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Theoretical and Numerical Aspects of an SVD-Based 
Method for Band-Limiting Finite-Extent Sequences 

M e n  Hein and Avideh Zakhor 

Aktroct-We present an SVD-based method for band-limiting over- 
sampled discrete-time finite-extent sequences. For this purpose, we show 
that finite-extent band limitation is best defined in terms of the discrete 
prolate spheroidal sequences rather than complex exponentials. Our 
method has maximum energy concentration as defined in the paper, its 
dimension agrees asymptotically with Slepian’s dimension result, and the 
method specializes correctly to the discrete-time Fourier transform as 
the sample size tends to infinity. We propose an efficient computational 
method, based on the Lanczos algorithm, for computing only the nec- 
essary singular vectors. The SVD is signal-independent, only needs to 
be done once and can be precomputed. The SVD-based band limitation 
itself is not necessarily much slower than the fast Fourier transform for 
sample sizes on the order of 40%. 

I. INTRODUCTION 
The problem of band-limiting a finite-extent discrete-time signal 

is seemingly well understood. The standard solution is to take the 
discrete Fourier transform (DIT), set the out-of-band coefficients to 
zero, and take the inverse DFT. However, the inherent periodicity as- 
sumption in the underlying DIT-based definition of band limitation is 
not always satisfactory. For instance, an infinite-extent pure sinusoid 
may have a band-limited discrete-time Fourier transform (DTFT), 
whereas a finite set of samples of the same signal may not have a 
band-limited DIT. 

In this paper, we present an altemative approach to band-limiting 
finite-extent signals which is aimed at alleviating the sensitive fre- 
quency dependence of the DIT. Our approach is inspired by existing 
work on band-limited extrapolation [1]-[4], and we show that finite- 
extent band limitation is best defrned in terms of the discrete prolate 
spheroidal sequences (DPSS’s), which have been studied in detail 
by Slepian [l]. The DPSS’s enjoy an optimal energy concentration 
property [ 13 which is preserved in our band limitation method. 

Although our results are general, their original application was 
in nonlinear signal reconstruction for EA modulators [5]. In this 
problem, only a small or moderate number of samples are available, 
and the oversampling ratio (OSR) is large, where the OSR is 
defined as the ratio between the sampling frequency and the Nyquist 
frequency of the class of considered signals. 

The paper is organized as follows. In Section I1 we propose our 
method for band limitation. In Section I11 we describe an efficient 
numerical method for calculating the required, signal-independent 
SVD, and we discuss computational complexity. In Section IV 
we present results to illustrate our method. Section V contains 
conclusions. A fuller account of the presented work is given in [6]. 
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II. SVD-BASED BAND LIMITATION 
In Section II.A we present the mathematical background for 

our proposed method, drawing on previous work on band-limited 
extrapolation [1]-[4]. We anive at an interpretation problem which 
is resolved in the following sections. In Section II.B we provide an 
altemative interpretation of the band-limited extrapolation method in 
[2], [3], and propose our band limitation method. In Section II.C 
we discuss the underlying problem of defining finite-extent band 
limitation. 

A.  Mathematical Background 

In this section we describe some simple, but unsuccessful attempts 
to define the finite-extent band limitation problem. Consider an 
infinite-extent sequence x = (2,) and its DTFT 

m 

n=--m 

The DTFT is said to be band-limited to the frequency range R = 
(-a,+(.), 0 < (Y < T, if and only if X ( e J w )  = 0 for all w 0. 
We define the oversampling ratio (OSR) to be n/a .  We also define 
a noisy version s = {sn} of x. The noise on s outside of R can be 
rejected with an ideal low-pass filter, or equivalently by multiplying s 
by an infinite-dimensional matrix’ L = {.e,,} with elements [2],  [4] 

a,, 

We use the subscript A to denote the time limitation of a vector to 
an index set A = { 1,2, . . . , N}. Defining N x cm time limitation 
matrix T = {tmn} as t,, = 5,, ( m  E A,n E Z), where 5,, is 
the Kronecker delta symbol, we thus have SA = Ts and XA = Tx. 

The simplest version of our band limitation problem is to estimate 
XA from a set of observed samples SA. This can be related to the 
band-limited extrapolation problem [2], [4] of finding an infinite- 
extent band-limited sequence 2 which passes as closely as possible 
through SA 

X = L2 and - TXlli = IIT(s - x)lli is minimized. (1)  

In ( l ) ,  1 1  . / I D  denotes the 2-norm of a vector over an arbitrary index 
set D. Having solved the related problem ( l ) ,  we can consider the 
time limitation XA = T X  to be the band limitation of SA.  However, 
as might be expected from the sampling theorem,there are in fact 
infinitely many infinite-extent sequences 2 which have band-limited 
DTFT’s and which also pass through any finite set of samples SA [2]. 
Therefore the solution to (1) is not unique, and the optimal estimate 
of XA is the trivial solution XA = SA. 

In the context of band-limited extrapolation, the standard way to 
obtain a unique solution to (1) is to choose the minimum-energy one 
[2], [4]. This approach leads to the following least-squares problem 

min I ~ S A  - TLXlli such that 11X11$ is minimized. (2) 

It is easily shown that due to the minimization of the energy of 2, 
the solution to (2) is implicitly band-limited’. Rephrasing our band 
limitation problem in terms of (2), we can consider the time limitation 
b A TX to be the band-limited estimate of XA. 

‘The use of infinite-dimensional matrices is purely a notational conve- 
nience. ’ We thank an anonymous referee for pointing this out. 
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The solution to (2) can be expressed in terms of the N ortho- 
gonal infinite-extent discrete prolate spheroidal sequences (DPSS’s) 
{U,} [l]. For any finite N ,  all the N DPSS’s depend only on N 
and the OSR, and have DTFT’s that are band-limited to s1. With 
suitable normalization, the truncated DPSS’s {U, = TU,} are 
also orthonormal over A [l]. The truncated DPSS’s are the left 
singular vectors in a singular value decompbsition (SVD) of the 
matrix A = T L ,  or equivalently, the eigenvectors of the N x N 
matrix LA = AAT = TLTT [7]. The ordered singular values of A 
are denoted by { U I ,  ... , U N }  and satisfy 1 > (71 > ... > UN > 0 
[ 11. LA has full rank. Returning to (2), the band-limited extrapolation 
solution is known to be [I] 

N 
x = C ( u f f s A )  ‘ U, (3) 

n=l  

from which we again obtain the trivial band limitation solution 
b = T L x  = SA.  The solution is also clear from (2) itself, because the 
least squares constraint only singles out the extrapolate with minimum 
energy that passes through the given samples SA. Thus, even with the 
energy minimization, any finite-extent sequence appears to be band- 
limited. We resolve this central conflict with intuition in the next 
sections. 

B .  Dimension Considerations 

It has been proposed to replace (3) by the truncated summation 
121, 131 

(4) 
n = l  

The change is often suggested as a way to improve numerical stability 
[2], [3]. Specifically, it is shown in [ l ]  that approximately N/OSR 
of the singular values {a,} are close to 1, and the rest are close 
to 0. Thus, (4) amounts to discarding the part of LA without full 
numerical rank. 

In this section we make the altemative interpretation that a di- 
mension consideration suggests the use of (4). We base this claim 
on the fact that the right-hand side of (3) tends to SA as N + 00, 

whereas the expected result is k = LSA. Due to Slepian’s dimension 
result, the discrepancy can be removed by replacing (3) with (4). 
Slepian’s result is summarized as follows in [l]: “For large N the 
set of sequences of bandwidth W that are confined to an index set 
of length about N has dimension approximately 2 W N  .” 

In our case, the product 2 W N  equals N/OSR = Ncu/n, so 
T = N/OSR orthonormal vectors are asymptotically necessary 
to span the space of sequences on A that are band-limited to 
f2. By choosing r % N/OSR, we obtain the correct asymptotic 
specialization to the DTFT, since for N = 00, the matrix LA becomes 
the ideal low-pass matrix L which has the complex exponentials 
e x p ( j w a )  as its eigenvectors. The fraction l/OSR of the infinite- 
extent eigenvectors are band-limited to the frequency range 0, and 
correspond to the eigenvalue 1 of the infinite-extent matrix L. The 
remaining eigenvectors contain strictly high-frequency energy, and 
correspond to the eigenvalue 0. The cost of replacing (3) with (4) 
is that (3) does not exactly solve the extrapolation problem (2) for 
finite N .  

Our re-interpretation of (4) suggests the use of (4) as the basis of 
a band limitation method. Equation (4) can be viewed as connecting 
the well-known problem of band-limited extrapolation to the present 
problem of band limitation. We propose the band limitation method 

(5 )  b = Tk = ~ ( u : s A )  . U,, r % N/OSR 
n=l  

that is, a projection onto the r truncated DPSS’s with the largest 
singular values. Like (41, the band limitation in (5) is not a solution 
to a dimensionally unconstrained minimization problem such as (1) 
or (2). 

C .  Definition of Band Limitation 

method with dimension r 
Equation (5) is a special case of the general linear band limitation 

where { a1 , . . . , a,} is an arbitrary set of orthonormal N-dimensional 
“baseband” vectors. DFT-based band limitation is also a special case 
of (6) with complex exponentials as the baseband vectors. We view 
(6) as defining a class of band-limited finite-extent sequences for each 
choice of {a,}, namely the span of {a,}. 

We now show that the optimal choice of baseband vectors {a,,} 
in an energy concentration sense is the truncated DPSS’s. This result 
explains the fundamental difference between the DFT and the method 
(5).  The result is based on the fact that among all band-limited 
infinite-extent sequences, the first DPSS, UO, is the one with the 
largest possible fraction, namely a:. of its energy on the set A. The 
second DPSS, U1, is the band-limited sequence which is orthogonal 
to U0 and has the largest fraction of its energy, namely U:, on A, 
and so on [l]. We define the energy concentration of the general 
band-limitation method (6) as a function of SA to be 

(7) 

where bsLx,  is the minimum-energy band-limited extrapolate 
of bgeneral given by (4). If bBLx,  general is the zero vector, (7) is 
undefined. Maximizing Cgeneral (SA) is reasonable, since 1 1  bgeneral I I i 
should contain as much as possible of the energy of the true band 
limitation solution SA in relation to the energy of the infinite-extent 
band-limited extrapolate. We show in the appendix that for the general 
method (6) 

minCge,e,al(sA) I d. (8) 

We also show in the appendix that the SVD-based method (5) has 
optimal energy concentration in that it achieves the upper bound in 
(8). Thus, choosing the vectors {a,} to be the truncated DPSS’s 
{ U, } indeed optimizes energy concentration in a maximin sense. 

SA 

111. COMPUTATIONAL ASPECTS 

The SVD of the matrix LA only needs to be done once for each 
sample size and OSR. The key observations are that: (1) We only 
need about r = N/OSR of the eigenvectors of LA.  and (2) LA is a 
Toeplitz matrix, so we can multiply a vector by LA in O ( N  log N) 
operations using a 2N-point fast Fourier transform (FFI’). 

Observation (1) implies that the Lanczos algorithm is ideally suited 
for the eigen-decomposition [7], [8]. This algorithm generates a series 
of tridiagonal matrices, starting with a scalar and ending with an 
N x N matrix. The smaller matrices tend to have eigenvalues and 
eigenvectors that are good approximations to the largest and smallest 
eigenvalues and corresponding eigenvectors of LA. In addition, 
the algorithm can provide error bounds on its estimates [9]. The 
Lanczos algorithm requires modest storage, because no storage for 
intermediate matrices is necessary. In addition, explicit storage of 
LA is not necessary, as the only requirement is a subroutine that 
can multiply an arbitrary vector by LA.  The N x N matrix LA 
is completely specified by N numbers, and the time required for 
multiplications by LA is reduced through observation (2) above. 
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Fig. 1. SNR for the SVD method as a function of eigenvalue number r of 
the matrix LA for N = 4096, OSR = 48. The input signals are a sinusoid 
and its EA encoded version. The input frequency is w = &a, and the input 
amplitude is at -6 dB relative to the quantizer step size of the CA modulator. 
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Further comments on the Lanczos algorithm can be found in [6]. On 
a SUN Sparc IPC, a Lanczos-based partial SVD of the LA-matrix 
takes 27 min when N = 4096 and OSR = 48. The disk storage 
requirement is O(N2/0SR) or 3 Mbytes. For comparison, a full 
decomposition even in the former case takes days and requires 128 
Mbytes of virtual memory. Performing an SVD-based band limitation 
requires O(N2/0SR) time, which is only somewhat slower than the 
FFT-based method for small to moderate N .  For N = 4096 and 
OSR = 48, FFT and SVD band limitations take 0.4 s and 1.2 s, 
respectively, on a SUN Sparc IPC. 

IV. RESULTS 

This section presents simulation results for the SVD-based and 
DFT-based methods for band limitation. The sample size is 4096 
throughout. We consider two classes of input signals. The first is 
the class of pure baseband sinusoids that are not necessarily at bin 
frequencies for the DFT. The second class consists of binary encoded 
versions of signals in the first class. Our encoder is the fourth order 
interpolative CA modulator described in [lo] which has an OSR 
of 48. The noise introduced by the CA modulator is nonwhite and 
strongly high-pass. The S N R  in approximating a signal x with the 
estimate x is defined by 1 0 l o g l o ( ~ ~ x ~ ~ ~ / ~ ~ x  - xlli). 

As shown in [I], about N/OSR = 85 of the eigenvalues of LA are 
close to 1, and the rest are close to 0. The problem of choosing the 
number T of eigenvectors in (5) remains, although asymptotically we 
must have T % N/OSR. In the context of band-limited extrapolation, 
it is well known that T controls a trade-off between the accuracy with 
which noise-free signals can be represented, and the noise sensitivity 
[3], [ l l ] .  The same observation holds for (5): Larger values of r 
increase the dimension of the band-limitation subspace, which implies 
that more of a signal, but also more noise can be represented. A good 
choice of I thus depends on the expected amount of noise. There 
exist formulas to aid the choice for band-limited extrapolation under 
various assumptions [3]. In this paper we will choose the exact value 
of r empirically. 

Fig. 1 shows SNR curves for the SVD method as a function of 
eigenvector number. Two signals are considered, namely a sinusoid 
at the DFT bin frequency U = &a and its EA encoded binary 
version. For the very noisy EA encoded signal, the optimum value 

SNR [dB) 
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Fig. 2. SNR for the SVD method as a function of input frequency for a 
fixed number r = 91 of eigenvectors, N = 4096 and OSR = 48. The input 
signals are a sinusoid and its EA encoded binary version. Frequencies are 
not limited to integer bins. The input amplitude is at 6 dB relative to the 
quantizer step size of the EA modulator. 
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Fig. 3. S N R  for the DFT method as a function of input frequency. Parame- 
ters are as in Fig. 2, but the curve for sinusoidal input is omitted. The input 
amplitude is at -6 dB relative to the quantizer step size of the E A  modulator. 

Again, the input sequences are baseband sinusoids and their EA 
encoded versions. Both bin and non-bin frequencies for a correspond- 
ing 4096-point DIT are considered. The figure shows that the S N R  
oscillates between about 58 dB and 65 dB for sinusoidal inputs, and 
between about 38 dB and 58 dB for EA encoded inputs. 

Fig. 3 is analogous to Fig. 2 and shows S N R  curves as a function 
of input frequency when the band limitation is done with the DFT. 
The S N R  oscillates between 21 dB and infinity for sinusoidal inputs, 
and between 21 dB and 75 dB for the CA encoded inputs. The 
SNR depends strongly on whether or not the frequency is a DFT bin 
frequency. For both input types, the SVD-based method exhibits less 
frequency dependence than the DlT,  but the largest SNR is smaller 
for the SVD-based method than for the DET-based one. 

The minimum S N R  can be as low as SNR,;, z 10log,,{N 
a2 / (40SR)}  for the DlT-based method [6]. For N = 4096 and 
OSR = 48, SNR,;, = 23 dB which agrees well with 21 dB as 
observed above. This minimum S N R  increases by only 3 dB/octave 
with the sample size. Due to distortion at the signal frequency, 
windowing only exacerbates the problem [a. 

of T is 90 or 91. The optimum value of T in general depends on the 
input frequency. v. CONCLUSION 

Fig. 2 shows SNR curves as a function of input frequency for the 
SVD-based method with a fixed number T = 91  of eigenvectors. 

In this paper we related the problem of band-limiting finite-extent 
sequences to that of band-limited extrapolation, and we derived an 
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SVD-based method for band limitation. In doing so, we redefined 
finite-extent band limitation. Our method was chosen to have the 
correct dimension specified by Slepian’s result [ 11, to specialize 
correctly to the DTFT as the sample size tends to infinity, and to have 
maximum energy concentration. We presented an efficient method, 
based on the Lanczos algorithm, for performing the proposed band 
limitation of sequences with up to 4096 or 8192 samples on present 
work stations. The SVD-based method is less dependent on input 
frequency than the DFT, but requires storage for the low-frequency 
singular vectors. 

APPENDIX 
ENERGY CONCENTRATION 

We first consider the energy concentration of the SVD-based 
method given by (3, and its corresponding minimum-energy band- 
limited extrapolation method (4). The energy concentration for the 
SVD-based method is 

where we have used the fact that llUnll~ =lb; and the orthogonal- 
ity of the the DPSS’s { U,} over 2. As 1 > a: > . . . > & > 0, a 
variational argument shows that CWD(SA) is minimized by making 
SA proportional to uT, in which case (8) is satisfied with equality. 

Consider now the general method (6), which can be rewritten as 

N / r  \ 

By (4), the ,minimum-energy band-limited extrapolate of bgeneral is 

The energy concentration (6) as a function of SA is defined in (7). 
We will show that (8) holds, that is, no band-limitation method 
of the form (6) has a larger minimum energy concentration than 
the SVD method. To show this, we choose SA to be an arbitrary 
nonzero vector SO in the intersection I = span(u,, u,+I,. . . , U N )  n span(a1, a 2 , .  . . , aT). Since I is defined as the intersection of an 
(N - T + 1)-dimensional and an r-dimensional linear subspace of an 
N-dimensional space, I must have at least dimension 1 and thus must 
contain nonzero elements. For an arbitrary nonzero SO E I, we then 
have bgeneral = SO by construction. It also follows by the definition 
of I that ufso = 0 for 1 5 n < T .  Therefore 
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Two-fold Normalized Square-Root 
Schur RLS Adaptive Filter 

Peter Strobach, Senior Member, IEEE 

Abstract4 square-root Schur RLS adaptive filter with two-fold (input 
and residual) normalization is presented. The algorithm has several 
attractive features such as a fully systolic structure based on elementary 
hyperbolic plane rotations. All internal variables are bounded in the 
unit interval and fully utilize it in successive stages due to an inherent 
‘‘ autoscaling ” property of the algorithm. This work is presented in a 
condensed form because it extends the previous work of this author in 
the area of Schur RLS adaptive filtering. 

I. ARBlTRARLLY WEIGHTED RLS USING SCHUR RECURSIONS 

Recursive least squares (RLS) adaptive filters based on Schur’s 
recursions [ l ]  have been introduced in [2]-[6] as temporal adaptive 
filtering techniques which allow the incorporation of arbitrarily 
shaped windows or “forgetting functions” in a true RLS adaptation 
scheme. In its unnormdized form, a Schur RLS adaptive filter 
solves, at each time step, the following weighted fonvard/backward 
prediction error filtering problem in a true least squares sense: 

e,( t )  = ~ l / ~ z ( t )  - w~/’x,(~ - l)a,,,(t), 
r , ( t )  =W’/2z(t - m) - W’”X,(t)b,(t) 

(la) 

( lb) 
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