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Reconstruction of Oversampled Band-Limited 
Signals From EA Encoded Binary Sequences 

Sciren Hein, Member, IEEE, and Avideh Zakhor 

Abstract-We consider the application of EA modulators to 
analog-todigital conversion. We have previously shown that for 
constant input signals, optimal nonlinear decoding can achieve 
large gains in signal-to-noise ratio (SNR) over linear decoding. In 
this paper we show a similar result for band-limited input signals. 
The new nonlinear decoding algorithm is based on projections 
onto convex sets (POCS), and alternates between a time-domain 
operation and a band limitation to find a signal invariant under 
both. The time-domain operation results in a quadratic program- 
ming problem. The band limitation can be based on singular 
value decomposition of a certain matrix. We show simulation 
results for the SNR .performance of a POCS-based decoder and 
a linear decoder for the single loop, double loop and two-stage 
CA modulators and for a specific fourth-order interpolative 
modulator. Depending on the modulator and the oversampling 
ratio, improvements in SNR of up to 1&20 dB can be achieved. 

I. INTRODUCTION 
MODULATORS are becoming increasingly im- CA portant as analog-to-digital converters for rela- 

tively low-bandwidth applications such as speech and audio. 
They are ideal for on-chip VLSI implementation because 
they require fewer and simpler components than Nyquist-rate 
converters; this is at the expense of using sampling rates many 
times faster than the Nyquist rate. 

The only nonlinear element in a EA modulator is a 1- 
bit quantizer. It is well known that linearizing the quantizer 
can lead to invalid analytical predictions [l]. Nonetheless, 
linearization is routinely used in the analysis and design of EA 
modulators because the resulting models are simple, and their 
shortcomings are perceived to be well known. In particular, 
the decoding of the binary modulator output stream has 
traditionally been based on linear filtering, and the optimality 
of this solution has not been questioned. In [2] we point out 
that linear low-pass decoding is suboptimal because it neglects 
that the modulator input resulted in the particular observed 
binary output stream. In [3] we introduce an optimal nonlinear 
decoding algorithm for constant inputs, and demonstrate large 
gains over linear decoding. 
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Fig. 1. Discrete-time model of the single loop EA modulator. 

In this paper, we consider nonlinear decoding for band- 
limited inputs [2], [4]-[6]. We take a signal reconstruction 
point of view and derive a conceptually feasible, optimal 
nonlinear decoder applicable to all current EA architectures. 
Simulations indicate that our decoder is superior to linear 
decoding by up to 10-20 dB, depending on the modulator 
type and the oversampling ratio. These results may serve as 
upper bounds on attainable performance. Our ultimate goal 
is a decoder that performs significantly better than a linear 
decoder, is simple to implement and is as robust towards circuit 
imperfections as linear decoding. 

The paper ish organized as follows. Section I1 presents 
background information for the decoding problem. Section 
I11 describes the reconstruction algorithm. Section IV presents 
numerical results, and Section V quantifies the effect of circuit 
imperfections upon decoder performance. Finally, Section VI 
contains conclusions. 

11. BACKGROUND 
In this paper we consider four representative EA modulator 

architectures. The simplest one is known as the single loop 
modulator and is shown in Fig. 1. It consists of an integrator 
embedded in a nonlinear feedback loop, which also includes 
a one-bit quantizer Q. Q is defined as the signum function of 
its argument, and can be viewed as adding a noise sequence to 
its input sequence. The noise sequence is often assumed to be 
approximately white and uncorrelated with the input sequence 
{xcn} ,  although this assumption is inaccurate. 

Fig. 2 shows Candy's double loop EA modulator, which 
contains two integrators [7]. Similarly, Fig. 3 shows the two- 
stage MASH modulator which also contains two integrators, 
but in a cascaded configuration involving two quantizers. 
Finally, Fig. 4 shows a generic interpolative EA modulator 
that includes a discrete-time open-loop filter H(z ) .  The single 
loop modulator is an interpolative modulator with H ( z )  = 
z-'/(l- z-l). We will also consider the specific fourth-order 
modulator defined in [8] by 
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Fig. 2. Discrete-time model of the double-loop E A  encoder. 
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Fig. 3. Discrete-time model of the two-stage E A  encoder. 
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Fig. 4. Discrete-time model of the interpolative EA encoder. 

where NO = 0.8653, NI = -2.2692, N2 = 2.0064, N3 = 
-0.59714, N4 = 0.000035, Do = 1, D1 = -3.99646, 
D2 = 5.992922, D3 = -3.996460866, 0 4  = 1.000000433. 
H ( z )  is in general chosen to be a low-pass filter whose pass- 
band corresponds to the frequency range in which the input 
signal is concentrated. 

To obtain a digital approximation to the analog modulator 
input, the digital output is traditionally lowpass filtered and 
decimated. The quality of the approximation depends on 
the oversampling ratio (OSR), which is defined as the ratio 
between the sampling rate and the Nyquist rate of the input. 
The single loop, double loop and two-stage modulators can 
operate at arbitrary OSR's, whereas the fourth-order modulator 
(1) is designed specifically for OSR = 48. 

III. RECONSTRUCTION ALGORITHM 
In this section we describe our proposed reconstruction 

algorithm in the context of the general interpolative EA 
encoder shown in Fig. 4. Although the double-loop and two- 
stage encoders are not interpolative, the algorithm easily 
extends to these architectures. Section III-A describes the 
POCS algorithm [9], [lo] which iteratively enforces two 
constraints on an input signal estimate: First, that the input 
signal resulted in the observed output signal, and second, that 
it is band-limited. Section 111-B shows that finding an input 
sequence that generates the observed output signal can be 
treated as a quadratic programming (QP) problem. Section 
111-C reviews our singular value decomposition (SVD) based 
approach to band limitation. Section 111-D describes modifi- 
cations to the POCS algorithm for sliding-block decoding. 

fine the set S1 to contain all input signals x = (20,. . . , Z N - ~ }  

that result in y when applied to the encoder. We also define 
the set S2 to contain all N-sample signals x that are band- 
limited; the precise meaning of this is discussed in Section 
111-C. To estimate the input signal optimally, we must find a 
signal x E SI n S2. This problem formulation makes the POCS 
algorithm a natural choice [9]. We show below that S1 and S2 
are convex' as assumed by POCS. If we denote the orthogonal 
projections onto S1 and S2 by PI and P2, respectively, then 
the theory of POCS states that an element 2 E S1 n SZ can be 
found from any initial guess xo by the iteration [9] 

x,+1 = (P2 o Pl)x, ,n 2 0,Et = PI2 = P2x = n+w lim x,. 

In the following sections we discuss the projections separately. 

U = H(x - y)  + ZS. 

Our only knowledge of any particular quantizer input U ,  is 
in the form of its sign, Q(u,). This knowledge provides us 
with a series of bounds on linear combinations of sample 
values {x,}. To cast this in matrix notation, we define an 
N x N diagonal matrix with fl entries on its diagonal, 
Q = -diag(yl, y2 ,  - . , y ~ ) .  The bounds imposed by the 
quantizer outputs are then 

(2) QHx I Q(HY - ZS) 
Section 111-E compares our proposed algorithm to that of Thao 
and Vetterli [ 113-[ 141. where the inequality sign is to be taken coordinate-wise. 

Equation (2) establishes a time-domain description of the 

A.  Projections onto Convex Sets 'A set S is convex if for all a, b E S, aa + (1 - a)b E S for any 
O < a < l .  

2The overall delay in H ( z )  in general adds one to the system order. For 
the single-loop encoder, however, the filter delay and the overall delay can 

In this section we briefly review the as it 
binary Output signal 

y = { y o ,  . . . , y N - 1 )  Of an interpolative EA encoder, we de- 
to Our decoding problem- For 

be combined into one. 
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I interpolative en~oder .~  We can show that the set S1 of signals 
satisfying (2) is convex. Specifically, if we consider two 
sample vectors x1 and x p  that both satisfy (2), then for any 
O < a < l  

QH[axi + (1 - a)x2] 
5 a Q ( H y  - ZS) + (1 - a ) Q ( H y  - ZS) = Q ( H y  - ZS). 

We will adopt the 2-norm as our performance and projection 
metric, that is, we define the Signal-to-Noise Ratio4 (SNR) to 
be 10 loglO(Esignal/Enoise) where 

N-1 N-1 

Esignal= x i ,  Enoise = (xn - i n )2*  (3) 
n=O n=O 

Projecting onto S1 in the 2-norm is equivalent to finding the 
signal x that satisfies (2) and minimizes the distance 11 2-x 11 $. 
This criterion and equation (2) together constitute a linearly 
constrained QP problem, which can be solved with techniques 
available in the literature [ 151. 

In practice, sample sizes N on the order of thousands 
are desirable to increase the accuracy of the band limitation 
projection described in Section III-C below. Because of the 
large computational complexity of the QP problem, we will 
derive an approximation to PI ,  which takes advantage of the 
fact that H is lower-triangular. The idea is to solve a number 
of L-dimensional QP problems (L < N )  rather than a single 
N-dimensional one, by dividing the signal x into L-sample 
QP subblocks. In the simplest set-up, the subblocks are not 
overlapping. The small QP problems are solved in chronolog- 
ical order, and no subblock is allowed to change the estimates 
of previous subblocks. This approach is illustrated in Fig. 5(a) 
and is described mathematically in the appendix. The problem 
with this set-up is that large changes tend to be necessary at the 
beginning of each subblock because H is lower-triangular, and 
so each bound violation must be corrected using only samples 
before the violation. Bound violations at the beginning of a 
subblock therefore require larger sample modifications than 
do violations towards the end of a subblock. In our preferred 
set-up the subblocks are partially overlapping, and thus the 
optimization of each subblock takes into account a portion 
of the subblock immediately following it. This approach is 
shown in Fig. 5(b) and is also described mathematically in the 
appendix. The overall QP estimate of an N-sample block is 
obtained by concatenating parts of the estimates resulting from 
each of the QP subblocks. Specifically, we use the estimate 
on that part of each subblock that does not overlap with the 
immediately following subblock. The overlapping portion of 
each subblock with the next subblock is used to improve 
upon the initial estimate of the QP solution for the following 
subblock. 

Similar descriptions can be found for noninterpolative encoders. The main 
differences for such encoders are as follows: For the double-loop encoder, the 
impulse response matrix seen by the input x and the output y are different. 
For the two-stage encoder, we assume as in [3] that we have access to both 
quantizer outputs; each quantizer gives a series of bounds, and we can enforce 
the two sets of bounds separately. For predictive coders such as the Delta 
encoder, the impulse response matrix is the identity matrix, and as a result 
the timedomain projection becomes trivial. 

4This ratio is sometimes also referred to as the signal-to-noise plus 
distortion ratio (SDR). 
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Fig. 5. ' b o  ways of dividing an N-dimensional QP problem into smaller 
L-dimensional problems. (a) Nonoverlapping blocks. (b) Blocks overlapping 
by f ;  the marked parts of each block are used in the final solution estimate. 

The choice of QP block size L is a trade-off between the 
speed with which a solution is obtained, and the closeness of 
the solution to the true 2-norm solution. The closeness to the 
2-norm is important because the frequency-domain projection 
will be done in the 2-n0rm, and the POCS algorithm only 
guarantees convergence if the projections are done in the same 
norm. 

The computational complexity of the time-domain pro- 
jection depends on the number of samples N and the QP 
block size L. To quantify the complexity, we prefer empirical 
run-time observations over analytical bounds, as the bounds 
are worst-case bounds, and the particular problem we are 
addressing has significant structure that the bounds do not take 
into account. Empirically, we find each QP subblock problem 
to depend cubically on L, so the overall empirical complexity 
of the time-domain projection is O(g . L3)  = O(NL2) .  

C .  Frequency-Domain Projection 

In this section we consider the frequency-domain projection 
P2 of a signal x = (20,. , Z N - ~ }  onto the set S 2  of signals 
that are band-limited in a sense to be defined.'This projection 
raises some general questions about band limitation that are 
discussed in [16] and are summarized below. 

The two standard techniques for band limitation are the 
discrete Fourier transform (DFT) and linear filtering. However, 
the DFT is only accurate when the signal frequencies are bin 
frequencies for the DFT, which cannot in general be assumed. 
We showed in [ 161 that the frequency of a sinusoidal baseband 
signal can be chosen half way between DFT bin frequencies 
such that the SNR is as low as 

SNRmin x lolog10 (,",;R)* - 

For N = 4096 and OSR = 48, we get SNR,in = 23 dB, 
and this minimum SNR only increases by 3 dB/octave with 
the sample size. Windowing can be used to suppress spectral 
leakage in the DFT, but this has the side-effect of smearing 
the signal spectrum significantly as shown in [16]. 

Linear filtering for moderate-length block-oriented process- 
ing has the disadvantage that we must pad the block of samples 
with zeros to obtain a sequence on which a linear filter can 
operate, and the filtered result exhibits large edge effects due 
to this padding. In practice, linear filtering is often performed 
continuously on a stream of modulator outputs; however, for 
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the block-oriented processing that we consider for POCS, we 
only have access to a finite output block of moderate length. 
In addition, similarly to any practical band limiter, a linear 
filter can only approach the ideal low-pass transfer function 
that has unity baseband gain and zero high-frequency gain, 
and the deviations from ideality result in errors. Finally, linear 
filtering is not a projection unless the filter transfer function 
only takes on the values 1 and 0. 

Our preferred, general technique for band limitation is 
described in [ 161 and is related to known algorithms for band- 
limited extrapolation [17]. In [16] we also discuss the fact 
that any finite set of samples can be viewed as samples of 
infinitely many different infinite-extent sequences with band- 
limited discrete time Fourier transforms (DTFT”s), and thus 
it is not clear how to define band limitation for general 
finite sequences. This conceptual problem is resolved by using 
energy and dimensional considerations. Our band-limitation 
technique is based on the SVD of an N x N symmetric 
Toeplitz matrix L of samples of the impulse response of 
ap ideal low-pass filter, Cmn = sin[a(m - n)]/[7r(m - n)] 
where = 1/OSR. The SVD leads to the truncated discrete 
prolate spheroidal sequences (DPSS’s) of N-dimensional vec- 
tors {UO, . . . , UN-~}, which have been studied extensively 
by Slepian [I81 and others. The truncated DPSS’s form an 
orthonormal basis of RN. Approximately T = N/OSR of the 
singular values of L are close to 1, while the remaining ones 
are close to 0. The truncated DPSS’s for singular values close 
to 1 and 0 are analogous to the baseband and high-frequency 
(HF) complex exponential basis functions, respectively, of the 
DFT. Our SVD-based algorithm projects signals onto the space 
S2 spanned by the “baseband” DPSS’s 

r 

x = C(xTun). un, T fi: NIOSR. (4) 
n=l 

The projection (4) is in the sense of the 2-nom-1, and the 
space S 2  is linear and thus convex. We consider the signals 
in the range space of {ul, . - .  ,U,.} to be band-limited. The 
SVD required to obtain the vectors (u1 , . . . , u.} only needs 
to be done once, and can be implemented efficiently using 
the Lanczos algorithm [19] and exploiting the Toeplitz form 
of L. The computational complexity of the projection (4) is 
O(N2/OSR), which is found to be comparable in speed to a 
fast Fourier transform (FFT) band-limitation for a sample size 
of 4K (1K = 1024). 

D.  Sliding Block Decoding 
The POCS algorithm described in Sections III-A-111-C is 

suitable for decoding blocks of N samples when the initial 
encoder state is known. However, we find empirically that the 
algorithm suffers from larger estimation inaccuracy towards 
the edges of an N-sample block than on its middle. To reduce 
edge effects, we therefore also consider a sliding block set-up 
where the N-sample blocks overlap by 50% as shown in Fig. 
6. Each block is decoded using the iterative POCS algorithm, 
and upon convergence, the initial state of the following block 
is estimated. The state estimation is done by simulating the 
behavior of an encoder that starts in the initial state of the 

Fig. 6. 50% overlap of the N-sample blocks on which the POCS iterations 
operate. The marked parts of each block are used in the overall solution. The 
dotted lines show an extension of the QP projection described in the text. 

current block and has the estimated input sequence as its input. 
The overall input estimate is the concatenation of the input 
estimates on the middle halves of the N-sample blocks. The 
S N R  is calculated in the time domain over the middle half of 
each N-sample block, and the overall SNR is defined as the 
average of the SNR’s on the contributing blocks. 

The accuracy of the time-domain and frequency-domain 
projections can be improved upon in two ways by extending 
the idea of overlapping blocks. First, for all but the first N -  
sample block, the QP operation can be started a number C 
samples before the beginning of the N-sample block and 
extend over N + C samples. This implies that the QP operation 
on the previous N-sample block includes the first C samples of 
the present N-sample block, and reduces the effects of early 
bound violations for the same reason that overlapping the QP 
subblocks reduces these effects. Second, the SVD projection 
tends to be most accurate on the middle of an N-sample 
block, so results from the part of the previous N-sample 
block that overlaps with the current N-sample block can be 
used to improve upon the accuracy of the initial estimate for 
the current block. On samples where no better estimates are 
available from previous N-sample blocks, the initial estimate 
is chosen to be the binary output sequence of the encoder. 

E. Comparison to Thao and Vetterli’s Algorithm 
In this section we compare our proposed algorithm 

[2], [4]-[6], to the algorithm proposed by Thao and 
Vetterli [ 1 11-[ 141, which was developed independently. Both 
algorithms are POCS-based. Sections 111-E- 1 and 111-E-2 
discuss the time-domain and frequency-domain projections, 
and Section III-E-3 discusses the modes of operation for the 
two algorithms. 

1 )  Time-Domain Projection: Thao and Vetterli develop an 
approximate method for performing the time-domain projec- 
tion, which is valid for certain nth order multistage EA 
encoders as well as for other encoders. The idea is to only 
enforce a subset of the bounds imposed by the encoder outputs, 
and to recursively attempt to guess which bounds are active 
[15]. For orders n above 1, the authors’ algorithm only yields 
an approximate projection onto the convex subspace spanned 
by the particular bounds that are assumed active; the algorithm 
is thus approximate both in the way that the active constraints 
are chosen, and in the way that the resulting optimization 
problem is solved. The advantage of the authors’ interesting 
approach over the more accurate approach of performing the 
full projection is a decrease in computational complexity. 
The authors do not comment on the achieved gain over 
conventional, efficiently implemented QP, or an approximate 
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QP approach such as the one described in Section 111-B, which 
uses all available bounds. Nor do they describe the loss of 
accuracy resulting from their approximations. The authors do 
not quantify the fraction of bounds that are typically used by 
their algorithm, but their most general algorithm described in 
[ 121 requires that the active bounds be spaced apart by at least 
n samples. The authors do not state whether their algorithm 
permits a range of trade-offs between computational speed 
and accuracy. The authors' algorithm only works for a subset 
of EA encoders, most notably multi-stage encoders whose 
individual stages all have their open-loop filter poles at dc. 
The approach is thus not applicable to the general class of 
interpolative encoders with filter poles over signal baseband 
[8] such as the fourth-order encoder considered in Section 
IV. Because of the assumption of dc filter poles, it would 
be interesting to see simulation results for the sensitivity of 
the authors' algorithm towards unknown nonidealities in the 
encoder filters such as integrator leak. 

2) Frequency-Domain Projection: In order to have access 
to an ideal low-pass filtering for the frequency-domain projec- 
tion, Thao and Vetterli assume that the input signal is periodic. 
They also assume that the period is equal to the number of 
samples N to which the decoder has access [12]. In effect, 
they thus assume that the input frequency is known. 

3)  Mode of Operation: With regard to a continuous mode 
of operation, Thao and Vetterli assume that the integrators 
states are reset to zero at the beginning of each conversion 
cycle. While our algorithm can also work in this mode, we 
found that increased accuracy is obtained by overlapping the 
blocks and propagating estimates of the encoder states, as 
described in Section 111-D, this enables us to only count 
estimation errors on the middle half of each POCS block. 
Another potential advantage of not periodically resetting the 
integrator states is that encoder transients are avoided. 

Iv. RESULTS 

This section contains numerical results for single block 
and sliding block decoding for a number of EA encoders, 
including the single-loop, double-loop and two-stage encoders 
and the specific fourth-order encoder given by equation (1) 
€81. For single block simulations, the S N R  is calculated over 
the middle half of an N-sample block, and for sliding block 
simulations, the S N R  is calculated as explained in Section 
111-D. We point out that our S N R  measure includes both low 
frequency and high frequency signal errors. 

Throughout the section, the input signal is a sinusoid whose 
amplitude is varied and whose frequency is a = 9/32 times the 
largest signal frequency for which the modulator is designed to 
operate, that is, 9/32 of half the Nyquist rate? This frequency 
is a bin frequency for the DFT to enable comparisons between 
the POCS decoders whose band limitations are based on 
the DFT and on the SVD (4), respectively. When we use a 
bin frequency, the DFT will perform better than the SVD, 
and so the shown Dm-based experimental results will be 
superior to the corresponding SVD-based ones. However, the 

50ther simulations show that similar results are obtained for other signal 
frequencies. For brevity, one representative frequency is chosen. 

TABLE I 
SUMMARY OF PEAK S N R  PERFORMANCE RESULTS FOR THE SINGLE-LOOP, 
DOUBLE-LJXIP, TWO-STAGE AND FOURTH-ORDER ENCODERS; THE ENCODER 

DECODERS CAN BE BASED ON EITHER THE DFT OR THE SVD. THE LINEAR 
COMPONENTS ARE ASSUMED bEAL. BOTH "HE POCS AND THE LINEAR 

DECODERS ARE GENERALLY LIMITED BY SIGNAL W U E N C Y  ERRORS 

Peak SNR (dB) 

Encoder Decoder OSR DFT SVD 
~ 

Single-loop POCS 

Linear 

Double-loop FQCS 

Linear 

Two-stage Pocs 

Linear 

Fourth-order POCS 
Linear 

64 
128 
64 

128 
64 

128 
64 

128 
64 

128 
64 

128 
48 
48 

61 
84 
31 
44 
19 
92 
31 
44 
86 

101 
31 
38 
93 
84 

56 
67 
31 
44 
65 
83 
31 
44 
85 
94 
31 
38 
83 
64 

SVD performs significantly better than the DFT on non- 
bin frequencies, and signal frequencies cannot in general be 
assumed to be bin frequencies. 

For the shown results, the sample size for each block is 4K. 
For sliding block simulations, we consider three 4K blocks 
that overlap by 50% for a total of 8K samples. The overlap 
between QP subblocks is L/3 where L = 192 for the fourth- 
order encoder and L = 96 for the single-loop, double-loop 
and two-stage encoders. The initial state vector s for the first 
block is assumed to be known and is set to zero. The number 
of singular vectors T in (4) is 94, 74 and 39 for oversampling 
ratios OSR = 48, 64 and 128, respectively. The number of 
POCS iterations is 12. 

Sections IV-A-IV-D contain results for the single- 
loop, double-loop, two-stage and fourth-order encoders, 
respectively. The main results are summarized in Table I; 
we make comments on the dependence of the S N R  upon the 
OSR in the individual sections below. In'Section IV-E we 
compare our S N R  metric and performance results to existing 
results in the literature. 

A. Single-Loop Modulator 
We first consider single block decoding with the SVD-based 

band limitation (4) as the frequency domain projection, for the 
two oversampling ratios 64 and 128. Fig. 7 shows SNR curves 
for the SVD-based POCS decoder, as well as for a low-pass 
decoder that uses (4). The figure shows that particularly for 
large input amplitudes, the POCS algorithm is clearly superior 
to the linear decoder. For OSR = 64, the peak SNR's are 56 
dB and 37 dB, and for OSR = 128, the peak SNR's are 67 
dB and 44 dB for the SVD-POCS and SVD-alone decoders, 
respectively6. 

We have chosen the peak SNR as a convenient measure of performance. 
For certain applications, other measures such as the dynamic range are often 
used to complement or replace the peak SNR measure. 

1 



804 

le+3 - 

le-3 - 

le-9 - 

le-15 - 

le-21 - 
v $-v%- 

V 40 8V 

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 4, APRIL 1994 

SNR (a) 

Input ampl. (dB) 

Fig. 7. S N R  as a function of input amplitude for the single-loop encoder 
with single block decoding. The two decoders are an SVD-based low-pass 
decoder and the SVD-based POCS decoder. 

Iteration number 

Fig. 9. Energy modification performed by the frequencydomain projection 
as a function of POCS iteration number. The decoder is the DFT-POCS one. 

Average SNR (a) 
L ‘  

SNR (dB) 

Input ampl. (dB) 0 

Fig. 8. S N R  as a function of input amplitude for the single-loop encoder with 
single block decoding. The two decoders 8re a DFT-based low-pass decoder 
and the DFT-based POCS decoder. 

We have carried out a set of simulations under an identical 
set-up to that of Fig. 7, except that we consider a sliding-block 
decoder. We find that the S N R  curves for the sliding-block 
decoder are within 1-2 dB of the corresponding curves in Fig. 
7, indicating that state uncertainty implies little loss in SNR, 
so the same conclusions hold as for Fig. 7. 

For comparison, Fig. 8 shows S N R  results for the POCS 
algorithm when using the DFT rather than the SVD-based 
method (4) as the band limitation. The figure is valid for single 
block decoding, but another set of simulations for sliding-block 
decoding shows that the difference between corresponding 
single block and sliding-block curves is 0 . 1 4 2  dB. For OSR 
= 64, the peak SNR’s are 61 dB and 37 dB, and for OSR = 
128, the peak SNR’s are 84 dB and 44 dB for the DFT-POCS 
and DFT-alone decoders, respectively. 

Comparing Figs. 7 and 8, the SVD-based POCS method 
is up to 20 dB superior to the DFT-alone and SVD-alone 
methods. We see that the SVD-based POCS method mostly 
loses 2-4 dB compared to the DFT-based POCS method for 
OSR = 64 and up to about 10 dB for OSR = 128. We find that 
the linear decoders are all limited by signal frequency errors. 

To demonstrate the convergence of our algorithm, Fig. 9 
shows the energy modification performed by the frequency- 
domain projection as a function of POCS iteration number. 
The curve is valid for single-block decoding with the DIT- 
POCS algorithm and an input amplitude of 0.10. We see that 
the algorithm finds an estimated input within about 

Fig. 

1 

- 

- 
Overs. ratio 

IO. Average S N R  as a function of oversampling ratio for the single-loop 
encoder with single-block decoding and the DFT--POCS decoder. Also shown 
is a line with 12 @/octave slope. 

of satisfying both the time-domain and frequency-domain 
constraints; the small error may be attributed to machine 
inaccuracy in the DFT. 

To assess the S N R  dependence of the DFT-POCS algorithm 
upon the OSR, we have obtained simulation results for OSR’s 
of 16, 32, 48, 64, 96 and 128. To combine the SNR perfor- 
mance over the range of input amplitudes into one indicator, 
we average the SNR over 14 fixed amplitudes between 0.01 
and 0.95: This average SNR should of course only be taken 
as a relative rather than absolute performance indicator, but 
it does permit comparison across OSR’s. Fig. 10 shows the 
trade-off between the average SNR and the OSR. We see that 
the slope of the curve is approximately 12 dB/octave; this 
result is further commented upon in Section IV-E-4. 

B. Double-Loop Modulator 
For the double-loop encoder, we consider single block 

decoding with the SVD-based band limitation (4) as the 
frequency domain projection, for the two oversampling ratios 
64 and 128. For the SVD-based POCS decoder, we find that 
particularly for large input amplitudes, the POCS algorithm 
is clearly superior to the linear decoder. The peak SNR’s are 
indicated in Table I. Fig. 11 shows S N R  results for the POCS 
algorithm when using the DFI’ rather than the SVD-based 

’The amplitudes are the same ones used to generate the plots in this section, 
specifically,O.Ol, 0.03,0.06,0.08,0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80, 
0.90, 0.95. 
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Fig. 11. SNR as a function of input amplitude for the double-loop encoder 
with single block decoding. The two decoders are a DFT-based low-pass 
decoder and the DFT-based POCS decoder. 
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Fig. 12. Peak S N R  as a function of QP block size for the double-loop encoder 
with single-block DFT-POCS decoding. 

method (4) as the band limitation. The figure is valid for single 
block decoding, but another set of simulations for sliding-block 
decoding shows that the difference between corresponding 
single block and sliding-block curves is about 3 dB. For OSR 
= 64, the peak SNR’s are 79 dB and 37 dB, and for OSR = 
128, the peak SNR’s are 92 dB and 44 dB for the DFT-POCS 
and DFT-alone decoders, respectively. 

In comparing results for the SVD-based and DFT-based 
algorithms, we find that the SVD-based POCS method is up 

-to 40 dB superior to the DFT-alone and SVD-alone methods. 
We see that the SVD-based POCS method mostly loses 5-10 
dB compared to the DFT-based POCS method for OSR = 64 
and up to 10-15 dB for OSR = 128. We find that the linear 
decoders are all limited by signal frequency errors. 

As an example of the influence of the QP block size L, 
Fig. 12 shows the peak S N R  of the DFT-POCS decoder as a 
function of L. This figure justifies our choice of L = 96 for 
the double-loop encoder. 

Fig. 13 shows the trade-off between the average SNR and 
the OSR, obtained as in Se.ction IV-A. We see that the slope 
of the curve is approximately 18 dB/octave on most parts of 
the curve, but the curve suffers a dip in average SNR around 
an OSR of 80, and the overall slope thus appears to be slightly 
less than 18 dB/octave. This result is further commented upon 
in Section IV-E-4. 

. 

C.  Two-Stage Modulator 
For the two-stage encoder, we consider single block decod- 

ing with the SVD-based band limitation (4) as the frequency 

Average SNR (a) 

Overs. ratio 

Fig. 13. Average SNR as a function of oversampling ratio for the double-loop 
encoder with single-block decoding and the DFT-POCS decoder. Also shown 
are lines with 15 dB/octave and 18 &/octave slopes. 

........ ~ .__. ~ _ _ _ _ _ _ _  _ _ _ _ _  ~ ________._________ ~ 

Input ampl. 
3o _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - -  

(a) 
Fig. 14. SNR as a function of input amplitude for the two-stage encoder with 
single block decoding. The two decoders are a DFT-based low-pass decoder 
and the DFT-based POCS decoder. 

domain projection, for the two oversampling ratios 64 and 128. 
For the SVD-based POCS decoder, we find that particularly 
for large input amplitudes, the POCS algorithm is clearly 
superior to the linear decoder. The peak SNR’s are indicated 
in Table I. For comparison, Fig. 14 shows SNR results for the 
POCS algorithm when using the DFT rather than the SVD- 
based method (4) as the band limitation. For OSR = 64, the 
peak SNR’s are 86 dB and 31 dB, and for OSR = 128, the 
peak SNR’s are 101 dB and 38 dB for the DFT-POCS and 
DFT-alone decoders, respectively. 

In comparing results for the SVD-based and DFT-based 
algorithms, we find that the SVD-based POCS method is up to 
40 dB superior to the DFT-alone and SVD-alone methods. We 
see that the SVD-based POCS method mostly loses 5-10 dB 
compared to the DFT-based POCS method for OSR = 64 and 
OSR = 128. We find that the linear decoders are all limited 
by signal frequency errors. 

Fig. 15 shows the trade-off between the average S N R  and 
the OSR, obtained as in Section IV-A. We see that the slope 
of the curve is approximately 18 dB/octave up to an OSR 
of about 80, and then appears to drop slightly. This result is 
further commented upon in Section IV-E-4. 

D. Fourth-Order Modulator 

We first consider single block decoding with the SVD-based 
band limitation (4) as the frequency domain projection. Fig. 16 
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Other simulation results show that under the sliding block 
set-up, both the SVD-POCS and the DFT-POCS decoders lose 
1-2 dB compared to the corresponding single block decoders. 
This means that state uncertainty results in little SNR loss. 

The DFT-alone curve in Fig. 17 is generally 15-30 dB 
above the SVD-alone curve in Fig. 16. As explained above, we 
would expect the DFT-alone method to be superior because 
we are using a bin frequency signal as the input. However, 
the difference between the DIT-alone and SVD-alone curves 
could have been made smaller by a different choice of the 
number of singular vectors for the SVD band limitation (4). 
The number of singular vectors was chosen to optimize the 
SVD-POCS curves rather than the SVD-done ones. 

Fig. 15. Average S N R  as a function of oversamplig ratio for the two-stage 
encoder with single-block decoding and the DlT-POCS decoder. Lines with 
15 and 18 &/octave slopes are also shown. 

E. Comparison with Existing Results 

Fig. 16. S N R  as a function of input amplitude for a specific fourth-order 
interpolative encoder. The two decoders are the SVD-based low-pass decoder 
and the SVD-based POCS decoder. 

30 -20 - 1 0  Input ampl. (dB) 
Fig. 17. SNR as a function of input amplitude for a specific fourth-order 
interpolative encoder. The two decoders are the DIT-based low-pass decoder 
and the DIT-based POCS decoder. 

shows S N R  curves for the SVD-based POCS decoder, as well 
as for a low-pass decoder that only uses (4). The figure shows 
that the peak SNR is 83 dB for the SVD-POCS decoder and 64 
dB for the SVD-alone decoder. The gain of the SVD-POCS 
decoder is 10-20 dB. 

For comparison, Fig. 17 shows S N R  results for single block 
decoding for the POCS algorithm when using the DFT rather 
than the SVD-based method (4) for band limitation. The peak 
SNR’s are 93 dB for the DFT-FQCS decoder and 84 dB for 
the DFT-alone decoder, and the SNR gain of the DIT-POCS 
decoder is 5-10 dB. 

In this section we compare our results to existing results 
in the literature. In Section IV-E-1 we discuss the choice of 
S N R  definition, and in Section IV-E-2 we present simulation 
results to illustrate the performance of the POCS algorithm 
under different S N R  definitions. In Section IV-E3 we discuss 
the possibility that the POCS algorithm may be capable of 
suppressing the spectral tones that plague linear decoders for 
low-order encoders. In Section IV-E-4 we compare our results 
to those of Thao and Vetterli. 

To enable comparisons with existing 
results, we change our definition of S N R  from the current 
definition (3), which counts the 2-norm difference between 
the sinusoidal input signal and its decoded version as noise. 
Our argument for using (3) is that a decoder should ultimately 
be judged on the total amount of noise that it leaves on its 
input estimate-otherwise, any additional circuitry to further 
reduce the noise should be viewed as part of the decoder. 
Nonetheless, the changes that we consider are: 

1) Exclusion of the noise contribution from so-called linear 
errors in the SNR calculation. Linear errors are the errors 
at the frequency of the sinusoidal input signal. This 
modification is in agreement with [8], [20], [21]. 

2) Using an N-point Hanning window on the difference 
signal between the input and the decoder output [221 
before computing the noise power. This modification is 
in agreement with [8]. 

Exclusion of linear errors is generally justified by noting that 
they can be compensated for with simple scaling. However, 
there are two reasons that this justification is not valid in a 
EA context: 

1) The required scaling may be frequency-dependent. Sig- 
nal distortion results from the nonunity signal transfer 
function of the encoder, and from a linearized point 
of view, the encoder has a signal transfer function 
between its input and output of H x ( z )  = H ( z ) / [ l  + 
H ( z ) ] ,  where H ( z )  is the open-loop transfer function. In 
general the signal transfer function is not constant over 
baseband, and thus a simple frequency-independent con- 
stant gain is insufficient to equalize it. On the other hand, 
an equalization filter can be designed to compensate 
for the ripples in H x ( z )  over baseband, such that the 

I )  SNR Definition: 
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product of its transfer function with H x ( z )  approaches 
unity over baseband. 

2) The signal frequency error in general depends nonlin- 
early on the signal amplitude and phase as well as on the 
presence of other signals. This is because a EA encoder 
is a nonlinear circuit. 

To illustrate the importance of signal frequency error, we 
consider a situation where the signal frequency component at 
the encoder output equals a constant K times a sinusoidal 
input signal. We assume for simplicity that K is real. The 
signal frequency error energy equals (1 - K ) 2 ,  so if the SM 
is defined to include signal frequency error, the SNR is limited 
to -2010g10 (1 - KJ. For instance, if K = 1 + the S N R  
cannot exceed 80 dB. For a linear filter, an inaccuracy of 
1 - K = corresponds to a ripple of 0.0009 dB. This 
example shows that the passband demands on the equalizing 
filter are quite stringent. In addition, the filter must act as 
a good low-pass filter outside of baseband. Even if these 
requirements are met, the nonlinear signal distortion inherent 
in the encoder cannot be cancelled. 

Although our POCS decoding algorithm does not explicitly 
take signal frequency errors into account, we have found 
numerically that the time-domain constraint acts to signifi- 
cantly reduce these errors. The POCS algorithm thus avoids 
the need to explicitly design a high-precision linear filter, 
and furthermore the timedomain constraint implies that the 
algorithm does not neglect the nonlinear signal frequency 
errors. These observations are further verified in the following 
section. 

2) Simulation Results: Fig. 18 is analogous to Fig. 8 and 
shows SNR results for the single-loop encoder when the S N R  
is obtained by discarding linear errors. The band limitation 
is DFT-based. The DFT-alone curves can be taken as upper 
bounds on the performance of linear filtering. For OSR = 64, 
the peak SNR’s are 63 dB for the DFT-POCS decoder and 58 
dB for the DFT-alone decoder. For OSR = 128, the peak 
SNR’s are 84 dB and 66 dB, respectively. Fig. 18 shows 
that when excluding linear errors, the POCS method gains 
about 3-7 dB over the DIT-alone method for OSR = 64, 
and 3-18 dB for OSR = 128. Not shown are simulation 
results for OSR = 32 where we find a peak SNR for the 
DFT-alone method of 49 dB. This result is comparable to 
a result in [20] for an OSR of approximately 36 where 
a peak S N R  of about 50 dB is shown. Comparing Figs. 
8 and 18, we find that the gap between the DFT-alone 
and DFT-POCS curves decreases when the SNR definition 
is modified to exclude signal frequency errors. This indi- 
cates that the DFT-POCS method better suppresses these 
errors. 

Fig. 19 shows SNR results for the fourth-order encoder 
with a DFT-based band limitation. The results are obtained 
exactly in the same way as those in Fig. 17, except that the 
S N R  excludes linear errors, and windowing is performed as 
described in Section IV-E-1. This enables comparison with [8] 
in which a peak SNR of about 95 dB is reported. In Fig. 19 
the peak SNR’s are 96 dB for the DFT-alone decoder and 101 
dB for the DFT-POCS decoder. The DFT-POCS decoder is 
3-10 dB superior to the DFT-alone decoder. 

Fig. 18. SNR as a function of input amplitude for the single-loop encoder. 
The SNR calculation excludes linear errors. 

I 64F;‘ -/ Input ampl.(dB) 40 30 20 1 0  
Fig. 19. S N R  as a function of input amplitude for a specific fourth-order 
interpolative encoder. The decoders are DlT-based as in Fig. 17, but the 
SNR excludes linear errors, and windowing is performed. 

Other simulation results show that if we use the SVD-based 
method for band limitation, and if the SNR is defined to 
exclude linear errors and to include windowing of the DFT, 
the peak SNR’s are 93 dE3 for the SVD-alone decoder and 98 
dB for the SVD-FQCS decoder. Under these conditions, the 
SVD-POCS decoder is 3-15 dB superior to the SVD-alone 
decoder. 

3) Tone Suppression: In this section we consider the prob- 
lem of spectral tones that is known to plague single-loop and 
double-loop encoders [23]-[25]. It has been shown theoreti- 
cally that in single-loop encoders with constant or sinusoidal 
inputs, the spectrum of the quantization noise is purely discrete 
[23], [24]. The part of the noise spectrum that falls in signal 
baseband gives rise to objectionable tones if a linear low-pass 
decoder is employed. For the double-loop encoder, a similar 
behavior has been observed empirically [25]. Spectral tones 
are known to be absent in multi-stage encoders [26], 1271, and 
it is commonly held that tones are also absent in higher-order 
interpolative encoders. 

As our proposed POCS algorithm is nonlinear, it is conceiv- 
able that the algorithm may be able to exploit time-domain 
information to suppress baseband tones. On the other hand, it 
is also conceivable that the algorithm may introduce additional 
nonlinear distortion. In our simulations, we have found neither 
of these effects to be present. To test the performance of our 
algorithm, we have carried out simulations for a large number 
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of constant inputs, as these are known to give rise to tones. 
We find that the POCS algorithm quickly converges to an 
input estimate that contains the same tones as the estimate 
produced by a linear decoder. As the input estimate resulting 
from the POCS algorithm satisfies both the time-domain and 
frequency-domain constraints, there is no deterministic way 
to distinguish it from the actual constant input. We therefore 
conclude that the presence of tones in single-loop and double- 
loop modulators is an inherent propem of the encoders that 
cannot be suppressed by decoders. 

In this sec- 
tion we compare the simulation results of this chapter to those 
of Thao and Vetterli [ 111-[ 141. We first discuss the asymptotic 
performance in terms of SNR versus OSR, and then compare 
actual SNR levels in dB. 

In [12] Thao and Vetterli analytically show the following 
result: There exists a decoder for an n-stage EA encoder 
that statistically achieves an asymptotic S N R  versus OSR 
performance of at least (2n + 2) . 3 dB/octave, whereas 
traditional linear decoding is known to be limited to (2n + 1).  3 
dB/octave. The result is shown under the assumptions that 
the quantization noise is white, and that the input signal is 
chosen at random from the set of band-limited signals. They 
verify numerically that a POCS algorithm obtains (2n + 2) e3 
dB/octave performance. 

In Section N-E we found an SNR versus OSR performance 
of approximately 12 dB/octave for the single-loop encoder 
with the DFT-POCS algorithm. Similarly, we found slopes of 
approximately 18 dB/octave for the double-loop and two-stage 
encoders with OSR’s less than about 80, whereas the slopes 
appear to slightly decrease for OSR’s exceeding 80. The results 
of 12 dB/octave and 18 dB/octave are in agreement with the 
results obtained by Thao and Vetterli. However, the decreasing 
slopes for large OSR’s require an explanation. 

One possible explanation is that our space of band-limited 
sinusoidal encoder inputs has dimension N/OSR that is on 
the order of hundreds. On the other hand, Thao and Vetterli 
implicitly assume the input frequency to be known, so that the 
dimension of their input space is 3, namely a dc component 
and the amplitude and phase of a sinusoidal component. It is 
possible that knowing the input frequency gives their algorithm 
an asymptotic advantage. As Thao and Vetterli’s theorem is 
derived under the unrealistic assumption of white quantization 
noise, the theorem does not show that our algorithm should 
achieve an asymptotic S N R  performance of (2n + 2) . 3 dB 
per octave of oversampling. 

Other factors in the simulation set-ups may also play a part 
in the observed differences. In particular, we consider sinu- 
soidal inputs with a range of amplitudes and no dc component, 
whereas Thao and Vetterli consider sinusoidal inputs with a 
fixed amplitude of 0.5, but a random dc component between 
-0.5 and 0.5. The inclusion of a sizable dc component in 
the input signal as well as in the S N R  calculations may 
conceivably mask small performance changes in the dynamic 
behavior. This is because encoders with filter poles at dc 
achieve relatively better SNR’s for dc inputs than for dynamic 
inputs, as the filter magnifies dc errors with larger gain than 
it magnifies dynamic errors. 

4 )  Comparison to T h o  and Vetterli’s Work: 

One might speculate that the probable cause of the de- 
creasing slopes for large OSR’s is that we keep the sample 
size N constant at 4096, whereas Thao and Vetterli let N be 
proportional to the OSR. Clearly, if the sample size is finite, the 
S N R  must also be finite even for infinite OSR, that is, constant 
signals; it therefore appears that we might be beginning to see 
the effect of finite N at SNR’s of about 85-90 dB. However, 
we find by simulation that no gain in S N R  is obtained by 
doubling the sample size. 

We now discuss the absolute performance of the POCS 
algorithms, and their performance compared to linear filtering. 
In our results, we found improvements in S N R  over linear 
filtering for all practical input amplitudes and OSR’s. Thao 
and Vetterli do not report simulation results for linear filtering, 
but rather use a standard linearized formula to approximate 
its performance. In [13] they report that for the single-loop 
encoder, the S N R  gain over linear filtering ranges from 0 dB 
at OSR = 20 to about 6 dB at OSR = 128. For the two- 
stage encoder, the SNR gains are -3 dB at OSR = 20 and 
+4 dB at OSR = 128, and for the double-loop encoder, the 
gain ranges from -8 dB at OSR = 20 to -2 dB at OSR 
= 128. The POCS algorithm is reported to be inferior to 
linear filtering for OSR’s less than about 50 for the two- 
stage encoder, and for OSR’s less than about 256 for the 
double-loop encoder. The authors attribute the negative SNR 
gains to the fact that they use the zero signal rather than the 
quantizer output as their initial input estimate; they justify this 
choice by stating that it avoids artifacts in the evaluation of 
the altemating projection algorithm. We have not observed 
such artifacts in our simulations. Another possible explanation 
for the reported S N R  loss may be that the authors do not 
simulate the performance of linear filtering, and the theoretical 
expression for the performance of linear filtering that they use 
appears to exclude linear errors. 

Finally, we compare the actual SNR numbers obtained with 
our POCS algorithm to those obtained by Thao and Vetterli 
for the same encoders and input amplitudes. This comparison 
cannot be made fair, as Thao and Vetterli include a random 
dc component in their input signal; they also fix the input 
frequency at the baseband edge, which results in a lower S N R  
than for input frequencies well within baseband. With these 
reservations, we find for the single-loop encoder that our SNR 
is 54 dB, whereas Thao and Vetterli report approximately 
46-47 dB. For the two-stage encoder, we find and SNR of 
79 dB, whereas Thao and Vetterli report approximately 73 dB. 
No absolute numbers are reported for the double-loop encoder. 
We find these numbers to be in acceptable agreement. Without 
detailed knowledge of both simulations, it does not appear 
possible to say whether some S N R  loss can be attributed 
to Thao and Vetterli’s approximate, but faster time-domain 
projection. 

v. DECODING IN THE PRESENCE OF NON-IDEALITIES 
In this section we present simulation results that describe 

the effects of a number of nonidealities on. the performance 
of the POCS decoding algorithm. The numerical values of 
the nonidealities are assumed unknown, but can easily be 
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TABLE II 
SENSITIVITY OF THE POCS-Dm DECODER TOWARDS VARlOUs NONID- THAT ARE UNKNOWN TO THE DECODER. THE 

SHOWN NONIDEALITES RESULT IN A h K  S N R  LOSS OF APPROXIMATELY 2 dB. THE QUANrmES GIVEN IN PERCENT 
ARE MEASURED RELATIVE TO THE QUA- STEP SIZE. THE QUANTITIES GIVEN FOR THE LEAK ARE THE 

MINIMUM ACCEPTABLE OPERATIONAL AMPLIFIER (OP-AMP) GAINS 

Encoder OSR Nom.tSNR Gain Leak State Quant. Noise 

Single-loop 64 61 dB NIA 1500 2.5% 2.5% 0.75% 
128 84 dB NIA 7500 2.0% 0.5% 0.15% 

Double-loop 64 79 dB 1% 5000 2 15% 10% 0.2% 
128 92 dB 0.1% 50 000 2 15% 5% 0.01% 

Two-stage 64 86 dB 1% 10 000 2 15% 2 15% 0.1% 
128 101 dB 0.005% 150000 5% 2.5% 0.0075% 

Fourth-order 48 93 dB 2 5% 750 3% 2% 0.01% 

compensated for in the algorithm if known. The nonidealities 
we consider are integrator gain and leak, initial state offset, 
quantizer offset and input noise, all of which are described in 
[3]. The encoders we consider are the single-loop, double-loop, 
two-stage and fourth-order interpolative encoders. The results 
are summarized in Table 11. We first describe the assumptions 
underlying the results, then present detailed results for the 
fourth-order encoder, and finally comment on the results 
summarized in Table II. 

The simulation results in Table I1 are generated using the 
DFT as the band limitation and considering a single 4 K block 
of samples. The parameters of the simulations are the same as 
in Sections IV-A-IV-D. The S N R  is calculated in the same 
way as in those sections, that is, by including linear errors 
and not performing windowing. The peak SNR is used as a 
concise statistic to describe the performance of a modulator. 
For encoders with more than one integrator or quantizer, 
the nonidealities are assumed for simplicity to be the same 
for all elements that are nominally identical. The levels of 
nonidealities reported in Table I1 result in a peak S N R  loss of 
approximately 2 dB. 

We now present detailed results for the fourth-order encoder 
showing the sensitivity of the POCS decoder as well as 
the DFT-based linear decoder towards nonidealities. As the 
encoder contains nine scaling factors, we have not exhaustively 
graphed the sensitivities towards perturbations in each gain. 
However, Table 111 shows the changes in peak SNR resulting 
from perturbations of &5% in each gain from its nominal 
value. We see that in no case does the perturbation result in 
more than a 2 dB degradation in peak SNR, and in fact the 
peak SNR of the POCS decoder often increases as a result 
of a perturbation. Fig. 20 shows that the DFT-POCS decoder 
requires an op-amp gain of approximately 750, whereas the 
DFT-alone decoder requires a gain of 300. Fig. 21 shows the 
sensitivity of the decoders towards initial integrator states. For 
simplicity, we assume that all state offsets are identical. We see 
that the DFT-POCS decoder can tolerate an initial state offset 
of about 3%, whereas the linear decoder is insensitive to initial 
integrator states. Not shown are figures demonstrating that the 
DFT-POCS and DFT-alone decoders require a quantizer offset 
no larger than 2% and 5%, respectively, and that the noise 
levels should be no larger than 0.01% and 0.03%, respectively. 

In general, the results in Table 111 indicate that the sensitivity 
increases as the OSR and hence the SNR increases. We 

TABLE III 
PEAK SNR CHANGES IN dB FOR THE FOURTH-ORDER INTERPOLATIVE 

ENCODER AS A FUNCTION OF F'ERTURBATIONS IN OPEN-LOOP FILTER GAINS 

POCS-DFT Dm-alone 
~~ 

COeff. +5% -5% +5% -5% 

+0.39 
-0.06 
-1.06 
+1.60 
+1.46 
+1.99 
- 1.86 
+2.64 
+1.83 

+1.43 
+3.59 
+3.43 
+3.54 
+1.65 
+3.76 
+0.11 
+3.28 
+3.06 

-0.69 
-0.12 
0.00 

+0.21 
+0.26 
+0.20 
+0.58 
-0.17 
-1.15 

-0.11 
-0.27 
+0.07 
-0.30 
-0.44 
0.00 

-0.73 
+0.06 
+0.84 

Peak S N R  (dB) 

1 -leak 

Fig. 20. Peak SNR as a function of integrator leak for the fourth-order 
encoder. The two decoders are the DFT-based low-pass decoder and the 
DFT-based POCS decoder. 

also see that for comparable SNR performance, the different 
encoders mostly have comparable sensitivities. The exception 
to this rule is the fourth-order interpolative encoder, which 
exhibits quite low sensitivity towards nonidealities, taking into 
account its peak SNR of 93 dB. The exact reason for the 
decreased sensitivity is unclear, but it appears reasonable to 
conjecture that it is related to the pole locations of the fourth- 
order encoder. Specifically, the single-loop, double-loop and 
two-stage encoders all have their poles at dc, whereas the 
fourth-order encoder has its poles at non-dc frequencies within 
signal baseband. 
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Fig. 21. Peak SNR as a function of integrator state offsets for the fourth-order 
encoder. The two decoders are the DFT-based low-pass decoder and the 
DFT-based POCS decoder. 

VI. CONCLUSION 
We have shown by simulations that for four representative 

EA modulator architectures, significant gains in S N R  can be 
achieved using sophisticated decoding techniques rather than 
linear decoding. The results are valid both for block decoding 
and, more realistically, for sliding-block decoding. 

The presented decoding method is computationally com- 
plex. However, our results can serve as upper bounds on 
the achievable SNR, and would be useful for future research 
in simplified, nonlinear decoding algorithms. Such research 
would also address the sensitivity of the algorithm towards 
circuit imperfections. 

We can solve this N-dimensional QP problem approximately 
by solving the following N /  L L-dimensional QP problems in 
sequence: Minimize I( k, - x, 11 

QnH1xn I Qn [ H,-i+l(yi - ki) 

subject to 
n-1 

i=l 

+ H l y n - z n  , n = 1 , 2 , . . . , P  . 

To avoid large errors at the beginnings of L-dimensional QP 
subblocks, we can overlap the QP subblocks so that each 
subblock continues into the immediately following subblock. 
Specifically, we denote the length of the nth QP subblock by 
A(n), where 

1 

L f o r n # N / L  
l f o r n = N / L  A(n)C 

and we define the index set over which the nth QP problem 
is solved by 

A(n)%{(n - l)!, . . . , (n - 1) l  + A(n) - 1). 

We require that the length C divides N, and we solve N/C 
QP problems of which all but one have dimension L, and 
the last one has dimension l .  The last one is shorter than 
the others because we only have N and not N + L - C 
samples available. We use the index set A(n) as a subscript of 
sequences to denote the index limitation to A(n); for instance, 

a subscript for matrices to denote the index limitation in both 
dimensions to A(n); for instance, Q A ( ~ )  = diag(yA(,)) = 
{g(,-l)e,. . . , g ( n - l ) e + x ( n ) - ~ } .  From the solution of each QP 
subproblem, we only keep the C first samples, that is, we set 
k, equal to the first l samples of x A ( ~ ) .  We thus solve the 
following N / l  QP problems in sequence: Minimize 
II XA(,) - X A ( ~ )  II i subject to 

QA(~)HA(,)xA(~)  L Q A ( ~ )  

xA(n) = {X(n-l)t, * ,Z(n-l)e+X(n)-l}* we also use A(n) as 

n-1 

H n - , + i ( ~ t  - Xi) [z 
+ H A ( ~ ) Y A ( ~ )  - Z A ( ~ )  , 72 = 1,2, . . . , N/C I 
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