Existence of Specijic Limit Cycles I:  From Fig. 3 
with b = B = g = G = 1 ,  we obtain the state equations 
for the variables U,, and V,: 

. 

un = u n - i  + V n - I  - Q ( u n - 1 )  

V,, = Vn- i  + X - Q(U,,). (2) 
Inserting Y,, = Q(U,,) and U,, - I = Q ( U , ,  - I) in (2), we 
arrive at the following closed-form formulas in [ 141 : 

U,, = U, + nV, + ; n ( n  - 1) x - yo 

- C (n  + I - i ) ~ ,  
n - 1  

I =  I 

I1 

V, = V, + nX - C Y,. ( 3 )  
r = l  

The double loop modulator is defined to have “r as the 
output sequence of a limit cycle if and only if two con- 
ditions are satisfied [25] :  

C1) Th_e state variable sequences {U, ,} ,  { V,,} obtained 
by using Y = {U,, . * . , Y p -  in (3 )  are periodic with 
period P ,  that is, U P + , ,  = U,,, V P + ,  = V,l for all n. It 
follows from ( 2 )  that this condition holds if and only if 
U p  = U, and V p  = V,. 

C 2 )  For each 0 5 n I P - 1, the sign of the quantiz2r 
input matches the corresponding bit of the sequence Y ,  
that is, Y,, = Q(U,,). This corresponds to “closing the 
loop” and checking the consistency of the resulting sys- 
tem. 3 

There is thus only one constant input which might give 
rise to the limit cycle under investigation; this constant 
input is rational and equals the average input. To satisfy 
U p  = U, in condition C1, we use the first equation in ( 3 )  
to obtain 

V, = - - ( P  - I ) X +  - Y, + C ( P  + I - n)Y ,  . 

( 5 )  

To check condition C2 we may proceed in the following 
way: Let Ro be the set of all values of U,  such that the 
consistency relation at time n = 0 is satisfied. For n S, 

1, use ( 3 )  to recursively compute U,, in terms of U,, - I. 
Determine the set R, of all values of U, such that the con- 
sistency relation Q(U,,) = U,, is satisfied; this amounts to 
a linear inequality in U,.’ At time P ,  determine the inter- 
section R of all the sets R,, . . . , RP - I. If R is empty, 
then the combined constraints on U, are impossible to sat- 
isfy simultaneously, and the sequence Y is not a limit 
cycle for the Gouble loop modulator. If R is nonempty, 
the sequence Y does exist as a limit cycle for any initial 
state in R. In this case we can step through ( 3 )  to deter- 
mine t@e largest values of the state variables over the limit 
cycle Y .  For brevity, we shall refer to these maxima as 
the amplitudes of the limit cycles in  the state variables U, 
and V,,. Without loss of generality we only consider pos- 
itive constant inputs, and search for maximum absolute 
values of U,, and V,,. 

2) Existence of Specijic Limit Cycles /I: The method 
presented in the preceding subsection makes use of the 
fact that a solution ( 3 )  to the difference equation ( 2 )  is 
available; a more general method which does not make 
use of (3) and which is easily generalized to higher order 
systems can also be devised. We will use this technique 
in Section IV-A1 on the interpolative modulator, and in 
this section we show its application to the double loop 
modulator. 

We can rewrite the two first-order state equations shown 
in (2) as a single second-order state equation: 

) 
P -  I 1 

2 P ( n = I  

Un+2 - 2U,,+l + U, = - 2 Y n - ,  t Y,, + X .  ( 6 )  
We will assume that the state variable sequence { U,,} is 
periodic with period P and enforce the consistency re- 
quirement C2. Assuming the periodicity condition C 1 
holds, ( 6 )  can be written as a linear vector equation 

-2 o . . .  0 1  

0 0 * . .  1 -2 
. .  . .  . .  

0 1 * - .  0 0 

1 - 2 . . .  0 0  

To satisfy V p  = Vo in condition C1, ( 3 )  implies 

(7) 

‘In the more general case of a inultibit quantizer Q. the consistency re- 
lation Q(U,,) = Y,, is unchanged, and also gives rise to linear inequalities (4) 

1 p - l  
- c Y,r = x. 
P n = O  in U,,. 
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where the equations for n = 0 and n = P - 1 are at the 
bottom and top, respectively. The P X P matrix on the 
left-hand side is singular and has rank P - 1 .  By adding 
together the P scalar equations, we again arrive at the re- 
quirement (4) for the constant inpuiX. The right-hand side 
of (7) is thus known for a given Y .  The equation can be 
solved by simple forward substitution with, say, U, and 
U ,  as independent variables; as this procedure reaches n 
= P - 1, it produces a linear constraint involving only 
U. and U , .  This means that one of U, and U ,  can be used 
as the sole independent variable; this way the entire se- 
quence {U,,} can be specified in terms of only Uo. En- 
forcing the consistency requirement C2 proceeds in the 
same manner as before: U0 is chosen, if possible, such 
that f o r 0  I n I P - 1 ,  Q(U,,)  = Y,,. 

The above method can be interpreted geometrically in  
the following way: Equation (7) specifies a line in the 
P-dime2sional space RP of P-element real sequences in 
which U = {Uo,  * * - , Up-  lies. The consistency re- 
quirement C2 limits the allowable regio_n of this space to 
a single octant, i.e, all elements U,, of U must have signs 
specified by the corresponding element Y,, of the sequence 
?. The limit cycle ? exists if and only if the intersection 
between the line and the octant is nonempty. The points 
in the one-dimensional intersection each represent a pos- 
sible limit cycle in the quantizer input {U,,}. 

We can also explain that there is some latitude in 
choosing U. The left-hand side matrix of (7) has rank P 
- 1, and the eigenvect2rs corresponding to the eigen- 
value 0 are of the form K = (k, k, * * * , k)T. Therefore, 
if U =  {_Uo, * , U p -  I } is a P-periodic solution to 
( 7 ) , U - K = { U o - k ; . -  , U p - l  - k } i s a n o t h e r P -  
periodic solution for any k. As long as the consistency 
requirement C2 is not violated, both these are iimit cycles 
in the state variable U,,. More precisely, if U is a limit 
cycle, then_ for311 k in the following range, the shifted 
sequence U - K is another limit cycle: 

+ 

max U,, I k < min U,,. (8) 
U" 5 0 U" > 0 

We refer to the width of the interval fork in (8) as AU. 
Using the above technique or that of Section 111-A 1, we 
can obtain information about short time limit cycles by 
exhaustively searching over the binary sequences with av- 
erage value X and different periods P.  Table I summarizes 
such information for periods up to 24 for the cases X = 0 
and X = 0.5: For each period P we list the pair (U,,, V,,) 
that achieves the largest absolute quantizer input U,, while 
lying on a limit cycle with period P .  We also list the quan- 
tity AU corresponding to the limit cycle that maximizes 
U,,. We observe that as X increases, the maximum value 
of U,, increases comparatively more than that of V,z, so in 
a practical, clipped modulator, U,, will clip before V,,. At 
both inputs 0 and 0.5, several limit cycles exist at each 
period for all but the smallest periods. 

The table also suggests that as the period increases, the 
maximum integrator outputs exhibit an increasing trend, 

TABLE I 
NUMBER OF LIMIT CYCLES OF THE DOUBLE LOOP MODULATOR WITH 

CONSTANT INPUTS X = 0 A N D  X = 0.5. ALSO SHOWN ARE THE 
PAIRS (U, , ,  V,,) MAXIMIZING THE QUANTIZER INPUT, AND THE 
AMOUNT BY WHICH THE LIMIT CYCLES IN THE STATE PLANE 

CAN BE SHIFTED IN THE U,, DIRECTION 

X Period # Limit Cycles ( U n ,  V,) w/max.  U, AU 

0 2 
4 
6 
8 

I O  
12 
14 
16 
18 
20 
22 
24 

0.5 4 
8 

12 
16 
20 
24 

I 
I 
3 
2 
4 
2 
8 
6 
8 
4 

10 
4 

1 
3 
3 
4 
7 
3 

(1.500, 0.500) 
(2.000, 1.000) 
(2.500, 1.500) 
(2.250, 1.250) 
(2.300, 1.300) 
(2.333, 1.333) 
(2.643, 1.643) 
(2.625, 1.625) 
(2.611, 1.611) 
(2.600, 1.600) 
(2.545, 1.591) 
(2.500, 1,583) 

(2.250, 1.250) 
(3.500, 2.000) 
(3.333, 1.917) 
(3.750, 2.125) 
(3.950, 2.150) 
(4.000, 2.167) 

1.500 
1.000 
0.500 
0.500 
0.400 
0.333 
0.071 
0.125 
0.167 
0.200 
0.182 
0.167 

1.250 
0.500 
0.250 
0.125 
0.200 
0.167 

and seem to approach limits.2 In fact, is it conjectured that 
for X = 0, these limits equal 8 / 3  for U,,, 5 / 3  for V,,; for 
X = 0.5, the limit is about 4.16 for U,,. If our observa- 
tions are valid for all constant inputs, the results suggest 
that relatively short limit cycles are good indicators of the 
maximum signal levels encountered also on longer limit 
cycles. 

3) Graphical State Space Method: The drawback of 
the methods of Sections 111-A1 and A2 is the requirement 
to examine all binary sequences with average X in order 
to detect limit cycles for the constant input X. We now 
present a more graphical approach to obtain an overview 
of the limit cycle behavior. The approach is based on a 
state space representation of the double loop modulator 
where pairs of state variable values (U,,, V,,) are points in 
a plane with U,, and V,, along the horizontal and vertical 
axes, respectively. For a given constant input X, each 
point in state space completely specifies a trajectory that 
can be found by stepping through the difference equations 
(2). It is possible in principle to determine for each point 
whether or not the corresponding trajectory is a limit 
cycle.3 The set of states that belong to limit cycles, or 
equivalently the collection of limit sets [27], can then be 
shown in a plot such as Fig. 4 .  In practice the process is 
implemented numerically by discretizing state space. The 
number of grid points per unit, referred to as the grid den- 
sity p ,  should be chosen such that X is a grid point, that 
is, pX is an integer. This is because in (5) ,  the quantity 
Yo + C ( P  + 1 - n) Y,, is an integer, so if pVO is to be an 
integer, pX must in general also be an integer. 

'This is substantiated by considering limit cycles with periods up to sev- 
eral hundred and limit cycles for other constant inputs. These limit cycles 
were not generated exhaustively, but found with the method described in 
Section III-A3. 

'This also holds for the more general case of multibit quantization. 
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U 

Fig. 4. Plot of the points in state space which lie on a limit cycle for a 
constant input of X = 0. The horizontal and vertical axes represent the 
state variables U,, and Vn, respectively. The grid density is 80, and each 
axis tick represents one unit. 

I "  

U 

Fig. S .  Plot of the points in state space which lie on a limit cycle for a 
constant input of X = 0.5. The horizontal and vertical axes represent the 
state variables U, and V,r, respectively. The grid density is S O ,  and each 
axis tick represents one unit. 

Figs. 4 and 5 show state space plots obtained for con- 
stant inputs X = 0 and X = 0.5, with grid densities 80 
and 50, respectively. The limit cycles which make up the 
plots have periods that vary from two to many hundred. 
The maximum state variable values reported for short limit 
cycles in Table I match the plots well. As the constant 
input increases, the limit cycles result in larger values of 
the state variables. It turns out that for a fixed constant 
input, the state space plots for different, but sufficiently 
large grid densities look very similar. On the other hand, 
the periods of the limit cycles which make up the plots 
can be quite different, and not all limit cycles materialize 
for an arbitrary grid density. This partly explains that the 
collection of limit sets appears ragged and irregular. The 
periods tend to share a number of prime factors with the 
grid density, even though we found no general rule. 

To verify the above results based on limit cycles, Fig. 
6 shows simulation results for the maximum value of the 
quantizer input U, as a function of the constant input X .  
The results are obtained by using a large number of ran- 
dom starting points in state space, simulating the modu- 
lator for a large number of time steps, and registering the 
largest quantizer input value. We discard maxima occur- 
ring on the first 1000 time steps to get over transients, so 
that the comparison with limit cycle results is justified; 
this is not to deny the importance of transients. For inputs 
X = 0 and 0.5 there is good agreement with the limit 
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Fig. 6 .  Maximum value of quantizer input U,, as a function of the constant 
input X. The lower curve shows simulated values, while the upper curve is 
the analytical bound (12) derived in Section 111-B. 

cycle based results in Table I and Figs. 4 and 5 ,  and the 
agreement is confirmed for other constant inputs. Fig. 6 
shows that as X approaches unity, the maximum value of 
U, begins to increase rapidly, that is, the modulator be- 
comes less stable and more prone to clipping. 

B. Design Implications of Bounds on Limit Cycles 
In Section 111-B1 we present analytical upper bounds 

on the limit cycle amplitudes for the general, unclipped 
double loop modulator with scaling factors B,  G, b ,  G 
shown in Fig. 3 .  In Section 111-B2 we use the results to 
propose a modulator with scaling factors that are opti- 
mized with respect to both stability and an approximate 
measure of SNR, and we compare the performance of the 
clipped modulator to previously suggested scaled modu- 
lators. 

I )  Derivation of Bounds: Our upper bounds on limit 
cycle amplitudes are derived in Appendix A. To  concisely 
express them, it is convenient to first transform the double 
loop modulator in Fig. 3 into an equivalent modulator, 
shown in Fig. 7 and specified in terms of normalized 
quantities. The equivalence can be confirmed by a series 
of block diagram manipulations and the observation that 
the gain g only has the effect of scaling U,. This is be- 
cause Q(U,)  only depends on the sign of U,. To sum- 
marize the results in Appendix A, we introduce the nor- 
malized quantities 

where X is the constant input, and b ,  B ,  and G are defined 
as in Fig. 3.  These three normalized quantities replace X ,  
G ,  and b as independent variables, so we change our set 
of independent variables from ( X ;  G, B ,  g ,  b)  to ( E ;  4, B ,  
g ,  y). Some immediate observations on the effects of 
changing the values of the original variables can be made 
based on the new set of variables: Multiplying b and G 
by the same factor only has the effect of increasing 4, so 
the signal levels of U,, and V, are scaled proportionally. 
This is equivalent scaling. However, multiplying only G 
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Fig. 7 .  Discrete-time model of transformed double loop EA modulator 

by a factor has the effects of scaling 4 proportionally and 
scaling y in inverse proportion. The change in y affects 
the signal levels nonlinearly, since the functionality of the 
modulator is modified. Similarly, changing only B has ef- 
fects on t, 4, and y, and the combined effect on signal 
levels is nonlinear. These are examples of functional scal- 
ing. We show in Appendix A that assuming 

O s E < 1  and y > l  

the limit cycle amplitudes of the state variables U,,, V,, are 
upper bounded by 

where 
m 

We denote the bounds on 1 U,, 1 and 1 V,, I in (10) and (1 1) 
by U,,, and V,,,, respectively. Similar bounds hold for 
-1 < E I 0. For the standard double loop modulator 
with b = B = g = G = 1 or equivalently 4 = 1 and y 
= 2, we find in particular that for 0 5 X < 1, 

Fig. 6 shows the bounds in (12) as well the maximum 
signal levels actually observed in a simulation of the 
standard double loop modulator. The simulated results are 
obtained by choosing 500 random pairs of initial states, 
running the modulator for 1000 samples to get over tran- 
sients, and observing the largest state variables on the fol- 
lowing 1000 samples. The bounds correspond to y = 2 ,  
4 = 1, and are seen to be relatively tight. 

We find in general that for 1 < y < 2, the derived 
bounds on state variables are valid, but not extremely 
tight. For y > 2 the bounds are tighter, especially for 
moderate and large constant inputs ,$, and are thus suit- 
able for design. Interestingly, the analytical bounds that 
are valid for 1 < y I fi ( 4 )  are very good general ap- 
proximations to simulated maximum state variable val- 
ues, even when y > f i ( E ) .  When y < 1, the technique in 
Appendix A does not yield upper bounds on limit cycle 
amplitudes. This of course does not imply that the mod- 
ulator is unstable. However, it is interesting to compare 
with [16], where it is claimed that under a number of ap- 
proximations the double loop modulator with b = B = 1 
is stable provided G < 2 or, equivalently, y > 1. 

2) Design Implications: In this section we use the re- 
sults of Section 111-B1 to design a double loop modulator 
that takes into account both stability and SNR perfor- 
mance. The design is based on the constant input assump- 
tion, but simulation results for sinusoidal inputs are shown 
to verify the design. We assume that our circuit technol- 
ogy dictates a given clipping level L defined in (1). 

The design problem has five degrees of freedom, 
namely (X,,,; G, B ,  g ,  b) where X,,, is the largest con- 
stant input for which the design guarantees absence of 
clipping. Equivalently, we can use the parameters (E,,,; 
4, B ,  g,  y) where E,,, = X , , , / B .  We reduce the number 
of degrees of freedom to two by the following three equal- 
ity constraints: 

U,,, = L ,  V,,, = L,  B ( l  + E,,,) = L. (13) 

The first two constraints are stability constraints to avoid 
saturation, and the last constraint states that the maximum 
signal level at the output of the input summer, B + X,,, 
= B ( l  + E,,,), should also equal the clipping level. The 
constraints ensure that we take maximum advantage of the 
dynamic ranges of the circuit elements while maintaining 
stability. 

We use the remaining two degrees of freedom, E,,, and 
y, to find a tradeoff between two goals, namely, maxi- 
mizing an approximate measure of SNR performance and 
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Fig. 8 .  Comparison of two differently scaled double loop modulators with sinusoidal input. The curve labeled “Simple 
represents scaling factors ( G ,  B ,  g, h) = (0 .5 .  I ,  0.5, l ) ,  while the other curve represents scaling factors (G, E ,  K .  b)  = 
1.12, 0.54, 0.85). 

mod.” 
(0.64, 

maximizing the largest constant input X,,, which does not 
saturate the integrators. The SNR measure that we use is 
the product gG which is shown in Appendix B . l  to ap- 
proximately control the baseband noise suppression. We 
show in Appendix B.2 that for a given E,,, E (A - 2 = 0.2361, l ) ,  the product gG is maximized by 
choosing y = 1 + 2/(1 + E,, , ) .  We are thus left with a 
single degree of freedom, E,, , ,  on which both the product 
gG and the largest allowed constant input given by 

Xmax = L * tmax/(l + Emax) 

depend. Fig. 17 shows gG and X, , , /L  as functions of the 
normalized maximum input E,,,. We see that the design 
goals of maximizing both quantities are conflicting. As a 
compromise, we choose t,,, = 0.5; this choice is com- 
mented on in section III-B3. Using (lo), ( l l ) ,  and (13), 
we then find y = 2.33, 4 = 0.429L, and the scaling fac- 
tors 

B = - -  - 0.667L, 
1 + E  

which results in a maximum permissible constant input of 
X = BE = 0.333L, and a performance product of gG = 
0.346. For a given clipping level L, (14) presents the de- 
signer with a choice of scaling factors that take into ac- 
count both stability and SNR performance. 

3) Design Comparisons: For comparison we mention 
a few scaling schemes that have appeared in the literature. 
In [8] and [22] scaling factors of G = g = 1/2, B = b 
= 1 are found to make the double loop modulator suffi- 
ciently stable with a clipping level of L = 1.7. In [24] 
scaling factors of G = 1 /4 ,  g = 1 ,  B = 1,  b = 1/2 are 
chosen, although G is split into two gains of 1 / 2  each: 
One before and one after the outer integrator. The clip- 
ping level is not reported. These two designs both corre- 
spond to y = 4 and gG = 0.25. In the setup of the present 
chapter the value of y would appear to be somewhat large, 
and the product gG correspondingly small; however, con- 
siderations such as ease and regularity of implementation 
may also have played a part in the described choices. 

Fig. 8 shows the simulated SNR performance of a mod- 
ulator designed with our technique, and a modulator with 
B = b = 1 ,  G = g = 0.5, for a clipping level of L = 1.7 
[8], [22]. The vertical axis shows the SNR, while the hor- 
izontal axis represents the amplitude of a sinusoid with a 
fixed frequency of 1020 Hz relative to a sampling fre- 
quency of 1.024 MHz. The amplitude is measured in dec- 
ibels relative to the level 1 .  A sinc3 decimation filter is 
used for both modulators, and the oversampling ratio is 
128. The plot shows that the peak SNR for our modulator 
is 1.5-2 dB above that of the simpler modulator, and the 
dynamic range is 2-3 dB larger. The increase in dynamic 
range is due to our modulator’s ability to operate on larger 
inputs, and indicates a more stable design. The increase 
in peak SNR may reflect the explicit design with respect 
to an SNR performance measure, even though the mea- 
sure is approximate. 
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Fig. 8 demonstrates that although our modulator design 
is based on a limit cycle analysis for constant inputs, the 
results are also useful for dynamic inputs. For instance, 
reducing E,,, to 0.3 results in a reduction in dynamic 
range. However, we should bear in mind that the analysis 
is a worst case one, and that it is not strictly valid for 
time-varying inputs. For instance, we find numerically 
that choosing E,,, between 0.5 and 0.7 has little effect on 
the dynamic range. 

IV. INTERPOLATIVE MODULATOR 
This section discusses stability issues for the interpo- 

lative EA modulator. Section IV-A presents an exact an- 
alytical method to determine the existence and amplitude 
of given limit cycles. Section IV-B addresses the problem 
of finding the maximum amplitudes of limit cycles with- 
out requiring knowledge of their specific form: In Section 
IV-Bl we derive an approximate result, based on the de- 
scribing-function approach and aimed at systems with 
open-loop poles close to the unit circle, and in Section 
IV-B2 we present a numerical method for finding upper 
bounds on limit cycle amplitudes. Throughout results are 
exemplified using the fourth-order interpolative modula- 
tor introduced in [ 5 ] ,  often referred to below as “the 
fourth-order modulator.” The section is similar in form 
to Section 111, but significant differences in the methods 
and results will be pointed out. 

Fig. 9 shows a discrete-time model of the interpolative 
EA modulator, consisting of an arbitrary discrete-time fil- 
ter H(z) embedded in a nonlinear negative feedback loop 
including also a one-bit quantizer Q .  The poles of H ( z )  
may be inside, on or outside the unit circle. To avoid race- 
around the filter must contain at least one delay. For sim- 
plicity no scaling is performed in the feedback path. The 
quantizer can be viewed as adding a noise sequence {E,,) 
with 2-transform E(z) to its input sequence; assuming for 
a moment that the input sequence {X , , )  and the noise se- 
quence are independent, the signal and noise transfer 
functions are 

H(z) is chosen to have large gains over a passband cor- 
responding to the frequency range in which the input sig- 
nal is concentrated, and to have small gains outside of 
passband. As a result, the signal and noise transfer func- 
tions are low pass and high pass, respectively. For the 
special case 

the interpolative modulator reduces to the single loop 
modulator shown in Fig. 2 .  

Fig. 9 .  Discrete-time model of the interpolative LA modulator. 

The main advantage of choosing a higher order H(z) is 
an improved tradeoff between OSR and SNR, as measured 
in decibels/octave. In addition, a higher order H(z) is USU- 
ally designed for a specific OSR and input bandwidth: 
Equation (1 5 )  shows that a desirable H(z) is a very sharp 
low-pass filter which cuts off immediately above the sig- 
nal bandwidth. However, higher order loops have prob- 
lems that are not shared by lower order ones. One such 
problem is that they require specially designed decimation 
filters which may require significant chip area and power 
consumption [9], [28]. Another problem is that higher or- 
der designs appear to be inherently plagued with the po- 
tential for large-amplitude low-frequency osci~lat ions.~ 
These may be detrimental to performance because they 
can drive the modulators into sustained modes of integra- 
tor saturation. 

The occurrence of large oscillations is not predictable 
from the simple linearized equations ( 1  5 )  which indicate 
that the modulator specified by H(z) is stable if and only 
if the zeros of 1 + H ( z )  are inside the unit circle, and that 
stability is independent of the initial states of the integra- 
tors or the level of dc inputs. In contrast we find empiri- 
cally that both these factors profoundly affect the behavior 
of the modulator. In addition, we show in Section IV-B1 
that the proximity of the poles of the open-loop filter H(z) 
to the unit circle can be important to stability. This is de- 
spite the fact that these poles do not manifest themselves 
in Hx(z), and only appear as zeros in the error transfer 
function H E ( z ) .  An immediate observation demonstrating 
the importance of the poles of H(z) is that a modulator is 
guaranteed to be BIBS stable if the poles of H(z) are in- 
side the unit circle. This is because both the quantizer 
output and the modulator inputs are bounded, implying 
that the open-loop filter input is bounded. Another such 
result emphasizing the natural role of these poles is pre- 
sented in Section IV-A. The shift of focus from the zeros 
of 1 + H ( z )  to the poles of H(z) is important, especially 
in view of the fact that interpolative modulators are fre- 
quently designed with open-loop poles on the unit circle 
itself [ 5 ] ,  [9]. 

The limitations of linearized analysis suggest that the 
phenomenon of large oscillations should be considered 
from a state space point of view, and that the limit cycle 
framework set forth in Section I1 may provide insight. As 
the setup is more general than that of Section 111, we find 
it convenient to focus on the quantizer input U,, as repre- 
sentative of limit cycle amplitudes, and to not consider 
amplitudes of oscillations in other internal state variables. 

4As before, we are referring to oscillations in the unclipped modulators. 
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This is because the filter H ( z )  may be realized in various 
ways leading to different natural choices of state vari- 
ables, and we wish to separate the problems of realization 
and transfer function design. 

The flow of the proposed design process is as follows: 
We assume that we are given an unclipped modulator with 
satisfactory SNR performance, and that there exists a re- 
alization of the modulator filter such that its filter coeffi- 
cients are all of the same order of magnitude. The mod- 
ulator could therefore potentially be implemented in 
switched-capacitor technology. We assume that the mod- 
ulator has stability problems at one or more internal nodes. 
Finally, we assume that equivalent scaling is insufficient 
to solve the stability problem, because the resulting scal- 
ing factors would result in capacitor ratios that were too 
large to be implemented in practice. Our goal is to per- 
form functional scaling to make the modulator more sta- 
ble, so that subsequent equivalent scaling will not result 
in excessive scaling factors. 

A.  Detection of Specific Limit Cycles 

polative modulator with transfer function [ 5 ]  
By way of motivation, consider the fourth-order inter- 

method is based on the standard technique of “opening 
the loop” frequently associated with Tsypkin’s name [29]. 
In Section IV-A2 we present results of applying the 
method to the fourth order modulator. In Section IV-A3 
we discuss the conditions under which the limit cycles of 
an interpolative modulator are attracting. 

1 )  Existence of Specific Limit Cycles: Consider the 
general interpolative modulator of order N .  We may write 
its open-loop transfer function as 

N 

C A,(z  - l )N-n  
(17) f l = O  . z - l  H ( z )  = N 

(Z - l)N - C B,(z - l)N-n 
,= 1 

where Ao, . , BN are filter czeffi- 
~ i e n t s . ~  Let us define an N-dimensional state vector S ,  for 
the open-loop filter, where n is the time step. Further, 
define an N x N matrix B in terms of the-filter coeffi- 
cients, and an N-dimensional input vector L,  depending 
on the constant input X as well as quantizer outputs, such 
that the state space representation of the system is of the 

, AN and B I ,  . * 

This open-loop filter H ( z )  has both its two pole pairs on 
the unit circle in signal baseband, and the filter is realized 
with a cascade of integrators from which outputs are fed 
forward and backward. For constant inputs and zero ini- 
tial integrator outputs, the modulator is reported in [ 5 ]  to 
be unstable when I X 1 > 0.65 - 0.7 ,  in the sense that the 
SNR decreases dramatically. Whether or not the oscilla- 
tions are in fact bounded, this behavior is undesirable as 
it limits the dynamic range. Expanding on this we find 
that if the initial integrator states are all chosen to be 1, 
large oscillations occur when the constant input exceeds 
approximately 0.2803. This underscores the influence of 
the initial states on the system trajectory, and shows that 
even small inputs may excite large oscillations. It appears 
difficult to describe exactly the relationship between ini- 
tial states and open-loop filter that gives rise to large os- 
cillations for various inputs. Therefore, rather than avoid- 
ing initial states that might result in large oscillations, it 
is desirable to design modulators that do not exhibit large 
oscillations for any initial states. As seen in Section 
IV-B such designs effectively sacrifice SNR to improve 
stability. 

In this section we describe in more detail the instability 
problems of interpolative modulators. In Section IV-A 1 
we present a method which can be used+to answer the 
following questions: Given a P-bit pattern Y = {Yo, * - * , 
Y p -  ,>, does there exist a constant input X and an initial 
state for the modulator such that the corresponding output 

form 
-+ + +  
S,+l = B S ,  + L,. (18) 

It is well known from systems theory that there are many 
representations of this form. For the fourth-order modu- 
lator, one such representation i s  obtained by defining the 
four-dimensional state vector S, such that 

In general, z, depends linearly on the constant input X .  
Finally, define two N-dimensional vectors and 6, de- 
pending on the filter coefficients, such that the filter out- 
put satisfies 

= ET?,  + 2iTt, (19) 
where T denotes transposition. For instance, the fourth- 
order modulator with transfer function (17) has 

3 5  For the fourth-order modulator with transfer function (16). (Ao, . . . , 
A4) = (0,8653, 1.1920, 0,3906, 0.06926, 0.005395) and ( B , ,  . . . , B4) 

sequence is a periodically repeated version of { Yi,  * --. 
measured at the quantizer input? As in Section 111, our 

- I > ?  If so, what is the amp1itude Of the limit as 
= (-3.540 . IO-’.  -3.542 . IO- ’ ,  -3.134 . -1 .567 . to-6). 
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We now address the question stated above, i.e. , does there 
exist a limit cycle+of period P corresponding to the binary 
output sequence Y = {Yo,  - - - , xp- l } ?  It is-convenient 
to associate with each sequence Y a vector LA which is 
obtaine_d from L, by replacin Q(U,)  with Y,,. Specifi- 
cally, LA = [0, 0 ,  0 ,  X - Y,] for the fourth-order mod- 
ulator. To answer the question we must determine whether 
or not there exists an X sych that {WO conditions hold: 

C l )  Periodicity, i.e., S P + ,  = S, for all n. From (18), 
this condition is equivalent to S, = So. 

C2) Consistency, i.e., as+we step through the differ- 
ence equation (18) using {LA) as the input vectors, we 
have Y, = Q(U,,) fora110 I n I P - 1. 

Condition C1 can be used to find the initial state vector so from (1 8) as a linear function of X ,  

.B 

P -  I s P -  - B P S O  + c B P - ' - n Z ; .  
n = O  

We set sp = so to enforce condition C 1 : 

P -  1 so = (1 - p-1 c @ - I - , ,  i; (20) 

where Z is the N X N identity matrix, and Z - BP is as- 
sumed invertible. If Z - Bp is singular, a generalization 
of the technique in Section 111-A1 must be used instead.6 
The right-hand side of (20) depends linearly on X .  Using 
So from (20), we can step through the difference equation 
(18) of the system, and at each time step use k19) to find 
U, as a linear function of X .  The sequence Y then is a 
limit cycle output sequence if and only if condition C2 
holds, that is, there exists an X such that all the linear 
inequalities Q(U,,) = U, in X can simultaneously be sat- 
isfied.' The amplitude of the limit cycle, if it exists, is 
also found by stepping through equations (1 8) and (1 9). 

Our procedure is similar in spirit to the derivation in 
Section 111-A2 for the double loop modulator. If we were 
to apply the above technique to thi? modulator,* however, 
we find that with the state vector S,, = (U,,, VJT ,  

i = O  

Therefore Z - B" is singular. This is an indication that 
for a given X the_re either exists infinitely many initial 
states satisfying Sp = So or none at all, confirming the 
result of Section 111-A. 

6Assuming that the realization of H ( z )  is minimal, the characteristic 
polynomial of the matrix B is the denominator of the open-loop filter H ( z ) ,  
so B has the eigenvalue 1 if and only if H ( z )  has a pole at DC. Since det 
[ I  - B] = 0 * det [ I  - BPI = 0, a dc pole of H ( z )  implies noninvertibility. 
The complete result is that det [ I  - BPI = 0 e H(e2""") = 03 for some 
integer n.  Therefore the outlined technique will not work if and only if the 
open-loop filter has a pole on the unit circle with an argument which is a 
multiple of 27r/P,  where P is the period in question. 

'The method generalizes easily to multibit quantization. 
'The argument is somewhat imprecise because the structure of the double 

loop modulator is inherently different from that of an interpolative modu- 
lator, but the argument can be made rigorous. 

Another difference between the double loop and the 
general interpolative modulator is that in the former there 
is a range of initial states supporting a given limit cycle, 
but there is only one specific constant input supporting it. 
In the latter there is also a range of initial states support- 
ing a given+limit cycle, but there is only one possible in- 
itial state So, specified by (20), for each constant input, 
and there is a range of possible constant inputs. This dif- 
ference is due to the finite dc gain H(l) of the open-loop 
filter for the interpolative modulator: Consider the aver- 
age input to the open-loop filter over one period, 

. P - l  
I 

P n = O  
z = x - -  c Y,,. 

If the open-loop filter has infinite dc gain, 2 must be zero 
to maintain the limit cycle, and the situation is analogous 
to that of the double loop modulator. However, if H (  1) is 
finite, the dc level of the quantizer input sequence is 
ZH(1). From a time-domain point of view the constant 
input X can be varied around a nominal value without af- 
fecting the output sequence, as long as no quantizer input 
U,, is shifted so much that it changes sign. All other things 
being equal, it is undesirable that several values of X give 
rise to indistinguishable output sequences, since it implies 
that any decimation filter is inherently limited in resolu- 
tion when the modulator is on such limit cycles. 

2) Numerical Results on Specijic Limit Cycles: To il- 
lustrate the method of Section IV-A1 we consider the 
fourth-order modulator with transfer function (16) [5], as 
well as a variation of this modulator in which the poles of 
the open-loop transfer function have been scaled by a fac- 
tor of 0.98 to move them inside the unit circle.' We find 
empirically that the limit cycles with the largest ampli- 
tudes are the ones with relatively large periods, that is, 
low frequencies, and that the output sequences on these 
limit cycles tend to take on the special form of a number 
of positive bits q followed by a number of negative bits 
r .  We focus on these limit cycles, and characterize them 
for brevity by pairs of the form (q ,  r ) .  

For the fourth-order modulator with transfer function 
(16) we find that many limit cycles with fairly short pe- 
riods exist, but that limit cycles of the form (q ,  r) with 
the periods around 100-140 fail to materialize. As we will 
see in Section IV-B 1, this is the range in which we would 
expect to find large-amplitude limit cycles, because of the 
pole frequencies of the transfer function (16). We attrib- 
ute the absence of these limit cycles to the fact that the 
poles of H ( z )  are on the unit circle, so if the input to the 
open-loop filter contains a sinusoidal component at a pole 
frequency, the filter output will contain an unbounded os- 
cillation at the pole frequency with linearly increasing 
amplitude. Although unbounded oscillations do not nec- 

91n terms of the filter coefficients of (17). (A,,, . . . , A4) are unchanged 
and ( E , ,  . . . , E4) = -8.347 . IO-', -6.010 . IO-', -1.752 . 
-3.053 . lo6). 
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essarily occur when H ( z )  has poles on the unit circle, they 
are a possibility which manifests itself in the present case. 

We next turn to the modulator whose open-loop pole 
moduli have been reduced by two percent. For this mod- 
ulator we find a large number of limit cycles of the form 
(q ,  r )  with period P = q + r = 117; Table I1 summarizes 
the characteristics of all the ones with more than 50% 
positive bits, that is, P / 2  I q I P.  We find similar re- 
sults for other periods close to 117. The first two columns 
of the table show the center and width of the X-interval 
supporting the limit cycle, while the next two columns 
show the maximum and minimum values of the quantizer 
input U,, on the limit cycle. The table shows that as q 
moves from its smallest to its largest value, the width of 
the input variable supporting the limit cycle first increases 
from close to zero, then reaches a maximum and finally 
returns to zero. The maximum value of the quantizer in- 
put U,, follows the same pattem, while the most negative 
value of U,, is an increasing function of q .  As shown in 
Section IV-B1, the limit cycles in question are close to 
sinusoidal, so the average of the extremes of U,, is a good 
estimate of the dc level of the quantizer input. We there- 
fore expect the following quantity to be small: 

where Z is defined in (21). The last column of Table I1 
showing A confirms that the quantity is small, namely, on 
the order of 2 % . The amplitude of limit cycles of the form 
(q, r)  with period 117 are upper bounded by approxi- 
mately 1435, which is a disturbingly large number. 

3) Attracting Limit Cycles: In this section we show 
that if the open-loop filter has all its poles inside the unit 
circle, almost all limit cycles are attracting. More pre- 
cisely, if we take almost any limit cycle in state space and 
consider a sufficiently small region around any point on 
the limit cycle, then for all initial states in the region, the 
system trajectory will converge to the limit cycle. This 
follows from the fact that if all points on a limit cycle 
satisfy U,, # 0, the collection of Lyapunov exponents for 
the limit cycle equals the set of eigenvalues of the matrix 
B ,  or equivalently the poles of H ( z )  [27]. Therefore, if 
the poles of H ( z )  are all inside the unit circle, the limit 
cycles is attracting or stable. Note that the concept of sta- 
bility of limit cycles is different from the concept of sta- 
bility of EA modulators [27]. 

The result of the previous paragraph calls for further 
comparison between the double loop and the interpolative 
modulator. The double loop modulator only has limit 
cycles for rational constant inputs, and since its open-loop 
transfer functions has poles on the unit circle, its limit 
cycles are not attracting. An interpolative modulator with 
a stable open-loop transfer function, on the other hand, 
has limit cycles in many intervals of constant inputs, and 
its limit cycles are attracting. The intervals include both 
rational and irrational inputs. These facts may imply that 
limit cycles play an even greater role for interpolative 
modulators than for single and double loop modulators. 

TABLE I1 
CHARACTERISTICS OF LIMI.I  CYCLES OF THF FORM (9. r )  WITH PERIOD 

P = 9 + r = 117 FOR A FOURTH-ORDEK INTERPOLATIVE MODULATOR. 
ALL S U C H  L I M I T  C Y C L E S  S H O W N  WITH MORE 

T H A N  50% POSTIIVE BITS,  I . E . ,  P / 2  5 q 5 P .  FIRST Two COLUMNS 
SHOW CENTER A N D  WIDTH OF X-INTERVAL SUPPORTING I H E  LIMIT CYCLE, 

THE NEXT T W O  C O L U M N S  S H O W  MAXIMUM A N D  M I N I M U M  VALUES OF 
QUANTIZER INPUT U, O N  LIMIT C Y C L E .  THE LAST C O L U M N  MEASURES 

DIFFERENCE IN PERCENT BETWEEN ACTUAL DC INPUT TO THE QUANTIZER 
A N D  AN APPROXIMATION 

q Average X 103 X Width max. U,, min. U, A ( % )  

73 
74 
7.5 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 

0.4645 
0.4932 
0.5312 
0.5486 
0.5753 
0.6012 
0.6265 
0.6509 
0.6745 
0.6973 
0.7187 
0.7393 
0.7596 
0.7791 
0.7977 
0.8154 
0.8323 
0.8482 
0.8633 

1.68 
3 .88  
6 . 1 0  
8 .33  

10.6 
12.7 
14.9 
17.0 
19.0 
20.8 
21 .3  
19.1 
15.9 
12.9 
10.0 
7.31 
4.81 
2.52 
0.45 

I400 
1410 
1419 
1426 
1431 
1434 
1435 
1434 
1431 
142.5 
1417 
1401 
1385 
I367 
1347 
1325 
1301 
1275 
1248 

~ 647 - 1 . 5  
-618  -1 .8  
- 588 - 1 . 6  

-532 - 1.7 
- 504 -1 .8  
- 477 -1 .8  
-451 - 1.8 
-42.5 -1 .8  
- 400 -1 .8  
- 376 - 1.7 
- 350 - 1 . 9  
-323 - 2 . 0  
- 296 - 1.8 
-271 - 2 . 0  
- 248 - 2 . 0  
- 225 -2 .1  
- 203 - 2 . 1  
- 183 - 2 . 0  

- 560 -1.8 

B. Amplitudes of Limit Cycles 
In this section we take a different view on stability is- 

sues, and relax the requirement of known limit cycles. In 
Section IV-B 1 we apply the describing-function approach 
to obtain approximate relationships between characteris- 
tics of an open-loop filter H ( z )  and the corresponding 
large-amplitude limit cycles. We will see that the approx- 
imation is useful for filters with poles inside and close to 
the unit circle, as is the case for many practical interpo- 
lative modulators. In Section IV-B2 we present a numer- 
ical method for deriving upper bounds on limit cycle am- 
plitudes. 

I )  Describing Function Approximation: In this sec- 
tion we use the describing function method to obtain ap- 
proximate relationships between an open-loop filter H ( z )  
and the corresponding large-amplitude limit cycles. The 
approximation is valid for filters with their poles close to 
the unit circle, and gets better as the poles move closer to 
the unit circle. We will use the analysis to demonstrate 
design tradeoffs between SNR and stability. 

Our approximate describing function approach used in 
Section IV-B1 bears some resemblance to the work of Ar- 
dalan and Paulos [ 161. who use a frequency-domain ap- 
proach and model the quantizer as two linearized gains: 
One for either a dc or a sinusoidal component, and one 
for the residual which is assumed Gaussian. In contrast, 
we are specifically interested in situations where instabil- 
ity can occur, and can thus use a relatively simple ap- 
proach without a Gaussian assumption. In addition, we 
do not assume that the open-loop transfer function has a 
pole at dc. 



HEIN AND ZAKHOR: STABILITY OF SIGMA DELTA MODULATORS 2335 

Fig. 10. Limit cycle in the quantizer input sequence U, for the fourth-order modulator of [SI with pole moduli scaled by 0.98. 
The constant input is X = 0.7 .  Also shown is the describing function approximation. 

TABLE 111 
SIMULATED A N D  ANALYTICAL RESULTS FOR LIMIT CYCLE PERIODS A N D  E X T R E M ~  VALUES FOR 

THE FOURTH-ORDER MODULATOR OI- [SI W I T H  ITS POLF MODULI SCALED BY r THE CONSTANT 
INPUT IS CHOSEN TO B t  T H F  SMALLEST INPUT RESULTING IN A LARGE-AMPLITUDE LIMIT 
CYCLE I F  THE I N I T I A L  STATFS OF H ( z )  ARE ALL ZERO. ALSO SHOWN A R F  THF DC GAIN 

A N D  GAIN MARGIN OF H ( z )  

LC Period LC Extremes 

r X Sim. Theor. k,, k,, Sim. Theor. 

0.99 0.7004 127 12.5 284.5 2194 +3700, -1400 +3600. -1400 
0.98 0.7839 117 113 1767 808 +1370, -300 +1250, -220 
0.97 0.8292 101 96 1004 293 +350, -25 +4.50, -50 

A motivation for using the describing-function method 
is the observation that large-amplitude limit cycles are 
often close to sinusoidal. For example, Fig. 10 shows a 
limit cycle in the fourth-order modulator (16) with its pole 
moduli scaled by 0.98. Also shown is the result of using 
the describing function approximation derived below. The 
maximum value on the limit cycle is predicted to within 
about 10%. 

riod is P = 27r/wo. The constants A and C are found by 
solving the following set of nonlinear equations depend- 
ing only on X ,  the dc gain kDc = H (  1 )  and the gain margin 
 GM = I H ( e j U 0 ) (  : 

C = kDc X - - arcsin - 
A ") L 

In applying the describing function method, we assume A = kGM dq. (23) 
that the quantizer input sequence is of the form .lr 

U,, = C - A sin won,  0 I C < A (22) 

where wo is the frequency of oscillation, and A ,  C ,  wo are 
unknowns which are to be determined for a given open- 
loop filter H ( z )  and a given constant input X 2 0. Equa- 
tion (22 )  is clearly an approximation, although bounds on 
its quality may be derived using the methods of [30]; in 
general terms it is best if higher harmonics of the funda- 
mental frequency wo are highly suppressed by H ( z ) .  As a 
further approximation we consider the problem in contin- 
uous time rather than discrete time, 

U ( t )  = C - A sin mot,  0 5 C < A .  

In Appendix C we derive a method to find the unknown 

It is shown in Appendix C that as a first-order approxi- 
mation, the nonlinear equations (23) are also valid for de- 
termining A and C when the quantizer is two bit or infinite 
bit, rather than one bit"; these quantizers are defined in 
the Appendix. This indicates that for interpolative mod- 
ulators with large-amplitude limit cycles, the quantizer 
resolution does not affect stability; the stability problem 
is intrinsically linked to the open-loop transfer function. 

Returning to one-bit quantization, Table I11 and IV il- 
lustrate the results for variations on the fourth order-mod- 
ulator (16) [ 5 ] :  In Table I11 we scale the pole moduli by 
a factor r ,  and in Table IV we instead scale the pole an- 
gles by a factor a. The tables show simulated and analyt- _ _  

constants A,  C, wo: The frequency wo is given by ,o 

[ - 180°, + 180"); therefore the expected limit cycle pe- 

It is found by simulation that using a two-bit or infinite-bit quantizer 
does not change the amplitude or the period of the resulting large-amplitude H ( e j w o )  = - l8O0 7 where the phase Of is reduced to 
limit cycles. 
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TABLE IV 

AND EXTREME VALUES FOR THE FOURTH-ORDER MODULATOR OF [5] 
SIMULATED AND ANALYTICAL RESULTS FOR LIMIT C Y C L E  PERIODS 

WITH ITS POLE ARGUMENTS SCALED BY (I, A N D  ITS POLE MODULI FIXED 
AT r = 0.99. THE CONSTANT INPUT IS CHOSEN TO BE THE 

SMALLEST INPUT RESULTING I N  A LARGE-AMPLITUDE LIMIT CYCLE 

GAIN A N D  GAIN MARGIN OF H ( z )  
IF THE INITIAL STATES OF H ( Z )  ARE ALL Z E R O .  ALSO SHOWN ARE THE DC 

LC Period LC Extremes 

U X Sim. Theor. k,, k,, Sim. Theor. 

1.2 0.7253 104 102 1459 124.5 +2100, -800 +20.50, -800 
1.0 0.7004 127 125 2845 2194 +3700, -1400 +3600, -1400 
0.8 0.6928 161 1.59 6248 4324 +7400, -2600 +7100, -2500 

ical results for limit cycle periods and extreme values; the 
constant input is in each case chosen to be the smallest 
input resulting in a large-amplitude limit cycle if the ini- 
tial states of H ( z )  are all zero. The predictions of the de- 
scribing function approximation are generally close to the 
observed amplitudes, and the approximation is better for 
poles close to the unit circle. 

We also show in Appendix C that for a given open-loop 
filter, the largest value of U ( t )  for any constant input, that 
is, the largest limit cycle amplitude equals 

This quantity is seen to only depend on the gain margin, 
not on the dc gain. Although the analysis is approximate, 
it does suggest the existence of a design conflict: On one 
hand the gain margin should be kept small to minimize 
limit cycle amplitudes and thus maximize system stabil- 
ity. On the other hand, a linearized system model suggests 
that the magnitude of the open-loop transfer function H ( z )  
should be large over all of baseband, including the fre- 
quency wo, so that the baseband noise suppression and 
thus the SNR are maximized [5]. In fact, we can use the 
dc gain as a rough indicator of the SNR, because the dc 
gain sets the level of the transfer function magnitude in 
baseband for interpolative modulators such as the one in 
[ 5 ] .  Within this setup, the tradeoff is between maximizing 
the dc gain and minimizing the gain margin. 

The tradeoff between stability and SNR performance 
can be explored in various ways. As an illustration we 
consider the following problem: For the fourth-order 
modulator with transfer function (16), how should the pole 
moduli of the open-loop transfer function be modified to 
maximize stability, given that only a certain degradation 
of SNR is acceptable? We consider k,, and kcM to be 
indicators of the SNR and maximum limit cycle ampli- 
tudes, because SNR depends approximately linearly on 20 
log,, kDC, and U,,, = 1.65 kcM. Let us call the modulus 
scaling factors for the lower frequency (LF) and higher 
frequency (HF) poles rLF and THF, respectively. For a 
given dc gain we do the optimization by choosing the pair 
(rLF, rHF) resulting in the smallest kGM subject to H(1) = 
kDC and TLF < 1. 

0.96 1 / I  
0.92 

0.90 
t I 

60 65  

Fig. 11. Figure showing the optimum pole modulus scaling factors for the 
fourth-order interpolative modulator 151. For a given DC gain, these scal- 
ing factors achieve the smallest gain margin. 

Fig. 1 1  shows the optimum scaling factors as functions 
of the dc gain; the main observation is that TLF and rHF 
remain close to 1 for moderate decreases in dc gain from 
the nominal 70.7 dB. In general the HF pole pair is scaled 
more than the LF one for a given dc gain. This is intu- 
itively understandable, since the oscillation frequency is 
close to the frequency of the HF pole. Therefore the most 
efficient way of reducing kGM is to increase the distance 
between the HF pole pair and where oo is the os- 
cillation frequency. Fig. 12 shows the tradeoff between 
kDc and U,,, = 1.65 kGM obtained by using the optimum 
scaling factors TLF and rHF from Fig. 1 1 .  As an example, 
if the designer is willing to sacrifice 6 dB of dc gain, the 
limit cycle amplitudes can be reduced from essentially in- 
finite to approximately 800. This is still a large number, 
but it can be remedied by equivalent scaling. This way 
the modulator will not be as heavily clipped as the origi- 
nal modulator, and due to the more stable design, it will 
be able to leave such saturation modes more gracefully. 

2)  Bounding the Amplitude: In Appendix A we have 
derived analytical upper bounds on limit cycle amplitudes 
for the double loop modulator. The idea is to divide tra- 
jectories in state space into two types of segments in time: 
Positive and negative ones as specified by the sign of the 
quantizer input. For each segment type we define a po- 
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LC amplitude 
c 

gain (dB) 

Fig. 12. Figure showing the best achievable tradeoff between DC gain and 
limit cycle amplitudes. Note the logarithmic axes. 

tential related to the maximum values that the state vari- 
ables can assume on the segment. We derive an upper 
bound on the potential obtainable on a positive segment 
as a function of the potential on the previous positive seg- 
ment; the bound is a monotonic function for all but very 
small values of the potential. We argue that an upper 
bound on the positive potential on any limit cycle could 
be found by considering all initial potentials for which the 
next potential can be as least as large: The largest such 
initial potential is the desired upper bound, because po- 
tentials exceeding the bound cannot recur and so cannot 
correspond to limit cycles. 

This technique does not immediately generalize to in- 
terpolative modulators. The main reason is that solutions 
to the difference equations are more involved for higher 
order systems. The idea of positive and negative segments 
can, however, still be put to use. In this section, we de- 
scribe a numerical way of finding upper bounds on limit 
cycle amplitudes, and present numerical results in agree- 
ment with the limit cycle results in Section IV-Bl. We 
first describe our method conceptually, then describe its 
numerical implementation and show resulting bounds on 
limit cycle amplitudes. 

Our approach is to focus directly on the quantizer input 
U,,, rather than a potential, for a given constant input X .  
Fig. 13 shows some possible trajectories {U, , }  as func- 
tions of time. We divide all trajectories into positive and 
negative segments characterized by the sign of U,, as be- 
fore, and consider the peak values assumed by the quan- 
tizer input in each positive segment." The basic idea is 
to derive an upper bound on the positive peak value as a 
function of the previous positive peak value. The fact that 
this function is not in general monotonic is a complicating 
factor compared to the double loop case, but as detailed 
below, it is still possible to use the function to find an 
upper bound on the positive peak value on any limit cycle. 

"The method can be generalized to multibit quantization, if a positive 
segment is understood to be a segment for which all U,, > M, where M is 
the smallest number for which Q ( M )  = I .  Negative segments are defined 
similarly. 

lc 0 

2331 

Un 

time 

Fig. 13. Some time sequences of the quantizer input { U , , }  for a given con- 
stant input X. Both peak at the value U,,,,, within the positive segment 
around time 0 .  U&,,, is the largest peak value of  all trajectories on the next 
positive segment. 

To be more specific, we define a parameter Upeak which 
physically denotes a peak value in the positive segment 
around time 0. In Fig. 13 a particular value, UpeakO, is 
used. For each value of Upeak, we consider all trajectories 
that have the following two properties: 

P1) At some arbitrary time n = 0, U0 = Upeak > 0. 
P2) Within the positive segment to which n = 0 be- 

longs, the trajectory peaks at n = 0. 
Both trajectories in Fig. 13 have these properties with 

the particular value Upeak = UpeakO. Let us follow all such 
trajectories forward in time until they reach their next 
positive segment, and register the largest value of U,,, de- 
noted by attained by any such trajectory. In Fig. 
13, a particular value u&,k = UfieakO is shown, assuming 
that none of the other trajectories with properties PI and 
P2 have a value of Ufieak exceeding UkakO. We can plot 
uk,k as a function of Upe&, and an example of this is 
shown schematically in Fig. 14. As follows shortly, it is 
not necessary for the plot to be monotonically increasing. 
Our approach only allows us to draw conclusions if there 
exists some value U,,,,, such that for all Upe,k greater than 
U,,,,,, Ukeak is less than Upeak, and for all Upeak less than 
U,,,,,, Ukak is less than U,,,,,; if in particular the plot in 
Fig. 14 is monotonically increasing, U,,,,, is always the 
intersection of the plot with the 45" line. Geometrically, 
the two requirements on the plot in Fig. 14 are that there 
exists some U,,,,, such that 

R1) For all Upeak > U,,,,,, the plot is below the 45" 
line. 

R2) For 0 I Upeak I U,,,,,, the plot is completely con- 
tained in the square (Upeak, Ukak) E [o ,  U",,,]*. 

If both requirements on the plot holds, we can conclude 
that U,,, is an upper bound on the amplitude of any limit 
cycle. This follows by contradiction: Assume that some 
limit cycle has a peak value Up& > U,,,,,. Then the series 
of peak values in the subsequent segments must be strictly 
decreasing as long as the peak values are above U,,, be- 
cause of requirement R1, and once the peak value is be- 
low U,,,, it can never again exceed U,,,,, because of re- 
quirement R2. In particular, the peak value can never 
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Upeak' 

4 
Upeak' + 

Umax 

Fig. 14. Stylized plot of the largest possible peak value as a function 
of the peak value Upeat at the previous positive segment. Also shown is the 
45" line. U,,,,, is an upper bound on limit cycle amplitudes. 

Fig. 15. Demonstration that Umax is an upper bound on limit cycle ampli- 
tudes. The trajectoly marked with arrows is a worst case scenario, because 
the peak values decrease as slowly as possible. In general, the plot of 
U &  versus U,,,, is an upper bound, obtained only bj one or a few trajec- 
tones. 

again reach Upeak. Therefore Up& could not correspond 
to a limit cycle. The process is illustrated in Fig. 15. 

This argument can be further refined. Consider the same 
approach as before, except that instead of observing the 
sequence {U,} on the next positive segment, we wait a 
fixed number s of positive segments. Specifically, 
now denotes the largest positive peak on the sth positive 
segment, and the s - 1 intermediate positive peak values 
are ignored. The exact same graphical technique of plot- 
ting u h k  against up& as in Fig. 14 will then yield an 
upper bound on Up& on any limit cycle, as shown in Ap- 
pendix D-1. Using a fixed number s > 1 of positive seg- 
ments in general produces better bounds than using s = 
1, as shown rigorously in Appendix D-2. Fig. 16 shows 
some actual upper bound curves for different values of s 
for a specific fourth order modulator, as described in more 
detail below. As seen, the curves tend to become flatter 
as s increases. 

We now outline a numerical implementation of the 
method for bounding limit cycle amplitudes. For a given 
constant input and each value of Upeak, we need to deter- 
mine u b k  so we can make a plot similar to Fig. 14. We 
must therefore find all the trajectories with properties P1 
and P2. For convenience, we express the system equation 
(1 8) as a scalar difference equation of the form 

N N c a,,,U,,-, = c X +  C b ,Q(U, - , - , ) .  (25) 
m = O  m = O  

The coefficients {a,}  and {b,} can be obtained directly 
from the denominator and numerator, respectively, of the 
open-loop transfer function H ( z ) .  Restating our goal, we 
want to find all trajectories of (25) subject to P1 and P2. 

Equation (25) is nonlinear and of order N + 1. If we 
consider the special case where all the N + 1 output bits 
used on the right-hand side of (25) are identical over some 
period of time, the equation reduces to an Nth order linear 
difference equation, 

N 

C a,U,-, = K 
m = O  

where the constant K depends on whether the segment is 
positive or negative.I2 We will limit our numerical tech- 
nique to trajectories with at least N + 1 positive bits di- 
rectly before each value of Upeak ~0ns idered . I~  This limi- 
tation appears reasonable for the modulators in question: 
For example, the fourth-order modulators investigated in 
Section IV-Bl have on the order of 30 positive bits before 
the positive peaks on their large-amplitude limit cycles. 

It is shown in Appendix D-3 that an explicit solution 
can be found to the simplified equation (26). The solution 
is valid over the positive segment to which Upeak belongs, 
and depends linearly on N arbitrary constants. Our goal is 
to select those trajectories that have properties P1 and P2, 
for a given constant input and a given peak value Up&. 
It is shown in Appendix D-3 that enforcing constraints P1 
and P2 reduces the number of degrees of freedom from N 
to N - 2 .  The constraints manifest themselves as linear 
equations in the arbitrary constants. To express the con- 
straints conveniently, trajectories are approximated by 
continuous-time curves. 

Conceptually, we can now generate a figure similar to 
Fig. 14 by maximizing Ubak over a sufficiently fine grid 
in the ( N  - 2)-dimensional space of arbitrary constants, 
for each value of Upeak and given constant input X. For N 
= 3 this task is relatively simple, because the maximi- 
zation is over a one-dimensional space. For N = 4 an 
example is given below. For larger N ,  more sophisticated 
search methods in the ( N  - 2)-dimensional space may be 
necessary. 

Since the figure analogous to Fig. 14 is generated en- 
tirely numerically, we have no information about the be- 
havior of the curve for values of Upeak which are not ex- 
plicitly investigated. However, if the curve satisfies 
requirements R1 and R2 up to some large value Ubi, > 

'ZIncidentally, on such segments the system behavior is determined al- 
most exclusively the {a , }  coefficients, that is, by the poles of H ( z ) .  The 
only effect of the {b,"} coefficients, that is, the zeros of H ( z ) ,  is to set the 
constant value K .  

I3The same argument can be made for N + I negatiLe bits. 



HEIN AND ZAKHOR: STABILITY OF SIGMA DELTA MODULATORS 2339 

Upeak' 

/ 
/ 

/ 

U,,,, we can at least make the following statement: No 
limit cycles with peak values in the range between U,,, 
and Ubi, can exist, that is, if limit cycles with amplitudes 
above U,, exist, they cannot be excited from trajectories 
with any peak value Upeak I &,g. As Ubig tends to infin- 
ity, U,,, becomes a guaranteed upper bound on ampli- 
tudes. 

To illustrate our technique, we consider the fourth-or- 
der modulator (16) with its pole moduli reduced by 2 % . 
The modulator has pole arguments w ,  = 0.02277, w2 = 
0.05498, and pole moduli rl = r2 = 0.98.  We consider 
a constant input of X = 0.70, so by Table I1 we know that 
a limit cycle with amplitude 1425 exists. If we choose the 
number of positive segments s in our method to be 10, we 
obtain the results shown as one of the curves in Fig. 16. 
We can satisfy requirements R1 and R2, at least up to Ubi, 
which was lo6 in our case, by choosing Ubeak = 1413. 
We conclude that no limit cycles with peak values be- 
tween 1413 and lo6 can exist; the upper bound 1413 is 
about 1 %  below the observed amplitude 1425 due to the 
continuous-time approximation made in Appendix D-3, 
and is thus in good agreement with the observed limit 
cycle amplitude. The flatness of the plot indicates that the 
modulator tends to a limit cycle with amplitude 1413 re- 
gardless of the initial peak value. The results suggest that 
the limit cycles shown in Table I1 are the ones with largest 
amplitudes, and are thus in agreement with the deriva- 
tions in Section IV-Bl . 

V .  SUMMARY AND CONCLUSIONS 

We have suggested a framework for stability analysis 
of EA modulators, and we have argued that limit cycles 
for constant inputs are natural objects to investigate in this 
context. We have presented the following analytical and 
approximate techniques to aid analysis and design of EA 
modulators : 

1) For the double loop modulator, we have presented 
a variation on a standard technique to determine the ex- 

istence and amplitudes of specific limit cycles. We have 
introduced a graphical state space approach which pro- 
vides intuition in itself, and used it to derive analytical 
upper bounds on limit cycle amplitudes in  a general, 
scaled double loop modulator with constant input. This 
led to a suggestion for improved design of scaling factors 
so as to maximize stability as well as a measure of SNR 
performance. Simulations indicated that the peak SNR of 
the resulting modulator is about 1-1.5 dB above that of 
another often used double loop modulator. and the dy- 
namic range is about 2 dB greater. 

2) For the interpolative modulator, we presented an- 
other variation on a Tsypkin-type method to determine 
existence and amplitudes of specific limit cycles. We used 
the describing function method to approximately quantify 
an inherent tradeoff between SNR performance and sta- 
bility, and used this to suggest a way of functional scaling 
which leads to as stable modulators as possible for a given 
acceptable degradation in SNR. We argued that remaining 
stability problems could be fixed with subsequent equiv- 
alent scaling. We also presented a numerical counterpart 
to the analytical derivation of upper bounds on limit cycle 
amplitudes for the double loop modulator. 

In concluding this work, we emphasize that there is 
more to be discovered about the important stability as- 
pect. Although our limitations of focus appear to produce 
useful results, further research and experiments are needed 
to strictly verify their validity; transient as well as possi- 
bly chaotic behavior may require attention. 

APPENDIX A 
UPPER BOUNDS O N  DOUBLE LOOP LIMIT CYCLES 

In this Appendix we derive the upper bounds stated 
without proof in Section 111-B. An outline of the proof is 
as follows: We divide the state space of pairs (U,,, V,,) into 
two half planes according to the value of Q (  U,,). Any tra- 
jectory, that is, any sequence of state variable pairs {(U,,, 
V,,)}, can be decomposed into a number of trajectory seg- 
ments over which the quantizer outputs are identical. A 
segment is referred to as positive or negative depending 
on whether the quantizer outputs all equal + 1 or - 1 on 
that segment, that is, on whether the segment lies wholly 
in the positive or negative half plane. In each half plane, 
the difference equations describing the modulator can be 
solved in closed form. Each segment defines a number, 
called the potential, which is preserved for all state vari- 
able pairs on that segment. The potential is referred to as 
the positive or negative potential depending on the seg- 
ment type; the potential itself can be defined so that it is 
always a nonnegative number. We derive an analytical 
expression for the minimum and maximum potential 
which can occur in one half plane as a function of the 
potential in the other. Using this information, we derive 
bounds on the positive potential as a function of the pos- 
itive potential on the previous positive segment, and sim- 
ilarly, we derive bounds on the negative potential as a 
function of the previous negative potential. 



2340 IEE 

1.  Potential Bounds 
We assume without loss of generality that the normal- 

ized constant input [ satisfies 0 I [ < 1. We also assume 
y > 1, that is, the internal stabilizing feedback is not too 
weak. The standard double loop modulator corresponds 
to y = 2.  The difference equations describing the nor- 
malized double loop modulator are 

1E TRANSACTIONS ON SIGNAL PROCESSING, VOL. 4 1 ,  NO. 7, JULY 1993 

Vn = Vn- I + 4E - 4Q(un>. (27) 

Consider a segment on which a number of quantizer out- 
puts are constant, Q(Uo)  = Q ( U J  = * * - = Q(U,> = a ,  
where a = k 1. Then the last equation in (27) yields 

The first equation in (27) yields 
n -  I .. . 

gy4 U,, = U, - n - a  + g C 
2 i = O  

This can be written 

Therefore the following nonnegative quantity, referred to 
as the potential, is preserved on a segment passing through 
the point (U,,, V,) in state space: 

Pa = 4 ( a  - E)U, + 
(28) 

We define the quantity 

When there is no possibility of confusion, we also refer 
to Q, as the potential. We now consider the transition from 
a segment characterized by the constant quantizer output 
a to the other possible quantizer output c = -a. If Q ( U n )  
= a and Q ( U , , + , )  = c ,  we have from (27) that 

gy4  U,,,, = U,, + gV,, - r , a  

The potential Pc on the segment characterized by the con- 
stant quantizer output c is thus 

4 

U,, + gV, - - a  
2 

We can isolate U,, in (28) and substitute it in (30). Rear- 
ranging the result, we find that the potential transition 
from quantizer output a to c obeys the law 

- (y + 1)2(a - ( ) ( c  - E ) ] .  (31) 

Consider the transition from a = + 1  to c = -1. The 
constraint a = Q(U,)  = + 1 implies that U,, > 0, and 
(28) therefore implies that V,, must lie in the interval 

2 

Vn E ( M I  - Q I ,  M I  + Q I )  (32) 

where M I  = ( E  + y - 1)4/2. The constraint c = 
Q(U,,+ = - 1 implies U,, I I 0, which by the first 
equation in ( 2 9 )  implies a bound on U, + gV,,. The state 
variable U,, can be isolated in (29), so the bound on U, + 
g V,, can be expressed in terms of V,, and P I  or equivalently 
Q,. This bound is 

Vn @ (M2 - Q I ,  M2 + QI) (33) 

where M2 = ( - E  + y + 1)4/2.  For a given P I  or Q , ,  
we will derive upper and lower bounds on the achievable 
P P I  on the negative segment following the positive one. 
We must therefore consider all values of V, that satisfy 
both (32) and (33), and find the value which results in the 
minimum and maximum values of (V,, - y+E / 2 ) 2  in (3 1 ) .  
As M2 - M I  = (1 - E)c$ > 0 and the intervals in (32) 
and (33) have the same length, there is no value satisfying 
(32) for which V,, 1: M2 + Q, + 1. Therefore (33) re- 
duces to the bound V, I M 2  - Q , .  This upper bound is 
weaker than the upper bound V, < M I  + Q, in (32) if 
and only i f 0  5 Q, 5 ( M 2  - M , ) / 2  = (1  - 4 ) 4 / 2 .  The 
lower bound V,, > M I  - Q,  in (32) is always below both 
upper bounds M I  + Q,  and M2 - Q,. Thus 

Mi - QI < V n  < M I  + QI 
for 0 I Q, I (1 - [)4/2 

MI - QI < V n  I M2 - QI 
for(1 - t;)4/2 < QI 
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and so to use the weaker bound 

forO I Q, I (1 - .94/2 

for(1 - 0 4 / 2  < QI 
where N1 = MI - y 4 c / 2  = (y - 1)(1 - g)4/2  > 0, 
N2 = M2 - y4[/2 = (y + 1)(1 - [ ) 4 / 2  > NI.  When 
both the lower and upper bounds on V, - y4Lj/2 are 
positive, the square of these bounds are the lower and up- 
per bounds on (V, - ~ + $ / 2 ) ~ ,  respectively. When both 
the lower and upper bounds on V,  - y+E / 2  are negative, 
the square of these bounds are the upper and lower bounds 
on (V, - ~ 4 4 / 2 ) ~ ,  respectively; note the reverse order. 
When the lower bound on V,  - y 4 [ / 2  is negative and 
the upper bound is positive, as is the case for NI < Q, < 
N 2 ,  the square of the bound with largest absolute value is 
the upper bound on (V,  - y4E /2)2, and the square of the 
other bound on V, - y44 / 2  is the lower bound on (V,  - 
~ + t / 2 ) ~ .  To summarize, 

(NI - < (V, - y4t/2I2 < (NI + 

where we have defined N-2 = (y + 1)(1 + E)4/2, anal- 
ogously to the definition of N2. Note that N2 + N P 2  = 
4(y + 1) .  For future use, we also define N - ,  = (y - 
1 )  (1 - C;)4/2 < N P 2 .  Inserting each of the upper bounds 
on ( V ,  - ~ 4 4 / 2 ) ~  < (NI + from (34) in (31), we 
arrive at the following upper bounds on Q -  , as a function 
of Q,: 

Q-I  < J[Qi + 4 ( y  - 1)12 + 2 4 * ~ ( 1  + E )  
forO I Q,  I ( 1  - 5)4/2  

Q-I < 4 ( ~  + 1) - QI 
for(1 - E M / 2  < QI I ( N I  + N2)/2 

Q-, < ~ [ Q I  + 4(y - 1)12 + W 2 y ( 1  + E )  
for (NI + N 2 ) / 2  < Q, .  

For our purposes, it is sufficient to use the weaker bound 

Q-, < 4 ( y  + 1)  - Q, forO I QI I (NI + N2)/2 

for (1 - E)4/2 < Q,  I NI Note that the second bound on Q- in (36) is always above 
4 (y + 1) - Q, in its interval of validity. For the potential 
transition from a = - 1 to c = + 1, we can similarly de- 
rive upper and lower bounds on the positive potential as 
a function of the negative potential on the previous neg- 
ative segment. The results analogous to (35) and (36) are 

0 I (V, - y45'/2I2 s (N2 - 

for NI < Q, I (NI + N2)/2 

0 I (V, - y4E/2I2 < (NI - 

for NI + N2)/2 < Q, I N2 QI I N 2  

Q, 2 4(y  + 1 )  - Q-, 

forO I Q-, I N P 2  

f o r X 2  < Q-,  5 4(y  + 1) (N2 - QI) 5 (V, - ~ 4 4 / 2 ) ~  < (NI + Q112 

for N2 < Q,.  (34) Q, 2 0 for+(? + 1 )  < Q - I  (37) 

Inserting each of the lower bounds on ( V ,  - 744 / 2 )2  < 
(NI + in (31), we arrive at the following lower 
bounds on Q - ,  as a function of Q,: 

The lower bound on Q-, is a decreasing function of Q, 
for 0 I Q, I 4(y + 1). For our purposes, it is sufficient 

and 

QI < 4 ( ~  + 1) - Q - I  
for 0 5 Q, I (XI + N-,) /2  

Note that the second bound on Q, in (36) is always above 
4(y + 1) - Q-, in its interval of validity. We now con- 
sider a trajectory as it goes from a positive segment over 
a negative segment back to a positive segment. We call 
the potentials on the two positive segments QYld and 
QTw, respectively, and the potential on the intervening 
negative segment QYi;. We can find upper and lower 
bounds on QYw as a function of by using the bounds 
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(35)-(38). The lower bound on Q ,  in (37) is nonincreas- 
ing, so the lower bound on QFw corresponds to choosing 
QTi: as large as possible as a function of in (36). For 
0 5 I ( N I  + N 2 ) / 2 ,  the upper bound +(y + 1) on 

is between N-2 and 4 ( y  + I ) ,  so QYw is upper 
bounded by Qpid. For QYld > (NI + N2)/2,  we must use 
a different upper bound on QYid in (36). This upper bound 
is below NP2 if and only if 4 I - 1 + 8 y / ( l  + Y ) ~ ;  note 
that 0 I - 1  + 8 y / ( l  ,+ y)2 < 1 for y > 1 .  Similarly, 
the upper bound on Q?;" is above 4(y + 1) for 

Q, 2 - 1) + 4Jy2 - ~ ' V E  + 1 

which always exists for 0 I t; < 1. To summarize, we 
find that 

QYw > Q:ld 

QYw > min { N 2 ,  +(y + 1) - K , }  

forO I Q;Id 5 (NI + N2)/2 

for (NI + N2)/2 5 QYd I N3 

QYw 2 0 forN, < (39) 
where we have defined 

N3 = +(y - 1) + 4 J y 2  - 2yE + 1 

and 

KI = J[Q:ld - +(y - 1)12 + 2 4 2 y ( l  + 4 ) .  
The upper bound on QYw as a function of Q:Id is found 
in a similar way. The upper bound (38) on Q;"" as a func- 
tion of Q'YY is decreasing for 0 I Q!': I max { y (1 + 
C;)4/2, (y - 1)4}, andincreasing formax { y ( l  + { ) 4 / 2 ,  
(y - 1)4} 5 Q!':, so for a given interval of possible 
values of Qmlf, the largest value of QYw always occurs at 
one of the endpoints of the interval. We first consider the 
ways in which we can get QYw 2 for > N2. 
For > +(y + l ) ,  choosing the lower bound on 
Q?': in (35) will not work, because the largest possible 
value of Q;"" for Q?': = 0 is 4(y + 1). For (y - yt + 
2)4/2  < QPd I +(y + l ) ,  the lower bound 4(y + 1) 
- QYId on Qm?, is below ( N - ,  + NP2)/2,  so the resulting 
largest Q;"" is less than 5 (y - yE + 2 ) 4 / 2 ,  however, the lower bound on Q?': is above 
(N-I + N - , ) / 2 ,  and so by (38), it is possible to get a 
value of Q;"" above QFd. We can also attempt to get 
QTw L by choosing the upper bound on e'!!': in ( 3 9 ,  
and use that value of Q Y f  in (38) to find the largest value 
of QYw achievable in this way. It can be shown that in 
this way, we can achieve QYw 2 

For N 2  < 

if and only if 

We then consider the interval (NI + N2)/2 I Qq'" I max 
{ B , ,  B2} where we have defined B2 = (y - + 2)4/2 .  
The lower bound on the corresponding interval for e'!!': 
is achieved at Q;ld = max { B I ,  B 2 } ,  because the lower 
bound on Q?': is a nonincreasing function of Q:Id. The 
upper bound on the corresponding interval for e'!!': is 
achieved at either = niax 
{ B i ,  B 2 } .  In the former case, inserting Q?': = (y + yE 

= (NI + N2)/2 or at 

+ 2)4/2  I ( N - ,  + N-,)/2 in (38) yields the upper 
bound 

Q$" 5 416 + y2(1 - E)2 * - 4 A  = B3 
2 

for (NI + N2)  /2  I Q:Id I max { B , ,  B 2 } ,  and in the latter 
case, we know from above that QY': I max { B , ,  B 2 } .  

Finally, consider the interval 0 I Q:Id < (NI + N 2 )  /2 .  
For a given QYId in this interval, the possible interval for 
e'!!: according to (35) and (36) is a superset of the pos- 
sible interval for QYit at = (N, + N 2 ) / 2 .  Therefore, 
the largest achievable value of Q;"" for a given QFd is the 
maximum of CI A max { B l ,  B2, B3} and the value we get 
by choosing the upper bound for QTif in (36) and the cor- 
responding upper bound for QFw in (38). To summarize, 

5 max {c,, JQY'~ - 2412 + 242y(1 - 4 ) )  
forO I Q:Id I y ( l  - 4')4/2 

QTw 5 C ,  f o r y ( 1  - t ) 4 / 2  < I C, 

For the potential transition from a quantizer output of - 1 
over + 1 back to - 1, we can similarly derive upper and 
lower bounds on the potential on a negative segment, 
QYY, as a function of the potential on the previous neg- 
ative segment, Q!:. The results analogous to (39) and 
(40) are 

QYw > Q?!: 

QEY > min { N P 2 ,  +(y + 1) - K-1) 

for 0 I Q?: I ( N - I  + i K 2 ) / 2  

for ( N - ,  + N-,)/2 I Q?: I N3 

QYY 2 0 forN-3 < Q?!: (41) 

where we have defined K 3  = 4 ( y  - 1) + 
+ J y 2  + 2yE + 1 and 

K - ,  = J[Q!: - 4(y - 1)12 + 2 4 2 y ( l  + E) 
and 

Q - ,  new I max {c-,, JQ!: - 24)' + 242y(1 - 

forO 5 Q?: I y ( l  + E)+/2 

QY: I C-, f o r y ( 1  - ,$)4/2 < Q?!: I C-, 

Q Y y  I Q!: for C-, < Q!:. 

where we have defined 

B - ,  = - (y - 1)(1 + E) + - + (  2 7 - 1  2y ) 
B-  - - 4 (y + yE + 2), B-, = !!? J16 + y2(1 - 

2 - 2  2 
and C-, = max { B - i ,  B P 2 ,  B P 3 } .  We now show that on 
any limit cycle, the positive potential is bounded by Q,  
I CI and the negative potential is bounded by Q - ,  I 
C- I .  Consider first the positive potential, and suppose that 
a positive potential Ql = A ,  > C, is the largest positive 
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potential occurring on a limit cycle. The limit cycle must 
also contain a positive potential A ,  for which the upper 
bound on Q;"" in (40) equals A ,  when = A 2 .  Equa- 
tion (40) shows that A, cannot be between y (1 - [)4 /2  
and C , ,  because Q;"" I CI in this interval of Nor 
can A, be above C , ,  because QYw < when Q:Id > 
C , ,  so A2 would have to be above A , ,  and we have as- 
sumed that A ,  is the largest positive potential occurring 
on a limit cycle. Therefore A2 must be between 0 and 

To get A ,  > C,, the negative potential QYi; generating 
QT" = A, must be above B - , .  We define D-, to be the 
smallest negative potential eri," exceeding B- I such that 
the next positive potential Q;"" can reach A , .  Since we 
must have Q:Id I y(1 - ( )9 /2 ,  the largest value of 
Q:Id for which QY" = A ,  is achievable, must satisfy 
I q5(y + 1) - D-,, so in particular, A2 I 9(y  + 

1) - D-,. We will now show that such values of Q:Id 
could in turn only be generated by values of Q, that ex- 
ceed A l ,  thus violating the assumption that A ,  is the larg- 
est occurring positive potential. 

To see this, consider (41). To generate a positive po- 
tential QY" I y(1 - 5)9/2 ,  the previous negative po- 

Y(1 - E)@. 

potential above y(1 - 4')9/2, the same positive potential 
must also exceed A I . This violates the assumption defin- 
ing A , .  Alternatively, a negative potential exceeding 4 (y 
+ 1 )  - QY" may be generated for a positive potential 
QYd below y(1 - [ )9/2;  however, we must then also 
have Q:Id < Q;"". Using the same argument on Q P  and 
going backwards in time by another positive segment, the 
previous positive potential must either exceed A ,  or be 
below Q:Id. On the other hand, A ,  is assumed to be a 
positive potential on a limit cycle, so the positive poten- 
tial A ,  must recur with a periodicity that corresponds to a 
finite number of positive segments. Therefore, going 
backwards in time by a sufficiently large number of 
positive segments must result in the positive potential A ,  
> y(1 - 5)4/2  by assumption. This establishes a con- 
tradiction, showing that A ,  > C, cannot be a positive po- 
tential on a limit cycle, and that C ,  = max {B, ,  B2, B3} 
is an upper bound on positive potentials on limit cycles. 
A similar argument shows that C-, = max { B - , ,  B-,, 
B-3} is an upper bound on negative potentials on limit 
cycles. 

The potential bounds can be written in more detail as 
follows: 

3 
< y l -  for 1 + - 2 2Qi 

- 5 1 416 + y2(1  - 
9 1 + E  1 - E  

3 
for - 

1 - p - Y  

tential must satisfy Q?: > r$(y + 1) - QYw 2 (y + y4 
+ 2)+/2. We are trying to generate a positive potential 
QY" 2 +(y + 1) - D-,, so the previous negative po- 
tential must satisfy > D- , . If such a large negative 
potential is generated by a positive potential exceeding 
y (1 - 5)9/2,  the negative potential must also exceed B ,  ; 
we define D,  to be the smallest positive potential Qfld for 
which the next negative potential QYif equals D- I . Now 
D1 > B l ,  and QPId = D1 maps into QYif = D-, using the 
upper bound in (36), and QTi: maps into QYw = A ,  using 
the upper bound in (38). Therefore D, > A , ,  proving that 
if the negative potential D-, is generated by a positive 

2 .  State Variable Bounds 
In this section we use the potential bounds (42) and (43) 

to derive bounds on the largest absolute values of the state 
variables U,, and V,, on limit cycles for the double loop 
modulator. 

The definition of the potential (28) shows that for a 
given potential Pa,  the largest absolute value of the state 
variable U,, occurs when V,, = ( E  + a(y  - l ) )4 /2  and 
equals P, / (+la  - E l ) .  We must consider both the nega- 
tive and the positive potential in order to arrive at an up- 
per bound on the absolute value of U,,. We find the fol- 
lowing result: 

I \ 16 + y2(1 - E)2 4g 
I 1 - E  
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where and the transfer function between the z transforms of the 
I noise and output sequences is 

An upper bound on the absolute value of V, on limit cycles 
can be found as follows. The state equation (27) for V, 
shows that on negative segments V, increases, while on 
positive segments V, decreases. Furthermore, V, de- 
creases when making a transition from a negative to a 
positive segment, and increases when making a transition 
from a positive to a negative segment. Therefore the larg- 
est positive value of V,  is bounded by the largest positive 
value of V, on a negative segment. The definition of the 
potential (28) shows that this value equals ( 4  - y + 
1)4/2 + Q - , .  Similarly, the negative value of V,, with 
the largest absolute value occurs on a positive segment, 
and this absolute value equals -(E + y - 1)4/2  + Q , .  
Choosing the largest of these two absolute values for V,, 
yields 

((Y + 114 + 3 

(47) 

If the scaling factors are chosen such that the poles of the 
transfer functions are safely out of baseband, the base- 
band transfer functions are approximately given by 

(49) 

From (48), the noise shaping function of the modulator is 
seen to be preserved if the approximation leading to (48) 

2 
for1  < y l  1 +- 

1 + E  (45) 

The derived bounds are only upper bounds for two rea- 
sons, both related to the discrete nature of the modulator: 
First, the trajectories in state space may not go through 
the parabola extremes specified by the potentials. Second, 
it is in general not possible for a trajectory to attain the 
maximum negative potential P-  I for a given positive po- 
tential p , ,  and subsequently to obtain the maximum PI for 

is valid. From (49), the product gG adjusts the amount of 
baseband noise suppression, and hence we will use this 
product as an approximate measure of SNR to be maxi- 
mized 

2. Design Tradeqf 
that P -  

APPENDIX B 
DESIGN OF DOUBLE LOOP MODULATOR 

I .  Approximate SNR Measure 
We will show that the product gG is an approximate 

measure of the SNR performance of the double loop mod- 
ulator. Consider a linearized model of the double loop 
modulator in which the quantizer is viewed as an inde- 
pendent noise source. l 4  The transfer function between the 
z transform of the input and output sequences, X ( z )  and 
Y ( z ) ,  is then 

- gGz-' - 
1 + (gb + gGB - 2 ) ~ ~ '  + (1 - gb)Z-2' 

1 
B 

Hx(1) = - 

To perform the design optimization presented in Sec- 
tion 111-B2, we will consider E and y to be the two inde- 
pendent variables. Our optimization must take into ac- 
count the validity regions of the different bounds in (44) 
and (45), but we first perform some general manipula- 
tions. Let us denote the upper bound on 8Un/(4g) in (44) 
by h l  ( E ,  y), and the upper bound on 2Vn/4 in (45) by 
h2(E, y). The constraint V,,, implies that 

2L 

where we have used the constraint B = L/(1 - E ) .  The 
constraint U,,,,, = L implies that 

g =  

Therefore the product gG equals 

% ( E ,  Y) 
4hl(k, 7) hI(t;,  Y) . 

-- - 
8L 

Maximizing the product gG for a fixed value of E with 
respect to y is equivalent to minimizing h~ ((, 7). Equa- 
tion (44) shows that for y > 1 + 2 / (  1 -t E ) ,  hl ( E ,  y) is 

I4For the purposes of the present discussion. we need not make the as- 
sumption of white noise. but an assumption of independence is implicit, 
As is well known, these assumptions are in many respects inadequate 1171. 
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an increasing function of y. Therefore it is advantageous 
to choose y as small as possible, that is, y = 1 + 2/ (1  
+ t ) ,  given that y cannot be below that value. But we 
still need to consider the range 1 < y I 1 + 2 /( 1 + t ) .  
We can show that h ,  ( E ,  y) has a minimum at 

y = 1 + J 2 / ( 1  - t )  
which is below 1 + 2/ (1  + E )  for 0 I E < & - 2 = 
0.23. Therefore the optimum choice of y is 
I 

where 5 is understood to be the largest constant normal- 
ized input for which we design. We want to maximize the 
largest unnormalized constant input X = Bt, that is, 

which is equivalent to maximizing t .  However, we also 
want to optimize the performance product gG which de- 
pends on E directly as well as through y and (50). It can 
be shown that setting 

y = 1 + J 2 / ( 1  - t )  

results in the product 

whose only extremum between 0 and 1 is a maximum at 
= 0.3611 > h - 2, so for 0 5 y I 1 + m, gG is an increasing function of [, and within 

the range 0 I 4 I 6 - 2, the upper limit on 4 is op- 
timal. For t > & - 2, we find that 

(53) 

whose only extremum between 0 and 1 is a rather broad 
maximum at = J28 - 5 = 0.2915. Fig. 17 shows the 
product gG as a function of 4 ,  taking into account the 
ranges of validity of (52) and (53). The figure also shows 
X/L from (51) which measures the designed dynamic 
range. As a tradeoff between the conflicting requirements 
of maximizing the dynamic range and maximizing the ap- 
proximate performance measure, we choose t = 0.5 in 
Section III-B2, which leads to 

2 
1 + t  

y = 1 + - = 2.33, 

0.2 1 

O . ' I  ,I 

Fig. 17. The product gG is an approximate measure o l  the SNR perfor- 
mance. The dynamic range is the range of constant inputs permissible ac- 
cording to the design. These are shown as a function of the constant nor- 
malized input (,,,,,. 

The corresponding physical scaling factors are 

L B = - -  - 0.667L, 
1 + t  

(54) 

which results in a maximum permissible constant input of 
X = BE = 0.333L, and a performance product of gG = 
0.346. The main result of the appendix is thus that (54) 
dictates the choice of the scaling factors for a given clip- 
ping level L. 

APPENDIX C 
DESCRIBING FUNCTION METHOD 

Consider the setup of Section IV-B1. It can be shown 
that the dc component and first harmonic of Q(U(c) )  equal 

6 74 
B 2 

G = - = 0.643, b 1 - = 0.500L 

( 5 5 )  
If the frequency wo is chosen such that L H ( ~ ~ " ' )  = 
- 180", and if furthermore all higher harmonics of wo are 
neglected, we find that the assumption U ( t )  = C - A sin 
(wet) is consistent if and only if 

/ ,-I r \  

where we have introduced the dc gain k,, = H(1) and 
the gain margin kGM = IH(ej"o)I. It is convenient to in- 
troduce the new variable 

2L 
= 0.429L. 

(Y + 1)t + 3 
4 =  
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.......................................... i 
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I !  

implying 

C 
- = m, C 2  = A2(1 - D2) .  (57) 
A 

Using this and the fact that arcsin t = arccos J m ,  5 8 1  
(56) becomes 

(58) 
The latter equation can be solved numerically for D ,  but 
insight can be gained from a graphical representation. Fig. 
18 shows the left- and right-hand sides of (58), termed 
LHS and RHS, as functions of D; the specific value used 
for g corresponds to the fourth-order interpolative modu- 
lator of [5] with its pole moduli scaled by 0.98, while the 
constant input is chosen to be X = 0.7.  The constant C is 
proportional to the LHS, with proportionality constant 
4kGM/a. It can be shown that the LHS reaches its maxi- 
mum value 1 /2 at D = &/2, and that for any 0 5 X < 
1 ,  g > 0, the RHS and LHS have a unique intersection 
point between 0 and 1 .  The latter fact follows from the 
observation that the RHS is only positive for cos (aX/2) 
< D I 1 ,  and in this interval the derivative of the RHS 
with respect to D always exceeds the derivative of the 
LHS. 

r 

Fig. 18. Figure showing the left and right-hand sides of (58). 

occur at D = h / 2 ,  and the resulting maximum value of 
U,, is 

3 h  
U,,,,, = maX ( A  + c) = - kGM 5 1 . 6 5 k ~ ~ .  

X a 

Finally, we consider the case of multibit quantization. 
Specifically, let a two-bit quantizer be defined by 

\ - I  for U I -;. 
It can be shown that - 

+ . . .  

From the figure and (57), (58) we observe that for X = 
0, the constants are given by D = 1, C = 0, and A = 
4kGM/a 5 1 . 2 7 k G M .  As X increases, C increases while 
D and A decrease; as D passes &/2, the LHS and C 
begin to decrease along with A .  In terms of limit cycle 
amplitudes, this has the following interpretation: There is 
a value of X between 0 and 1 which maximizes the am- 
plitude. This is confirmed by Table 11. Changing the open- 
loop transfer function such that kGM decreases will in- 
crease g,  which decreases D and A ;  the effect on C de- 
pends on the particular value of D. 

We next find the largest limit cycle amplitude that can 
occur for a given open-loop transfer function and a con- 
stant input 0 I X < 1 .  We observe that A and C are 
proportional to the abscissa and ordinate of the LHS curve, 
respectively, and that in both cases, the proportionality 
constant is 4kGM/lr. The maximum sum of D and 
D m  subject to 0 I D I 1 can easily be shown to 

- 

(59) 
To first order in 1 / A  and 1 /C, it can be shown that (59) 
reduces to 

Q2(C - A sin (wet)) 

2 
lr A a  

which is identical to (55). This implies that if the solution 
to (56) for the one-bit quantizer has large values of A and 
C, then approximately the same solution is valid for the 
two-bit quantizer. 

In the limit as the number of bits in the quantizer goes 
to infinity, the quantizer approaches the saturation char- 
acteristic 

+1 for 1 < U 

U for - 1  I U I 1 

- 1  for U < - 1 .  
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It can be shown that 

c +  1 C + l  Qm(C - A sin (wet)) = arcsin (A) - - 
A 

To first order in 1 / A  and 1 /C, it can be shown that (60) 
reduces to (55). This implies that if the solution to (56) 
for the one-bit quantizer has large values of A and C, the 
approximately the same solution is valid for a quantizer 
with infinitely many bits. 

The conclusions for the two-bit and infinite-bit quantiz- 
ers show that if a modulator with a one-bit quantizer has 
large-amplitude sinusoidal limit cycles, then the modu- 
lator will have the same stability problems even with mul- 
tibit quantizers. 

APPENDIX D 
PROOF OF STATEMENTS IN SECTION IV-B2 

1 .  The General Case s > 1 
We want to show that using the outlined technique with 

s > 1 positive segments produces an upper bound on limit 
cycle amplitudes. This can be seen by considering a limit 
cycle with amplitude UpeakO, and dividing it into positive 
segments. Say that the peak value Up&O occurs every t 
positive segments. It we start at time zero with a peak 
value of Up&,) and go through any multiple of t positive 
segments, the peak value UbakO must again be UpeakO. This 
is true in particular for traversing sr positive segments. 
Consider on the other hand a plot of the form in Fig. 14, 
only modified by waiting s positive segments rather than 
only one, before registering versus Upeak. If UpeakO 
is greater than U,,,, then all subsequent peak values after 
multiples of s positive segments must be below UpeakO. 
This holds in particular after st positive segments. Putting 
together the two statements on the peak value after st 
positive segments, it follows that U,,, in the modified fig- 
ure is an upper bound on limit cycle amplitudes as as- 
serted. 

2. Bounds with s > 1 Are Tighter 
In general, if one value of U,,, satisfies requirements 

R1 and R2, then all values U > U,,, also satisfy the re- 
quirements. Let U,,,@) denote the infimum of all the 
possible values of U,,, in the two requirements, for a 
given value of s. We want to show that if s > 1, U,,, (s) 

Let us denote the peak values in Fig. 14 by Upe.&) 
and u,&,k(s) for a given value of s. Let us further intro- 
duce the functionf, for the curve in the figure, u,&,k(s) = 

f 7  ( Upeak). The maximum value U,,, (s) is uniquely deter- 

I u m a x ( 1 ) .  
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(60) 

mined by f , .  Consider first any U > U",,,(l); clearly, 
f l  (U)  < U. Iff i  ( U )  > U,,,(l), any trajectory with ini- 
tial positive peak value will have all subsequent peak val- 
ues below f l  ( U ) .  In particular, the trajectory that corre- 
sponds to the point ( U ,  f s ( U ) )  in the plot offs, must have 
f , ( U )  < U. If instead5 ( U )  I U,,,(l), then any trajec- 
tory with initial positive peak value U will have all sub- 
sequent positive peak values P U,,,(l). In both cases, 
f 7 ( U )  I U ,  so requirement R1 for& is satisfied with U,,, 
= U,,, (1).  Consider next any 0 5 U I U,,,. No trajec- 
tory with this initial peak value can ever exceed U,,, (1). 
In particular, the trajectory corresponding to the point ( U ,  
f ,  ( U ) )  must havef, (U) I U,,, ( I ) ,  so requirement R2 for 
f ,  is again satisfied with U,,, = U,,,(l). Since Umax(s) is 
defined as the infimum of all possible values of U,,,, we 
have shown that Umax(s) I U,,,(l) for s > 1. 

3. Solution to SimpliJied System Equation 
If H ( z )  has a pole of order 1 at dc, a particular solution 

to (26) is of the form = ken' where we solve for ko 
by inserting in (26).15 If H ( z )  has no poles at dc, 
the particular solution reduces to a constant. The solution 
to the homogeneous equation obtained by setting K = 0 
is determined by the poles of H ( z ) .  Assume for simplicity 
that N is even, that all poles are simple with nonzero 
imaginary part, and denote them by { p m r  Pm = rmekJwm: 
1 5 m I N/2) .  The homogeneous solution can then be 
written 

N / 2  

Uu,hom = c r i { k m  cos (w,n) + 1, sin (wmn)}  (61) 

where { k m ,  1,: 1 5 m 5 N / 2 }  are N arbitrary constants. 
The complete solution to (26) is then 

m =  I 

= Un,pan + Un,hom. (62) 
We can find the trajectories with property P 1 by enforcing 
the linear constraint U, = Up& on the arbitrary constants. 
To find a necessary condition for property P2 to approx- 
imately hold, we consider the continuous-time function 

U ( t )  = ko + C r i  { k ,  cos (w,,,t) + L,, sin (wmt ) } .  
N / 2  

m =  1 

(63) 

fact, k,  = (X - I ) H ( I )  < o for positive segments, k ,  = (X + 
l ) H (  1)  > 0 for negative segments 
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We can obtain another linear constraint on the arbitrary 
constants by setting the derivative of U ( t )  at t = 0, U’ (0) 
to zero.I6 To check whether property P2 holds for a 
trajectory with arbitrary constants satisfying both linear 
constraints, we must then check whether the trajectory ac- 
tually attains its segment maximum at n = 0, rather than 
having a minimum, a local extremum or an inflection 
point. This check is done by running the difference equa- 
tion backwards and forwards in time form n = 0 until U,, 
5 0. 
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