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Optimal Decoding for Data Acquisition Applications 
of Sigma Delta Modulators 

Sgren Hein, Member, IEEE, and Avideh Zakhor, Member, IEEE 

Abstract-We propose a class of optimal decoding algorithms 
for data acquisition applications of sigma delta (CA) modula- 
tors. Our technique is applicable to all current CA structures, 
including single and double loop, cascade, and interpolative 
modulators. While the performance of our technique is iden- 

sampling ratio (OSR) [ 11. We emphasize that a different 
definition of OSR is in use for A modulators operating 
On dynamic inputs [11, and that in papers On dy- 
namic inputs [21-[5] are not directly comparable to results 

tical to that of other optimal nonlinear decoding schemes such 
as table lookup, it is considerably simpler to implement. Nu- 

in this paper. 
In [61, [71 we decouDled a given CA modulator into its 

~~ _ .  
merical results are presented to compare the performance of 
our decoding technique to that of linear decoders. Effects of 
circuit imperfections on performance are also examined. 

encoder and decoder a i d  investigated the encoder 
separately. The idea was to view the encoder as a source 
coder or nonuniform quantizer, dividing the dynamic 

I. INTRODUCTION 
IGMA delta (C A) modulators as analog-to-digital 

s ( A I D )  converters have received considerable attention 
from the signal processing community. Their attraction 
lies in the tradeoff provided between sampling rate and 
resolution of the in-loop quantizer-specifically , they can 
achieve the same or higher resolution as multibit quantiz- 
ers operating at the Nyquist rate by employing a low-res- 
olution quantizer operating at many times the Nyquist 
rate. In practice, the low-resolution quantizer is usually 
one-bit because of its ease of implementation and the in- 
herent linearity of the two levels. 

CA modulators generally require fewer and simpler 
components than comparable converters of different types, 
and are robust against circuit imperfections. Furthermore, 
they obviate the need for stringent analog antialiasing fil- 
tering, and relegate the strict processing demands to the 
digital domain. They are thus attractive for VLSI imple- 
mentation of relatively low-bandwidth signal processing 
applications, such as speech and audio. 

In this paper we investigate the application of C A  mod- 
ulators to data acquisition. The particular setup we con- 
sider for a conversion cycle of the CA modulator is the 
following: All initial encoder states are set to zero, and 
the encoder is run for N cycles with constant input. The 
resulting N-bit output sequence is fed to a decoder whose 
task is to estimate the input. N is referred to as the over- 
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range into intervals separated by transition points, with 
each interval corresponding to a distinct N-bit output se- 
quence. It was shown that for fixed initial encoder states, 
only a small fraction of the 2N possible N-bit sequences 
can appear at the output, as the constant input is swept 
over the dynamic range; these sequences will be referred 
to as codewords. The optimal performance in terms of 
minimizing the mean squared error (MSE) is achieved by 
a decoder that takes a codeword as its input, and outputs 
the midpoint of the corresponding interval.' Such a de- 
coder is nonlinear: It exploits the specific bit patterns, 
rather than a frequency domain representation of them, to 
arrive at optimal estimates of the input. 

The optimal decoder could in principle be implemented 
using a table in the form of a programmable logic array 
(PLA). In practice this is not feasible, as the table would 
be prohibitively large. Here we present a general and sim- 
ple technique, called zooming, for optimal decoding [8]. 
We compare the performance of the zoomer to linear de- 
coding under ideal circumstances in Section 11, and in the 
presence of various circuit imperfections in Section 111. 
The encoder structures we consider include the single 
loop, double loop, two stage noise-shaping (MASH) and 
interpolative encoders. 

11. OPTIMAL DECODING UNDER IDEAL CONDITIONS 
This section presents algorithms for optimal nonlinear 

decoding of the output of various CA encoders, including 
the single and double loop, the two stage MASH, and the 
interpolative encoders. All elements of the encoders are 
assumed to function ideally; nonidealities are considered 
in Section 111. A summary of the performance results are 
shown in Table I. Throughout the paper we make the fol- 
lowing assumptions: 

'This is only strictly true if the random variable X is uniformly distrib- 
uted on the dynamic range D. It holds in the limit as N + m if X has a 
smooth probability density function. 
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Fig. 1. Discrete-time model of the single loop C A  encoder. 

1 )  One-bit in-loop quantizer, given by 

- b  i f U s  0 

i f U > O  

where B = ( -b ,  +b) is the full dynamic range, b is a 
constant, and U is the quantizer input.2 

2) Known initial encoder states. In fact, we assume for 
convenience that these are all initialized to zero before the 
encoder is started. 

3) Constant input. The input X is assumed to be a ran- 
dom variable that takes on constant values in the dynamic 
range D C B .  The assumption is made because we are 
focusing on data acquisition applications in which inputs 
can be assumed more or less constant. In practice, the full 
dynamic range B is seldom used. One reason is to avoid 
the possibility of exceeding the dynamic range; another is 
that the largest estimation errors are generally made when 
the input is close to +_b [6], [9]. Therefore we restrict the 
dynamic range to D = ( -Kb,  + K b ) ,  where K is chosen 
throughout to be 0.9.3 

The performance measures used to compare decoders 
are the MSE and the worst case (WC) estimation error, 
or equivalently, the signal-to-noise ratio (SNR) and the 
WC resolution in bits. These measures are defined in Ap- 
pendix B-1. For brevity, curves for WC resolution are 
omitted in this paper, but may be found in [lo], and WC 
simulation results are included in Table I. 

A .  Single Loop Modulator 
The single loop encoder is the simplest E A  encoder. 

Fig. 1 shows its discrete-time model, consisting of two 
adders, a delay element D and a one-bit quantizer Q whose 

'The presented techniques generalize in an obvious way to multibit quan- 
tization. 

'Setting K to I will decrease the average performance of both linear and 
nonlinear decoders, but the optimal nonlinear decoder will still be superior 
to the optimal linear decoder. 

function is given by (1). The inner loop is a discrete in- 
tegrator that operates on the difference between the input 
and the quantizer output; due to the negative feedback, 
the encoder seeks to minimize the accumulated difference 
between input and output. Section 11-AI presents an op- 
timal decoding algorithm under the assumptions stated 
above, and Section 11-A2 presents numerical results. 

1) The Zoomer Algorithm: In this section, we present 
an optimal decoding algorithm under the assumptions of 
constant input X and known initial integrator state U,. For 
reasons detailed below, we refer to this as the zoomer al- 
gorithm. The basic idea is to derive a series of bounds on 
the constant input. 

The system shown in Fig. 1 satisfies the following dif- 
ference equation in terms of the state variable U,: 

U, = Ur-I + X r - l  - Q ( U , - l ) ,  i Z 1. 

Assuming that the initial state is U, = 0, the state at time 
n is given by 

n -  I 

where S, is the running sum of output bits given by 
n - l  

S, = Q ( U , ) ,  n 2 1. 
r = O  

Assuming constant input, XI = X for i z 0, the first sum 
in (2) equals nX, and for any given codeword, S,, can be 
found by summation of the known output sequence. With 
the definition So 2 0, we have the recursive relationship 

S, = + Q ( U , - , ) ,  n I 1. 

The only information available to the decoder is the N-bit 
encoder output sequence, (Q(U,,), 0 I n I N - l } ,  or 
equivalently, the signs of the quantizer input sequence. 
Taking (2) into account, this information determines 
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whether the sum of inputs is greater or less than the sum 
of outputs at each time n. For each n we can thus derive 
a bound on the input: 

X > E, if Q(U,) = +b; X I x, if Q(U,,) = -b 

(3) 
where x, is the running average given by 

1 
n 

x,, = - s,. (4) 

The first two bits of any codeword are uninformative, 
since they are always Q(Uo) = -b and Q ( U , )  = +b. 
The reason for this is that U, = 0 and from (2), U ,  = Xo 
- Q(Uo) = X + b > 0. But for each 2 5 n I N - 1, 
(3) gives a lower or upper bound on X, for the known 
quantity Q(U,) = +b or -6, respectively; thus Q(U,) 
determines the type of the bound. 

Because there are only a finite number of codewords 
for inputs in the dynamic range, each codeword can be 
generated by a specific range of inputs; for constant in- 
puts, only approximately N Z / 2  out of the 2N possible N-bit 
sequences, that is, the codewords, can appear at the out- 
put [6]. The zoomer is the decoder that uses the succes- 
sion of lower and upper bounds from (3) to arrive at the 
sharpest possible lower and upper bounds on the input re- 
sulting in a specific codeword. Fig. 2 shows a flowchart 
of the zoomer algorithm; it consists of an initialization 
phase, and a loop containing an update of running sums 
and an update of either the lower or the upper bound. The 
algorithm uses lower and upper bound registers L and U 
initialized to the endpoints of the dynamic range. Sweep- 
ing n from 2 to N - 1, the zoomer maintains the greatest 
lower bound and the least upper bound in the registers; at 
each time step, the new bound is compared with previous 
bounds, and the appropriate bound register updated ac- 
cordingly. The algorithm extracts all information from the 
codeword, and results in an optimal decoding procedure. 
After processing all the N bits from the encoder, the de- 
coder outputs (L  t U )  / 2  as its estimate of the input. From 
the above, any codeword will result in compatible bounds, 
that is, L I U .  Conversely, all noncodewords will result 
in incompatible bounds; this last fact is shown in Appen- 
dix A. The zoomer is mostly linear, but the conditional 
register updating is nonlinear. 

The zoomer approach is reminiscent of successive ap- 
proximation, but unlike that type of conversion, a new 
codeword bit is far from certain to produce new infor- 
mation. In fact, the number of codewords with n bits is 
close to n 2 / 2 ,  and so at time n ,  there are only approxi- 
mately [(n2 - (n  - 1))2]/2 = n more codewords than at 
time n - 1. This means that for most of the n 2 / 2  code- 
words, the last bit is uniquely determined by the previous 
bits, and for these codewords it carries no information at 
all. 

The calculations involved in the algorithm are quite 
simple, the division in (4) being the most time-consum- 
ing. However, it is not necessary to actually do the divi- 

n c l  

U +Kb 
S c Q W o )  

L t -Kb 

-b +b 

I - I 
U + min( U, X) L 6 max(L, X )  

I YES 

r-l output y 
Fig. 2. Flowchart for the single loop zoomer algorithm. 

sions until the end; for example, to decide whether or not 
X ,  > X,,,, we only need to check whether 

mS, > nS,. ( 5 )  

This reduces to integer multiplications rather than float- 
ing-point divisions. Instead of storing the best lower and 
upper x,, in the bound registers L and U ,  we then need to 
store the'best pairs ( n ,  S,). 

Along the same lines, consider the case where p nega- 
tive bits are interspersed between two positive bits: 

( Q ( u n > ,  Q ( u n +  I) ,  * * 2 Q ( u n + p ) ,  Q ( u , i + p +  I)} 

= { +b, -b, -b, * * . , -6, -b, +b}.  (6) 
We wish to compare the lower bounds on X resulting at 
time n and n + p + 1. It can be shown that the difference 
between the running averages at these times is given by 

Since the factor in front of the square brackets is positive, 
the new lower bound at time n + p + 1 is at least as sharp 
as the old bound at time n if and only if the term in the 
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square bracket is also positive, that is 

b - X,, 
p s -  

b + x  

or equivalently 

or equivalently 

(7) 

r Zoomer 
72 - 

64 - 

56 - 

48 - 

_..- _,.. 
40 - ...... - 

t. 2b overs. ratio 
50 100 

Fig. 3 Single loop encoder: SNR as a function of oversampling ratio for 
( p  + 1 ) S ,  I - n ( p  - 1)b .  (8) 

These expressions can be used in two different ways. First, 
note that for p = 0 the inequality for x, in (7) is always 

the zoomer and the asymptotically optimal FIR filter. 

satisfied. This means that if two adjacent bits are both 
positive, only the bound corresponding to the second bit 
needs to be calculated, since the bound due to the first bit 
is guaranteed to be inferior to that of the second one. The 
decoder can easily check for this by looking one bit ahead 
in the c ~ d e w o r d . ~  

We can also use (8) to compare two lower bounds for 
more general p .  As a replacement for ( 5 ) ,  this is only use- 
ful if the bound x, at time n is the best lower bound at 
time n. If so, the bound at time n + p + 1 is at least As 
sharp at that at time n if and only if (8) holds. Similar 
derivations can be used to compare two upper bounds for 
the case where p positive bits are interspersed between 
two negative bits. 

To assess the value of using (8) rather than (5) ,  the 
work involved must be compared. The comparison in (8) 
calls for integer multiplications to replace ( 5 )  which also 
contains integer multiplications. However, the’ integer 
factors in (8) are simple, especially for small p .  For in- 
stance, all that needs to be checked f o r p  = 1 is the sign 
of S,. Forp  = 2, the factor ( p  - 1) reduces to 1 ,  and for 
p = 3 ,  both ( p  - 1) and ( p  + 1) are powers of 2 .  Since 
small values of p are more likely to occur, this could po- 
tentially save computation. 

2)  Numerical Results: We now present numerical re- 
sults on the performance of the zoomer and compare it to 
the asymptotically optimal linear N-tap finite impulse re- 
sponse (FIR) decoder for constant inputs. This filter was 
derived by Gray [I 11 and has tap coefficients 

(n + 1)(N - n) 
N ( N  + 1)(N + 2 ) ’  

h, = 6 0 I IZ I N’- 1. (9) 

Fig. 3 shows that for a given oversampling ratio, the 
zoomer gains about 8 dB or 1 ;  bits of SNR over the FIR 
filter. Alternatively, the zoomer requires half the over- 
sampling ratio of the FIR filter to obtain essentially the 
same performance, resulting in shorter data acquisition 
times. Both SNR curves have a slope of 9 dB/octave. 

A direct comparison of these results to those obtainable 
with other types of AID converters is difficult, but for 
purposes of illustration we consider the dual slope con- 
verter. We assume the required number of clock cycles to 
be comparable to the oversampling ratio of a E A  modu- 
lator. A dual slope converter using P clock cycles for full- 
scale inputs has the effect of dividing the dynamic range 
into P / 2  intervals of width 4 b / P  each, leading to an MSE 
of 4 b 2 / 3 P 2  and an SNR of 20 log,, P .  To match the SNR 
of the single loop zoomer at an oversampling ratio of 128, 
the dual slope converter thus requires approximately 3000 
cycles. 

B. Double Loop Modulator 

The double loop encoder is a generalization of the sin- 
gle loop encoder that has a more favorable tradeoff be- 
tween resolution and oversampling ratia [ 4 ]  ; its discrete- 
time model is shown in Fig. 4. The encoder is important 
in its own right, and as a building block is cascaded mod- 
ulators. The encoder contains two cascaded discrete in- 
tegrators, and the quantizer output is fed back to the input 
as well as to an intermediate node. Section 11-B1 presents 
an optimal decoding scheme under the assumptions stated 
in the beginning of Section 11, and Section II-B2 presents 
simulation results. 

1) The Zoomer Algorithm: The analysis of the double 
loop encoder proceeds in a fashion similar to that of the 
single loop encoder. The governing difference equations 
for the system shown in Fig. 4 are 

where U, and V, are the two integrator state variables. 
Assuming zero initial states, U, = V, = 0, and constant 
input, Xn = X ,  the equation for V, implies 

n - l  n -  I 
‘Look-ahead techniques are routinely used In implementation of signal V, = n(n - 1)X - c (n - i ) Q ( U l )  

processing algorithms r = O  1 = 1  
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fb 
c 

Fig. 4. Discrete-time model o f  the double loop E A  encoder. 

and the equation for U,, implies 
n -  I n -  I 

U, = C V,  - C Q(U;)  
i = O  i = O  

n -  I 

- c (n - i + l)Q(U,), n I 2. (10) 

To facilitate the calculation of the sum involving quan- 
tizer outputs, we define the running sums 

1 = 1  

n -  I 

Sn = Q ( U l ) ,  n 1. 2 (1 1) 

Wn = c (n - i + l>Q(U,) ,  n 1 2. (12) 

I =  I 

n - l  

1 = l  

Defining SI = Wl b 0, we then wave the recursions 

Sn S,l-l + Q ( U n - l ) ,  n I 2 (13) 

W, = Wn-l + S,l + Q ( U n - , ) ,  n 1 2 .  (14) 

The quantity Wn can thus be found as a weighted sum- 
mation of the output sequence, as shown in (12). 

The information available to the decoder is {Q(U,,) ,  0 
I n I N - l} .  From the difference equations we have 
Ul = +b > 0, VI = X - band U2 = X - b < 0, so the 
first three output bits are always Q (U,) = - b, Q ( U , )  = 
+b and Q (U,) = - b regardless of the input, and the first 
informative bit is e(&). As in the single loop case, we 
can use (10) to obtain a bound on the input at each time 
3 I n 5 N - 1: we obtain a lower or an upper bound 
depending on whether Q (U,,) = + b or - b. Specifically, 

X > xn 
X I xn 

if Q(U,,) = +b; 

if Q(Un) = -b 

where En is given by 

Recall that each codeword is generated by a specific range 
of input values. Analogous to the single loop zoomer, the 
double loop zoomer is the decoder that uses the output 
sequence to derive a succession of lower and upper bounds 
on the input; the sharpest of these bounds are the best 
possible bounds on the input resulting in the output se- 
quence. This is achieved by using the lower and upper 
bound registers L and U ,  initialized to the endpoints of 

the dynamic range. Sweeping n from 3 to N - 1, the 
zoomer maintains the greatest lower bound and the least 
upper bound in the registers. To be specific, Fig. 5 show 
a flowchart of the double loop zoomer algorithm. The vari- 
ables S and W correspond to the quantities given by (13) 
and (14), respectively, and p is the denominator in the 
bound fraction ( 15). 

During the conversion cycle, the floating-point division 
in (15) can be replaced by integer multiplication, since 
comparisons of the form xn > x,, can be written in the 
simpler form 

m(m - l>[Q(Uo) + Wnl > n(n  - ~ ) [ Q < U O )  + Wml. 
As in the single loop case, there exist alternative formulas 
to decide whether or not a new bound is better than an old 
bound in the special case described by (6). However, the 
formulas are more involved for the double loop than for 
the single loop encoder. Even when two successive bits 
are identical, there is no guarantee that the second bound 
is tighter than the first one. 

2) Numerical Results: This section compares the per- 
formance of the double loop zoomer to that of linear de- 
coding. There is no parallel in the literature to the asymp- 
totically optimal FIR filter (9) for single loop modulation. 
The linear decoder under consideration here is therefore 
chosen to be the N-tap filter with a sinc3 transfer function 
which is believed to be close to optimal [5]. 

Fig. 6 shows that at a given oversampling ratio, the 
zoomer is superior to the sinc3 filter by between 20 and 
30 dB of SNR. The SNR achieved by the sinc3 filter at an 
oversampling ratio of 256 is reached by the zoomer at an 
OSR of approximately 100. This translates into shorter 
data acquisition times. For the zoomer, the slope of the 
SNR curves is about 17 dB/octave, whereas for the linear 
filter, the slope is 14.7 dB/octave. It is thus seen that 
ideally, the zoomer achieves a better trade-off with over- 
sampling ratio than the linear filter, and the gap between 
the curves widens as the oversampling ratio increases. 

C. Two Stage Modulator 
Fig. 7 shows the discrete-time model of the two stage 

MASH encoder. The MASH architecture was originally 
proposed by Uchimura et al. [13] and has been exten- 
sively analyzed by Wong, Chou, and Gray in several pa- 
pers, including [ 121 and [ 141. The encoder consists of two 
single loop stages, of which the first is fed with the input, 
and the second is fed with the quantization error sequence 
of the first stage. 
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Fig. 5 .  Flowchart for the double loop zoomer algorithm. 

l l  80 
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Fig. 6 .  Double loop encoder: SNR as a function of oversampling ratio for 
the zoomer and the sinc3 filter. 

Fig. 7. Discrete-time model of the two stage Z A  encoder. 
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The original papers on this cascade structure also in- 
clude a noise canceling circuit that performs noise shap- 
ing and combines the two binary output streams into one 
quaternary sequence [13], [12]. This has the effect of 
eliminating the direct appearance of the first stage quan- 
tization error in the output sequence. It should be noted 
that although this is a desirable characteristic, the circuit 
might in general be discarding information present in the 
separate stage outputs. In addition, for data acquisition 
applications, the noise shaping characteristic is of little 
importance since the input is more or less constant. Here 
we will adopt the viewpoint that the noise cancelling cir- 
cuit is part of a decoder, and the decoder should not be 
limited to operating on the sequence obtained by irre- 
versibly combining the two output sequences into one. 
We will therefore use { Q ( U , ) }  and { Q ( V ,  )} directly for 
decoding. Section 11-C 1 presents an optimal decoding 
scheme under the assumptions stated in Section 11, and 
Section 11-C2 presents simulation results. 

I )  The Zoomer Algorithm: The difference equations 
governing the state variables U, and VI, for the two stage 
encoder shown in Fig. 7 are 

uti = un-I + Xn-1 - Q(un-1) 
Vn = V n - l  - U n - l  + Q(U,,-J - Q<V,-,) ,  n I 1. 

Assuming that the initial states are U, = V0 = 0, these 
can be solved to yield 

n - l  n - l  

U, = C X ,  - C Q(u, ) ,  n I 1 (16) 
r = O  r = O  

n - 2  n - l  

Vn = - (n - 1 - i ) X r  + c (n - i ) Q ( U r )  
1 = 0  r = O  

n -  I 

- C Q<v,), n I 2. (17) 
r = O  

Let us define the running sums 
n -  I 

S, = C Q(U,>,  n I 1 (18) 

T,, = C Q(v,>,  n 2 I (19) 

r = O  

I1 - I 

r = O  

I 1  - I 

W, = C (n - ~ ) Q ( U , ) ,  n I I .  (20) 

Defining SO = TO = WO A 0 we then have the recursions 

sn = 4-1 + Q < ~ , , - I ) ,  n 2 1 

r = O  

Wn = W n p 1  + Sn, n 2 1. 

As before we assume that the input is constant, X I  = X 
for i I 0. At time n ,  (16) and (17) each provide potential 
new bounds on this input: The new bound is an upper or 
a lower bound depending on whether Q (U,?) = - b or + b. 

Specifically, (16) results in 

X > Z!:) 
X I Xy) if Q(Un) = -b; n I 1 (21) 

if Q(Un) = +b; 

where is the running average 

- 1  
n 

x ! )  = - SIl. 

Equation (17) results in an upper or lower bound on the 
input, depending on whether Q(Vn)  is positive or nega- 
tive. Specifically, 

X < XP’ 
X I El;” if Q(Vn) = -b; n 2 2 (23) 

if Q(VJ  = +b; 

where 

Fig. 8 shows a flowchart for the two stage zoomer algo- 
rithm; the two stage zoomer uses the succession of lower 
and upper bounds from both (21) and (23) to arrive at 
overall lower and upper bounds on the input resulting in 
a specific codeword. This is achieved by using lower and 
upper bound registers L and U ,  initialized to the endpoints 
of the dynamic range. Sweeping n from 3 to N - 1, the 
zoomer maintains the greatest lower bound and the least 
upper bound in the registers. Variables S ,  T ,  and W in 
Fig. 8 hold the sums in (18)-(20), respectively, and p is 
the denominator of (24), while X ( I )  and 52”) correspond 
to the quantities (22) and (24). At each time step, the 
flowchart contains two conditional updates of the bound 
registers, corresponding to (22) and (24). 

2) Numerical Results: This section compares the per- 
formance of the two stage zoomer to an N-tap filter with 
a sinc3 transfer function. It is shown in [I21 that this filter 
achieves an MSE of O ( N P 5 ) ,  and that no sinck filter can 
achieve a better asymptotic dependence on N .  

Fig. 9 shows that at a given oversampling ratio, the 
zoomer outperforms the sinc3 filter by 20-30 dB of SNR. 
For the depicted range of oversampling ratios, this trans- 
lates into a reduction by a factor of 2-3 in data acquisition 
times to achieve a given performance. For the zoomer, 
the slope of the SNR curve is about 18 dB/octave, 
whereas for the linear filter, the slope is 14.7 dB/octave. 
It is thus seen that ideally, the zoomer achieves a more 
favorable tradeoff between SNR and oversampling ratio 
than the linear filter, and the gap between the curves wid- 
ens as the oversampling ratio increases: The MSE goes as 
O ( N - 6 )  and O ( N P 5 ) ,  respectively. Compared to the dou- 
ble loop results in Fig. 6, the slope difference for the two 
stage encoder is about 1 dB/octave greater for the SNR 
curves. 

D. Interpolative Modulators 
The general interpolative encoder structure is shown in 

Fig. 10 [9]. It is characterized by the transfer function 
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Fig. 8.  Flowchart for the two stage zoomer algorithm. 

260 ' 50 100 
Fig. 9. Two stage encoder: SNR as a function of oversampling ratio for 

the zoomer and the sinc3 filter. 

Overs. ratio 

H ( z )  which is chosen to be low pass. This section dem- 
onstrates the applicability of the zoomer concept to inter- 
polative encoders. 

Let us denote the impulse response of H ( z )  by {ho, h l ,  
h Z ,  - } .  To avoid race-around we must have hO = 0. 
Under the constant input assumption, the state variable U 

-t 
Fig. 10. Discrete-time model of the interpolative E A  encoder. 

at time n is given by 
n 

U, = C hn-; [Xi  - Q(Ui)]  

/ n - l  \ n - l  

1 = 0  

The zoomer algorithm uses the output bits to derive a 
succession of upper and lower bounds on the input. The 
bound at time n is a lower or an upper bound for Q ( U , )  
= +b and -b, respectively. Specifically, 

if Q(U,) = +b; 

if Q(Un) = -b 

X > x,, 
X I xn 

where Xn is given by 
n -  1 

As an example, the single loop encoder can be viewed as 
an interpolative encoder with H ( z )  = z - ' / ( l  - z - ' ) .  
Therefore {hO, h l ,  h2, . n - l  

- a }  = (0, 1, 1 ,  .}  and 

1 Xn = - C Q ( U i )  
n i = O  

in agreement with (4). Note that neither the double loop 
nor the two stage encoder are interpolative encoders. 

The above technique readily generalizes to the case 
where the transfer function from-input to quantizer input 
is different from the transfer function from quantizer out- 
put to quantizer input. This would be the case if there was 
also a filter in the feedback path from quantizer input to 
input summing node; see for example [15]. 

111. DECODING IN THE PRESENCE OF NONIDEALITIES 
In this section we use simulations to investigate the ef- 

fects of nonidealities on the performance of the zoomer 
algorithms for the single and double loop encoders and 
the two stage encoder. To realistically assess the perfor- 
mance of our nonlinear decoder, we consider a variety of 
circuit imperfections. A summary of the results of this 
section is shown in Table 11. As our results are based on 
simulation, they must be considered tentative; practical 
circuit implementations are needed to verify them exper- 
imentally. 

For each encoder, the following types of nonidealities 
have been investigated: Nonunity integrator gain, integra- 
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TABLE I1 

GIVEN I N  PERCENT A R E  MEASURED RELATIVE TO T H E  QUANTIZER 
SENSITIVITY OF THE ZOOMER TO VARIOUS NQNIDEALITIES. QUANTITIES 

STEP SIZE b.  QUANTITIES GIVEN FOR THE LEAK A R E  THE M I N I M U M  
OP-AMP GAINS NECESSARY 

Nonideality to cause 2-dB SNR loss at N = 128 

Single Loop Double Loop Two Stage 

Gain NIA 0.1% 0.02% 
Leak 2 500 50,000 100.000 
Initial state 1 .2% 0.05% 0.01 % 
DC offset 1.2% 0.5% 0.01 % 
Noise 0.5% 0.02% 0.005% 
Input var. 0.2% 0.01 % 0.005% 

tor leak, nonzero initial integrator state, DC quantizer off- 
set and random noise. Appendix C quantifies the form the 
nonidealities are assumed to take. While it is recognized 
that practical encoders suffer to some degree from all of 
these nonidealities, their effects are considered separately 
here to facilitate assessments. For each combination of 
encoder structure and nonideality, we have derived a 
modification to the zoomer algorithm that can be used if 
the numerical value of the nonideality is known in ad- 
vance. To distinguish between the modified zoomers and 
the ones described in Section 11, the latter are referred to 
as original zoomers when necessary. For brevity, we only 
include here the derivations for the double loop and two 
stage encoders; the single loop encoder is comparatively 
less important due to its inferior tradeoff between over- 
sampling ratio and SNR. The derivations for the double 
loop encoder are shown in Section 111-A, and the deriva- 
tions for the two stage encoder can be found in Appendix 
D. We omit the treatment of sloped inputs which leads to 
a two-dimensional linear programming problem [ 101. De- 
tailed simulation results can be found in [lo], and are 
summarized in Table 11. 

With the modifications of the original zoomers which 
we derive, the concepts of transition points and quanti- 
zation intervals are still well defined; each nonideal en- 
coder can be specified by its quantization intervals, tran- 
sition points, and codewords. However, using an original 
zoomer to decode an output sequence of a nonideal en- 
coder will not in general result in an estimate which is the 
midpoint of the actual quantization interval, as specified 
by the characteristics of the nonideal encoder. This is be- 
cause the quantization intervals of a nonideal encoder 
change as functions of the numerical values of the non- 
idealities. In fact, an original zoomer estimate based on 
an output sequence from a nonideal encoder may be out- 
side the actual quantization interval, and the original 
zoomer bounds L and U may be in~ompatible .~ Using an 
original zoomer thus results in performance degradation 
in the presence of nonidealities. In Appendix B-2 we de- 
fine the performance measures of SNR and worst case res- 
olution in the presence of nonidealities. We now show 

'In the case of incompatible bounds, the original zoomer estimate is still 
defined as the average ( L  + U ) / 2 .  

simulation results to quantify these degradations when the 
nonidealities must be considered unknown. 

A .  Double Loop Modulator 
This section considers the effects of nonidealities on the 

double loop zoomer algorithm. Throughout we compare 
the zoomer to the linear N-tap decoder with a sinc3 trans- 
fer function. 

1) Nonunity Integrator Gains: Denoting the gains of 
the first and second integrator by g,  and g2, respectively, 
the difference equations for the double loop encoder can 
be written 

and (10) becomes 
/ n - 1  

n - l  

n- 1 \ 

- (1 - 

It is seen that the gain of the second integrator has no 
effect on the sign of U,,, and hence it does not affect the 
performance of any decoder. The zoomer algorithm in the 
presence of non-unity gain remains unchanged, except that 
(1 5 )  becomes 

with S,, and given by (11) and (12). If the gain is 
known, it can thus be compensated for; in this case, per- 
formance is essentially identical to that of the original 
zoomer described in Section 11-B1 . 

If the gain is unknown, it can be adaptively estimated 
from (25) in the following way: Initially, we assume g,  
to be 1. Each time a noncodeword appears due to non- 
unity gain, the lower and upper zoomer bounds will be 
inconsistent; let us denote these bounds by xn and x,,, 
respectively. We can then choose g ,  such that the bounds 
at time instants n and m become identical; that is, choose 
g ,  as close as possible to its nominal value of 1 while 
keeping the bounds barely consistent. To be specific, g ,  
is chosen according to 

81 

- m(m - 1)(Q(u0) + S A  - n(n - 1)(Q(u0) + S m )  
' 

(26) 

- 
n(n  - l)(Wm - Sm) - m(m - l)(Wn - Sn) 

The estimate of X in the particular cycle in which g ,  is 
updated will not be so accurate, but the accuracy of sub- 
sequent estimates will improve. Once g,  is well esti- 
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mated, the performance is essentially identical to that of 
the original zoomer with an ideal decoder. 

We now assume that the integrator gains are unknown, 
and that the adaptive estimation scheme of (26) is not 
used. Fig. 11 shows SNR curves for the original zoomer 
when the first integrator gain is nonunity. It is seen that 
at an oversampling ratio of 127, an SNR degradation of 2 
dB results for a gain which deviates about 0.1 % from its 
nominal value. 

2) Leaky Inregrators: We make the assumption that the 
'two integrators have the same leak factor CY, that is, the 
op-amps have the same gain. The difference equations 
then become 

(n  - i + l)Q(Uj), n I 2. w,, = c a l l - i - l  

i =  I 

Note that if we define SI = WI A 0,  

S, = CYS~,--~ + Q(U,,-I), n I 2 

W,, = CYW,,-~ + S, + Q(U,-,), n I 2. 

These recursive relations mimic the effect of the two in- 
tegrators. With leaky integrators, (10) changes into 

and the zoomer bound (15) becomes 

(27) 

From the above discussion it is seen that if the integrator 
leaks are known, they can be compensated for, and in this 
case, the performance is essentially identical to that of the 
original zoomer considered in Section 11-B2. 

We now assume that the integrator leaks are unknown. 
Fig. 12 shows performance curves for the original zoomer 
in the presence of leak in both integrators. It is seen that 
op-amp gains on the order of 50 000 result in an SNR loss 
of 2 dB. 

It is commonly held that nonidealities near the input 
summing node have relatively more impact on perfor- 
mance than nonidealities further inside the loop. To quan- 
tify this, we will show simulations below of the effect of 
leak in the second integrator, assuming that the first in- 
tegrator is ideal. In this case, the difference equations are 

U,, = a U , i - ~  + Vn-1 - Q(Un-1) 

VI, = V,l-l + X, - Q(U,), n 2 1. 

56u - - - - - - - - - _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _  0.008 l-gain 
0.000 0.004 

Fig. 11. Double loop encoder: SNR for oversampling ratios 64 and 127 as 
a function of the first integrator gain g,. 

N=64, zoomer 
N=64, sinc3 
N=127, zoomer 
N=127. sinc3 

- - - - - - - . 
. . - _. __. . ..-... 
_______.-- 

Fig. 12. Double loop encoder: SNR for oversampling ratios 64 and 127 as 
a function of the integrator leak a. Same leak is assumed for both integra- 
tors. 

We can define the running sums 
1z - 1 

s, = c an-,-[ Q<U,>, n I 2 
r = l  

1 - (2a - l ) a " - ' - I  n -  I 

w,= c ecu,>, n 2 2. 
r = l  1-CY 

If we define SI = W ,  A 0, we have the recursions 

Sn = CYS,-, + Q(U,-l), n 2 2 

W, = d , - I  + S, + Q(U,-I), 12 2 2. 

The zoomer bound becomes 

This can be compared with (27), in which both the inte- 
grator leaks are assumed to equal a. 

Fig. 13 shows the isolated effect of the second integra- 
tor leak. Comparing with Fig. 12, it is observed that the 
sensitivity to the second integrator leak is on the order of 
10 times smaller than that to the first integrator leak; 
therefore the degradation in Fig. 12 is dominated by the 
first leak. 

3) Nonzero Initial States: We make the assumption 
that the initial state offsets are the same for both state vari- 
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SNR(dB) 

%___ 

88 

80 

___________.._______-~~--~-~~~~........ 

56 64u 0.0000 - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ _  0.0010 0.0020 l-'e* 

Fig. 13. Double loop encoder: SNR for oversampling ratios 64 and 127 as 
a function of the second integrator leak a. First integrator IS assumed 
ideal. 

ables, U, = Vo = 6. It can be shown that the state U at 
time n then can be written as 

n -  1 

U, = U, + nv0 + C (n  - i ) X r  - Q(u,) 
r=o  

n -  I 

- C (n - i + l)Q(U;). 
i =  I 

The zoomer bound (15) th,erefore changes into 

with W, given by (12). Note that Vo contributes n6, while 
U,, only contributes 6. This indicates that more attention 
should be paid to the initial sate of the first integrator. 
This is in line with the general belief mentioned above 

56u 0.000 0.002 0.004 IS error 

Fig. 14. Double loop encoder: SNR for oversampling ratios 64 and 127 as 
a function of the initial state offset 6. Same offset is assumed for both in- 
tegrators. The offset is normalized by b. 

~ = 6 4 ,  zoomer 

N= 127, zoomer 

- - - - - - - . 
N=64, sinc3 __. -. . ........ . 
.....----- 

88 N=127, ShC3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ::I, , , , , ,I 
56 

o,008 DCoffset 0.000 0.004 

Fig. 15. Double loop encoder: SNR for oversampling ratios 64 and 127 as 
a function of quantizer DC offset qo. Same offset is assumed for both in- 
tegrators. The offset is normalized by b. 

that nonidealities closer to the input summing node have 
more impact on performance than nonidealities further in- 
side the loop. A qualitative argument in support of this 
observation is that nonidealities further inside the loop are 
better suppressed by the negative feedback. 

If the initial integrator states are known, they can be 
compensated for as shown in (28). We now assume that 
these states are unknown; Fig. 14 shows their effect. It is 
seen that for an oversampling ratio of 127, an SNR loss 

zero U,, we expect the sensitivity towards DC offset to be 
less than that towards initial states shown in Fig. 14. This 
is confirmed by Fig. 15. For an oversampling ratio of 127, 
an offset of 0.5% results in an SNR loss of about 2 dB. 

5) Random Noise: Consider noisy inputs of the form 
(39) specified in Appendix C. If the noise sequence were 
known, the modified zoomer algorithm would involve re- 
placing (15) with 

of 2 dB results when 6 equals about 0.05% of the dynamic 
range. 

4) DC Offset in Quantizer: If the 1-b quantizer is char- 
acterized by (37), that is, by the offset qo, the zoomer 
bound (15) changes into 

with W, given by (12). Thus, a DC offset of qo is equiv- 
alent to a nonzero initial state of U, = -qo. If the DC 
offset is known, it can be compensated for using (29). 

We now assume that the DC offset is unknown; Fig. 15 
shows its effect on performance of the original zoomer. 
Since DC offset and nonzero initial state U, are equiva- 
lent, and nonzero initial state Vo is known from Section 
III-A3 to degrade performance more seriously than non- 

Q<uo> + W,, - x, = - n-' c (n - i ) N i  + I 
i n ( n  - 1) i = l  3n(n - 1) . 

The variance of the right-hand side is 

4 'z-l (Mb)2 2(2n - l)(Mb)' 
n2(n  - 1)' i = l  3 9n(n - 1) . 

C - j * =  

Since the noise sequence is unknown in practice, one pos- 
sible countermeasure against it is to loosen the bound in 
(15) by two standard deviations.6 This changes (15) into 

'Simulations indicate that it is better to use two standard deviations than 
one, but no claim is made that two is optimal. 
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N=64, zoomer(c0mp) 
N=64. zoomer(ideal) 
N=64, sinc3 
N=127, zoomer(c0mp) 
N=127. zoomercideal) 
N=127. sinc3 

.... ..-___- 

...................... 
_ _ _ _ _ _ _ _ _ _ - - - - -  
_ _ _ _ _ - - - - - -  
- - - - - - - - - 

.................................................... 5 6 [ p 1  0. m. noise 

Fig. 16. Double loop encoder: SNR for oversampling ratios 64 and 127 as 
a function of the maximum normalized noise level M. Curves are shown 
for the original zoomer, and the compensated zoomer which uses (30). 

Note that the sign of the noise correction is opposite that 
of Q(U,), so that the bound is loosened. Knowledge of 
the maximum noise level Mb is required. 

Fig. 16 shows the effect of random noise on the input. 
At an oversampling ratio of 127, an SNR loss of 2 dB 
results for a maximum noise level of about 0.02 % . 

IV. CONCLUSIONS 
We have introduced a general technique for optimal de- 

coding of the output of ideal E A  encoders, under the as- 
sumptions of constant input and known initial integrator 
states. The technique is based on deriving a succession of 
upper and lower bounds on the input interval generating 
a given output sequence. The optimal decoder is nonlin- 
ear, as might be expected from the nonlinear nature of the 
encoder. Our results indicate that under ideal circum- 
stances, substantial improvements in SNR and worst case 
error can be achieved; these results are summarized in 
Table I. The improvements can be exploited as enhanced 
performance at the same data acquisition time, or alter- 
natively, as substantial reductions in data acquisition time 
for the same performance. We have also presented simu- 
lation results for performance in the presence of various 
circuit imperfections; these results are summarized in Ta- 
ble 11. It is interesting to compare the sensitivities of the 
zoomers for the encoder structures considered. In general, 
the single loop zoomer is the least sensitive at a given 
OSR. The double loop and two-stage zoomers both 
achieve better tradeoffs with oversampling ratio than does 
the single loop zoomer, but they are also more sensitive 
to non-idealities. The ideal performance of the double 
loop and two-stage zoomers is roughly comparable, but it 
is seen that in general, the two-stage zoomer is about 2 to 
5 times more sensitive towards circuit imperfections. Fu- 
ture work will be directed towards implementing a work- 
ing prototype of the zoomer algorithm. 

APPENDIX A 
We will show by contradiction that all noncodewords 

result in incompatible bounds. Assume that a noncode- 
word gives rise to zoomer bounds L’ < U‘. Choose any 

input satisfying L’ < X ’  < U ’ ,  and determine the cor- 
responding codeword. Since the codeword and the non- 
codeword are different, we can find the earliesttime step 
no at which they differ. The zoomer bounds XA will be 
same for the two sequences at all times n I no, so in 
particular, the best bounds at time n ,  denoted by LA and 
U;,  will be the same up to time no. At time no, the new 
bound x;,, will be a lower bound when decoding one of 
the sequences, and an upper bound when decoding the 
other. The new bound is either outside or inside the in- 
terval (LA,, - UAo - ,). If it is outside, the new bound can- 
not be consistent with decoding both sequences. Since the 
codeword decoding is consistent by definition, the decod- 
ing of the noncodeword must be inconsistent. If the new 
bound is inside the interval limited by the best bounds at 
time no - 1 ,  it will be consistent with these bounds when 
decoding both sequences, but at time no, the decoding re- 
sults in the interv_al splitting into two disjoint intervals, 
(Li - x,&) and (XL0, U;,, - ,). It is thus impossible that the 
two sequences are decoded to the same interval. In both 
cases, the assumptions are violated. 

APPENDIX B 
PERFORMANCE MEASURES 

I .  Ideal Conditions 
The number of possible codewords as X sweeps over 

the dynamic range D is denoted by C,  and the decoder 
estimate as a function of the random variable Xis  denoted 
by X .  The decoder estimate cf the input giving rise to th,e 
ith codeword is denoted by X ,  ; recall that the estimate X,  
is found as the average of the interval bounds determined 
by the zoomer. Finally, we denote the interval corre- 
sponding to the ith codeword by I , ,  and its width by d,. 

We assume that the constant input X is uniformly dis- 
tributed on the dynamic range D. This is an analytical 
convenience, but it is not cardinal to our technique. Any 
piecewise continuous probability density function for X 
on D can be incorporated in the analysis below. The per- 
formance measures are defined as follows: 

1) The MSE is defined as 

MSE 2 E [ ( X  - X ) * ] .  (3 1) 

To obtain a more operational expression for the MSE, the 
contribution from the ith interval is given by 

d? 
MSE, = E[(X - X)2(X E I,] = C - 

r = l  12 

C 

The total MSE is found by taking the weighted sum of 
these errors, 

c .  c I ?  

(32) 
d 0; MSE = C * MSE, = C - 

1 - 1  ID( i = I 24Kb 

where ID I is the width of the dynamic range. The average 
input power is 

I 
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Defining SNR = 10 loglo [E(X2)/MSE], we thus have 

8 (Kb)3 
SNR = 10 loglo C .  

c d; 
i =  I 

(33)  

2 )  The worst case error is an important performance 
measure for nonuniform quantizers such as Z A  modula- 
tors, since it specifies the local performance, as opposed 
to the MSE which is a global or average measure. The 
worst case error is defined as 

E A max I X  - 21 = max 
X E D  I 5 r 5 C  

where the last equality follows because the zoomer 
chooses the quantization interval midpoints as its esti- 
mates. The worst case resolution in bits is 

(35)  

2. Nonidealities 
When nonidealities are present, it is necessary to gen- 

eralize the expressions for MSE and worst-case resolution 
given in Appendix B-1 which are derived under the as- 
sumption that the original zoomer estimates are the mid- 
points of the corresponding intervals; we first introduce 
some additional notation. Note that we use the term “ac- 
tual” to refer to characteristics of a nonideal encoder. We 
denote the actual input interval corresponding to the ith 
codeword of a nonideal encoder by I , ,  and its width by d,. 
The actual lower and upper bounds on the ith interval are 
denoted by I ,  and U , ,  respectively. Under ideal circum- 
stances, L and U in the zoomer algorithm correspond ex- 
actly to I ,  and U , ,  and X, = (1, + u , ) / 2 .  Finally we define 
q, = 2, - l,, r, = U ,  - 2, as the signed distances from 
the original decoder estimate to the edges of the actual 
interval. If the original zoomer estimate XI is outside of 
the corresponding actual interval, one of these distances 
is negative. 

The general definitions (31)  and (34)  of MSE and worst 
case resolution remain valid, but the MSE contribution 
from the ith quantization interval, previously given by 
(32) ,  is modified to 

The worst case error, previously given by ( 3 4 ) ,  changes 
into 

E = max {max {s i ,  r ; } } ,  
I < i < C  

These generalizations are reflected in an obvious way in 
the expressions (33)  and ( 3 5 ) .  

APPENDIX C 
FORM OF NONIDEALITIES 

The discrete-time integrator in Fig. 1 in practice has a 
transfer function that can be modeled as 

2-I 

1 - ff2-I 

where g is the gain and CY is the leak factor; both these are 
nominally 1. 

The gain is usually determined as a capacitor ratio. The 
leak factor a in (36)  is the result of finite op-amp gain; if 
the integrator op-amp gain is A ,  the leak factor is given 
by 

ff = A / ( A  + 1) = 1 - l / A .  
Because we are considering constant inputs or very low- 
bandwidth applications, large-gain op-amps are probably 
more easily attainable than in signal acquisition applica- 
tions. 

The zoomer algorithm assumes that the initial integra- 
tor states U,, V,, etc., are set to zero at the beginning of 
each conversion cycle. In practice, this can only be 
achieved with finite precision. 

In practice, the l-b quantizer Q in ( I )  may not switch 
between the output values -b  and + b  at exactly the input 
value U = 0. The I-b quantizer is more precisely char- 
acterized by a DC offset qo: 

-b  if U I qo 

if U > 4,. (37) 

Real quantizers may also exhibit hysteresis, as in 

QhyTt (U,) = Q [un + ho Qhyst ( u n  - I )I (38)  
where h, is a measure of the hysteresis effect. Note that 
ho introduces additional memory in the system. Simula- 
tions for the single loop encoder indicate that the perfor- 
mance degradation in the presence of hysteresis is close 
to the degradation for nonzero initial states. Compensat- 
ing the zoomer for known hysteresis is simple. Hysteresis 
is not further treated in this paper. 

In practice, circuit and external noise must be taken into 
account when evaluating the performance of decoders. We 
consider noisy inputs of the form 

x, = x + NI (39)  
where X is a constant, and ( N I }  is a sequence of inde- 
pendent random variables uniformly distributed on the in- 
terval ( - M b ,  +Mb). M is a constant. The optimal pro- 
cedure in the presence of this type of noise is difficult to 
determine analytically. However, a simple way to take 
noise into account is described in Section III-AS. 

APPENDIX D 
NONIDEALITIES FOR Two STAGE MODULATOR 

This Appendix describes ways of compensating for 
known nonidealities. For brevity, curves describing the 
effects of unknown nonidealities are not included, but may 
be found in [lo] and results are summarized in Table 11. 
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1. Nonunity Integrator Gains 
Denoting the integrator gains of the first and second 

stage by g l  and g2, respectively, the difference equations 
can be written 

U,, = un-1 + Sl(Xn-1 - Q<Utt-i>) 

Vti Vn-1 + g 2 ( - u n - i  + Q(Uti-1 - Q<un-I)>>, 
n 2 1. 

Solving these with the definitions of Section II-C1 yields 
the zoomer bounds 

It is seen that g2 does not appear in the equations. If the 
first integrator gain is known, it can be compensated for 

. using (D. 1). 

2. Leaky Integrators 
We make the assumption that the two integrators have 

the same leak factor a, that is, that the op-amps have the 
same gain. The difference equations then become 

ut, = aUti-1 + Xn-1 - Q(un-1) 

n I 1. 

Defining So = To = WO A 0 and the running sums 
It - I 

I, - 1 

W, C [n - i - (1 - ( Y ) ] ~ ~ - ~ - ~ Q ( U , ) ,  n 2 1 
t = o  

we then have the recursions 

St, = aSt,-I + Q(U,-,) ,  n L 1 

T, = aTtI - i  + Q ( K 1 - i ) ,  n I 1 

W,, = aWt,-l + S, + (1 - C Y ) S ~ , - ~ ,  n I 1 .  

The zoomer bounds change into 

Similarly to the double loop case, we will consider the 
effect of leak in the second integrator separately. The dif- 

615 

ference equations for this situation are 

Uri 

Vn = aVn-1 + Q<un-1) - un-1 - Q ( v n - i > ,  

Un-1 + Xn-i - Q(un-1) 

n 2 1 .  
Defining So = To = WO A 0 and the running sums 

n -  I 

S, = C Q<U,),  n I 1 
r = O  

n -  I 

T, = a" - ' - 'Q<V, ) ,  n I 1 r=o  

we have the recursions 

S, = SnPl + Q ( U , - , ) ,  

T, = aT,-I + Q(V,-,) ,  
W, = awn-,  + S,, 

n L 1 

n 2 1 

n L 1. 

The zoomer bounds change into 

From the above discussion we see that if the integrator 
leaks are known, they can be compensated for. Simula- 
tions indicate that at an OSR of 127, the sensitivity of the 
original zoomer algorithm towards the second integrator 
gain is on the order of 50 times smaller than that towards 
the first integrator leak [ 101. 

3. Nonzero Initial States 

bounds become 
For non-zero initial integrator states U,, V,, the zoomer 

with S,, T,, W, defined by (18)-(20). Note that in (40), 
U, is more important than V,, again confirming that non- 
idealities closer to the input summing node have greater 
impact on performance. If the initial states are known, 
they can be compensated for using (40). 

4. DC Offset in Quantizers 

same DC offset qo, the zoomer bounds become 
Assuming that both quantizers are characterized by the 
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, Note the similarities and differences between the above 
equations and (40) for ~h~ analo- 

the first quantizer is comparatively more detrimental to 
they can be 

compensated for using (41). 

[IO] S .  Hein and A. Zakhor, “Optimal decoding for data acquisition ap- 
plications of sigma delta modulators,” ERL Memo, Univ. California, 
Berkeley, Aug. 1991. 

sigma-delta modulator with dc input,” IEEE Trans. Commun., vol. 
37, no. 6, pp. 588-599, June 1989. 

[12] P. W. Wong and R. M. Gray, “Two-stage sigma-delta modulation,” 
IEEE Trans. Acoust., Speech, Signal Processing, vol. 38 ,  no. 11 ,  pp. 

initial 
gies with nonzero initial states indicate that an offset in [ l l ]  R. M. G ~ ~ ~ ,  “spectral analysis of quantization noise in a single.loop 

If the DC Offsets are 

1937-1952, NOV. 1990. 
1131 K. Uchimura, T. Hayashi, T. Kimura, and A. Iwata, “Oversampling 

A-to-D and D-to-A converters with multistage noise shaping modu- 
lators,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, 
no. 12, pp. 1899-1905, Dec. 1988. 

[14] W. Chou, P. W. Wong, and R. M. Gray, “Multistage sigma-delta 
modulation,” IEEE Trans. Inform. Theory, vol. 35 ,  no. 4,  pp. 784- 

5. Random Noise 
Following the derivations of previous sections, a sim- 

ple against white uniform noise On the 
interval ( -Mb,  +Mb) is to change the zoomer bounds to .. 

796, July 1989. 
[15] P. F. Ferguson, Jr., A. Ganesan, and R .  W. Adams, “One bit higher 

order sigma-delta converters,” in Proc. Inr. Symp. Circuits Syst., May (42) 
1990, pp. 890-893. 

In (42), the sign of the noise correction is chosen opposite 
that of Q (U,) ,  whereas in (43), it is chosen to be the same 
as that of Q(Vn). In both cases, this leads to weaker 
bounds. 
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