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Orientation Adaptive Subband Coding of Images 
David Taubman and Avideh Zakhor, Member, IEEE 

Abstract- In the subband coding of images, directionality of 
image features has thus far been exploited very little. The pro- 
posed subband coding scheme utilizes orientation of local image 
features to avoid the highly objectionable Gibbs-like phenomena 
observed at reconstructed image edges with conventional subband 
schemes at low bit rates. At comparable bit rates, the subjective 
image quality obtained by our orientation adaptive scheme is 
considerably enhanced over a conventional separable subband 
coding scheme, as well as other separable approaches such as the 
JPEG compression standard. 

I. INTRODUCTION 

N recent times, interest has been developed in  adaptation I of the parameters of filter bank systems used for subband 
coding. Most work in this area thus far has concentrated on 
the adaptation of 1-D filter coefficients. Delsarte et 01. [8] 
have developed a “ring algorithm” to locally optimize the 
coefficients of a 1 -D, two channel, paraunitary subband system 
for minimum mean squared error in a coding scenario. In 
[ 171 and [22], Taubman and Zakhor consider globally optimal 
solutions to the same problem and consider the adaptation 
of certain nonseparable 2-D filter systems, given a known 
decimation structure. Gurski et al. [ 101 solve a related problem 
in the 1 -D case. They consider pyramidal decompositions 
rather than subband decompositions and adapt the analysis 
and synthesis filters in an iterative way to minimize the signal 
energy in  the difference channel. Nayebi er al. [ 151, on the 
other hand, take a different approach in which they maintain a 
library of preoptimized compatible subband filters from which 
an optimal selection is made. Their work tackles the issue 
of preserving perfect reconstruction when the filter impulse 
responses vary with location as they must in an adaptive 
environment. This work, however. is also restricted to one 
dimension. 

In a multidimensional setting, directionality arises as a 
new and important attribute that is absent from 1-D systems. 
Attempts to exploit this property in image compression may 
be classified into two broad categories. In the first category are 
those strategies that analyze an image along a predetermined 
set of directions. In the second are strategies that adapt the 
directional analysis itself to orientational features of the image 
being analyzed. By far, the majority of approaches currently 
proposed to exploit image directionality come under the first 
category. 
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Image compression strategies belonging to the first category 
are more or less based on studies of the mammalian visual 
cortex. These studies indicate that receptive fields of cortical 
cells have definite orientational tuning with average orienta- 
tional bandwidths of approximately 35’. Daugman [6], [7] 
applies such psychovisual evidence to a model of the human 
visual cortex based on 2-D Gabor functions. He demonstrates 
an image compression scheme in which a neural network is 
used to represent images in terms of the nonorthogonal set of 
2-D Gabor basis functions, each of which has an orientational 
bandwidth of 30”. A related, so-called “cortical transform” 
is proposed by Watson [24]. His technique is computationally 
simpler but leads to many more transform coefficients than 
original image samples, unlike Daugman’s scheme. which 
preserves sample count. Rao and Pearlman [16] propose an 
image compression scheme based on subband techniques in 
which Daugman‘s ideal 2-D Gabor filters are approximated 
with so-called “dome” filters. Unfortunately, their scheme 
also leads to some expansion in the number of samples that 
must be coded. 

A number of nonseparable maximally decimated perfect 
reconstruction subband systems with psychovisually meaning- 
ful orientational sensitivity may also be classified under the 
first category. Such systems have been proposed by Mahesh 
and Pearlman [13], Simoncelli and Adelson [20], and Bam- 
berger and Smith [2], [ 3 ] .  The schemes of Mahesh. Pearlman. 
Simoncelli and Adelson are based on hexagonally sampled 
images and lead to subbands with more cortically relevant 
orientational sensitivities than conventional separable subband 
systems. Bamberger and Smith, on the other hand, demonstrate 
perfect reconstruction filter banks, based on a conventional 
rectangular image sampling, capable of resolving images into 
many different directional components. Chang and Zakhor 
[4] have also proposed a nonseparable 3-D subband scheme 
to take advantage of the spatio-temporal directionality of 
video sequences by decomposing them into different velocity 
components. 

We also make mention of the image coding scheme pro- 
posed by Ikonomopoulos and Kunt [ I  11, which uses a fixed 
set of directional filters to identify oriented edge segments, for 
which an efficient coding scheme is developed. Their scheme 
allows an image to be approximately recovered from the coded 
edge information for applications requiring very high com- 
pression ratios. Moreover, Li and He [12] propose an image 
compression algorithm that combines subband decomposition 
with Ikonomopoulos’ and Kunt’s scheme for identifying and 
coding oriented edge segments. 

All of the above-mentioned approaches fall into the first 
category of attempts to exploit directionality in image com- 
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pression. They each involve psychovisually relevant yet fixed 
directional image decompositions. Such schemes may be con- 
sidered adaptive in the sense that adaptive quantization and 
coding schemes could be applied to the directional compo- 
nents. To our knowledge, however, few authors propose image 
compression algorithms in the second category, in which the 
directional decomposition itself is adaptive. In addition to the 
work presented in this paper, that of Shapiro 1181 may be 
classified under this second category. He proposes a McClellan 
transform-based approach to the directional adaptation of 
nonseparable multidimensional filter banks with the well- 
known two-channel quincunx subsampling structure. 

In this paper, we propose an adaptive subband scheme 
that directly exploits the directional attributes of images. 
Our work is based on the observation that natural images 
commonly contain approximately linear edges, on a local level 
at least, whose orientation is neither vertical nor horizontal, 
the directions in which a separable subband approach per- 
forms best. Such features result in  considerable activity in the 
high-frequency subbands of a conventional separable subband 
scheme. In addition, at low bit rates, the quantization effects 
can be observed strongly at such edges in the form of Gibbs 
phenomena [ 191, giving them a ragged, ringing appearance, 
which becomes highly objectionable as the bit rate is reduced. 

If, however, the image is first resampled along axes aligned 
to its dominant linear features, then in the resampled domain, 
these features become vertical and/or horizontal; of course, in 
so doing, the image’s region of support ceases to be rectan- 
gular. A conventional separable subband system may then be 
applied in the resampled domain, resulting in reduced activity 
in the high-frequency subbands. Moreover, when the subbands 
are quantized, artifacts induced in the reconstructed image tend 
to lie parallel to the dominant linear image features, these being 
oriented vertically and horizontally in the resampled domain. 
Subjectively, these artifacts tend to be much less disturbing 
than those generated by the conventional subband scheme. 
These phenomena are illustrated in the synthetic examples 
presented in Section 111 and the compression results presented 
in Section VI. 

Fig. 1 shows the analysis system of our proposed directional 
subband scheme. The system is the cascade of an image 
resampling network and a conventional four-channel separable 
analysis system with F a low-pass and G a high-pass filter. 
The synthesis system is a conventional separable synthesis 
system followed by an inverse resampling network. Only one 
level of the anticipated pyramid structure, which is obtained by 
branching along the LL channels, is shown in the figure. In our 
experimental work, for example, we find three levels to give 
satisfactory coding performance. This particular case results in 
nine high-frequency subbands and one low-pass subband in all. 

In overview, our proposed algorithm is as follows. We first 
partition an image into smaller rectangular regions, which will 
be considered independently. This is necessary to minimize 
the number of distinct orientations presented to the adaptive 
subband system. For each partition, we then choose a pair 
of axes along which to resample. These axes are chosen to 
correspond to the dominant linear features in the partition. The 
partition is then resampled along these axes, following which, 

Fig. 1 Directional analysis system schematic. 

a conventional separable subband decomposition is applied in 
the resampled domain. The subband samples are quantized and 
run-length and entropy coded to be transmitted along with the 
orientation information. 

At the receiver, each partition is reconstructed in the re- 
sampled domain, and then, using the orientation information, 
the resampling process is inverted. Finally, to remove artifacts 
resulting from independent processing of the image partitions, 
a local smoothing algorithm is applied at the partition bound- 
aries. This algorithm also exploits directional attributes of the 
image. 

In the remainder of the paper, we will elaborate on the 
various aspects of this algorithm. In Section 11, we discuss 
the resampling process mentioned above, by which we ac- 
complish orientational adaptivity. In Section 111, we present 
synthetic examples that illustrate the performance of our 
resampling scheme in conjunction with a separable subband 
coder. In Section IV, we present our algorithm for the choice 
of optimum resampling axes for each image partition, which 
relies on image feature extraction techniques. The proposed 
algorithm for removing partitioning artifacts in reconstructed 
images appears in Section V. Our choice of subband filters, 
the partitioning strategy, and details of our quantization and 
coding approach are all provided in Section VI. In Section VI, 
we also present a comparison of reconstructed images using 
conventional and orientation adaptive subband coders. Then, 
in Section VII, we discuss the complexity of our proposed 
scheme. 

11. RESAMPLING 
This section is devoted to discussion of the resampling block 

in Fig. I ,  by which we achieve orientational tuning of our oth- 
erwise separable subband coding system. We begin, in Section 
11-A, by considering the reorientation of spatially continuous 
signals as a vehicle for analyzing the resampling of our discrete 
space signals. The receiver for our subband system must be 
able to invert the resampling process in order to reconstruct the 
image; accordingly, Section 11-B is concemed with invertible 
resampling of discrete space signals in a manner consistent 
with the reorientation of spatially continuous signals outlined 
in Section 11-A. We proceed to discuss a subset of such 
invertible resampling operators, which may be implemented 
by index permutation and interpolation operations. We discuss 
implementation of the interpolation in Section 11-C. Based on 
these considerations, we propose a two-parameter resampling 
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system in Section 11-D, the parameters of which are related to 
the two resampling axes. Finally, in Section 11-E, we present a 
pictorial explanation of the operation of the resampling block 
in Fig. 1.  

A. Reorientation of Spatially Continuous Signals 

Let y( i )  denote a 2-D signal of spatially continuous variable < bandlimited to the open region ( - T .  T ) ' ,  and let R denote a 
nonsingular matrix that we will later refer to as the resampling 
matrix. We define our reorientation operation by 

y(i') = y ( q  with ?= Rg (1)  

where ij(s', is the reoriented signal of spatially continuous 
variable .S: In the Fourier domain, (1) becomes 

Y(6) = det(R-l)Y(w') where w'=  RPt&. (2) 

Noting that Y(w') has region of support w' E ( -T ,T ) ' ,  (2) 
implies that Y ( $ )  has region of support W,, the region 
bounded by the parallelogram with vertices at 4 = Rt . 

For our orientation adaptive subband scheme, we are inter- 
ested in matrices R, which reorient an image. A natural choice 
would be to rotate the image, in which case, R would be an 
orthogonal matrix. Despite the intuitive plausibility of such a 
choice, we shall see in the next section that this does not lead 
to an invertible resampling operator. Instead of rotation, we 
will use matrices R, which skew the image to achieve our 
reorientation. 

[ h r ,  -rtT]t. 

B. Invertible Resampling of Discrete Space Signals 

The objective of the resampling block, in our orientation 
adaptive subband scheme of Fig. 1, is to reorient the signal so 
that in the resampled domain, dominant linear image features 
appear oriented in the cardinal directions-i.e., vertically and 

we consider discrete space resampling as a linear operator 
R : I' + I ' ,  where I' is the set of absolutely summable 
sequences-2-D sequences in our case. We require R to be 
one-to-one and conservative of sample density.' Sample den- 
sity conservation is clearly important in coding applications. 
The reason for imposing the requirement that R be one-to- 
one is that otherwise, even in the absence of quantization 
error, the receiver would be unable to recover .E from ?, and 
therefore, our subband system could not be considered perfect 
reconstruction. 

As noted in Section 11-A, Y ( $ )  has region of support 
W,, which is the region bounded by the parallelogram with 
vertices at 6 = Rt . [f~.-rtr]~. If the cosets W! given by 
W$ = W ,  + 2 ~ ; ,  where 2 E 2', are not disjoint, then 
aliasing will occur in sampling J to obtain 1. In this case, 
the resampling operator R depicted in Fig, 2 cannot be one 
to one. On the other hand, if the cosets W$ do not cover the 
entire spectrum, then each coset must have area less than 4 ~ ' ;  
but, from (2), the area of W ,  is 4 ~ '  . I det(R)I.  Thus, we 
would have I dr t (R) I  < 1, and the sampling density would 
be increased, violating our requirement of sample density 
conservation. 

In summary, a requirement for invertible resa-mpling is that 
R be chosen in such a way that the cosets W$ tesselate the 
frequency spectrum. We note here that although orthogonal 
matrices do have d c t ( R )  = 1, they do not in general lead to 
cosets W$, which tesselate the frequency spectrum; therefore, 
image rotation is excluded as an invertible resampling.2 A 
simple and, as we shall see, numerically efficient means of 
satisfying the tesselation constraint is to build R as a product 
of matrices of the form 

These correspond to a skewing of the image. Observing 
that a resampling of the form Rs may be implemented by 
transposing the image and then applying a resampling of the 
form R,, we will only consider the latter. 

Applying R, to y, we obtain 

?j(Sl. s 2 )  = ?/(SI, s 2  + N S l ) .  

Combining this with the sampling of Ij in Fig. 2 yields 

q m l , m )  = y(t1, t2)Itl=mI,t2=mL+CYml (4) 
horizontally. We assume that the 2-D sequence z in Fig. 1 is 
only a sampling of an underlying spatially continuous signal 
y bandlimited to ( - 7 r .  T ) ' .  Ideally, the resampling operation 
desired would recover y from z by sinc interpolation; reorient 

which is satisfied by the following two relations that cor- 
respond to building blocks in our resampling algorithm: an 
interpolative block satisfying 

the spatially continuous image y according to ( I )  with some Z(Z1. kJ) = d t l ,  t 2 ) I t l = I I , t L = I L + ~ ( 1 1 )  

where a(Zl) = all - (al l )  ( 5 )  resampling matrix R, and then, sample the reoriented image 
y to obtain the new sequence 5. This sequence of operations 
is depicted in Fig. 2. The remainder of this section is devoted 
to the two issues of invertibility and implementation feasi- 
bility, which influence our ability to approximate this ideal 

' We use the intuitive expression "sample density conservation" to indicate 
that all 2.D sequences with bounded regions of 
to sequences with bounded region of support B such that + 1 as 
#(A)  -+ x with #(A)  and # ( B )  denoting the number of points in these 

A.1 are ma ped by 

resampling. 

be invertible means h a t  the sequence 

regions of support. Given the sequence of operations depicted in Fig. 2, this 

2This fact may come as a surprise to the reader accustomed to working 
with matrices with integral coefficients, for which I det(R)I = 1 is sufficient 

Intuitively, the requirement that our resampling operation condition is satisfied if and Only if I d e t ( R ) I  = '' 
be 

I 

recoverable from the resampled sequence 2. Mathematically, for invertibility. 
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in which (.) denotes rounding to the nearest integer and an 
index permutation block satisfying 

define the 1-D interpolation operators Su(J) : I' + 1' by 

&(,)(cp) = (;j 

am. m 2 )  = FUl, ~ 2 ) 1 1 1 = P ~ I , , 1 L = 1 1 1 L + ( n m I ) .  (6) where 
Referring to Fig. 2, :y is to be obtained from .E by sinc X(n) 

interpolation; therefore, ( 5 )  becomes +(n) = g ; ; ) ( k ) c p ( n  - k )  

where 

Observe, then, that a resampling corresponding to R,,, or 
equivalently R p ,  involves only the 1-D filtering and index 
permutation described by (7) and (6), respectively. In this 
setting, invertibility of our resampling operator depends only 
on the invertibility of this filtering. In the next section, we 
discuss means to approximate the interpolative filtering of 
(7) with an invertible operator. We show that although the 
interpolation must necessarily be approximated, invertibility 
may be achieved exactly. 

C. Interpolation 

In this section, we discuss an approximation of the in- 
terpolator idealized by (7) and @), that is, our approximate 
interpolator maps sequences :c to sequences ?', where 

? ' ( l l , l * )  M ? ( 1 1 , 1 2 ) .  

We first observe that the infinite extent impulse response f u ( j )  

of (8) must be windowed to produce realizable finite extent 
filters. In particular, we arbitrarily choose to employ a Hanning 
window to f u ( j )  to obtain the approximate interpolation filter 

j;. ( i )  

= { ~ ~ o ( j ) ( i ) [ l + ~ ~ ~ ~ ( ~ X ) ]  ,li+.(j)l < 7  

- - { ; s z $ ; ; ; p  [l +cos (-41 , Ii + a(j) l  < 7- 

0 , otherwise 

0 , otherwise 

where 

7- = N + 1 - ~ ( j ) .  

Noting that Ic~(j)l 5 i by (5 ) ,  these filters f;'(i) have support 

In practice, we must work with finite extent sequences. 
Zero padding would introduce highly undesirable transients 
at the boundaries. We choose, instead, to handle boundaries 
by reducing the window size N of our interpolation filters 

as image boundaries are a p p r ~ a c h e d . ~  To be precise, we 

- N  5 i 5 N .  

An alternative approach would be to keep the window size N fixed and 
to symmetrically extend [21] the image boundaries. We find that such an 
approach adversely affects the rate of convergence of the iterative inversion 
algorithm described shortly. 

N ( T L )  = min(ln - KlI, In - K21,Nmax). (9) 

Here, cp, and hence (P, have support [Kz, K2], and N,,, is 
chosen to limit the maximum interpolation filter size. S,(j) 
corresponds to linear shift invariant (LSI) filtering everywhere 
except in the vicinity of Kl and K2. It only approximately 
shifts discrete space sequences by ~ ( j )  because the ideal 
shifting filter of (8) has been windowed. 

We could use the operators Sg(j)  to approximate the right- 
hand side of (7) with 

S U ( Z I ) ( 4 l 7  .)>. (10) 

However, the inversion of Su(J)  becomes an increasingly ill- 
conditioned problem as a ( j )  approaches f +. This is a serious 
difficulty as ~ ( j )  can take on any value in the interval [ - $ , 41. 

That inversion of Su(j)  becomes ill-conditioned as o ( j )  
approaches may be understood by considering infinite 
extent sequences- i.e., [K1,K2] = [-m,co]. In this case 
So(j) corresponds to LSI filtering by f$l;jrx. When la(j)l < $, 
half of the 2Nm,, zeroes of this FIR filter lie inside the unit 
circle, and the other half lie outside the unit circle; therefore, 
inversion may be accomplished by cascading a causally stable 
recursive filter and an anticausally stable recursive filter, where 
each has N,,,, poles. The combined impulse response of this 
cascade is a two-sided IIR filter with absolutely summable 
impulse response, and hence, S,(j) is invertible in the sense 
defined in Section 11-B. At Ic~(j) l  = &$, however, one of 
the zeroes of Fzr(z), which is the Z-transform of ]$7yx, 
crosses the unit circle at z = -1. Therefore, Si+ is not 
invertible. It follows that inversion of Sn(j) becomes ill- 
conditioned as o ( j )  approaches f ;. 

To resolve this difficulty, we choose to approximate (7) as 
1 i(11, .) = i ' ( l 1 ,  *) = S:+u(ll)  0 S + ( l l ) Z ( h ,  .) (11) 

where SI;,(.) is the inverse of the operator S - f U c j ) .  
does not suffer from the ill-conditioning discussed &ove 
because i a ( j )  E [-$, a]. Equation (11) may be understood 
by recognizing that approximates an ideal shift of 
its operand sequence by $o( j )  of a pixel separation. Thus, 
SI;u( j )  inverts an approximate shift by -+.(j) of a pixel 
separation. Hence, the composed operator in (1 1) performs an 
approximate shift by $ a ( j )  - ( - i a ( j ) )  = a(.j) of a pixel 
separation. 

In order to satisfy the requirement that our resampling 
be exactly invertible, it is necessary to accurately compute 
s y l  . (P for any sequence (P. Our algorithm for implementing 

7 4 3 )  
the operator SL1 is based on the observation that 

2 4 j )  
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TABLE I 
RMS SUBBAND INTENSITIES FOR SYNTHETIC 

IMAGE WITH SINGLE ORIENTATION 

Subband Label Subband Conventional Resampled 
1 HH 5.78 1.92 
I HL 2.15 2.00 
I LH 6.58 8.5 1 
2 HH 18.42 1.19 
2 HL 6.95 2.49 
2 LH 20.50 27.60 
3 HH 55.21 0.87 
3 HL 20.69 I .46 
3 LH 60.49 8 I .66 
3 LL 10 12.54 101 1.82 

is an approximation to an ideal shift by i u ( j )  samples. It 
follows that S - + u ( j ,  is an approximation to ST1 .4 Our 

proposed algorithm for computing SI1 (5 for some sequence 
$ is to use iterative refinement in conjunction with this 
approximate inverse. In particular, from a sequence +, we 
compute cp = as the limit of the iterative refinement 
sequence PO, 91; ~ 2 , .  . ., where PO = 0 and 

s u ( j )  

u ( j )  

‘Pk = P k - 1  + S-+(J)((5 - S + ( J ) ’ P k - l ) .  (12) 

The arguments above concerning the stability of inverting 
Sn(J)  assumed that [ K l ,  Kz] = [-a1 w]. Although, in prac- 
tice, K1 and Kz are finite, we find empirically that our iterative 
refinement algorithm for computing S;’ converges rapidly 
when $cr(j) is not too close to &+ and, in particular, when 
i u ( j )  E [-;; $1, the range to which ; a ( j )  is restricted by 
(5). Therefore, we see that the operator SI: exists for all 
j and can be implemented. Thus, ?’ can always be generated 
from :c according to (1  l) ,  and 5 may be readily recovered 
from 2’ using 

7 4 J )  

2 4 3 )  

It is important to note that when [Kl!Kp] approaches 
[-cc, 201, the composed operator S I i u ( j )  o S i u ( ] )  represents 
LSI filtering with an all-pass frequency response. Thus, the 
energies of the sequences z and IC’ are identical. When finite 
length sequences are considered, this energy conservation is 
approximately obeyed. 

We have argued that the two-stage interpolator of ( 1  I )  
is necessary in order to ensure that the resampling process 
is invertible. Even if we were prepared to sacrifice exact 
invertibility in order to use some simpler interpolator, we 
would, nevertheless, require our interpolator to possess this 
all-pass property. Otherwise, the interpolators for each line 11 

of the image would, in general, all have different magnitude 
responses, which would severely impair the performance of 
the subsequent subband coder. The interpolator of ( IO), for 
example, which we rejected on the basis of invertibility, also 
has an insufficiently uniform magnitude response unless a very 
large number of taps are used. 

‘If S, represented ideal sinc-interpolative shifting by CT, then we would 
have S;’ = S--, 

Fix Doinioanl Arm Fu Secondary Arm 

Fig. 3 .  Expanded schematic of resampling block in Fig. I .  

D. The Two Resampling Parameters 

In the previous two sections, we have introduced a class 
of resampling matrices R, and Rs that satisfy constraints 
required for invertible resampling, and we have developed 
an algorithm for implementing the corresponding resampling 
operators. In  our orientation adaptive subband scheme, the 
resampling applied to each partition is characterized by two 
parameters, corresponding to the orientations of the two re- 
sampling axes. 

The resampling is accomplished in two phases. In the first 
phase, sampling of type R, is applied. This corresponds to 
resampling axes, where one is oriented at an angle of t,aii-l(n) 
to the vertical, whereas the other remains horizontal. We 
restrict 

which allows for a * 4 5 O  distortion of the vertical axis. We also 
allow for the image to first be transposed. In this way, after 
the first resampling phase, the so-called ‘dominant’ resampling 
axis may take on any orientation at all, whereas the other 
resampling axis is aligned either horizontally or vertically, 
depending on whether the image was first transposed. Our first 
resampling parameter indicates the value of w and whether 
or not the image has been transposed, thus providing the 
orientation of the dominant axis. 

In the second resampling phase, a resampling of type Ro is 
applied. This does not affect the orientation of the dominant 
axis but allows the other, so-called ‘secondary,’ resampling 
axis to depart from the horizontal or vertical. We restrict 

in order to guarantee that the the index permutations described 
by (6), which were applied in the R, and RJ phases, do 
not conspire to violate the convexity of the image’s region of 
support. This restriction also acts to prevent the orientations 
of the two resampling axes from approaching one another too 
closely. Our second resampling parameter, then, is the value 
of [j. A schematic of the resampling process appears in Fig. 3. 

E. Interpretation qf Resamp[ing 

We conclude this section with a pictorial explanation to 
illustrate the significance of resamplings of type R, and Rky as 
well as the cascade R, followed by RJ from Fig. 3. Fig. 4(a) 
depicts a hypothetical image with square support containing 
a pair of oriented lines. The figure shows how a resampling 
of R, with a = 4 distorts the support of the image and 
realigns the oriented features in the vertical direction. Fig. 
4(b) demonstrates the effect of a resampling of type Rlj on 
a similar hypothetical image. Finally, Fig. 4(c) illustrates the 
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Fig. 4. 
R,, in (a), (b), and (c) respectively. 

Pictorial illustration of resamplings R,,R,j, and R,, followed by 

ability of a combination of R, and Ro to realign features with 
two distinct orientations to lie in the vertical and horizontal 
directions. Naturally, the distortion of the region of support, 
due to resamplings R, and R;j, demands special consideration 
to be given to subband filtering and subsampling operations 
in the neighbourhood of the image boundaries. These issues 
are addressed in Section VI-A. 

111. ILLUSTRATIVE SYNTHETIC EXAMPLES 

At this point, it is helpful to illustrate the performance of 
our orientation adaptive scheme with two synthetic images. 
To begin with, we consider a synthetic image of 256 x 256 
pixels consisting of uniform light and dark regions separated 
by a single oriented boundary. The boundary makes an angle 
of tan-’(0.75) with the vertical axis. After resampling the 
image in such a way as to realign this boundary to the vertical 
orientation, three levels of separable subband decomposition 
are applied. For comparison, we also apply the same separable 
subband decomposition directly to the synthetic image without 
any resampling. The root mean squared (RMS) intensities 

of the subband samples in these two cases are compared in 
Table 1. 

From this simple example, the effectiveness of our resam- 
pling strategy may be seen. When resampling is applied, the 
boundary information is compressed almost entirely into the 
low-frequency subband of the vertical subband filters-i.e., the 
‘LL’ and ‘LH’ subbands. By contrast, the conventional scheme 
assigns as much energy to the ‘HH’ subbands as to the ‘LH’ 
subbands. This compaction of the signal information into fewer 
subbands allows our orientation adaptive subband scheme to 
achieve lower bit rates for a given choice of quantization 
parameters. The somewhat less impressive performance in the 
highest frequency subbands -i.e., the level 1 subbands-is 
due to the fact that the boundary does not quite form a 
perfect vertical line after resampling. This is a consequence 
of nonideality in the interpolator of (11). At low bit rates, 
however, the level 1 subbands usually account for little of the 
overall bit budget. 

It is quite common in practice that a single image partition 
contains more than one orientational feature. To illustrate the 
effectiveness of our two parameter resampling scheme, which 
is discussed in Section 11-D, in dealing with such cases, we 
consider the synthetic image of Fig. 5(a), which consists of two 
differently oriented boundaries between uniform light and dark 
regions. The image dimensions are again 256 x 256 pixels. We 
compare the performance of a three-level separable subband 
decomposition applied to 

a) the synthetic image itself 
b) the synthetic image resampled with only one of the two 

resampling stages discussed in Section 11-D 
c) the synthetic image resampled with both resampling 

stages to align the two oriented boundaries both hori- 
zontally and vertically. 

In this example, we observe the effectiveness of our re- 
sampling strategy in improving both the perceptual quality of 
the reconstructed image and the bit rate when quantization is 
coarse. In particular, the subbands in all three cases are quan- 
tized and coded using the strategies discussed in Section VI-B, 
with the quantization parameters appearing in the fourth line 
of Table 11. The corresponding reconstructed images appear 
in Figs. 5(b)-(d). Gibbs phenomena at the boundary edges 
are clearly observed in Fig. 5(b), in which no resampling has 
been applied. In Fig. 5(c), the single resampling stage is able 
to orient one of the boundaries vertically. Consequently, this 
boundary is much more sharply rendered in the reconstructed 
image; however, the other boundary still displays the Gibbs 
phenomena. In Fig. 5(d), the boundary artifacts have been 
significantly reduced in both boundaries by the application of 
two resampling stages. 

A similar pattern emerges in the bit rates corresponding 
to these three different subband decompositions. The bit rate 
corresponding to Fig. 5(b), in which no resampling is ap- 
plied, is 0.071 b/pixel. The bit rate corresponding to Fig. 
5(c) is 0.061 b/pixel. Finally, when both resampling stages 
are used, the bit rate corresponding to Fig. 5(d) is 0.055 
b/pixel. We see, then, a progressive improvement both in 
perceptual quality of the reconstructed images and in bit rate 
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TABLE I1 
QUANTIZATION PARAMETERS, BIT RATES, AND RECONSTRUCTION ERRORS FOR FIGS. 10 TO 16 

Coding Scheme Figure Bit Rate PSNR (dB) Quantization Parameters 
A ra Y rr 

JPEG 10 0.  I99 28.2 NIA 
Conventional I 1  0. I99 30.8 91 0.8 77 0.8 
Adapted 12 0. I99 30.5 90 0.8 75 0.8 
Conventional 13 0.098 28.2 220 0.8 180 0.8 
Adapted 14 0.097 27.9 240 0.8 190 0.8 
Conventional 15 0.302 32.4 65 0.8 44 0.8 
Adapted 16 0.303 32.2 65 0.8 43 0.8 

(b) 

Fig. 5. Two boundary synthetic image in (a) reconstructed from coarscly 
quantized subbands with (b) no resampling; (c) one resampling stage; (d) two 
resampling stages. 

as the number of resampling stages is increased from none 
to two. 

IV. ORIENTATION ADAPTATION 

The choice of appropriate resampling axes is clearly at the 
heart of our algorithm. Our ambition here must be to locate the 
dominant linear features within each image partition, selecting 
the two resampling parameters discussed in Section 11-D so 
that each of the resampling axes lies parallel to one or another 
of these features. It should be clear from the outset, however, 
that this is too vague an objective. In particular, it is not 
clear at which resolution we should search a partition for its 
linear features. Such a decision is a function of the target 
bit rate for the system. If we are interested in very low bit 
rates, then the linear features of interest will be those that 
appear at low resolutions, whereas at higher bit rates, we 
will be more interested in the features that appear at higher 

resolutions. As a result of these considerations, we approach 
the choice of resampling axes in two distinct stages as outlined 
below. In the first stage, we examine each image partition 
at several different resolutions, collecting either two or four 
distinct pairs of resampling axes at each resolution. In the 
second stage, we decide which of these to apply to the final 
subband decomposition. As we shall see, this decision is based 
on an estimate of the coding performance associated with each 
pair of resampling axes. 

A. Stage I :  Collection of Feasible Orientations 

In this section, we provide details of our algorithm for 
generating a small collection of feasible resampling axis pairs 
for a given image partition. We begin in Section IV-A-1 by 
discussing the concept of image resolution and its application 
to our problem. In Section IV-A-2, we describe the simple 
edge detector applied to obtain edge information at each 
resolution. Finally, Section IV-D-3 describes the determination 
of dominant feature orientations from this edge information, 
whereby either two or four feasible pairs of resampling axes 
are assigned at each resolution. 

I )  The Concept of Resolution: The concept of resolution 
dependent feature extraction was introduced by Marr and 
Hildreth [13]. Following their work, we consider each of the 
image partitions, denoted by PL, at a succession of different 
resolutions derived by applying Gaussian low-pass filters of 
the form 

to the rows and columns of Pi to obtain PT. 
The significance of resolution to our proposed orientation 

adaptive subband scheme is that edge information typically 
appears in the high-frequency subbands of a subband system. 
Identification of the particular subbands influenced by a given 
edge segment is a resolution-dependent problem. A very 
smooth edge segment, for example, would be expected to 
have little influence on the highest frequency subbands and yet 
should appear in one or more of the lower frequency subbands. 
The significance of edges detected at a particular resolution 
depends on how coarsely the subbands, which respond to that 
resolution, are to be quantized. 

It is for this reason that we choose the filter parameters 
F,. in (16) so that the resolutions P,' correspond roughly to 
the bandwidths encompassed by the different levels of the 
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subband coding system depicted in Fig. 1.5 If a three-level 
subband decomposition is to be employed, for example, we 
consider each image partition at three resolutions: P," with full 
image bandwidth; P,' with a bandwidth approximating that of 
the 'LL' band after one level of decomposition; and Pf with 
a bandwidth approximating that of the 'LL' band after two 
levels of decomposition. 

At each of these resolutions, a process of edge detection 
followed by orientation analysis is used to determine either two 
or four feasible pairs of resampling axes. The selection of the 
most appropriate pair of axes from the collection so obtained 
is the second stage in our orientation adaptation algorithm and 
is discussed in Section IV-B. 

2) Edge Detection: To each partition I at each resolution 
T ,  we apply a relatively simple edge detection algorithm to 
derive a field of edges E: from Pr. To do this, we first form 
the vertical and horizontal gradient fields 

l j ,T(71.771) = Pzr(7L,m) - PzT(n - 1,m) 

and 

X z ( n ,  711) = Ptr(7~, m) - Pr(n, 711 - 1) 

and then form the field of edges from the local maxima and 
minima of these gradient fields: 

&,r (71, v i . )  

In this way, the nonzero pixels of E l  are concentrated at 
the image edges that appear in the ith partition at the rth 
resolution. The amplitudes of the nonzero pixels E[ are the 
squares of the corresponding edge gradients. 

3)  Orientation Analysis: The technique described in this 
section, for extracting orientation information from the fields 
of edges E[ bears a strong resemblance to the Hough transform 
technique described by O'Gorman and Clowes [9] for linear 
edge enhancement. In our case, we are interested only in 
orientation information and not edge location. Furthermore, 
we are interested in determining orientation information in the 
form of the resampling parameters discussed in Section 11-D 
with the constraints of (14) and (15). 

We define an objective function Or(0) of orientation 8, the 
local maxima of which correspond to dominant orientations in 
the field of edges E l .  This objective function will be described 
shortly; however, we first describe the resampling axis pairs 
derived from U; for each partition i and resolution, T .  

1. The first potential resampling axis pair has a dominant 
axis orientation corresponding to the maximum of 0;. Its 

'At this point, the reader may wonder why the subband analysis filters 
themselves are not selected for resolution analysis, rather than the Gaussian 
filters of (16). The subband analysis filters, however, may only be used to 
obtain the resolution P,' without resorting to downsampling, an operation 
that would reduce the accuracy of our orientation analysis. Moreover, the 
Gaussian filters are considered to provide a more reasonable model of the 
human visual system and, hence, be more suited to the feature detection task 
at hand [14]. 

secondary axis orientation is chosen to be the largest lo- 
cal optimum of 0; satisfying the constraints of (14) and 
(15), or if no such local optimum exists, the secondary 
axis is chosen to be perpendicular to the dominant axis. 

2 .  A second potential pair of resampling axes is chosen 
to have the same dominant axis orientation as the first 
but with the secondary axis being either vertical or 
horizontal- i.e., the parameter /j = 0 in Fig. 3. 

3&4 If a sufficiently large local optimum of 0; exists, 
sufficiently removed from the optimum, a third and 
fourth pair of potential resampling axes are chosen 
by following the procedures for the first and second 
with the dominant axis orientation set to this local 
optimum. 

Each of these axis combinations is empirically found to have 
potential in seeking the optimum partition resampling. 

It is sufficient to consider axis orientations in the range 
-45" 5 B < 135" relative to the vertical. Observing that when 
45" < 0 < 135", Or(8) may be computed by transposing E,: 
and making the substitution 8 +- 90' - 0, we consider only 
the case 101 5 45". Our objective function (?;(e) is obtained 
as follows. 

We first generate EF(8 )  by reorienting &,'with a resampling 
of R, as defined in Section 11-B, with N = tan-' 0. The 
interpolation phase represented by (5) is too computationally 
costly for evaluation of our objective function and is therefore 
omitted. This leads to a spatial distortion in the reoriented 
field of edges E r ( 0 )  of no more than ++ a pixel. Our 
objective function is chosen not to be significantly affected 
by this distortion. Thus, E[(H)  is obtained from E[ by simple 
index permutation represented by (6 ) .  0:(8) is a measure of 
the vertical alignment of the edges appearing in E r ( 0 ) .  In 
particular, letting l k ( 0 )  denote the kth column of E:(H), Cl , (e ) ,  
the length of the kth column, and Gl,(e) the pixel sum along 
the kth column, we define 

The significance of this objective function will now be 
explained. We first consider the simpler objective function 

1 2 

We may think of the term 

as the density of gradient values contained in the line l k .  We 
now observe that if term 1 in (18) were omitted, we would 
have br(8) = ~ k G l k ( ~ ) ,  which is independent of 0. The 
same observation would hold if the gradient density terms of 
(19) were independent of k.  When the gradient density terms 
vary with k ,  however, larger values of term 2 in (IS)  are 
magnified by the presence of term 1, whereas smaller values 
are diminished. In this way, (18) is a measure of the variability 
in the gradient density terms of (19) with k .  
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l1 l2 l3 .. lmax 

\ 

\ 

Fig. 6.  
Et”(0) ;  (b) f , ” ( O ) ,  tan(@) = f .  

Explanation of orientation analysis objective function 0: (0 ) : .  (a) 

If the edges in E,’(B) do possess some discemible orien- 
tation, then the gradient density terms of (19) will vary most 
with k when this orientation is vertical, thus maximizing dl(B) 
when B corresponds to the dominant orientation of edges in 
E,’. Consider the example of Fig. 6 in which E[ contains 
two similarly oriented features. In Fig. 6(b), corresponding to 
8 = t,an-’( i), the gradient density terms are concentrated into 
just two of the lines l k ,  whereas in Fig. 6(a), corresponding to 
0 = 0, the gradient density terms are much more uniform. 

As a further test of the reasonableness of the objective func- 
tion of (IS), suppose that E,’ contains a random distribution 
of edge intensities, in which case, no discemible orientational 
information is present. Then, the gradient density terms of 
(19) would be roughly independent of IC, and therefore, dI(8) 
would be independent of 8, as expected. 

Our objective function in (17) has the same properties as that 
of (lS), except that i t  measures the variability with k of sums 
of gradient densities from adjacent lines. This modification is 
found to make our objective function less sensitive to noise 
in the field of edges E,‘. 

Another important feature of our objective function is that 
it responds to broken as well as to unbroken edge segments. 

This is because it is formulated in terms of the sums G l k ( e ) ,  

whose values are little affected by edge continuity. It shares 
this property with the Hough transform [9], which has been 
applied to the completion of broken edge segments. This 
lack of dependence on edge continuity allows us to skip 
the interpolation phase in reorienting E,’ to form €,’(B), as 
described above. 

In developing this objective function, we considered a 
number of alternative approaches, in which the orientations of 
dominant edge segments, selected according to their length, 
were used as a measure of dominant orientation. These ap- 
proaches were found to suffer from their restricted view of 
orientation as that of an isolated edge segment. In contrast, 
the objecthe function of (17) is a function of every pixel in 
E r ,  making it effective in assigning appropriate significance to 
collections of similarly oriented edge segments. 

B. Stage 2: Selection from Feasible Orientations 

As already mentioned, the resolution at which dominant 
linear features should be matched by the resampling axes 
depends on the target bit rate of our system. Based on this 
observation, we make our selection from amongst all of the 
feasible pairs of oriented axes, which are described in Section 
IV-A, based on an estimate of the corresponding bit rate. 
In addition, we consider the bit rate associated with the 
conventional verticalhorizontal axis pair. The resampling axis 
pair giving the lowest bit rate is selected. 

This strategy may be justified by the following two argu- 
ments. First, the examples presented in Section I11 demonstrate 
the compaction of signal energy into few subbands when the 
resampling axes correspond to dominant orientations. When 
quantization is coarse, the majority of the bit budget is assigned 
to the lower frequency subbands, and the code rate is most 
sensitive to the ability of a given pair of resampling axes 
to compact low-resolution features into as few as possible 
of these subbands. On the other hand, when quantization is 
fine. the majority of the bit budget is assigned to the higher 
frequency subband@ so the code rate is most sensitive to the 
alignment of resampling axes with the features appearing at 
higher resolutions. The bit rate is thus an appropriate method 
for comparing the significance of the directional features 
located at different resolutions in Stage I .  When quantization 
is coarse, the strategy assigns greater significance to the low- 
resolution features. These are also the features that have 
greatest perceptual significance when quantization is coarse. 
When quantization is fine, it assigns greater significance to 
the high-resolution features. These, again, are the features that 
have greatest perceptual significance when quantization is fine. 

A second justification for the use of bit rate in selecting the 
resampling axes is that it prevents increases in the overall bit 
rate above that of conventional subband coding, which might 
otherwise offset the enhancement in perceptual edge quality 
that orientation adaptivity offers. In practice, we find that our 
algorithm seldom selects conventional resampling axes for the 

6Even though fewer bits per pixel are assigned to the higher frequency 
subbands, they contain many more pixels than the lower frequency subbands. 
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Fig. 7. Original 512 x 512 Lena test image. 

natural images we have considered, indicating the prevalence 
of useful orientational information. 

The estimated bit rate used in this selection procedure in- 
volves the same quantization and run-length coding techniques 
to be described in Section VI-B; however, the full Huffman 
coding of Section VI-B is too computationally expensive to 
be used at this point where only an estimate of the bit rate is 
required. Instead, our estimate is obtained from an approximate 
entropy figure based on statistical information from other 
images. 

v .  REMOVING ARTIFACTS AT PARTITION BOUNDARIES 

The algorithm we have divulged so far treats each partition 
of the image entirely independently, leading to blocking arti- 
facts in the reconstructed image when quantization is coarse. 
The task of removing these is somewhat simplified by the fact 
that our partitions are chosen to be relatively l a r g e 4 4  x 64 
pixels usually-and the artifacts are of known location and 
observed to be of small extent. Fig. 8 demonstrates the 
nature of these blocking artifacts. Removal of the artifacts 
is performed in the receiver after image reconstruction. 

With the objective of perturbing the image as little as 
possible, our approach is to smooth the partition boundaries by 
means of a projection operator. A simple and efficient means to 
do this is to take advantage of the orthogonality of our subband 
filter system, which is discussed in Section VI-A. The idea is 
to assert that the high-frequency subbands of a 1-D subband 
decomposition taken across the partition boundary be zero in 
the neighborhood of the boundary. In Section V-A, we develop 
this idea for smoothing in the direction perpendicular to the 
partition boundaries. In Section V-B, we describe our more 
general, oriented smoothing algorithm, by which we further 
exploit directional information in the image. 

Fig. 8. 
0 .2  bpp before smoothing of partition boundaries. 

512 x 312 Lena reconstructed from orientation-adapted subbands at 

A. Elementary Approach 

Consider a vertical partition boundary, and let the kth image 
row intersecting this boundary be denoted Xk. Each such row 
forms a I-D sequence of data &(n) with 71, = 0 and n = 1 
arbitrarily chosen to correspond to boundary pixels. Next, we 
decompose each of these sequences into subbands. To do 
this, we apply a two-channel subband decomposition using 
the same subband filters F and G of Fig. I iterating along 
the low-pass channel for L levels.' In this way, we generate 
L high-pass subbands with octave related passband widths 
and one low-pass subband with nominal bandwidth of ~ 1 2 ~ .  
Denoting these subband samples by Ek(71,), . . . . Ek(n) and 
.Li ( 7 1 )  respectively, we have 

where the low-pass subband filter f ( 7 1 )  is symmetric about 
n = 0, and the high-pass subband filter g ( n )  is symmetric 
about 71 = 1. 

For each subband level 1 5 L, we set 'Hk (p )  = 0 for-@i 5 
p < @ l .  We then reconstruct A; from these modified subbands 
according to (20), replacing the original kth row XI, with X i .  
Turning our attention to the constants @ l ,  we observe from 
(20) that the zeroed subband samples at level 1 affect only the 

'The value of L is a parameter in our algorithm, which we have found 
experimentally to be best set to L = 2. 
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samples X L ( 7 1 )  with In1 5 Nl, where 

Ai, = 2[-1(2@l - I )  + M ( 2 ‘  - l), 

in which the subband filters have 2 M  + I taps. We choose a 
small value for @ L  and then, for each 1 < L, @ l  is chosen to be 
the largest integer such that Nl 5 N L .  In experimental work, 
for example, we have found @ L  = 2 to give good results. 

In this way, our algorithm is asserting that in the vicinity 
of the partition boundary, the modified lines X i  have spectral 
bandwidth of no greater than approximately ~ 1 2 ~ .  By orthog- 
onality of the subband system, the operation just described is 
also a projection operator. 

A similar algorithm is applied to the horizontal partition 
boundaries in which the lines Xk are image columns that 
intersect the boundary. 

It should be noted that the algorithm steps outlined above 
are only didactic. We need not generate the complete subband 
decomposition of each line Xk but only those subband samples 
that are to be set to zero. Synthesizing from these samples 
alone and subtracting the result from the original line has the 
same effect and is numerically efficient. 

B. Oriented Smoothing at Partition Boundaries 

The method described above works well in removing par- 
tition boundary artifacts from smooth regions of an image; 
however, it is not uncommon for oriented edges in the image to 
intersect with partition boundaries. The elementary approach 
generates objectionable artifacts at such edges. An example 
of these artifacts appears in Fig. 18, which is discussed in 
Section VII. In order to minimize such artifacts, we choose 
the lines Xk. which are described in Section V-A. to be 
oriented approximately parallel to any edges which cross a 
given partition boundary. 

In particular, for each of the four boundaries of each 
partition, we determine an orientation 0 for the smoothing. 
Pixels in the neighborhood of each boundary are assigned to 
oriented lines X k  using the same index permutation method 
described in Section IV-A-3, thereby allowing for orientations 
between f45’ relative to the normal direction to the boundary. 
The subband-based smoothing of these lines then proceeds 
exactly as in Section V-A. The appropriate subband samples 
are denoted by ‘Mk,o(n)> . . . , ‘Mi,o(n) and Ci,o(,rL). 

We determine the optimum orientation for this smoothing by 
minimizing C k  E;::;, 7ii,o(p)2 as a function of 0, where 
the summation is over all lines Xk crossing the boundary under 
consideration. In practice, the visual effect is not highly sensi- 
tive to the orientation chosen, and therefore, only 16 different 
orientations 19 are considered, and overall image reconstruction 
time is not significantly compromised. An analysis of the 
complexity issues associated with the smoothing algorithms 
discussed in this section appears in Section VII. 

VI. EXPERIMENTAL PARAMETERS AND RESULTS 

The object of this section is to present a comparison 
of reconstructed images using conventional and orientation 
adaptive subband coding approaches. This comparison appears 
in Section VI-D; however, we first present details of a number 

of the choices made in building our subband system. In Section 
VI-A, we give details of the partitioning of images into smaller 
regions and the filtering considerations relevant to subband 
decomposition of these small regions. In Section VI-B, we 
describe the quantization and coding procedures applied to 
subband samples and auxiliary information in order to obtain 
bit rates for comparison with other image coding techniques. In 
Section VI-C, we indicate the parameters chosen for removal 
of partition boundary artifacts. 

A. Filters, Partitioning, and Sample Rate Presenution 

Our approach to oriented subband coding via the resam- 
pling process described in Section I1 provides two degrees 
of orientational freedom, namely, the two resampling axes, 
for each image partition. Although finer partitioning increases 
our ability to exploit the orientational information in the 
image, it does not come without cost. An obvious cost is the 
appearance of blocking artifacts described in Section V. A 
second obvious cost is the increase in orientation information 
that must be transmitted as the number of partitions increases. 
A third cost is associated with degradation in the subband 
system’s performance as the partitions decrease in size. This 
is due to the increase in the proportion of pixels that lie close 
to a partition boundary. We choose to use the well-known 
symmetric-extension method [2 I ]  to obtain exact sample rate 
preservation in our subband coder; however, in the vicinity 
of partition boundaries, the effective subband filter responses 
suffer from this symmetric extension. 

The symmetric-extension technique requires linear phase 
filters, whereas we would also like to take advantage of 
the quantization noise transmission properties of orthogonal 
subband systems [5], [22]. Linear phase and orthogonality are 
known to be mutually exclusive requirements in perfect recon- 
struction subband systems [231, and therefore, we choose to 
use the 9 tap almost perfect reconstruction, almost orthogonal 
subband filters of Adelson et al. [ 11. The reconstruction error 
with these filters is practically never as large as I %  with three 
levels of subband decomposition and is never observable. 

We choose to employ a three-level subband decomposition, 
for which we find a good compromise partition size to be 
64 x 64 pixels. This means that the lowest level subbands are 
generated by applying the 9 x 9 tap separable subband filters to 
a decimated image consisting of 256 pixels with the parallelo- 
gram region of support discussed in Section 11. Recalling that 
a separable subband filter system is implemented by applying 
I-D subband decompositions to the rows and the columns of 
the resampled image, it is apparent that when this region of 
support is not rectangular, the rows or columns near two of its 
vertices will become too short to use the symmetric-extension 
method. For these regions, we resort to the use of the simplest 
known subband filters having the two tap impulse responses 

The parameter N,,, of (9) is chosen to be N,,, = 
10, giving a maximum sinc interpolation filter size of 21 
taps. It is not yet clear how small N,, can be before 



432 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3, NO. 4. JULY 1994 

coding performance is compromised. The iterative refinement 
algorithm given in (12) is allowed three iterations, in which 
it typically converges to within an error of less than 0.1 % of 
the range of the image pixel values. 

transmitted is when no subband data is to be transmitted; this 
is an event signaled by the fact that the run-length codes for 
that subband contain only the end-of-run symbol. 

C. Partition Boundary Artifacts 

B. Quantization and Coding 

In order to demonstrate the efficacy of our orientation 
adaptive subband scheme as well as to indicate the regime of 
bit rates where its application might be most beneficial, it is 
necessary to code our subbands. We adopt a fairly traditional 
approach in which the lowest frequency subband is DPCM 
coded and the others run-length coded. The quantizers are 
uniform with a dead zone about zero, except in the case 
of the DPCM subband, which has a straightforward uniform 
quantizer. Each subband of each partition is scanned separately 
using either a horizontal, a vertical, a top left to bottom right 
diagonal, or a top right to bottom left diagonal scheme. Finally, 
the resulting streams are Huffman coded. Separate Huffman 
codebooks are maintained for each subband, and within the 
run-length coded subbands. separate Huffman codebooks are 
kept for the black run lengths, the white run lengths, and the 
nonzero pixel values. 

I )  Quanrizurion: It is a fundamental assumption in  subband 
coding that the quantization of different subbands may be 
optimized to match the spectral sensitivity of the human 
visual system. In order to accommodate such adjustments, our 
quantizers are specified by four parameters: a base quantization 
interval A, a base dead zone threshold T, a scaling coefficient 
for the quantization interval I'l, and a scaling coefficient for 
the dead zone threshold T r .  In any particular subband, the 
quantization interval is A ( r ' A ) k ,  where k is the number of 
low-pass filtering stages that have been applied in arriving at 
the subband. Similarly, the dead zone threshold is T(rT)k. 
Thus, for example, at the first subband decomposition level, 
the HH subband would correspond to k = 0, and the HL and 
LH subbands to k: = 1. At the next level, the HH subband 
would correspond to k = 2,  and so on. 

2)  Auxiliary Information: In addition to the subbands them- 
selves, there is additional information that must be transmitted 
in our adaptive scheme, foremost of which is the axis orien- 
tation information. Recalling that the resampling parameters 
a and [j are constrained to lie between il, we uniformly 
quantize them each to 128 levels. An additional bit is required 
to signal transposition in the resampling schematic of Fig. 
3. Due, however, to the relatively common occurrence that 
a partition's axes be merely the conventional vertical and 
horizontal directions, a leading bit is allocated to signify 
whether or not this is the case. Finally, an extra bit is 
allocated to signify whether the secondary axis is in one of 
the vertical or horizontal directions-i.e., [i' = 0, which is 
also a common occurrence. In all then, the coding of each 
partition's resampling information requires 1,  10, or 17 bits. 

An additional 2 bits are required for every subband of every 
partition to encode the scanning method used-horizontal, 
vertical, or one of two diagonals. The code rate corresponding 
to each of these scanning methods is compared before trans- 
mission. The only event in which these 2 bits need not be 

Fig. 8 shows the effect of reconstructing the standard test 
image (Lena) from orientation adapted subbands at 0.2 bits per 
pixel before any attempt is made to remove partition boundary 
artifacts. Fig. 12 shows the same image after removal of these 
artifacts using the algorithm presented in Section V. We choose 
L = 2 and @ L  = 2. With our 9 tap filters, this leads to a value 
of = 5 when applying the procedure outlined in Section 
V-A. We find that L = 1 provides insufficient smoothing, 
whereas L = 3 produces its own noticeable artifacts in the 
image. These choices work well on all of the other natural 
images and bit rates we have considered. 

D. Comparison of Reconstruction Qualities 

The results presented in this section are all related to the 
standard test image (Lena); however, we apply our scheme to 
a total of ten natural images, the statistics from which are used 
to build our Huffman codebooks in order to obtain reliable bit 
rates. The Lena image is shown in Fig. 7. We compare the 
quality of reconstructed versions of the Lena image obtained 
using three different coding techniques at equivalent bit rates: 
the JPEG image compression standard, conventional separable 
subband coding, and our orientation adaptive subband scheme. 

A conventional separable subband scheme is obtained by 
applying our orientation adaptive subband coding software 
in the case where the partition size is that of the whole 
image-rather than the 64 x 64 partition size used in the 
adaptive case-and forcing the resampling axes to always 
be horizontal and vertical. In this way, exactly the same 
subband filters and quantization and coding strategy are used 
for the conventional and adaptive subband schemes, allow- 
ing a meaningful comparison of performance between the 
two approaches. The Huffman codebooks for adaptive and 
conventional subband approaches are maintained separately, 
where each is derived from subband statistics obtained from 
the ten natural images, one of which is the Lena image itself. 
The quantization parameters discussed in Section VI-B-I are 
obtained by experimentation. In this process, the parameters 
are varied in such a way as to maintain a given bit rate while 
the quality of the reconstructed image is subjectively assessed. 

In applying JPEG, we use nonuniform quantization tables 
that have already been optimized for natural images. To 
provide a fair comparison with the subband coding schemes, 
we build the Huffman codebooks for JPEG from the statistics 
of the same ten images used to build our subband system 
codebooks. The JPEG bit rate is based on the assumption 
that neither quantization tables, Huffman tables, nor resyn- 
chronization codes are to be transmitted-i.e., an identical 
communication scenario to that for the subband coders. In 
addition. the reconstructed JPEG image is smoothed with 
a Gaussian low-pass filter in order to reduce objectionable 
blocking artifacts. Such post-processing is common practice 
for low bit rate JPEG images. 
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Fig. 9. Resampling axes for 512 x 512 Lena with 64 x 64 partitions. Fig. 1 1 .  
at 0.2 bpp. 

51 2 x 512 Lena reconstructed from conventional separable subbands 

Fig. IO. ,512 x ,512 Lena reconstructed from JPEG bitstream at 0.2 bpp. 

A comparative study of reconstructed images at various low 
bit rates appears in Figs. 10 through 15, with the reconstructed 
image properties appearing in Table 11. Figs. 1 I and 12 
compare reconstructions of the Lena image using orientation 
adaptive and conventional subband systems at 0.2 bits per 
pixel. At this bit rate, the reconstructed image is of moderate 
quality with the Gibbs phenomena at image edges in Fig. 11 
being arguably the most objectionable artifacts, especially in 
the regions of the hat, the shoulder, and the mirror edges. These 
artifacts are all but absent in Fig. 12, demonstrating the success 
of our orientation adapted approach. It is interesting that both 
subband schemes appear to give higher quality reconstructed 

Fig. 12. 
at 0.2 bpp. 

images than that for JPEG, which is shown in Fig. 10. 
In Fig. 9, the resampling axis orientations, which are ob- 

tained in the process of generating Fig. 12 at 0.2 bits per 
pixel, are displayed in red for the dominant axis and green 
for the secondary axis within each of the image partitions. 
Note that our algorithm is highly successful in locating the 
dominant linear features within the image, often exploiting 
the availability of both axis orientations to capture as much 
directional information as possible. 

We also show reconstruction results at 0.1 bits per pixel 

512 x 512 Lena reconstructed from orientationadapted subbands 
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Fig. 13. 
at 0.1 bpp. 

512 x 5 1 2  Lenareconstructed fromconventional separable subbands Fig. 15. 
rable subbands at 0.3 bpp. 

Corner of 512 x 512 Lena reconstructed from conventional sepa- 

Fig. 14. 
at 0.1 bpp. 

512 x 512 Lena reconstructed from orientation-adapted subbands 

in Figs. 13 and 14. At this bit rate, the image quality has 
suffered significantly; however, the Gibbs phenomena around 
image edges, which our algorithm removes, are still arguably 
the most objectionable artifacts in Fig. 13. 

Finally, the performance of our algorithm at 0.3 bits per 
pixel is examined in Figs. 16 and 15. The Gibbs phenomena at 
512 x 512 Lena image edges are no longer as noticeable at this 
bit rate; therefore, the advantages of our orientation adaptive 
scheme over the conventional separable subband coder are 

Fig. 16. 
subbands a[ 0.3 bpp. 

Comer of 512 x ,512 Lena reconstructed from orientation-adapted 

not as noticeable. In order to reveal the effect, Figs. 15 and 
16 show an expanded view of the top right-hand comer of the 
Lena image. 

Table I1 presents our quantization parameter choices as well 
as the bit rates and peak signal to noise ratios (PSNR's)' 
for each of these reconstructed images. We may make a 
number of observations concerning the information presented 

A 'PSNR = 101ogl, &, where MSE is the mean quared error 
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TABLE 111 
ARITHMETIC COMPLEXITY OF ORIEKTATION ADAPTIVE SUBBAND RECEIVER 

Floating Point Operations per Pixel 
Component Functional Form XI = 4, ,\-,,,,, = 10. 

P, = P,, = G4. I = 3 
Separable Subbdnd Filtering 2:(411+ 1) 45 

Interpolation 4(4.v,,l<%y + I)( 1 + 1) 65 6 
Smoothing of Section V-A 

OR 
Smoothing of Section V-B 

(+ + + ) ( 2  x 19 + 2 X 10)(421f+ 1) 

(I + & ) ( I 7  x 19 + 2 x 10)(431 + I )  

I '  
" Y  

182 
pz 

in Table 11. First, we draw attention to the l?A and r-r 
parameters. Subjective experimentation with these parameters 
has led to the conclusion that they should both assume a value 
of approximately 0.8. This means that the ratio between the 
quantization interval of the lowest frequency subband and that 
of the highest frequency subband should be about $, which 
is in agreement with the thesis that lower spatial frequencies 
have a greater perceptual significance than higher frequencies. 

Although the orientation adaptation process itself always 
results in some coding gain, as discussed in Section IV-B, 
the communication overhead associated with each partition 
offsets this advantage. It is for this reason that at the lowest 
bit rate, quantization is slightly less coarse for the conventional 
approach than for our orientation-adapted approach. At higher 
bit rates, the adaptive scheme regains its footing. Also of 
interest from Table I1 is the fact that the PSNR is always 
slightly higher for conventional subband coding than for our 
adaptive approach. This is easily understood as the result of the 
image partitioning process that compromises the orthogonality 
of the subband system and hence the quantization noise energy 
near partition boundaries. 

VII. COMPLEXITY 

The purpose of this section is to provide an indication of 
the numerical complexity of our orientation adaptive subband 
scheme for the purpose of comparison with conventional 
separable subband coding. In particular, we show that the 
receiver need only be approximately twice as numerically 
intensive as a separable subband receiver, whereas the trans- 
mitter is a couple of orders of magnitude more complex. 
The orientation adaptive scheme is thus highly asymmetric, 
unlike conventional separable suband coding. In Section VII- 
A, we discuss the influence of parameter choices on the 
receiver computational complexity as well as on quality of 
the reconstructed images. In Section VII-B, we indicate the 
approximate complexity of the transmitter. 

A. Receiver Numerical Complexity 

Considering the computational elements that the receiver 
must embody, the following are of significance in terms of 
arithmetic operations: conventional separable subband filter- 
ing, the interpolation identified by (13); and the partition 
boundary smoothing described in Section V. We proceed 
to analyze the arithmetic complexity of each of these three 
elements. To do this, we assume that the image is divided into 

partitions containing Px x cy pixels, that the subband filters 
have 2 M  4- 1 taps, and that the number of iterations of the 
algorithm described by (12) is J .  We assume for simplicity that 
the number of subband levels is infinite as only the first few 
subband levels significantly affect the numerical complexity. 
Also for simplicity, we assume that the partition boundary 
smoothing parameter choices described in Section VI-C are to 
be used. In particular, we have L = 2, 

The arithmetic complexities of each of the receiver's com- 
putational elements appear in Table 111. The table also gives 
the complexities corresponding to the parameter choices of 
Section VI--i.e., AI = 4. A',,,,, = 10, P, = Py = 64, and 
J = 3. The images reconstructed from orientation-adapted 
subbands in Section VI-D were smoothed with the orientation 
sensitive smoothing algorithm discussed in Section V-B. With 
these choices, interpolation clearly dominates the receiver's 
arithmetic complexity. In all, the orientation adaptive receiver 
is about 20 times more numerically intensive than the receiver 
for a conventional separable subband system. 

We may observe, however, that the interpolation phase 
corresponds to fractional shifting of image rows or columns 
by no more than *+ a pixel, where the majority of the 
resampling task is accomplished by index permutation. If 
the interpolation phase is omitted entirely from the receiver, 
we would expect to observe slight staircase effects around 
oriented edges within the image. This is exactly what is 
observed in Fig. 17. Fig. 18, however, demonstrates a more 
satisfactory compromise between reconstruction quality and 
numerical complexity. In this case, we have chosen to employ 
a crude interpolative filter in the receiver with Nmax = 2 
and no iterative refinement-i.e., .I = 0. In addition, we 
have employed the simple boundary smoothing approach of 
Section V-.4. The arithmetic complexity in this case is only 
2.5 times that for a conventional separable subband system's 
receiver, and the quality of the image in Fig. 18 is arguably 
comparable with that of Fig. 12. The most noticeable new 
artifacts in Fig. 18 are those introduced by partition boundary 
smoothing where oriented edges intersect partition boundaries. 
Such artifacts may, for example, be seen along the rim of 
the hat anti in the shoulder. They are practically absent in 
Fig. 12, in which the more sophisticated, orientation-sensitive 
algorithm of Section V-B is employed. 

We conclude that at low bit rates, a simpler receiver 
with approximately twice the arithmetic complexity of a 
conventional subband receiver is probably quite sufficient. We 
also observe that almost all processing is performed in isolated 

= 2 and = 5 .  
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potential resampling axis pairs. As discussed in Section IV-A- 
3, there may be up to four such potential resampling axis pairs 
for every level in the subband filter pyramid. Corresponding 
to the parameter choices of Section VI, up to 12 resampling 
axis pairs must be checked, with each check requiring 45+656 
floating point operations per image pixel. These figures are 
taken from Table I11 due to the symmetry of subband analysis 
and synthesis and of interpolation and inverse interpolation 
given by (11) and (13). 

In addition, for each level in the subband filtering pyramid 
and for each of the 128 quantized angles of Section VI-B- 
2, we must evaluate the orientation objective function of (17), 
which involves approximately one floating-point operation per 
pixel being dominated by the evaluation of the B l l ( e )  terms. 
We ignore the more modest requirements of the resolution 
reduction and edge detection phases of Sections IV-A-I and 
2. 

In all then, for three levels of subband filtering, our pro- 
posed orientation-adaptive subband transmitter requires ap- 
proximately 12 x (45 + 656) + 3 x 128 M 9000 floating-point 
operations per image pixel. This is about 200 times the 
computational power required by a conventional separable 
subband transmitter and about 100 times the computational 
power of the simple orientation adaptive receiver discussed in 
Section VII-A and used to generate Fig. 18. We note however 
that all processing in the transmitter takes place in isolated 
image partitions, introducing the possibility of highly parallel 
implementations. 

Flg. 17 
at 0 2 bpp without interpolation 

51 2 x 512 Lena reconstructed from orientation-adapted subband5 

Fig. 18. 
at 0 .2  bpp with crude interpolation. 

512  x 512 Lena reconstructed from orientation-adapted subbands 

image partitions. This introduces regularity into our subband 
system, which may be exploited in a hardware implementation. 

B. Transmitter Numericul Complexity 

It is evident that the transmitter associated with our 
orientation-adaptive scheme must be considerably more 
complex than the receiver. This is because the adaptation 
algorithm described in Section IV requires that the analysis 
system of Fig. 1 be executed once for each of a collection of 

VIII. CONCLUSIONS 

The work presented in this paper demonstrates the value in 
adapting a subband system to the local orientational features of 
an image. At low bit rates, we are able to achieve considerably 
cleaner edges than conventional approaches in which orienta- 
tion is not considered. For natural images, Table I1 reveals that 
this subjective improvement in edge quality is not associated 
with significant changes in quantization precision but arises 
instead from directional attributes of the quantization noise. In 
the light of such results, we consider this directional shaping 
of quantization noise to be the most compelling motivation for 
orientation adaptive subband coding of images. 

The particular orientation adaptive approach outlined here is 
capable of exploiting up to two distinctly oriented features in 
each region of an image and may be implemented using only 
the operations of 1-D filtering and index permutation. The 
transmitter is necessarily much more complex than that for a 
conventional separable subband system; however, a simplified 
form of the receiver exists, the numerical complexity of 
which is not substantially higher than that of the conventional 
subband receiver. 

One could conceivably propose an alternative orientation- 
adaptive subband scheme in which directional sensitivity is 
achieved by a 2-D, nonseparable filter bank. For such an 
approach to be successful, however, a number of serious 
difficulties would need to be overcome. One such difficulty 
is that the symmetric-extension technique, which has been 
used to preserve sample rate in the separable subband system 
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of Fig. 1, does not extend to nonseparable filter systems. 

%Ibband decomposition have good and direc- 
tional sensitivity, further levels of subband decomposition 

or directional properties. In addition to these difficulties, 
the computational complexity associated with nonseparable 
filtering would put any such approach at a disadvantage to our 
proposed approach, for which, as already noted, the arithmetic 
complexity of the receiver need not be substantially higher 
than that for a separable subband receiver. 

It is our view that the orientation-adaptive algorithm pre- 
sented in this paper provides highly competitive image quali- 
ties in the low bit rate arena. It is also open to the incorporation 
of more elaborate coding schemes that exploit dependencies 
between different subbands, ~ ~ ~ ~ i ~ ~ ~ i ~ ~  to higher dimensional 
environments such as video remains an area for investigation. 
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