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A Common Framework for Rate and Distortion 
Based Scaling of Highly Scalable Compressed Video 

David Taubman, Member, IEEE, and Avideh Zakhor, Member, IEEE 

Abstruct- Scalability refers to the ability to modify the res- 
olution and/or bit rate associated with an already compressed 
data source in order to satisfy requirements which could not be 
foreseen at the time of compression. A number of researchers 
have already demonstrated the feasibility of efficient scalable 
image and video compression. The principle focus of this paper is 
to describe data structures for highly scalable compressed video, 
which are able to support simple, generic scaling approaches for 
both constant bit rate and constant distortion scaling criteria. 
Interactive video material presents particular challenges when the 
data stream is to be scaled to maintain an approximately constant 
level of distortion, rather than just a constant bit rate. Special 
attention is paid, therefore, to the development of generic, robust 
scaling algorithms for such applications. The data structures and 
scaling methodologies developed in this paper are particularly 
appealing for distribution of highly scalable compressed video 
over heterogeneous media, because they simultaneously support 
both variable bit rate (VBR) and constant bit rate (CBR) services 
with a wide range of available service qualities, using only 
simple, generic mechanisms for scaling. The performance of the 
proposed scaling methodologies is experimentally investigated 
using a highly scalable video compression algorithm, which is 
able to achieve comparable compression performance to that of 
the inherently nonscalable MPEG-1 compression standard. 

I. INTRODUCTION 

N the last few years the term scalability has come to be I associated with any of a number of desirable properties for 
image and, particularly, video compression algorithms. Scala- 
bility essentially means that the compressed bit stream can be 
manipulated in a simple manner in order to satisfy constraints 
on such parameters as bit rate, display resolution and frame 
rate, or decompression hardware complexity. In general, this 
manipulation consists of the extraction of relevant subsets from 
the compressed bit stream, each of which should represent an 
efficient compression of the video sequence, at some resolution 
and distortion. In rate-scalability, appropriate subsets are 
extracted in order to trade distortion for bit rate at some 
fixed display resolution. Resolution-scalability, on the other 
hand, means that subsets may be extracted which represent the 
video sequence at a variety of different resolutions. Rate- and 
resolution-scalability usually also provide a means of scaling 
the decompression algorithm’s computational requirements. In 
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order for the complete scalable bit stream to also represent 
an efficient compression of the video sequence at maximum 
resolution and bit rate, these subsets must be embedded within 
one another, rather than coexisting independently as they 
would in a simulcast. 

The value of scalable compression lies in the fact that 
the bit stream may be manipulated at any point after the 
compressed bit stream has been generated. This is significant 
because in many important applications, advance knowledge 
of constraints on resolution, bit rate, or decoding complexity, 
may not be available during compression. Both video database 
servers [4] and shared digital networks can face unforeseeable 
throughput limitations, which jeopardize the integrity of com- 
pressed video delivered to clients. Unless the compressed data 
streams can be gracefully scaled down to more manageable 
bit rates, such potential throughput limitations can either 
lead to very serious corruption or else necessitate significant 
overallocation of resources in order to avoid the possibility of 
severe degradations in service quality. For these applications, 
rate-scalability is a highly desirable property. Scalability is also 
a very important property for video database, multicast, and 
broadcast applications with heterogeneous distribution andlor 
display requirements. In such heterogeneous environments, 
constraints on bit rate and display resolution cannot be an- 
ticipated during compression, either because the compressed 
data is to be stored and then retrieved under many potentially 
different conditions, or because the compressed data is to 
be simultaneously distributed to many clients, with differing 
display technology and/or distribution path characteristics. In 
these cases, both rate-scalability and resolution-scalability are 
desirable properties. 

A number of researchers have proposed image or video 
compression algorithms which offer some degree of scala- 
bility. Said and Pearlman [17], Shapiro [lS], and Taubman 
and Zakhor [24] have all proposed highly scalable algorithms 
for still image compression, which offer excellent compression 
performance over an almost continuous range of bit rate scales. 
With a specific view toward video applications, Bosveld et 
al. [2] and Chaddha et al. [3] have also proposed scalable 
intraframe compression schemes. Chaddha et al. are particu- 
larly concerned with software-only scalable compression for 
cooperative video applications where interframe techniques 
are considered too computationally expensive. Efficient, highly 
scalable video compression presents some additional difficul- 
ties over still image compression, because techniques based 
on predictive feedback for exploiting temporal redundancy 
do not lend themselves to scalability. This observation is 
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easily understood in view of the fact that predictive coding 
algorithms maintain a copy of some aspect of the anticipated 
decoder’s state, with respect to which the source signal is 
encoded; however, the principle behind scalability is that 
the decoder’s state cannot be anticipated at the encoder. 
Nevertheless, various proposals (e.g., [6], [SI, [lo], [ l l ] ,  [28]) 
have been advanced for achieving limited scalability within a 
motion compensated predictive framework. As expected, such 
approaches generally suffer from rapidly escalating complexity 
and significant loss in compression performance as the number 
of available scales increases. In fact, provisions for scalable 
compression modes within the MPEG-2 standard, based on 
motion compensated prediction, explicitly restrict the number 
of scales to at most three [5]. For this reason, a number 
of researchers have proposed three-dimensional (3-D) mul- 
tiresolution transforms as a vehicle for exploiting temporal 
redundancy without resorting to nonscalable predictive coding 
techniques. Among these are Sing et al. 1191, Ohm [15], and 
Taubman and Zakhor [24], [25]. Such transforms are inher- 
ently much more suited to highly scalable compression than 
techniques based on motion compensated prediction. It should 
be noted, however, that highly scalable video compression 
also depends upon efficient layered quantization and coding 
strategies. In this respect, the algorithm presented in [24] is 
noteworthy for offering a virtually continuous range of bit rate 
scales. These algorithms are discussed further in Section IV. 

While there is clearly much room for further investigation 
into highly scalable video compression algorithms, the rel- 
evance of such algorithms may in large part depend upon 
the ease with which scalability is able to be exploited in 
video storage and distribution equipment. To underscore this 
point, we note that the advantages of scalable compression 
are primarily realized by allowing such equipment to interact 
with the compressed video stream via scaling operations; such 
interaction between storage and transport entities and the traffic 
they support is entirely foreign to nonscalable traffic. Previous 
work (e.g. [ 111 and [ 151) has focused on tailoring compression 
schemes to the limited native scaling potential afforded by the 
two priority levels offered by ATM networks. By contrast, the 
focus of this work is to investigate the potential of a layered 
substream hierarchy as an intermediate abstraction between 
highly scalable compression algorithms and the scaling entities 
associated with storage and distribution systems. While this 
abstraction imposes some requirements on both the compres- 
sion scheme and the scaling entities, it permits simple, generic 
scaling operations, which are independent of syntactic features 
specific to any particular compression scheme. Moreover, 
within this abstraction, the compressed data stream may be 
scaled as often as desired, with either a constant bit rate or 
a constant level of distortion as the objective at each point. 
Special attention is devoted to the issues surrounding generic 
distortion-based scaling with hard guarantees on average bit 
rate properties, particularly for interactive applications. 

The paper is organized as follows. In Section I1 we begin by 
outlining our proposed layered substream abstraction, together 
with the simple, generic scaling mechanisms supported and 
the requirements this abstraction imposes on the compression 
algorithm. Distortion based scaling is dependent on the values 

of distortion tugs, which are inserted periodically into the lay- 
ered substream hierarchy. Perhaps the most important question 
addressed by this paper is how such tags should be generated 
so that distortion-based scaling is able to maintain any selected 
measure of distortion in the reconstructed video sequence at 
an approximately constant level, while preserving an average 
bit rate interpretation that is independent of the underlying 
distortion measure. Section 111 motivates and addresses these 
issues. In order to place this work in a realistic context, we 
proceed to discuss highly scalable compression algorithms 
which are able to support the proposed layered substream 
abstraction. In particular, Section IV summarizes some of the 
important features of highly scalable compression schemes and 
briefly describes the algorithm presented in [25], which forms 
the context for our experimental investigations. Section V 
shows how the resulting compressed video data may be 
organized to satisfy the requirements imposed by our layered 
substream hierarchy. Finally, the effectiveness of rate and 
distortion-based scaling within the context of our layered 
substream abstraction are demonstrated in the experimental 
results of Section VI. 

11. LAYERED SUBSTREAM HIERARCHY 

The purpose of this section is to describe a layered sub- 
stream abstraction within which simple, generic bit rate scaling 
may be performed according to either a constant bit rate 
criterion or a constant distortion criterion. Before plunging into 
a more thorough description of these operations, it is important 
to understand that rate-scalability refers to the potential to 
change the compressed data stream’s bit rate after the actual 
compression has taken place. We refer to the actors which are 
able to perform this scaling as scaling entities. The usefulness 
of rate-scalability arises from the opportunity to include such 
scaling entities within the distribution and/or storage path 
of the compressed video data stream. This enables resource 
contention between multiple data sources to be resolved by 
gracefully scaling the source bit rates. Scaling entities may 
also be used to tailor compressed bit rates to the individual 
capabilities of each link in a heterogeneous multicast tree. 
Because we expect to include such scaling entities in the actual 
distribution and/or storage path of the compressed data, an 
important consideration is that bit rate scaling should be a 
generic operation, which does not depend on syntactic features 
specific to any particular compression algorithm. By contrast, 
we expect resolution-scalability and complexity-scalability to 
be of concern only during decompression and hence intimately 
dependent upon the particular compression algorithm. Thus, 
we are only concerned with developing a generic abstraction 
for rate-scalability. Given that we would like to implement 
rate scaling entities in the context of large public networks, 
a second important consideration is that these scaling entities 
should be as simple as possible. 

Fig. 1 depicts the organization of Q substreams in our pro- 
posed layered hierarchy. Each substream, $ = 1, 2, . . . , %’, 
is characterized by a constant bit rate, R+. In order to estab- 
lish a temporal relationship between the substreams and the 
source video which they represent, we partition the substream 
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Fig. 1. Layered substream hierarchy. 

hierarchy into temporal blocks, or frame slots, each having a 
duration of F video frame periods. The bit rates, R+, are then 
assessed in the context of these frame slots. That is, substream 
11, contains exactly RQ (.F/FR) bits in each frame slot, s, 
where FR is the video frame rate. In Section I, we suggested 
that efficient highly scalable video compression algorithms 
should be based around 3-D multiresolution transforms. In 
fact, both memory conservation and compression efficiency 
considerations currently suggest that this multiresolution trans- 
form should be block-based in the temporal dimension.’ The 
use of a temporally block-based transform with a block size 
of F’ frames suggests a natural partitioning of the data stream 
into frame slots of F = K . F’ frames each, where K 
is an integer. As we shall see, end-to-end delay is affected 
by the value of F, so we select K = 1 for delay sensitive 
applications. In applications where delay is not critical, larger 
values of K can be helpful in enhancing the efficiency with 
which highly scalable compressed data may be packaged into 
the fixed rate substreams, 11,, within each frame slot, s. 

We make two important assumptions concerning the scal- 
able compression algorithm, whose compressed data is to 
be conformed to the layered hierarchy of Fig. 1. The first 
assumption is that the compressed data is sufficiently scalable 
to allow the first 11, substreams to represent an efficient 
compression of the original video material at rate E:==, RE, 
for each value of 11, E { 1, 2, . . . , Q}. Our second assumption 
is that the number of substreams available for decompression 
may change from frame slot to frame slot, with little if any 
effect on the decoder’s ability to utilize the entire received data 
stream. As we shall see, this second assumption is important 
in enabling effective constant distortion scaling within the 
same frame work as constant bit rate scaling. Suitable highly 
scalable compression schemes and algorithms for organizing 
the scalable data into substreams are discussed in Sections IV 
and V. 

Temporally overlapping transforms not only require more memory than 
block based transforms, but also do not appear to offer any advantage in 
compression performance [ 151, [24]. 

It is evident that constant bit rate scaling with a target rate 
of E:==, RE may be accomplished simply by discarding all 
but the first 11, substreams in each frame slot. Scaling via 
substream discarding is completely generic in that it does 
not depend on syntactic features of the compression algorithm 
used to generate the substreams. With the addition of distortion 
tag values, D,$, to each frame slot, s, of each substream, +, 
as shown in Fig. 1, generic distortion-based scaling is also 
possible within the layered substream context. The idea behind 
constant distortion substream scaling is that 73; should be 
representative of the distortion expected during frame slot s ,  
when the video sequence is reconstructed from the first + 
substreams only. To obtain an approximately constant level 
of distortion, no greater than some distortion target, D,  it is 
sufficient to retain only the first @ ( D )  substreams of frame 
slot s, where 

+”(DO) e min {IC, I D; 5 D>. (1) 

Of course, it is unreasonable to expect truly generic scal- 
ing entities to work with complex psychovisual measures 
of distortion. Indeed, from a philosophical standpoint, it is 
probably only reasonable to expect scaling entities which 
reside within distribution networks to deal with quantities 
directly related to the bit rate. For example, a network may 
expect to regulate the average bit rate of a variable rate 
data source using some deterministic model such as a “leaky 
bucket” [16]. Resource allocation may also be performed on 
the basis of such parameters as average and peak bit rate. For 
these reasons, we prefer to give the distortion target, D,  a 
direct interpretation in terms of average hit rate. In particular, 
we begin by defining a standard, strictly decreasing average 
rate function, R(.), which does not depend upon any particular 
video sequence or compression algorithm. The significance of 
the average rate function, E(.) ,  is that the distortion tag values, 
D;, must be selected so as to guarantee not only that video 
reconstructed from the first $”(D)  substreams in each frame 
slot, s, has an approximately constant level of distortion, with 
respect to some reference measure of subjective distortion, but 
also that the average bit rate resulting from the selection of 
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$'(Do) substreams in each frame slot, s, is equal to R(V). That 
is, we first define the standard average rate function, I?(.), and 
then require the distortion tag values to be chosen such that 
the values $'(V), s = 1, 2, ..., yielded by (l), satisfy 

It is important to understand that the condition, (2 ) ,  need not 
necessarily interfere with the fact that reconstruction from 
the first @(V) substreams in each frame slot, s, should 
provide approximately constant distortion with respect to a 
given reference measure. Rather, (2) states that the level of 
distortion associated with target V must be adjusted so as to 
yield an average bit rate of R(D), regardless of the particular 
video sequence or reference distortion measure concerned. 
In this way, scaling entities may remain oblivious to the 
subtleties of actual measures of subjective distortion employed 
by the compression algorithm, provided the distortion tags 
consistently satisfy their average bit rate interpretation, as 
given by (2). 

In practice, of course, the distortion target, V, and distortion 
tag values, l?;, may only assume values from a discrete 
set. In the remainder of this paper, therefore, we adopt the 
following notation. The distortion target, D, takes on one of p 
values, d l  > d2 > . .. > d p ,  satisfying R ( d 1 )  2 R1 and 
R ( d p )  5 Rip.* In view of (l), it is sufficient to consider 
distortion tag values belonging to the augmented set, V$ E 
{do,  d l ,  . . .  , d p } ,  where do is any value which exceeds the 
largest distortion target, i.e., do > d l .  To see why this is a 
sufficient set of distortion tag values, observe that any tag 
value, D$ in the interval (d;+l ,  d;]  may be replaced with the 
value V$ = d; ,  without interfering with the result of constant 
distortion scaling with any target, V E { d l ,  d2, . . .  , d p } .  
Note that, with the largest possible distortion target, D = d l ,  
constant distortion scaling discards all substreams after the first 
substream found to have a distortion tag value less than do. 
A distortion tag value of D; = do may thus be interpreted as 
indicating that $ substreams are not sufficient to satisfy any of 
the valid distortion targets d l ,  d2, . . . d p  in frame slot s. If 
R ( d 1 )  > RI, some distortion tags must assume the value do 
from time to time. On the other hand, if R(d1) = R1, so that 
the minimum average bit rate and the minimum instantaneous 
bit rate are identical, we can have $ ' ( d l )  = 1, Vs, which 
means that the distortion tag value do need never be used. 

Although the distortion-based scaling algorithm embodied 
by (1) is necessarily very simple and its average rate inter- 
pretation, given in (2 ) ,  is independent of any particular video 
sequence or refereme measure of actual subjective distortion, 
the mechanisms used to generate appropriate distortion tags, 
V$, need not be. Techniques for generating meaningful dis- 
tortion tag values for both interactive and prerecorded video 
applications are discussed next in Section 111. 

Before concluding this section, we briefly consider the 
implications of our proposed layered substream hierarchy 

'The minimum average hit rate, R ( d l ) ,  must clearly be no smaller than the 
minimum instantaneous bit rate, R I .  Similarly, the largest average bit rate, 
R(d,),  may not exceed the largest instantaneous hit rate, Rq. 

for end-to-end delay. Here we are concemed only with in- 
herent delay, by which we mean the minimum end-to-end 
delay achievable, assuming that physical transmission delays 
and computation times are negligible. Without any loss of 
generality, we may assume that video frames sF through 
(s + 1)F- 1 can be reconstructed and displayed if and only if 
the compressed data in frame slot s is available at the r e c e i ~ e r . ~  
Moreover, because we do not impose any constraints on the 
proportion of bits devoted to representing each of these frames, 
we cannot guarantee that any of them will be available for 
display until the entire frame slot has been received. Similarly, 
the compression algorithm might have to wait until the arrival 
of all source video on which the compressed data for frame 
slot s depends before it decides how best to allocate the 
R, ( F / F R )  bits in each substream, $J.4 This means that none 
of frame slot s can be generated until at least the arrival of 
source frame (s + 1)F - 1. If the compression algorithm 
employs an overlapping temporal transform, then even later 
source frames may be required before the frame slot can be 
generated. As noted at the beginning of this section, however, 
there is little reason to use anything other than a temporally 
block-based transform. In this case, by setting F equal to an 
integral multiple of the temporal block size, we can ensure 
that source frame (s + 1)F ~ 1 is always the last frame in 
a transform block so that no further delay is introduced by 
the multiresolution transform. In summary, none of frame slot 
s can be generated until source frame (s + l ) F  - 1 arrives, 
after which we must wait F frame periods for the fixed rate 
substreams of frame slot s to be completely transmitted to 
the receiver; only then do we have any guarantee that any of 
frames sF through (s + l ) F  - 1 can be decompressed and 
displayed. Consequently, frame s 3  experiences the maximum 
end-to-end delay of 2F - 1 frame periods. 

111. GENERATION OF DISTORTION TAGS 

In Section 11, we showed how constant distortion scaling 
may be performed in the context of our proposed layered 
substream abstraction. We tum our attention now to the task of 
generating the distortion tags, D$ E {do ,  d l ,  . . .  , d p } ,  which 
determine the behavior of this scaling operation. We assume 
that the compression algorithm is able to assign a reference 
distortion value, V$, to each substream, $J, in each frame slot, 
s. VG is some measure of the average distortion expected over 
frame slot s, when the video sequence is reconstructed from 
substreams 1, 2 ,  . . . , $. We refer to the reference distortion 
measure used to generate these V$ values as the V-distortion 
measure. V-distortion measures may vary from a simple mean 
squared error (MSE) estimate to more complex perceptually 
based distortion measures. The idea is to determine a strictly 
increasing map, 7, from reference distortion values, VG, to 
distortion tag values, D$ E { d o ,  d l ,  . . . , d p } ,  such that con- 
stant distortion scaling is guaranteed to satisfy the average bit 

3The validity of this statement depends only on selecting an appropriate 
point at which to start numbering the frames and observing that the h m e  
slots are separated by exactly .F frame periods. 

41n our experience, premature allocation of the number of bits used to 
represent different frames can significantly degrade the overall efficiency of 
the compressed video representation. 
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rate requirement of (2). In this way, constant distortion scaling 
holds the distortion of the reconstructed video approximately 
constant with respect to the particular V-distortion measure 
selected. That is, V$ (Dl should be approximately constant 
from frame slot to frame slot, for any distortion target V E 

We begin, in Section 111-A, by considering the determination 
of this map, 7, when the reference distortion values, V$, are 
known ahead of time for all substreams, q4, and frame slots, s. 
Of course, such an approach is only applicable for prerecorded 
video material of finite duration. For interactive applications, 
distortion tag values, D$,  in frame slot s must be determined 
without any information about the reference distortion values 
in future frame slots, s + 1, s + 2, . . .. Section 111-B discusses 
an adaptive strategy for such applications, in which an adaptive 
map P,  from reference distortion values, V$, to distortion 
tag values, 27;. is allowed to change slowly from frame slot 
to frame slot. In this case, the rate at which 7" is allowed to 
change determines the time frame over which distortion can be 
considered to be held constant by constant distortion scaling. 

(4 ,  d2,  ' " >  d p } .  

A. Generation of Distortion Tug Values for Prerecorded Video 

In this section, we discuss the determination of the strictly 
increasing map, 7,  from reference distortion values, V$, 
to distortion tag values, D$,, in the case of a prerecorded 
video sequence consisting of exactly S frame slots. Because 
the video sequence is prerecorded, the set of all reference 
distortion values { V ,  I 1 5 s 5 S, 1 5 $ 5 !U} may be 
employed to construct this map, 7. Our objective is to select 
the map, 7, for which the average bit rate over all S frame 
slots 

(3) 

is as close as possible to, but no larger than R(d,), for 
each distortion target d l ,  d2, . . . ,  d p .  Recall that I?(.) is our 
standard average rate function, which does not depend upon 
the video sequence or the reference V-distortion measure, 
whereas the map, 7, depends on both the video sequence and 
the V-distortion measure, through the V$ values. Because only 
a finite number of frame slots are available, and substream 
discarding allows for only a discrete set of bit rates in any 
frame slot, it is not generally possible to obtain exact equality 
between the short term average bit rate of ( 3 )  and the nominal 
average bit rate, R ( D ) .  As the number of frame slots, S, 
becomes increasingly large, however, the discrepancy between 
R(27) and the average in (3) rapidly becomes negligible so 
that (2) holds. 

We observe that 7 is simply a quantization operator, quan- 
tizing continuous V-distortion values onto the discrete set 
of distortion tag values, {do,  d l .  . . . , d p } .  As such, we may 
characterize Is by p thresholds, tl > t z  > . . . > t,, according 
to 

7 - l ( d z )  = (L+l,  t,], 2 = 0, 1, 2, . . . ,  P ,  (4) 

where we have used t o  = 00 and t,+l = -00, for notational 
convenience. Thus, 7 ( 7 i )  = d, whenever the reference distor- 

tion 'U is less than or equal to the threshold t ,  but greater than 
The following observation demonstrates the usefulness 

of characterizing 7 by (4). 
Observation 1: The number of substreams $"(d,) retained 

during constant distortion scaling in frame slot s, with dis- 
tortion target 2) = d,, depends only upon the threshold, t,, 
according to 

The proof of this statement may be found in the Appendix. 
This observation is particularly helpful because it indicates 

that the values, $"(d,), and hence the average bit rate of (3 ) ,  
depend only upon the threshold value t, and not on the values 
of t , ,  j # i .  In order to guarantee that this average rate is as 
close as possible to R(d,), without exceeding R(d , ) ,  we have 
simply to select 

i = l  > 2 > . . .  7 P .  (6) 

Equation (6) is easily understood by observing that the average 
bit rate associated with distortion target d, is a nonincreasing 
function of t,. Therefore, we wish to select the smallest 
possible distortion threshold, t,, such that the average bit 
rate does not exceed R(d,). Evaluation of the threshold 
values t ,  according to (6), grows rapidly in complexity as 
S becomes large. While this computation is found to be 
quite manageable for the relatively short video sequences 
investigated in Section VI-D, the adaptive approach described 
in Section 111-B is probably more suitable for very long video 
sequences, whether they are prerecorded or not. Nevertheless, 
the above algorithm serves as a useful introduction to the less 
obvious algorithm described in Section 111-B. 

B. Generation of Distortion Tag Values 
for Interactive Applicalions 

In Section 111-A, we considered the determination of a single 
map, 7, from reference distortion values, V$, to distortion tag 
values, D$,, so as to satisfy the average bit rate requirement 
of ( 2 )  for each distortion target, 2) E { d l ,  dz, . . . . d p } .  The 
map, 7, necessarily depends upon the set of all reference 
distortion values, V,S, over all substreams and all frame slots 
in the video sequence. Such information is not available in 
interactive applications. Thus, it is necessary to consider an 
adaptive map, I", such that V$ = 7"(V$), b'$. s and I s  
is allowed to change from frame slot to frame slot. Because 
the map is not fixed ahead of time, we are able to guarantee 
that (2) is satisfied. On the other hand, because the map is not 
fixed, the time period, over which substream scaling according 
to (1) can be considered to hold V-distortion approximately 
constant, depends upon the rate at which 7" is allowed to 
change. These concepts shall be made more concrete as we 
describe our proposed approach to the adaptation of 7". 

Before discussing the adaptation of I", we observe that the 
average rate constraint of (2) offers no indication as to the time 
over which it may be enforced. The sequences considered in 
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Section 111-A have a known finite duration of S frame-slots, 
for which the averaging period is made explicit in (3). For 
interactive applications, however, the duration of the video se- 
quence is generally unknown. Moreover, even for prerecorded 
video material, it may be necessary to allow average bit rate 
properties to be verified, e.g., by network regulatory entities, 
within a shorter time frame than the duration of the entire video 
sequence. For these reasons, we impose a tighter requirement 
on the average bit rate interpretation of the distortion targets 
27 E { d l ,  da, . . . , d p } .  In particular, we require 

where B is a fixed parameter, whose interpretation will 
become apparent presently. By inspection of (7), B must have 
the dimension of time, measured in seconds. 

Dividing both sides of (7) by S and taking the limit as 
S i 00, it is clear that (7) implies (2). In order to appreciate 
the significance of (7), note that F / F R  is the duration of each 
frame slot in seconds. Thus, the left hand side of (7) is equal to 
the difference between the number of bits required by the first 
S frame slots of the scaled data stream, with distortion target 
d;,  and the number of bits which would be required if the data 
stream had a constant bit rate of R(d;). As such, (7) may be 
recognized as a leaky bucket condition [16]. In particular, (7) 
states that a leaky bucket, which is initially filled to half of a 
total capacity of 2R(d;)B bits, and which leaks at a constant 
rate of R(d;) b/s, should neither underflow nor overflow as it 
is filled with the constant distortion scaled data stream with 
distortion target, D = d;. We note that leaky bucket models 
have been proposed for average bit rate regulation in shared 
networking environments [16]. The R(&) term on the right 
hand side of (7) ensures that the bucket capacity is proportional 
to the average bit rate. The constant parameter, B, may thus be 
understood as an indication of the time frame, over which the 
average bit rate interpretation of any distortion target may be 
enforced, say by network policing entities. For example, a data 
stream, whose instantaneous bit rate continually exceeds its 
nominal average bit rate by 100% may be detected as violating 
the condition of (7) after B seconds. If it continually exceeds 
its average rate by only 50%, policing entities may identify 
it as a delinquent data source only after 2B seconds have 
elapsed. More generally, (7) states that the average bit rate, 
taken over the first T seconds, must be within BIT x 100% 
of the nominal average bit rate, R ( d ; ) .  

We are now in a position to discuss adaptation of the map, 
7”. In order to appreciate our proposed approach, it is helpful 
to understand the nature of this adaptation problem. Exactly 
as in Section 111-A, 7” is a quantization operator, which may 
be characterized by the p thresholds, ts > t$ > . . .  > tg, 
such that 

( 7 ” ) - y d i )  = (t,”+l, t,”], 2 = 0, 1, 2, ‘ .  ‘ , p .  

Thus, we are faced, in general, with the problem of jointly 
adapting these p thresholds, in order to satisfy the p constraints 

of (7).5 Moreover, in order to keep distortion as constant as 
possible, it is important that the map be adapted as slowly as 
possible without violating any of these p constraints. Thus, a 
truly optimal adaptation scheme would be expected to satisfy 
all p constraints tightly.6 Referring to Observation 1, we 
see that each sequence, $“ (d ; ) ,  s = 1, 2, . . ., depends only 
upon the corresponding sequence of threshold values, t l ,  s = 
1; 2 ,  . . .. Thus, each of the p constraints of (7) is independently 
controlled by one of the adaptive thresholds, tl. This suggests 
that an optimal adaptation scheme should independently adapt 
each threshold, t;, as slowly as possible without violating the 
corresponding constraint in (7), thereby ensuring that each 
of the constraints in (7) is tight. Although this reasoning 
may appear to significantly simplify the adaptation task, it 
is important to bear in mind that the p thresholds are in fact 
coupled by the p ~ 1 ordering constraints, ts > t; > . . . > ti. 
Only in this context does Observation 1 hold. As it turns 
out, the need to avoid misordering of the threshold values 
considerably complicates the map adaptation task, motivating 
the somewhat indirect approach proposed in the remainder of 
this section. 

It is convenient to represent the adaptive quantizing map, 
I“, indirectly as the composition of a fixed, continuous map, 
M ,  followed by an adaptive quantization operator, A”, i.e., 
7” = A” o M .  As we shall see, this approach allows us to 
describe a simple, stable scheme for independently adapting 
the quantization thresholds of A“, so as to avoid misordering 
difficulties, while the implications of this adaptive scheme 
for bit rate and distortion properties may be controlled by 
appropriate selection of the fixed part, M .  That is, the p - 1 
threshold ordering constraints are satisfied by appropriate 
adaptation of A“, whereas we arrange for the p leaky bucket 
constraints of (7) to be satisfied tightly by appropriate design 
of M .  

In our formulation, M is a strictly decreasing, continuous 
map; we write M(V$)  = a;, V$, s, where may be 
thought of as a measure of thejdelity associated with video 
reconstructed from the first + substreams in frame slot s. The 
adaptive part, A”, is then a quantization operator, mapping the 
continuous valued fidelity values, @$, onto the discrete set of 
distortion tag values, {do,  d l ,  . . . ,  d p } ,  i.e., D$ = A”(@.$). 
We choose M to be a decreasing map because the ensuing 
arguments are more intuitive when the intermediate variables 
@; may be interpreted as fidelity values; specifically, fidelity 
increases with substream number, $J. Strictly by way of exam- 
ple, the reference distortion values, V$, might represent MSE, 
whereas the fidelity values, @;, might represent peak signal- 
to-noise ratio (PSNR), in which case the strictly decreasing 
map, M ,  would be given by M(w) = 10 loglo (255’ /w).  
Because M is strictly decreasing and continuous, it must be 
invertible. Thus, the task of holding V-distortion constant is 
identical to that of holding fidelity constant. 

5There is one constraint for each of the p distortion targets, 2, = 

61f this were not so, then it should be possible to hold distortion more 
constant for one or more of the distortion targets by allowing greater variations 
in the short term average bit rate reflected by the left hand side of (7). 

d l , & , . ” , d p .  
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We divert our attention now to the adaptive quantization 
operator, A". A "  may be characterized by the p fidelity 
thresholds, us < a; < . . .  < U:, according to 

( A " ) - ' ( d ; )  = [a:, ai++,), i = 0, 1, "., p (8) 

where we have used U;  = -00 and ai+, = 00 for notational 
convenience. Notice that the fidelity thresholds, a;, are related 
to the distortion thresholds, t;, of the composite map, Is, 
according to ti = M (U:) .  The following observation demon- 
strates the usefulness of this characterization of A" in terms 
of the thresholds, U:. 

Observation 2: The number of substreams, @(&), retained 
during constant distortion scaling in frame slot s, with dis- 
tortion target D = d; ,  depends only upon the threshold, a;, 
according to 

$ " ( d i )  = min {$ I @$ 2 a:}, i = 1, 2,  .. . , p .  (9) 

The proof is essentially identical to that of Observation 1, 
found in the Appendix. 

Observation 2 is important because it indicates that the 
validity of the leaky bucket model of (7), for any distortion 
target, D = di ,  depends only upon the corresponding sequence 
of threshold values, a;, s = 1, 2,  . . ., i.e., it does not depend 
upon the other threshold values, a;, j # i. This means that 
our adaptation problem for the map A" may be considered 
as p independent adaptation- problems: for distortion target 
d; ,  we update the fidelity threshold, a;, from frame slot to 
frame slot, according to the value of $ " ( d ; ) ,  in such a way 
as to guarantee that (7) is satisfied. The proposed adaptation 
scheme itself is presented in Section 111-B-1. It is important 
to remember that these p adaptation tasks are coupled by the 
p - 1 ordering constraints, as < U ;  < . . . < U:. If any of these 
ordering constraints are violated at any point, then (9) becomes 
invalid. Section 111-B-2 takes up this issue, demonstrating 
that the adaptation scheme of Section 111-B- 1 preserves this 
ordering except under rare circumstances. In these rare cases, 
a slight perturbation in the reference distortion values V$ is 
sufficient to guarantee that the ordering of the fidelity threshold 
values is never violated. Moreover, the probability that such 
corrective distortion perturbations need be applied, as well as 
the magnitude of the perturbations, both decrease rapidly to 
zero, as the time constant, B, of (7), increases. 

1) Proposed Adaptation Scheme: Our proposed adaptation 
strategy is based on the observation that increasing the value of 
a! results in an increase in the average fidelity corresponding 
to distortion tag d; ,  which tends to increase the average bit 
rate associated with the distortion target, d;. Thus, whenever 
the instantaneous bit rate associated with a distortion target di 
is found to be lower than R ( d i ) ,  we set a:+' to be a little 
larger than at; whenever it is found to be larger than R ( d i ) ,  
we set U:+' to be a little smaller than ai.  To be precise, we 
simply update each of the parameters ai according to 

i s ( d i )  

.;"=a:- [ 2 R * - 4  Z=1,2; . . ,p .  (10) 

In this case, the amount by which the ith fidelity threshold 
changes between frame slots s and s + 1 is exactly equal to 

the difference between the average and instantaneous bit rates 
associated with distortion target d, in frame slot s. We point 
out that the relative impact of this change on the threshold 
value may be made as small as desired by appropriate choice 
of the map, M .  This is because the definition of fidelity is 
controlled by M .  Scaling M causes all fidelity values to be 
correspondingly scaled. Thus, the rate at which the composite 
map 7" adapts in response to (10) depends upon the choice 
of M .  Our next task is to show how M should be selected 
in order to satisfy each of the p leaky bucket constraints in 
(7) tightly. 

Suppose the fidelity values @$ associated with each sub- 
stream, $I, are bounded according to @Tin < @$ < @;"", 'd s. 
We show now that these bounds play a key role in determining 
whether or not (7) is satisfied. Moreover, because and 

to satisfy (7) by appropriate choice of M .  We begin with the 
following observation. 

Observation 3: The fidelity threshold value, a:, adapted 
according to (10) is bounded according to a?ln 5 a,S 5 a y x ,  
where ayin and a y x  satisfy 

@ max depend upon the map M ,  we shall ultimately be able 

r w 1  

with 

and 

with 

provided the initial value, a:, is selected to be anywhere 
within these bounds. In (11) and (12), the constants &' 
and $J: represent the number of substreams corresponding 
to the maximum instantaneous bit rate not exceeding R ( d , )  
and the minimum instantaneous bit rate not less than R(d,), 
respectively. The superscripts, b and a, are intended to suggest 
the adjectives below and above, respectively. The proof of this 
observation may be found in the Appendix. 

In view of (lo), the terms [ R ( d , )  - R I ]  and [E,"=, Re - 
R ( d , ) ]  in (12) and (11) represent, respectively, the maximum 
possible increase and decrease of the threshold, a:, between 
two consecutive frame slots. The magnitude of these terms 
should, in practice, be very much smaller than the a; values 
themselves, because constant distortion scaling is only effec- 
tive if the map, A", used to generate the distortion tag values, 
changes slowly from frame slot to frame slot. As a result, the 
bounds, a?" and aFn, should usually differ only negligibly 
from the values of @;r and @Tin, respectively. 

Observation 3 allows us to transform (7) into a requirement 
on the bounds @Tax and @T"', using the adaptation scheme 
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of (lo), as follows: 

1 :  S 
= M d i )  + U," - U;+'] - SR(di)  

s=l 

= l\o,;+l - U;l\ 
* 

5 u y X  - < (QTr - a;:.) + R,, 
(=2 

'ds, l < a l p .  (13) 

Note that, in accordance with the discussion above, we expect 
the right hand side of (13) to be dominated by the term 
(Q$T - (amin) in practical applications. Equation (13) in- 

4% 
dicates that the p leaky bucket constraints of (7) are satisfied 
if and only if 

i = I, 2 ,  ' " ,  p .  (14) 

Thus, each of the leaky bucket constraints is satisfied tightly, 
if and only if equality holds in (14). Again, for practical 
applications, we note that B should usually be sufficiently 
large that the term E;"=, RE on the right hand side of (14) 
is insignificant. 

Equation (14) suggests that the leaky bucket constraints of 
(7) might be satisfied by appropriate design of the strictly 
decreasing function M ,  which maps reference distortion val- 
ues into fidelity values. The idea is to first obtain bounds, 
v,"' and V y ,  for the V distortion associated with the 
first t,b substreams of the layered hierarchy. In interactive 
applications it is not usually possible to predict the exact 
range of reference distortion values that may arise; however, 
experience may be used to identify and then enforce appro- 
priate bounds. For example, we might measure the V$ values 
over some representative collection of video sequences and 
then select VTin and ,Tax such that V$ 2 V7in for 99% 
of all frame slots s, and V$ 5 VGmax for 99% of all frame 
slots. Having selected VGmln and VGmax, using this or some 
other method, we simply hard-limit the V$ values determined 
during compression so as to guarantee that V;ln 5 V,S 5 
V r  without exception. Thus, the reference distortion values 
must occasionally be artificially constrained to lie within the 
selected bounds; however, if the training video sequences 
used to determine V+mln and V T  are truly representative, 
this hard-limiting need not significantly interfere with the 
video sequence distortion associated with constant distortion 
scaling. Having fixed these reference distortion bounds, we 
have simply to choose a continuous, strictly decreasing map, 
M ,  such that 

Fig. 2. 
values, V z  , to fidelity values, @;, . 

Piecewise linear, decreasing map, M ,  from reference distortion 

Recalling that we would like to satisfy all p leaky bucket 
constraints tightly, so as to avoid overly constraining the 
instantaneous bit rate associated with any distortion target, 
our objective is to select M such that equality holds in 
(15). Intuitively, there should be enough degrees of freedom 
to make such a selection, provided the indices $4 are all 
distinct, i.e., i # j j $4 # $7. The specific choices 
described in Section VI-A certainly have this property. In 
order to make these concepts concrete, we now describe a 
simple, piecewise linear map, M ,  to guarantee equality in 
each of the p constraints of (15). 

Consider a piecewise linear map M ,  mapping inter- 
vals [.;: wi-11  linearly onto the intervals [&I, 4i], i = 
1: 2, . . . , p ,  as shown in Fig. 2 for p = 3.  The constants 
v; and 4; may be obtained using the following constructive 
algorithm. Fig. 2 provides a useful framework in which to 
appreciate the operation of this simple algorithm. 

Set vo = VGax and $,, = 0. That is, M(VYax) = 0. 
+I 

For each i = 1, 2 ,  . ' . ,  p 

- Evaluate amin = M ( V r )  from that part of 
the piecewise linear map constructed so far. Then 
set U; = Vmin and & = .M(Vmax +; ) + Ai, *: 
where A; [B ( F R I T ) ]  R(&) - E,"=, Re. This 
guarantees that equality holds in (15) for distortion 
target d i .  

*P 

Notice that the above algorithm relies upon the fact that the 
indices $14 are distinct, so that the critical points, vi, can also 
be distinct. 

We may now interpret the parameter B in terms of the 
rate at which the thresholds at are allowed to ~ h a n g e . ~  In 
particular, suppose the instantaneous bit rate I/J'(&), associated 
with distortion target D = d;,  exceeds the nominal average bit 
rate, R ( d i ) ,  by 100% in some frame slot s .  Then a: decreases 
by an amount R(d;) between frame slots s and s + 1. On the 

7Recall that B can also be interpreted as the number of seconds required 
to detect the fact that a data stream, whose instantaneous bit rate continually 
exceeds the nominal average rate by loo%, is in violation of the leaky bucket 
criterion of (7). 
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other hand, from ( l l ) ,  (12), and (15), the maximum range of 

so, in the interval from frame slot 
changes by approximately ( F / F R )  (1/B)  times its maximum 
range; this frame slot interval has a duration of F/FR seconds. 
More generally, if the instantaneous bit rate associated with 
distortion target = di exceeds ~ ( d ~ )  by 100% for T 
seconds, the &ange in a; is T / B  times its 
maximum range. this way, B may be interpreted as an 
adaptation time constant. Large values of B allow the map A", 
and hence to adapt slowly, so that the V-distortion 
of reconstructed video is held approximately constant Over a 
longer period of time. on the other hand, large values of B 
imply that policing agents will require time to detect 

Clearly, these conditions are highly unlikely to occur si- 

the likelihood of finding any fidelity value @$ in the interval 
Ea:,  .?+I) approaches zero. if no value @$ 

is found in La: ,  a:+i) during frame dot s y  then (@+I - 

increases by the amount [R(di+l) -R(di)l> in accordance with 
(16), so that threshold misordering becomes even less likely in 
future frame slots. Thus, when the adaptation time constant B 
iS large, so that the relative change in fidelity threshold values 
from frame Slot to fm" Slot is Very small, many increasingly 
unlikely events must occur in succession in order to gradually 
bring a pair Of sufficiently close to allow 
misordering to occur. In fact, in Section VI we demonstrate 
experimentally that the likelihood of order violations decreases 

2) Threshold Ordering and Other Considerations: in a practical application. Nevertheless, the adaptive strategy 
described so far does admit the possibility of order violations. 
To avoid this possibility altogether, the adaptive algorithm 

a: values is z < (@$~-@$n+C~=z R ~ )  = B R ( ~ ; )  (F~/.T). multaneously. In fact, in the limit as a: approaches at+,, 

to frame slot + 1, 

delinquent data Sources in a shared networking environment. so as increases that they may never be observed 

Section III-B..~, we proposed an algorithm for adaptively 
updating the map A" in each frme slot and selecting an 
appropriate fixed map, M ,  so as to satisfy (7). In developing 
this algorithm, we assumed that the adaptation strategy of 
(10) preserves the order a;: < a; < . . . < a; of the fidelity 
threshold values. This assumption is critical to the arguments 
above, because the fidelity threshold bounds of Observation 3 
depend upon the validity of (9) which, in turn, depends upon 
the fact that U; < a; < . . . < a;. The purpose of this section 
is to exmine the validity of this assumption and show how 
it may be enforced. 

We may assume that the initial threshold values are selected 
such that a: < a i  < . . . < ai. It is sufficient, therefore, to 
ensure that (a;;; - .$+I) > 0 whenever (a;+l - > 0 for 
i = 1, 2, . . . , p p  1. T~ this end, suppose that (a;+l > 0, 
for 1 5 < in frame slot s, and observe from (10) that 

may detect an 
the reference distortion 

and then modify 
so as to prevent the Order 

violation. To be precise, in some frame slot s, suppose that 
Of (lo) is 

about to Produce an order violation, (a::: - a:+') 5 0, for 
Some Z. The violation may be avoided by artificially modifying 
those fidelity values @$ which lie in the interval [a:, a:+,), 
moving them outside the interval. Naturally, this artificial 
modification of the fidelity values, which is equivalent to an ar- 
tifiCia1 modification Of the Original reference distortion values, 
interferes with the distortion properties of constant distortion 
scaling. The modification, however, need only be very slight 
because an impending order violation requires [a:, a:++,) to 
be a relatively small interval. Moreover, according to (15), the 
map M ,  from reference distortion values to fidelity values, is 
effectively scaled by the time constant, B. This means that 
the amount by which any reference distortion value must be 
changed in order to move the corresponding fidelity value 
outside the interval [ai ,  decreases in inverse proportion 
to the size of B. 

is 
moved immediately below" a; then $,"(d;) is incremented 
by one and (10) assigns U$+' a slightly smaller value than it 
otherwise would have; according to (9), however, the values 
Of '$'(d.i)> j f i ,  are unaffected by this modification. On 
the other hand, if the largest fidelity value in the interval 
[";I a:+;l) is increased to "?+I> then '@(di+l) is decremented 
by one and (10) assigns a::: a slightly larger value than 
it otherwise would have. Again, because > ai+.+,, this 
modification f 1. 
In this way, by slightly modifying the fidelity values @$ E 
[U;, ai+l), we are able to independently increment @(di )  
and/or decrement + ~ ( d ~ + ~ ) ,  causing - + s ( d i ) l  to 
decrease and (a;$: 
may be avoided. Because this approach gives such precise 
control Over the values of +s(d i )  and + ~ ( d ~ + ~ ) ,  it is possible 
to show that a choice exists' which does 

- " 3 )  > o, v j 3  but the adaptation 

(U:;; - U:+') = (a;+l - U;) + [R(di+l)  - R ( d ; ) ]  
v (di+l)  

E = $ " ( &  )+I 

Moreover, because (9) holds during frame slot s, the event 
'@(di) < @'(di+i)  can Occur only if a: 5 @$s(dt) < @+I.' 
Thus, the term C@(d%+l) R, in (16) is zero unless a; 5 
@$ < a;+l for some substream 4. Noting that [ R ( & + ~ )  - 
R(d;)] > 0 and (a:++l - a:) > 0, (16) indicates that the event, 
(a;:; - 5 0 cannot occur unless (a;+l - a:) is very 
small already' and at least one substream, $, has its fidelity 
value, @$ E [a;,  a:+l).lo 

(16) - RE. 

If the smallest fidelity value in the interval [a:, 

5=P(d,)++, 

'To see this, observe that @ + s ( d , )  2 a:, from (9). But, if we also 
have @+s(dt )  2 a:+,, then (9) yields @ ( & + I )  = t,bS(&), contradicting 
lii '(4) < V(dt+i) .  

9By small, we mean in relation to the overall range of fidelity values. 
Assuming that adaptation is slow, which it must be if distortion is to be held 
constant over a reasonable period of time, the relative change in any fidelity 
threshold value between frame slots must also be slow, which means that 

- a:) must be very small if these thresholds are to cross in the next 
frame slot, s + 1. 

"Of course, these conditions are necessary, but not sufficient. In fact, 
we may require several substreams, d ~ ,  to have fidelity values in the narrow 
interval, [a:, a:+,), in order for ~ ~ ~ ~ ~ ~ ~ + 1  toexceed (a:++, -a:)+ 
[ R ( d , + l )  - R ( d , ) ] .  

not dfect the Of @"(d.i), j # 

to increase, so that Order 

"By this we mean that E [a;, a:++,) is reduced just sufficiently to 
guarantee that a:pl < @$ < U:  and @$ > 
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not violate the bounds in Observation 3 and therefore does 
not disturb any of the properties of our adaptation scheme 
discussed hitherto [26]. 

So far, we have had to resort to artificial modification of 
the reference distortion values I$ on two separate occasions, 
in order to guarantee that the leaky bucket criterion of (7) is 
satisfied: first to enforce the bounds ,'$'In 5 V$ 5 VTax; 
and second to guarantee the fidelity threshold ordenng as < 
a; < . . . < a;. In many applications, it may also be desirable 
to offer hard guarantees on the maximum and/or minimum 
bit rates associated with some distortion target, D = di, i.e., 
Gmin(di) 5 $ " ( d i )  5 gmax(di), Vs. Such guarantees may 
be accommodated using the same approach. For example, we 
might use a collection of representative video sequences to 
identify values Gmln(d;) and $max(d;), such that we expect 
to find $"'"(cl;) 5 $" (d ; )  5 gmax(d;) with a high degree 
of confidence. Due to the unpredictable nature of interactive 
video material, however, it is possible that these bounds might 
occasionally be violated. To avoid the possibility of such 
violations, we want to make sure that $ " ( d i )  = $min(d;) or 
yY(d i )  = $"""(d,), as appropriate, in any frame slot s ,  where 
such a violation would otherwise occur. This hard-limiting 
of the $ " ( d i )  values may be accomplished by appropriately 
modifying the distortion tag values D;, which, in tum, is 
equivalent to appropriately modifying the reference distortion 
values, V;, prior to applying the algorithm presented above. It 
is not difficult to see that such a modification need not disturb 
the fidelity threshold bounds of Observation 3, so that the leaky 
bucket criterion of (7) is still satisfied. 

3) Summary of Proposed Distortion Tagging Algorithm: In 
summary, we have described an algorithm for adapting the 
map 7" from reference distortion values, V$, to distortion tag 
values, D$, such that 7" depends only upon the past, i.e., 
the values I(,,-', VG-', . . .. In order to guarantee the leaky 
bucket criterion of (7) and possibly other hard constraints 
on the instantaneous bit rate, we must occasionally make 
artificial modifications to the actual reference distortion values, 
V;. Because these modifications occur rarely and involve 
only small changes, we do not expect them to significantly 
impact the distortion properties of constant distortion scaling. 
Moreover, the V-distortion measure itself can, at best, be 
thought of as an approximate measure of actual subjective 
distortion. Of greater concern is the fact that the need to adapt 
7" means that there is a limited time frame, over which we 
may consider the distortion to be held approximately constant. 
This time frame is determined by the parameter, B. Larger 
values for B allow the distortion to be held approximately 
constant over longer periods of time, but lead to slower 
response times in policing the leaky bucket model of average 
bit rate. 

It is helpful at this point to summarize the elements of 
our proposed adaptation scheme. The first step is for all 
elements of the compression, storage, and distribution path 
associated with the compressed video to agree on a set of 
fixed parameters. These include the set of valid distortion 
targets, { d l ,  da, . . .  , d p } ,  the standard average rate function, 
R(.), the leaky bucket time constant, B,  and possibly also a 
set of rate bounds, ,@'in and $)Zmax, i = 1, 2, 

parameters establish the context within which scaling and 
regulating entities should interpret the distortion tag values 
embedded in the layered substream hierarchy. In Section VI- 
A we describe the specific parameter choices adopted for our 
experimental investigations. In addition to these commonly 
agreed parameters, the adaptation algorithm must also place 
upper and lower bounds, ,Tax and VTin, on the reference 
distortion values. Because these bounds must be known ahead 
of time, they should probably be obtained from the statistics 
of some collection of representative video sequences. During 
the distortion tagging process itself, these bounds are strictly 
enforced by hard-limiting the actual reference distortion values 
if necessary. The fixed map, M ,  may then be designed 
to satisfy (15) using the simple piecewise linear approach 
described above, or any other suitable method. The distor- 
tion tagging operation proceeds by first mapping reference 
distortion values V$ to fidelity values @; through M ,  and 
then mapping the fidelity values @$ to distortion tags D$ 
through A", which is updated after each frame slot, according 
to (10). As discussed above, the Edelity values, or equivalently, 
the reference distortion values, may occasionally need to 
be modified slightly in order to prevent misordering of the 
thresholds, as < a$ < . . .  < a i ,  of A". However, both 
the frequency and the magnitude of such modifications both 
decrease rapidly as the time constant B becomes large. 

IV. HIGHLY SCALABLE COMPRESSION 
The purpose of this section is to discuss video compression 

algorithms, which are able to generate highly scalable com- 
pressed data streams, conformable to the layered substream 
abstraction introduced in Section 11. In Section I, we referred 
to a number of existing scalable compression schemes. Since 
predictive coding techniques such as the popular motion 
compensation approach adopted by the H.261, MPEG- I ,  and 
MPEG-2 standards, are not well-suited to highly scalable com- 
pression, we must resort to some form of 3-D transform as a 
means of exploiting both spatial and temporal redundancy. It is 
important to realize, however, that a multiresolution transform 
does not in itself guarantee that the compression scheme 
will be highly scalable. Although simply discarding various 
resolution components from a multiresolution decomposition 
provides a mechanism for scaling the resolution and compu- 
tational demands associated with video decompression, it is 
inadequate for many applications, particularly those requiring 
bit rate scalability. There are two reasons for this. First, such an 
approach offers only very coarse control over the bit rate [19]. 
More importantly, however, quantization noise in the lower 
resolution components of a multiresolution decomposition is 
much more noticeable when these components are to be used 
in reconstructing the video sequence at high resolution than it 
is when only a low resolution picture is to be reconstructed. 
As a consequence of this phenomenon, any compression 
scheme which employs a multiresolution transform but offers 
only a single level of quantization for each multiresolution 
component generally operates at an unsuitable rate-distortion 
point for all but at most one of the available decompression 
resolutions [ 131. In conclusion, we should expect a successful 
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highly scalable video compression scheme to involve a 3-D 
multiresolution transform as well as a layered quantization 
and coding scheme to provide multiple levels of quantization 
for each resolution component. We refer to this latter task as 
progressive quantization and coding because it permits pro- 
gressive refinement of the accuracy to which each resolution 
component is recovered as the number of available quantiza- 
tion layers increases. Suitable multiresolution transforms are 
discussed in Section IV-A, while progressive quantization and 
coding approaches are considered in Section IV-B. 

A. Multiresolution Transforms 

The multiresolution transforms considered in this paper 
are obtained by separable application of one-dimensional 
(1 -D) filtering and subsampling operations along the temporal 
and spatial dimensions. Fig. 3 provides an example of an 
L = 3 level 1-D multiresolution transform. In the figure, 
FI and F 2  represent low and high pass analysis filters, 
respectively, while GI  and G2 represent low and high pass 
synthesis filters. The operator, 12  , denotes subsampling by a 
factor of two, i.e., discarding every second sample, while the 
operator, m, denotes up-sampling by a factor of two, i.e., 
inserting a zero valued sample between every pair of input 
samples. Together, the filtering and subsampling operators of 
the analysis system depicted in Fig. 3 decompose the input 
signal z into a collection of so-called subbands, denoted H I ,  
H2, H3, and L3 with the same number of samples as the 
original input signal. If the reconstructed signal, 5, is identical 
to the input signal z, up to a translational offset, the combined 
analysis and synthesis filter banks are said to constitute a 
perfect reconstruction (PR) subband system. Although PR is 
a desirable property, near-perfect reconstruction (NPR), for 
which subband synthesis is only approximately the inverse 
of subband analysis, is often sufficient in practice. The actual 
design of suitable analysis and synthesis filters is not discussed 
here; however [27] provides a useful reference in this area. 

We refer to the decomposition of Fig. 3 as a multiresolution 
transform because reconstruction of the signal from a partial 
collection of subbands is analogous to the conventional con- 
cept of resolution scaling. For example, if the filters, F1, F2, 
GI, and G2 are selected so as to ensure the PR property, then 
discarding the H I  subband and applying only the first two 
levels of the synthesis filter bank yields the signal, 51 = zl; 
the same signal is obtained directly from z by lowpass filtering 
and subsampling, which are precisely the operations required 
for resolution reduction. In the same way, successively lower 

0 

resolution signals, 51 = XI, 52 = z 2 ,  and 2s = z3, 
may all be recovered by discarding a sufficient number of 
high frequency subbands and partially applying the complete 
synthesis filter bank. In general, each level of decomposition 
provides one new potential reconstruction resolution. In diadic 
decompositions, i.e., those in which each level divides the 
signal into only two subbands, each successive resolution 
is related to the previous one by a factor of two. Multiple 
band decompositions are also possible at each level, in which 
case the available resolutions are more widely separated. The 
popular length 8 DCT (discrete cosine transform), for example, 
may be understood as a subband system which divides the 
signal into eight subbands in only one level. In the sense 
described above, this DCT permits reconstruction at only one 
lower resolution with of the full resolution, which is obtained 
by discarding all but the DC coefficients of the DCT. The most 
natural extension of the 1-D transform shown in Fig. 3 to two 
spatial dimensions is illustrated in Fig. 4. Only the analysis 
system is actually shown, together with the spectral regions 
occupied by the various two-dimensional (2-D) subbands in 
this two level decomposition. In this case, the image is divided 
into four subbands in each level by separable application of 
1-D low and high pass filters and subsampling operators. 
Again, each level in the decomposition contributes one new 
potential reconstruction resolution. Such multiresolution image 
decompositions were initially proposed by Mallat [ 121. 

A full 3-D multiresolution video transform may be obtained 
by employing the 1-D transformation of Fig. 3 to temporally 
decompose each spatial subband of Fig. 4. Equivalently, a 
video sequence may first be subjected to a 1-D temporal 
transform, after which each temporal subband is spatially 
decomposed. Ohm [15], Singh et al. [19], and Taubman and 
Zakhor [24] have all proposed such separable 3-D multiresolu- 
tion transforms for scalable video compression. These authors 
all propose application of one or more levels of the so-called 
Haar wavelet transform for the temporal dimension. This PR 
transform is obtained by employing the simplest possible 
analysis and synthesis filters, Fl ,  F2, GI, and G2, in Fig. 3, 
with two tap impulse responses 
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Fig. 4. Two-level, 2-D, separable multiresolution transform 

It is not difficult to see that an L-level temporal Haar wavelet 
transform may be implemented by independently transforming 
successive blocks of 2 L  video frames each. Consequently, we 
refer to this transform as block-based. As already mentioned 
in Section 11, this property is useful in minimizing delay and 
memory demands associated with the transform. In fact, it is 
not difficult to show [26] that only L -t 1 frame buffers are 
required to implement a separable 3-D multiresolution trans- 
form in which the temporal decomposition is accomplished 
using an L-level Haar wavelet transform. In addition to these 
memory and delay considerations, there does not appear to be 
any compression advantage to using more complex analysis 
and synthesis filters in the temporal dimension [15], [24]. 

The compression gain associated with multiresolution trans- 
forms such as those discussed above arises principally from 
the fact that most of the signal information is concentrated 
in relatively few resolution components,'* or subbands, a 
phenomenon known as energy compaction. The compression 
gain associated with temporal subband decomposition depends 
upon temporal smoothness of the video sequence to concen- 
trate the video information in the lowpass temporal bands. 
Unfortunately, however, spatial subband transformation is not 
a shift invariant operation, so that even small amounts of mo- 
tion in the original video sequence can result in very significant 
differences between subband coefficients, which have the same 
spatial coordinates in successive video frames. Consequently, 
the separable application of a temporal transformation to 
these spatial subbands offers little if any compression gain 
except in regions where the video sequence may be considered 
temporally stationary. To overcome this difficulty, we propose 
invertibly predistorting the video sequence in such a way as 
to increase temporal correlation without degrading the quality 
of the final reconstructed video. 

Fig. 5 illustrates this concept in the specific case of a pan 
compensating pre-distortion. The figure portrays four frames 
of a hypothetical video sequence, containing no actual scene 
motion, in which the camera pans to the right at a constant 
rate of one pixel per frame. For clarity, only one spatial 
dimension is represented. In this case, where the camera 
pans by an integral number of pixels per frame, camera pan 

"Differing sensitivities of the human visual sensitivities to the various 
resolution components can also be exploited in compression. 

compensation consists only in relabeling the pixel indices in 
each of the frames. In particular, after relabeling, the pixel 
indices associated with frame 0 run from 0-12, those of frame 
1 run from 1-13, and so on. After this relabeling, pixels with 
the same spatial index in successive video frames are highly 
correlated and are thus readily compressed within the context 
of the separable 3-D multiresolution transform. On the other 
hand, because the 3-D support of the video sequence is no 
longer rectilinear after relabeling, special care must be taken 
to preserve the PR property of the multiresolution transform 
at the boundaries of this region of support. These issues are 
discussed more thoroughly in [24]. In practical applications, 
the success of camera pan compensation turns out to be 
highly dependent on our ability to achieve subpixel accuracy. 
Fortunately, a video sequence in which the camera pans by 
a nonintegral number of pixels per frame may be converted 
into one in which the camera pans by an integral number of 
pixels per frame by first shifting each frame by at most It; 
pixel in each of the horizontal and vertical directions. For 
subpixel accuracy, then, camera pan compensation requires 
interpolative shifting by at most half a pixel in each direction, 
together with pixel index relabeling. Moreover, it should be 
possible to invert this interpolative shift during decompression, 
as suggested by the Inverse Pan Compensation block of Fig. 5.  
A suitable approach to invertible interpolative shifting has 
been developed in [23]; this same approach is adopted for 
all our experimental work. 

The pan compensation technique described above is illus- 
trative of a potentially broad class of motion compensated 
multiresolution transforms, in which the complete transform 
is considered as the composition of an invertible predistortion 
and a separable transform. Ohm [ l S ]  has proposed a highly 
successful motion-compensated 3-D subband transform, which 
may be understood as applying the global pan compensa- 
tion strategy above to local image blocks rather than the 
entire frame. There are many other ways, however, in which 
to generalize the concept. Firstly, small rotations may be 
accurately approximated by horizontal and vertical skewing 
of the individual frames. Reference [23] proposes invertible 
predistortion techniques to compensate for horizontal and 
vertical skews in image compression applications; however, 
the same approach may be applied to compensate for small 
rotations between successive frames for video compression. In 
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Illustration of a pan compensated, 3-D multiresolution transform. formed by combining invertible pan compensating predistortion with a separable 

this way, both translation and rotation may be compensated, 
either globally or on a block-by-block basis a la Ohm. One 
could also conceive of employing more general image warping 
techniques, such as the triangular mesh method described in 
[ 141, for example, to compensate for more arbitrary “smooth” 
motion fields between successive frames.13 Although we are 
not concerned with developing such ideas here, the important 
point to observe is that it is possible to compensate for various 
types of motion within the context of a 3-D multiresolution 
transform, without resorting to nonscalable predictive coding 
techniques such as motion compensated prediction. 

B. Progressive Quantization and Coding 

While multiresolution transforms are clearly useful for 
achieving resolution-scalability, our key concern in this paper 
is with rate-scalability, as explained in Section 11. As already 
mentioned, highly scalable compression requires not only a 
suitable multiresolution transform, but also an efficient layered 
quantization and coding scheme for each resolution component 
or subband. Rather than being forced to select between either 
discarding or retaining each resolution component during 
scaling, a layered quantization and coding scheme offers 
several different operating points on the rate-distortion curve 
for each resolution component or subband. The purpose of 
this section is to briefly discuss layered quantization and 
coding approaches. Section V then deals with the problem of 

I3T0 accommodate expansions and contractions we may need to aban- 
don the requirement of exact invertibility or else permit some sample rate 
expansion; however, these might not necessarily be serious drawbacks. 

organizing the various quantization layers of each subband 
into fixed rate substreams with the properties required by our 
layered substream abstraction, as outlined in Section 11. 

In general, we have a set of N successively finer quan- 
tizers, Q!,  . . . ,  QL,, for each subband, b, with associated 
quantization layers, L:, . . . , Lh. Quantizer Qi operates on 
the samples in subband b to produce a sequence of quanti- 
zation symbols, s&[k] .  The symbols $ [ I C ] ,  corresponding to 
the coarsest quantizer, are coded into layer L!, while the 
additional information required to recover the symbols s& [ I C ] ,  
given that the symbol sequences s! [ I C ] ,  si [ I C ] ,  . . . , sk-l [ I C ]  are 
already available, is coded into layer Ck. In this way, the 
first n quantization layers for subband b are sufficient to 
reconstruct the subband samples to precision Q:. Thus, the 
precision to which the subband sample values are recovered 
is successively refined as the number of available quantization 
layers increases. Each quantizer Qi is characterized by its 
set of Voronoi regions, VA. As a first observation, we may 
assume, without any loss of generality, that the quantizers are 
embedded. That is, each Voronoi region, ‘U E VA, is a subset 
of one of the Voronoi regions, U’ E VA-l. To understand 
why this assumption causes no loss of generality, suppose 
that Q!, . - . , Qh are arbitrary quantizers. Then the first n 
quantization layers in subband b together identify the region 
v E nVi,  to which the subband samples belong, where we 
define nVi 5 {vl n v2 n . . . n w, I w, E V,”}, the set of 
all regions formed by taking intersections of the Voronoi 
regions associated with the first n quantizers. Moreover, the 
quantization layer L& may be understood as conveying the 
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additional information required to specify the particular region 
in nv; to which the subband samples belong, given that we 
already know the outcome of the first n- 1 quantization stages. 
Thus, we could replace quantizer QL with a new quantizer, 
say Q:, whose Voronoi regions are those in nVA, without 
changing either the distortion achievable by decoding the first 
ri quantization layers or the additional information which must 
be specified by quantization layer C:.I4 So, from an informa- 
tion theoretic point of view, it makes no difference whether 
we consider an arbitrary set of quantizers, e!, Q;, . . . , e",, 
or the set of embedded quantizers, e!,, Qkb, . . . , Qg, derived 
by taking the Voronoi regions for quantizer (2: to be those 
in nVL, for each n. 

The principle question with which we are concerned for 
progressive quantization and coding schemes is thus how a 
collection of embedded quantizers, e",, . . . , should be 
selected and their outputs coded so as to yield an efficient 
compression scheme. For the specific case of an independent 
identically distributed (IID) Gaussian source with the mean 
squared distortion measure or an IID Laplacian source with the 
absolute error distortion measure, Equitz and Cover [7] have 
shown that it is possible to find embedded vector quantizers 
to satisfy any arbitrary set of distortion or rate constraints, 
such that each quantizer approaches optimal rate-distortion 
performance as its vector length approaches infinity. Such the- 
oretical results are encouraging and provide some motivation 
for the tree structured vector quantization (TSVQ) schemes 
proposed by Ohm [15] and Singh et al. [19] for scalable video 
compression. Unfortunately, however, statistical independence 
is usually a very poor model for subband sample values; 
moreover, practical vector lengths for vector quantizers are 
usually very limited. For these reasons, both Singh et al. and 
Ohm observe gradual degradation in compression performance 
as the number of layers in their embedded quantization and 
coding schemes is increased. 

An alternative approach to TSVQ is to combine embedded 
scalar quantization with conditional entropy coding to exploit 
the mutual statistical information associated with the resulting 
scalar quantization symbols. In fact, an analysis by Gao et 
al. [9] suggests that scalar quantizers are particularly well 
suited to coding subband sample values. Fig. 6 illustrates the 
Voronoi regions, or quantization intervals, associated with 
a particularly useful set of embedded scalar quantizers for 
high frequency subband samples, which tend to be clustered 
about their mean value of zero. Each of these so-called 
dead zone quantizers, Qk, is characterized by a step size, 
6:, and a dead zone of size U:, which is centered about 
zero. It is not difficult to see that a set of embedded dead 
zone quantizers must satisfy 6: = 6kpl/KA, and vi = 
U:-, - 2KA'S,, where K; > 0, and ITA' 2 0 are integers. In 
the example of Fig. 6, K; = 2, and KL' = 1. This selection 
is particularly attractive from an implementation perspective, 
because the entire set of quantizers may be realized simply by 
discarding least significant bits in an appropriately scaled, sign- 
magnitude representation of the subband samples. Moreover, 

I4This is because this new quantizer does not alter the set of all regions 
formed by taking intersections of the Voronoi regions associated with the first 
n quantizers. 

Fig. 6. Two layers of embedded scalar dead zone quantization. 

the analysis in [22] suggests that these scalar quantizers should 
be approximately optimal in the rate-distortion sense, provided 
the subband samples conform to a Laplacian distribution; in 
fact, high frequency subband samples often do exhibit an 
approximately Laplacian distribution [29]. 

In order for layered coding with embedded scalar quantizers 
to be efficient, it is necessary to carefully exploit statistical 
dependencies both between the quantization symbols produced 
by any given subband sample in successive quantization 
layers and also between the quantization symbols produced 
by different subband samples. Conditional arithmetic coding 
provides a powerful tool for exploiting these dependencies. 
In this case, each symbol, si[IC] produced by quantizer Qk 
is coded with respect to a conditioning context, & [ I C ] ,  which 
depends only on those symbols which we can be certain the 
decoder has already received. In a practical implementation, 
~ , k [ k ]  forms an index into a table of conditional statistical 
distributions for &[/GI, which are obtained either by training 
the coder on a suitable ensemble of source video material in 
advance or by adapting the conditional distributions on the fly, 
based on previous occurrences of the various context values. 
The value of s k [ k ]  is then arithmetically coded [21] using 
the conditional distribution indicated by ni[k]. The success of 
such a scheme depends upon careful design of the conditioning 
contexts, & : [ I C ] ,  so as to capture as much information as 
possible concerning the statistical dependencies between sg [ I C ] ,  
and previously coded quantization symbols, while keeping 
the set of potential context values and hence the size of the 
statistical tables within manageable bounds. 

In [24], we propose an efficient layered coding system for 3- 
D multiresolution transforms. In this scheme, the conditioning 
context, 4[IC], is based on: 1) the quantization symbol for 
the same subband sample in the previous quantization layer, 
i.e., [IC]; 2) the quantization symbols for spatially adjacent 
samples from the same subband in the same and previous 
quantization layers, which have already been coded; and 3) 
quantization symbols for spatially and temporally coincident 
samples in different subbands. The contexts are formed using 
only bitwise logical operations, with each context variable 
&:[IC] taking on at most 268 different values. The layered 
coding scheme is shown to offer excellent rate-distortion 
performance with a relatively large number of layers, N M 8, 
for each subband. Moreover, if quantization symbols from 
other subbands-item 3) above-are ignored during context 
formation, the number of potential states for each context 
variable is reduced to 67, with less than 6% increase in the 
overall bit rate for a given level of distortion [26]. An extension 
to this layered coding scheme is proposed in [25], in which 
interlayer and spatial neighbor conditioning-items 1) and 2) 
above-are supplemented by temporal conditioning. Tempo- 
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ral conditioning is accomplished by including quantization 
symbols from spatially coincident and neighboring samples in 
the previous frame of subband b in the expression for 4[Ic]. 
We refer to this extension as interframe coding, because it 
enables temporal statistical dependencies to be exploited dur- 
ing coding. In fact, if the motion compensating predistortion 
operator discussed in Section IV-A is effective, then we can 
expect significant levels of temporal redundancy. Interframe 
coding is particularly useful for delay sensitive applications, 
where delay constraints often prohibit the use of more than 
one or two levels of temporal subband decomposition in 
the multiresolution transform [25]; efficient compression then 
depends partially on our ability to exploit temporal redundancy 
during conditional arithmetic coding. l5 The obvious drawback 
of interframe coding is that it imposes requirements on the 
number of quantization layers available at the decoder in 
the previous frame, before the conditioning context may be 
correctly formed to decode the quantization symbols in the 
current frame. Specifically, the formulation proposed in [25] 
expects quantization layers one through n to be available in 
the previous frame before the nth layer can be decoded in the 
current frame of the same subband. This means that the number 
of useful quantization layers available at the decoder cannot 
increase from frame to frame, which clearly works against our 
goal of scalability. To avoid this difficulty, each subband must 
occasionally be coded using an intraframe coding technique 
such as that described in [24]. The implications of interframe 
coding for scalability are considered further in Section V. 

v. GENERATION OF LAYERED SUBSTREAMS 

In this section, we turn our attention to the organization 
of progressively coded subband samples into the layered 
substreams of Fig. 1. As presented in Section IV-B, each 
quantization layer C: contains the additional information 
required to reconstruct all samples of subband b at quantization 
precision Qk, given that the previous n - 1 quantization 
layers for subband b have already been decoded. We begin 
by pointing out that arithmetic coding generates a single 
indivisible code word to represent the entire collection of 
source symbols coded. If conditional arithmetic coding is 
used to generate Ck, as discussed in Section 1V-B, then we 
must first partition the samples of subband b into smaller 
units in time and/or space, generating a separate arithmetic 
code word for each such unit, or code block. This is clearly 
necessary if we are to scale the number of quantization layers 
available to the decoder in a time-varying manner. Moreover, 
the fact that arithmetic encoding and decoding are inherently 
serial computational tasks means that parallel computational 
techniques, which are often required to achieve real time 
video compressioddecompression, can only be exploited when 
a sufficient number of independent code blocks are present 
at any point in time. For our experimental work, each sub- 
band's samples are partitioned into an integral number of 
rectangular code blocks within each frame, with no more 

"Note that context formation and conditional coding do not introduce 
any inherent delay into the compression scheme, whereas the temporal 
muftiresolution transform does, as discussed at the end of Section 11. 
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than 6000 samples each, regardless of the frame size. Each 
block's samples are represented by an individual arithmetic 
code word, by applying the conditional arithmetic coding 
techniques discussed in Section IV-B to each block of samples 
independently, as though the code block boundaries were 
frame boundaries. By limiting the number of samples assigned 
to each code block, we limit the maximum decoding time for 
each block, which is an ideal situation for parallel hardware 
or software realizations of the compression scheme. Note that 
block-based quantization and coding schemes such as TSVQ 
induce a natural code block structure, if used instead of scalar 
quantization with arithmetic coding. 

In our proposed organization, each of the substreams of 
Fig. 1 contains the code bits corresponding to an integral 
number of quantization layers from each subband code block, 
so that the first I) substreams in frame slot s collectively 
represent the first n $ ( s )  quantization layers of code block 
p in every frame of frame slot s.16 Our task, then, is to 
describe a rate limiting algorithm, whose function is to select 
suitable values, n$(s ) ,  in each frame slot, s, such that the 
total number of bits required for these quantization layers, 
together with auxiliary syntactic constructs, does not exceed 
C81 RE (FIFR) .  To make this statement more precise, let 
@(s) denote the total number of code bits and auxiliary 
header bits required at the decoder in order to unambiguously 
decode the first n quantization layers of code block ,f? in every 
frame of frame slot s .  Our objective is to select n$(s )  values 
for every frame slot, s, code block, 0, and substream, $, such 
that 

The selection of the n$ (s) values is additionally constrained 
in the following two respects: 1) n $ ( s )  must be at least as 
large as R $ - ~ ( S ) ;  and 2) n$(s )  may not exceed n$(s  - 1) 
for any code block whose subband samples are interframe 
coded in the first frame of frame slot s .  This latter requirement 
arises from the fact that the first rL quantization layers of 
an interframe coded block, 0, are decodable only if at least 
n quantization layers of code block ,8 are available in the 
previous frame, as described in Section IV-B. The requirement 
that n$(s )  5 n$(s  - 1) for blocks, 0, whose first frame in 
frame slot s is interframe coded, is necessary to ensure that all 
code bits contained in the first 4 substreams of frame slot s 
may be decoded, provided at least 4 substreams were received 
in frame slot s-1. This means that all code bits remaining after 
constant bit rate substream scaling must be decodable. On the 
other hand, when constant distortion scaling is employed the 
number of substreams, $'(Do), available in frame slot s may 
be larger than the number $'-l(D) available in frame slot 
s - 1, in which case some of the available code bits in frame 

I6Note that we do not allow the number of quantization layers associated 
with any code block p to vary from frame to frame within a frame slot. This 
is primarily to minimize the syntactic overhead associated with our scalable 
data streams. 
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slot s may not be dec0dab1e.I~ The two constraints above may 
be summarized as follows: 

(19) n + b )  P 2n+&), P v+, P,  s 

n $ ( s )  I .,"(.), v+, P ,  s (20) 

where 

n$ ( s  - 1) , if interframe coded 
in first frame of slot s 

00, otherwise. 

The particularly restrictive nature of (20) forces us to resort to 
intraframe coding of subbands from time to time, as mentioned 
in Section IV-B. The distribution of such intraframe coding 
events is indicated in Section VI for particular highly scalable 
compression algorithms. 

Naturally, there are many potential combinations of n$ ( s )  
values satisfying (18)-(20), among which we would prefer 
to make the selection which minimizes distortion in the 
reconstructed video sequence. Useful multiresolution trans- 
forms typically correspond to projections onto orthonormal 
or approximately orthonormal sets of basis vectors, which 
span the space of all video signals." Thus, it is usually a 
simple matter to obtain an accurate estimate, D t ( s ) ,  for the 
independent contribution of each code block, P, to the mean 
squared reconstruction error over frame slot s, when only n 
quantization layers of block p are decoded in each frame of the 
frame slot. In theory, the BE(s), and @(s) values may be 
used to minimize MSE in the reconstructed video sequence 
subject to (18)-(20). Unfortunately, however, the discrete 
parameter space renders exact optimization a computationally 
infeasible task, even for a relatively small number of code 
blocks. In view of this obstacle, we propose the following rate 
limiting algorithm. 

1) Find the largest value of N+ such that 

and set T equal to the left hand side of the above 
inequality, where KN+ is given by 

K N ,  = 5 N+)  

2 )  Sort the collection of code blocks so that block 
precedes block ,& whenever n$-l(s) = NQ + 1, and 
T $ ~ ( S )  5 N+ or, failing this, if 

17As we shall see in Section VI, the nature of the variable hit rate 
traffic generated by constant distortion scaling ensures that the number of 
undecodahle code bits is smaller than one might at first suppose. 

I8This is certainly true for the 3-D transforms employed in [19], [24], and 
[25] and approximately true for the transforms employed by Ohm in [15]. 

3) For each code block, 0 = 1, 2, . . ., sorted as above 
P * If P 

T + B&++l(s) - B&+(s). 
Otherwise, set n $ ( s )  = min {N+, u,$(s)}.  

K N + ,  and T + B$L+l(s) - BN,(s) L 
Re F / F R ,  set T L $ ( S )  = N+ + 1, and T = 

In each frame slot s ,  the proposed algorithm is applied to 
substreams + = 1, 2 ,  . " ,  Q in succession. As we shall see, 
this algorithm is best understood as an attempt to allocate 
every code block exactly the same number of quantization 
layers, N+. The appropriateness of this objective depends 
upon suitable selection of the sets of quantizers associated 
with each subband. Higher priority may be assigned to lower 
frequency subbands, b, for example, simply by assigning them 
finer quantizers, QL. Step 1 of our proposed rate limiting 
algorithm finds the maximum value for N+ such that each 
code block, 0, which is not otherwise constrained by (20), may 
be allocated n$ = N$ quantization layers without violating 
the rate limit, (18). This first step of the algorithm is expressed 
in terms of the set KN+ , of all code blocks which may not be 
allocated more than N$, quantization layers without violating 
(20). That is, KN+ contains those code blocks, /3, which 
may not be allocated more than v,$(s) 5 N+ quantization 
layers without violating interframe coding dependencies. In 
step 1, T is assigned to be the number of bits in frame slot 
s, required to represent U,$(.) quantization layers of all code 
blocks, P E K N ,  and N+ quantization layers of all remaining 
code blocks. 

Because the fixed substream bit rates R+ are not generally 
related to the number of bits generated during layered coding 
of the code block samples, we cannot expect T to be equal 
to, or even very close to the limit, E:==, RE ( F / F R ) .  In 
order to make better use of available resources, therefore, 
the second and third steps of our proposed rate limiting 
algorithm are responsible for selecting some blocks, p K N ~ ,  
for allocation of an extra quantization layer, i.e., n $ ( s )  = 
N+ + 1. Step 2 establishes an order in which blocks are to 
be considered for allocation of this extra quantization layer. 
It can happen that some code block, D, has already been 
allocated N+ + 1 quantization layers in the previous substream, 
i.e., n$-l(s) = N+ + 1, in which case we must select 
.E(.) = N+ + 1 in order to satisfy (19). This is managed 
by ensuring that such code blocks appear first in the order 
established during step 2. The remaining code blocks, P, 
are organized in order of increasing rate-distortion gradient, 

that the blocks, P, which are allocated an extra quantization 
layer, are to be those which offer the greatest decrease in 
reconstruction MSE, D$+(s) - D t  ++ l(s), relative to the 
number of additional bits, B$++,(s) - B$+ (s), required for 
this extra quantization layer. Finally, in step 3 of our proposed 
rate limiting algorithm, code blocks /3 KN,  are examined 
one at a time, in the order established during step 2, to be 
allocated the additional quantization layer, n $ ( s )  = N+ + 1, 

P$++,(s) - D$+ (41/~3$++~(4 - G+(sj1.19  his means 

I9T0 avoid confusion here, note that the rate-distortion gradient is always 
negative. That is, distortion always decreases as the bit rate increases. 
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11, 
R+ (kbps) 

R(-$) (kbps) 

$ 
(kbps) 

R(-$) (kbps) 

1 2 3 4 5 6 7 8 
63.36 63.36 63.36 63.36 63.36 63.36 126.72 126.72 
63.36 126.72 190.08 253.44 316.80 380.16 506.88 633.60 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 
253.44 253.44 253.44 253.44 380.16 380.16 506.88 506.88 506.88 !506.88 760.32 760.32 1013.76 1013.76 

1774.08 2027.52 2280.96 2534.40 2914.56 3294.72 3801.60 4308.48 4815.36 5322.24 6082.56 6842.88 7856.64 8870.40 

so long as the limit Eftl Rt (.F/Fn) is not exceeded. In this 
operation, T keeps track of the total number of bits allocated 
to all code blocks in the frame slot. It is interesting to note 
that in our experimental investigations, the final value of T is 
virtually always within 1% of the limit, E;"=, RE (FIFE) .  

In the above discussion, we have made no mention of 
the different roles played by luminance and chrominance 
component code blocks during rate limiting of color video 
signals. In fact, the above algorithm is only suitable for 
monochromatic compressed video. In [26] we describe a 
modification to this rate limiting approach, for full color 
compressed video. Importantly, this modified algorithm does 
not depend on an additive model for the distortion associated 
with the luminance and chrominance components. 

VI. EXPERIMENTAL WORK 
In this section, we present experimental findings to indicate 

the performance of our proposed layered substream abstrac- 
tion, with both constant bit rate and constant distortion scaling 
criteria, when used in conjunction with a suitable highly 
scalable compression scheme. In view of the generality of the 
material presented in Sections 11, 111, and IV, it is appropriate 
that we first offer some specific details of the context in which 
these experimental results are to be understood. To this end, 
Section VI-A discusses the specific parameter choices adopted 
for the layered substream hierarchy itself, while Section VI-B 
outlines the key features of the highly scalable video compres- 
sion algorithms used to generate experimental substreams. The 
actual experimental findings are then presented in Sections VI- 
C and VI-D. 

A. Specific Choices for the Layered Substream Hierarchy 

The parameter choices outlined in this section are use- 
ful both as a framework within which to understand the 
experimental results of Sections VI-C and VI-D and as a 
specific context within which to appreciate the more abstract 
discussion of distortion tag generation in Section 111. For 
convenience, we select distortion target values from the set 
{-1, -2, . . . , -q} of negated substream numbers, i.e., di = 
- i ,  i = 1, 2, . . .  , p = !U, and we define the standard average 
rate function, R(D), to be 

-D 

*=l 

This definition has the interesting consequence that an average 
bit rate of R(D) may be obtained either by constant distortion 

scaling, in which all but the first $'(D) substreams are 
discarded in each frame slot, s ,  or by constant rate scaling, 
in which all but the first -D substreams are discarded in 
every frame slot. In the latter case, of course, the average and 
instantaneous bit rates coincide. Thus, exactly the same set 
of average bit rates is available for both constant distortion 
scaling and constant rate scaling. Note that the standard 
average rate function, R(.), defined in (21), is also useful 
for expressing the constant bit rate associated with the first 
4 substreams of our layered hierarchy, i.e., R(-$). This dual 
role of the rate function R(.) is exploited in the notation of 
Table I, which indicates the substream bit rates, R+, and the 
associated cumulative substream bit rates, R( -$), adopted for 
our experimental investigations. The standard rate function, 
R(.), defined in (21), has two other important consequences. 
First, because the minimum average bit rate, R(dl), is identical 
to the minimum instantaneous bit rate, R I ,  the set of potential 
distortion tag values and the set of distortion targets are 
one and the same. That is, the extra distortion tag value, 
do, is superfluous, as explained in Section 11. The second 
consequence of (21) is that the parameters, $p, and $:, of 
(11) and (12), satisfy $p = $: = - i ,  V i .  This simplifies (15) 
and hence construction of the fixed part, M ,  of the distortion 
tagging map, as described in Section 111-B. 

For simplicity, we consider only a simplistic V-distortion 
measure, which is based around MSE. Recall that the V- 
distortion measure forms the starting point in distortion tag 
generation, as discussed in Section 111. The multiresolution 
transform described in Section VI-B effectively projects the 
source video sequence onto a nearly orthonormal set of ba- 
sis vectors, which span the space of all video sequences. 
Consequently, a good approximation, V;", to the MSE of 
any color component, e, over frame slot s, for the video 
sequence reconstructed from substreams 1, 2, . . . , $, may 
readily be obtained by summing MSE contributions from 
individual subband samples. These MSE contributions may 
be determined during compression with little computational 
overhead. The only remaining task is to form a single distortion 
value, V$, from the three color component distortions, V;", 
VG'", and VG'". To that end, we, somewhat arbitrarily, adopt 
the formulation 

v s  + - ~ V S , Y  + + ( V , " > " + v , " q  

which reflects a view that the chrominance components should 
have less impact on subjective distortion than the luminance 
component. This MSE based V-distortion measure is partic- 
ularly useful for numerically demonstrating the performance 
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of constant distortion substream scaling, even if it does not 
closely reflect actual subjective distortion. 

B. Specijc Choices for Highly Scalable Compression 

For the investigations here, we adopt five examples from 
the class of highly scalable compression algorithms described 
in [25]. These algorithms all employ a separable 3-D multires- 
olution transform, with four levels of the spatial transform2’ 
illustrated in Fig. 4 and L levels of the 1-D transform in Fig. 3 
applied temporally to each spatial subband; the parameter 
L takes on values of 1, 2, and 3 in our various example 
compression algorithms, as discussed shortly. The simple two 
tap filters of (17) are adopted for the temporal direction 
so that our temporal transform is an L-level Haar wavelet 
transform. Recall from Section IV-A that our multiresolution 
transform is then block-based in time, with a block size of 
2L frames. For spatial subband filters, we adopt the nine tap 
NPR subband filters of Adelson et al. [l], with symmetric 
extension [20] applied at the frame boundaries to avoid sample 
rate expansion. These filters are selected because they lead to 
a nearly orthonormal set of transform basis vectors, which 
is a useful property when working with the MSE distortion 
metric, as proposed in Sections V and VI-A. The 3-D mul- 
tiresolution transform is supplemented by the invertible pan 
compensating predistortion operator discussed in Section IV- 
A to improve exploitation of temporal redundancy in scenes 
exhibiting global translational motion. 

From the layered quantization and coding approaches 
touched upon in Section IV-B, we adopt the embedded scalar 
quantizers illustrated in Fig. 6, together with the conditional 
arithmetic coding contexts described in [25].  Interframe coding 
is applied to the subbands of low temporal frequency, while 
the subbands of high temporal frequency are only intraframe 
coded. This is appropriate, in view of the low interframe 
temporal redundancy typically exhibited by high temporal 
frequency subbands. Noting that our experimental comparisons 
in Sections VI-C and VI-D are to be based on MSE, or 
its derivative, PSNR,21 the optimal approach to quantizer 
parameter selection, within each color component, is to use 
exactly the same set of quantizers for every subbandZ2 [28, sec. 
11.21. To be precise, all luminance subbands b have a base 
quantization step size of 6; = 512, while all chrominance 
subbands b have a base quantization step size of 6: = 400. 
This ratio of luminance to chrominance quantization precision 
is found empirically to offer approximately the same relative 
luminance and chrominance distortions as those experienced 
with the MPEG- 1 compression standard. Quantization step 
sizes in the remaining quantization layers are given by 

twice the corresponding step size, i.e., U: = as:, Vri ,  b. The 
6; p n g a  y n, b, while the quantizer dead zones are set to 

20Actually, we apply all four levels of spatial decomposition to the 
luminance component of the video signal, but only three levels to the 
two chrominance components. This is motivated by the fact that the video 
sequences with which we work already have their chrominance components 
subsampled by a factor of two in the horizontal and vertical directions. 

2 1 ~ ~ ~ ~  = i o  iog,, 2552/MSE. 
22This comment is based on the fact that our subband filters are normalized 

so that the subband transformation basis vectors are very nearly orthonormal. 

arithmetic coding probability tables discussed in Section IV-B 
are obtained by training the compression scheme using the 
three I S 0  standard test sequences, “pingpong,” “football,” and 
“flower garden,” at SIF525 r e s o l ~ t i o n . ~ ~  

As mentioned already, we consider five examples from the 
class of compression schemes outlined above; these have the 
parameters shown in Table 11. The individual algorithms in this 
table are distinguished on the basis of the number of levels of 
temporal subband decomposition, L, the number of frames, 
F, in each frame slot and the intraframe coding interval, Z, 
for subbands of low temporal frequency, as shown in the 
first three columns of Table 11. Although the low temporal 
frequency subbands are generally interframe coded, the need 
to occasionally intersperse frames which are purely intraframe 
coded has already been established in Section V. We adopt 
the following policy. Within each frame slot, all but the first 
frame of each low temporal frequency subband are coded 
using interframe techniques to exploit temporal redundancy; 
the first frame is also interframe coded, except in every Zth 
frame slot, where intraframe coding alone is employed. Larger 
values of Z allow higher compression efficiency during periods 
of reasonably constant scene activity, but can excessively 
constrain the bit rate limiting algorithm of Section V when 
scene activity is highly variable. To understand this, con- 
sider the disruptive effect of a scene change during frame 
slot s ,  and assume that a fixed number, $I, substreams is 
available for decompression in each frame slot, i.e., constant 
bit rate scaling. Because the scene change in frame slot s 
reduces compression efficiency, we expect that the number of 
quantization layers, n$ ( s ) ,  associated with each code block, 
/3, in the first + substreams of frame slot s should be less 
than the corresponding number of layers, n$(s  - l), in the 
previous frame slot. For those code blocks, /3, associated 
with low temporal frequency subbands, the number of layers, 
n$ ( s  + 1) , n$ ( s  + 2 ) ,  . . ., in subsequent frame slots may not 
increase above the relatively low value, n $ ( s ) ,  forced by the 
scene change in frame slot s ,  until block ,8 is next intraframe 
coded. This is a consequence of the layer allocation constraint 
(20). Thus, smaller values for Z allow reconstructed video 
quality to recover more quickly from the disruptive effects of 
the scene change, whereas larger values for Z allow for more 
efficient compression during reasonably continuous levels of 
scene activity. The intraframe coding intervals appearing in 
the last four rows of Table I1 are found to offer a useful 
compromise for scenes with moderately varying levels of 
activity, such as the standard I S 0  test sequence, “pingpong.” 
The compression algorithm corresponding to the first row of 
Table I1 is exceptional in that it involves neither temporal 
subband decomposition nor interframe progressive coding. 
This purely intraframe compression algorithm provides us with 
a useful gauge of the degree to which the remaining four 
video compression algorithms are able to exploit temporal 
redundancy. 

The fourth column in Table I1 indicates the inherent end-to- 
end delay, derived at the end of Section 11, based on a video 

23That is, 30 progressively scanned 352 x 240 pixel frames per sec- 
ond, with chrominance components subsampled by two in the vertical and 
horizontal directions 
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TABLE I1 
EXAMPLES FROM OUR CLASS OF SCALABLE COMPRESSION ALGORITHMS. THE 

THIRD COLUMN INDICATES THE INTRAFRAME CODING INTERVAL FOR SUBBANDS 
OF LOW TEMPORAL FREQUENCY, EXPRESSED IN TERMS OF FRAME SLOTS 

medium 

frame rate of FR = 30 f/s, while the fifth column suggests a 
classification based on this delay. The last column in Table I1 
indicates memory requirements, expressed in terms of the 
number of frame buffers required during compression or de- 
compression. These memory requirements may be understood 
from the fact that each algorithm requires L + 1 frame buffers 
to implement the multiresolution transform, as mentioned in 
Section IV; the last four algorithms in Table I1 require an 
additional frame buffer to store subband samples from a 
previous frame, which are used in forming the conditioning 
contexts, ~ ! ~ [ k ] ,  required for interframe coding. Note that 
we do not consider the relatively small amount of memory 
required for temporary storage of compressed data; nor do 
we consider any storage required to determine camera pan 
parameters, as described in [24]. 

C. Investigation of Constant Rate Scaling 

In this section, we investigate the performance of the five 
compression algorithms listed in Table I1 in the context of 
constant bit rate (CBR) scaling, via the simple substream 
discarding approach discussed in Section 11. This part of our 
investigation is important because it indicates the perfor- 
mance of particular compression algorithms when subjected 
to the constraints imposed by the proposed layered substream 
abstraction. These constraints are manifested in (19) and 
(20). We begin by investigating the opportunity to exchange 
compression performance for system memory requirements 
when end-to-end delay is not of great concern. To this end, 
we consider the algorithms listed in the first, fifth, and fourth 
rows of Table 11, which require 1, 2, and 5 frame buffers, re- 
spectively. The rate-distortion curves of Fig. 7 indicate overall 
luminance PSNlR values, associated with the SIF525 res- 
olution “pingpong” sequence, when reconstructed from the 
compressed data streams generated by these three algorithms, 
after CBR substream scaling. Fig. 7 is particularly interesting 
because it indicates the degree to which our interframe pro- 
gressive coding scheme is able to exploit temporal redundancy. 
The compression algorithm corresponding to the last row of 
Table I1 exploits temporal redundancy by interframe coding 
alone, having L = 0. It is interesting that the compression 
performance of this algorithm appears to be approximately 
intermediate between that of pure intraframe compression, 
corresponding to the first row of Table I1 and that of the 
algorithm listed in the fourth row of Table 11, which employs 
both interframe coding and L = 3 levels of temporal subband 
decomposition to exploit temporal redundancy. 

PSNR (a) 
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Fig. 7. Luminance PSNR of “pingpong” sequence, reconstructed after CBR 
substream scaling, using the first, fourth, and fifth algorithms of Table 11. 
Curves identified by memory requirements, expressed in terms of frame 
buffers. 
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Fig. 8. Luminance PSNR of “pingpong” sequence, reconstructed after CBR 
substream scaling, using the first four algorithms of Table 11. Curves identified 
by end-to-end delay classification. Specific MPEG- 1 PSNR values also shown, 
for reference. 

The algorithms listed in the first four rows of Table I1 are 
useful for investigating the opportunity to exchange compres- 
sion performance for end-to-end delay. The rate-distortion 
curves of Fig. 8 indicate overall luminance PSNR values, 
associated with the “pingpong” sequence, when reconstructed 
from the compressed data streams generated by these four 
algorithms, after CBR substream scaling. The curves of this 
figure clearly indicate a law of diminishing returns as delay is 
exchanged for compression within the framework established 
by our class of scalable compression algorithms and the pro- 
posed layered substream abstraction. Fig. 8 also indicates the 
luminance PSNR values obtained at three fixed bit rates with 
an implementation of the nonscalable MPEG- 1 compression 
standard.24 For reference, the inherent delay associated with 
this compression algorithm is equal to five frame periods,25 
which falls between the inherent delays of the low and medium 
delay compression algorithms of Table 11. As seen in Fig. 8, 
the MPEG-I PSNR figures also fall between those of the 

24 The software MPEG-1 implementation, provided by Bellcore, has the 
following parameters: 15 frame COP; 2 B-frames per I- or P-frame; half 
pixel motion compensation; and a rate control buffer capacity of three frame 
periods. 

25Two frame periods, because two B-frames intersperse every pair of I- or 
P-frames, plus three frame periods from the rate control buffer. 
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Video Sequence Component 0.5 Mbps 1.0 Mbps 
MPEG Low Medium MPEG Low Medium 

(dB) (dB) (dB) (dB) (dB) (dB) 
‘ pingpong ’ Y 28.39 -1.57 $0.04 31.15 -0.59 +0.56 
256 frames U 36.11 -0.79 -0.23 38.19 -0.69 -0.14 

zoom, pan, still V 37.20 -0.17 +0.07 39.16 -0.13 -0.25 
‘football’ Y 28.62 +0.24 +0.44 31.46 $0.37 +0.53 

160 frames U 36.22 +1.86 t1.73 38.28 t1.22 +1.26 
panning v 33.34 +2.22 t2.08 35.92 +1.58 +1.58 

‘flower garden’ Y 22.02 -2.94 -2.09 25.43 -3.68 -2.94 
128 frames U 30.95 -0.80 -0.27 32.92 -1.92 -1.46 
translating v 27.87 -0.76 -0.47 30.58 -2.48 -2.09 

TABLE I11 
COMPARISON OF MPEG-1 IMPLEMENTATION FROM BELLCORE, WITH LOW AND MEDIUM DELAY ALGORITHMS OF TABLE 11. PSNR VALUES FOR MPEG-1 APPEAR IN 

‘‘MPEG” COLUMNS, WHILE, FOR THE REMAINING ALGORITHMS, IMPROVEMENTS IN PSNR OVER MPEG-1 APPEAR IN THE “LOW” AND “MEDIUM” COLUMNS 

1.5 Mbps 
MPEG Low Medium 
(dB) (dB) (dB) 
32.80 -0.01 +0.88 
39.34 -0.18 +0.39 
40.17 +0.21 +0.50 
33.26 +0.79 +1.05 
39.34 +1.15 +1.08 
37.32 +1.65 +1.62 
27.16 -3.22 -2.25 
34.12 -2.17 -1.70 
32.25 -2.92 -2.36 

low and medium delay scalable compression algorithms, in 
the case of the “pingpong” sequence. Note that the curves of 
Figs. 7 and 8 are not strictly continuous: they are generated 
by connecting discrete points, corresponding to the available 
bit rates listed in Table I. 

Table I11 compares the compression performances of the 
nonscalable MPEG-1 algorithm and the scalable low and 
medium delay algorithms of Table 11, using all three “ping- 
pong,” “football,” and “flower garden” sequences, considering 
chrominance as well as luminance component PSNR values. 
This table also indicates the form of camera motion present 
in each sequence. Although the scalable compression algo- 
rithms considered here are able to outperform MPEG-1 in 
compressing the “football” and “pingpong” sequences, the 
MPEG-1 algorithm is clearly superior, from the point of view 
of raw compression performance, in the case of the “flower 
garden” sequence. This is readily understood from the fact that 
scene motion in the “flower garden” sequence consists entirely 
of camera translation, which is not well approximated by a 
camera pan model. Nevertheless, the reader is reminded that 
the invertible predistortion concept introduced in Section IV-A 
need not be limited simply to camera pan compensation. This 
restricted case of global translational motion compensation is 
considered here only for simplicity. 

D. Investigation of Constant Distortion Substream Scaling 

The rate-distortion curves of Figs. 7 and 8 correspond to 
CBR subsets of the layered substream hierarchy. We tum our 
attention now to the variable bit rate (VBR) subsets generated 
by constant distortion substream scaling, as described in 
Section 11. We begin by considering distortion tags, D;, which 
are generated according to D$, = 7(V$), where the reference 
distortion values, V$, are obtained from the MSE V-distortion 
measure, described in Section VI-A, and the fixed map, 7, is 
generated ahead of time for each particular video sequence, 
as described in Section 111-A. This approach to distortion tag 
generation is suitable only for prerecorded video material. It 
is of particular interest for revealing the performance limits 
associated with constant distortion scaling. This is because the 
adaptive maps, I“, described in Section 111-B, converge to the 
appropriate fixed map, 7,  in the limit as the adaptation time 
constant, B, and the ratio SIB  both tend to infinity, where s 

is the frame slot number. Toward the end of this section, we 
investigate the behavior of adaptive maps, I”, with finite time 
constants, B, and finite video sequence support. 

The rate-distortion curves of Figs. 9 and 10 plot the approx- 
imately constant luminance PSNR as a function of average bit 
rate, R ( D ] ,  for distortion targets, D = -1, -2, . . . ,  -21.26 
For each of these mean bit rates, the instantaneous bit rate 
may take on any of the 28 values appearing in Table I. The 
figures indicate compression performance associated with the 
algorithms in rows one and three of Table 11, these being 
representative examples of scalable intraframe compression 
and delay and memory sensitive scalable interframe com- 
pression, respectively. Source material for Fig. 9 is the 256 
frame SlF52.5 resolution “pingpong” sequence. Fig. 10, on the 
other hand, indicates compression performance over a much 
longer video sequence of 2500 frames, taken from the movie 
“Raiders of the Lost Arc.” This sequence is composed of 
three contiguous scenes, digitized from laser disc and restored 
to the original motion picture frame rate of 24 frames per 
second by discarding frames which had been duplicated during 
laser disc recording. The resolution in this case is 320 x 
240 pixels, with chrominance components subsampled by two, 
both horizontally and vertically. Scene content for the “Raiders 
of the Lost Arc” sequence varies in activity from a wild street 
fight to conversational excerpts. Figs. 9 and 10 both indicate 
that scalable interframe compression requires approximately 
0.4 to 0.6 times the average number of bits required by 
scalable intraframe compression, to compress the respective 
sequences with the same, roughly constant value of MSE 
distortion. This observation holds over the most interesting 
range of luminance PSNR values, of about 30-40 dB; the 
lower end of this range corresponds to noticeable, but arguably 
tolerable distortion, while the upper end corresponds to near 
visually perfect reconstruction. Convergence of the intraframe 
and interframe compression curves in Fig. 10, at very high 
PSNR, is largely due to digitization and laser disc recording 
noise levels, which are on the order of 40 dB PSNR.27 

26These first 21 of the 28 valid distortion targets, indicated by Table I, 
are sufficient to reveal the most interesting region of the rate-distortion 
characteristic. 

27Noise power is estimated from the MSE between digitized copies of 
those frames, which had been repeated in the original laser disc recording for 
compatibility with NTSC’s 30 Hz frame rate. 
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Fig. 9. 
identified by end-to-end delay classification. 

Luminance PSNR of “pingpong” sequence, reconstructed after VBR substream scaling, using the first and third algorithms of Table 11. Curves 
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Fig. 10. Same as Fig. 9, but for “Raiders of the Lost Arc” sequence. 

For further insight into the effectiveness of constant dis- 
tortion scaling, Fig. 1 1 provides frame-by-frame luminance 
PSNR curves for the “pingpong” sequence, reconstructed 
from both CBR and VBR scaled substream hierarchies, at 
an average rate of R(-14) = 1.52064 Mb/s. The same 
scalable intraframe and interframe compression algorithms, 
used to generate Fig. 9, are investigated here. It is clear that 
the “constant” distortion VBR scaling approach significantly 
reduces fluctuations in the PSNR from frame to frame. Re- 
maining variations are mainly attributable to the discretization 
inherent to our substream scaling approach: both instantaneous 
bit rates and distortion tag values belong to discrete !U- 
element sets. The overall subjective appeal associated with 
VBR scaling is also found to be significantly higher than 
that associated with CBR scaling at the same average bit 
rate. Subjective improvements are particularly noteworthy 
for interframe compression during the zooming part of the 
“pingpong” sequence, this motion being poorly described by 
our camera pan model. Fig. 12 indicates the frame-by-frame 
instantaneous bit rates corresponding to the VBR curves in 
Fig. 11. Fig. 12 clearly reveals the heightened bit rate require- 
ments associated with interframe compression during camera 

zoom and scene changes. Instantaneous bit rate distributions 
for the much longer “Raiders of the Lost Arc” video sequence, 
are revealed in the histograms of Fig. 13(a) and (b). These 
histograms correspond to average bit rates of A’( -7) = 506.88 
kb/s for interframe compression and R(-11) = 1013.76 
kb/s for intraframe compression, respectively, at which both 
algorithms give roughly similar, “low” levels of distortion. 
The histograms indicate that VBR scaling of a realistic video 
sequence can lead to widely distributed instantaneous bit rates. 

As discussed in Section V, our algorithm for packaging code 
block quantization layers into substreams guarantees that all 
code bits remaining after the application of CBR scaling may 
be used in the decoding process. On the other hand, when 
constant distortion scaling is employed, it can happen that 
more quantization layers are available for some interframe 
coded code blocks in frame slot s, than were available in frame 
slot s - 1. Due to the interframe dependencies associated with 
generating the conditioning contexts for progressive interframe 
coding, these additional quantization layers cannot be decoded, 
in which case the associated code bits should be regarded as 
wasted transmission bandwidth. Of course, the compression 
algorithms corresponding to the first and last rows of Table I1 
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Fig. 11. 
first and third algorithms of Table 11. Average bit rate is 1.5 Mbh. Curves identified by end-to-end delay classification and scaling criterion. 

Frame-by-frame luminance PSNR for “pingpong” sequence, reconstructed from CBR and VBR scaled substream hierarchies generated using the 
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Fig. 12. 
the first and third algorithms of Table 11. Average bit rate is 1.5 Mb/s. Curves identified by end-to-end delay classification. 

Frame-by-frame instantaneous bit rates, corresponding to VBR scaling of the substream hierarchies generated from the “pingpong” sequence, using 

do not suffer from this bandwidth wastage problem, because 
the first frame of each frame slot is completely intraframe 
coded, i.e., Z = 1, in these algorithms. The remaining three 
algorithms of Table I1 do suffer some bandwidth wastage 
during constant distortion scaling. In particular, Fig. 14 reveals 
the overall percentage of code bits wasted by such unsatisfied 
interframe dependencies, when constant distortion scaling is 
applied to the substreams generated by the medium delay 
scalable compression algorithm of Table 11, for both the “ping- 
pong” and “Raiders of the Lost Arc” video sequences. The low 
levels of wasted transmission bandwidth indicated by Fig. 14 
may be understood from the following argument. Equation 
(20) guarantees that unsatisfied dependencies, resulting in 
undecodable bits in frame slot s, may only exist provided 
the number of available substreams, $”(D) ,  is greater than 
the number of substreams, q!f-’(D), available in the previous 
frame slot. However, $”(D) > $’-‘(D) suggests that more 
code bits are required in frame slot s than in frame slot 
s - 1, in order to achieve the distortion target, D. The 
event, yY(D)  > $-I(D), occurs principally because more 
substreams are required in frame slot s than in frame slot s - 1 

to prevent a drop in the number of code block quantization 
layers and hence the distortion. For this reason, the number 
of quantization layers allocated to any code block, /3, in the 
first $”(D) substreams of frame slot s ,  may very well be 
no larger than the number of quantization layers allocated 
to code block /3 in the first QS-’(D) substreams of frame 
slot s - 1, even though $“(D) is larger than $‘-‘(D). As a 
result, interframe dependencies are satisfied more often during 
constant distortion scaling than might at first be expected. 

As mentioned, the results presented above are obtained 
using the fixed map approach of Section 111-A for distortion 
tag generation. Before concluding this section, we offer an 
indication of the performance of the adaptive scheme of 
Section 111-B. This is important because the fixed map ap- 
proach is only suitable for prerecorded video material, whereas 
the adaptive approach is applicable both to prerecorded and 
interactive video. We point out, however, that we only expect 
the adaptive approach to be effective when the adaptation time 
constant, B, is relatively large and the duration of the video 
sequence is much larger than B. This is because the map, 
I“, must adapt slowly if constant distortion scaling is to be 
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Fig. 13. Instantaneous bit rate histograms, associated with VBR scaling 
of the substream hierarchies generated from the “Raiders of the Lost Arc” 
sequence. (a) Medium delay algorithm of Table I1 at an average rate of 0.5 
Mb/s; (b) minimum delay algorithm of Table 11 at an average rate of 1.0 Mh/s. 

meaningful; moreover the adaptive scheme only guarantees 
that the average bit rate over T seconds is within BIT x 
100% of its nominal value, R ( D ) ,  where 2) is the distortion 
target. It is difficult, therefore, to satisfactorily demonstrate the 
performance of the adaptive concepts in Section 111-B without 
a large quantity of source video material. The longest video 
sequence available to us is the “Raiders of the Lost Arc” 
sequence, which has a duration of 104 s. Unfortunately, 7“ 
tends to adapt too quickly when B is much less than 104 
s. For illustrative purposes, therefore, we select a value of 
B = 40 s. The reference distortion bounds, and V y ,  
are obtained using the approach suggested in Section 111-B, 
except that the “Raiders of the Lost Arc” sequence itself is 
used as training material for want of a more realistic training 
set. That is, is selected so that V$ 2 VTin for 99% 
of the frame slots, s. Similarly, V$ 5 V y  for 99% of the 
frame slots. This ensures that the reference distortion values, 
V$, must occasionally be artificially constrained to lie within 
the bounds 5 V$ 5 VGmaX, as we would expect if the 
bounds were generated from a realistic set of training video 
sequences. Also, the initial fidelity threshold values a,’ are set 

Fig. 14. Percentage of bits wasted due to VBR scaling of the substream 
hierarchies generated from the “pingpong” and “Raiders of the Lost Arc” 
sequences, using the medium delay algorithm of Table 11. 

to U,’ = [ M ( V F x ) + M ( V z i n ) ] / 2 ,  where M is the piecewise 
linear map described in Section III-B.2g 

Fig. 15 indicates the frame-by-frame PSNR values obtained 
for the “Raiders of the Lost Arc” sequence, after both constant 
bit rate scaling and constant distortion scaling, with an adap- 
tation time constant of B = 40 s. The scalable data stream 
is obtained using the medium delay algorithm of Table I1 and 
the nominal average bit rate is R(-7) = 506.88 kbls. As seen, 
constant distortion scaling does offer some smoothing of the 
distortion, especially in the first 1000 frames, where constant 
bit rate scaling exhibits the widest fluctuations in distortion. 
However, the map clearly adapts too quickly to offer good 
long term stabilization of the PSNR or, equivalently, MSE. 
The distortion in Fig. 15 is seen to wander appreciably, e.g., 
1-2 dB, within a period of about 4 s, suggesting that the time 
constant, B, required to hold distortion approximately constant 
over a period of one minute, for example, may need to be as 
large as 10 min. 

As discussed in Section 111-B, 7“ must be adapted in such 
a way as to satisfy the leaky bucket criterion of (7). Fig. 16 
plots the normalized bucket fullness ratio 

over the range 1 6 S 5 2500/3=, for various distortion targets, 
;I) = -4, -7, -11, and -16, corresponding to nominal 
average bit rates of 253.44 kbls, 506.88 kbls, 1013.76 kbls, 
and 2027.52 kbls, as indicated in Table I. According to (7), 
the absolute value of this ratio should always be less than or 
equal to one. As seen from Fig. 16, this is indeed the case. 
Moreover, Fig. 16 indicates that the bounds of =t1 are equally 
tight over a wide range of distortion targets. 

As mentioned in Section 111-B, it can happen that the 
reference distortion values must occasionally be modified in 
order to avoid misordering of the fidelity threshold values, 

28Recall from Section VI-A that yp = $: = - 2  for each distortion target, 
d, = - a .  
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Fig. 15. Frame-by-frame luminance PSNR for "Raiders of the Lost Arc" sequence, reconstructed from CBR and VBR scaled substream hierarchies generated 
using the medium delay algorithm of Table 11. Nominal average bit rate is 506.88 kb/s. Adaptation time constant for adaptive distortion tag map, I", is B = 40 s. 
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Fig. 16. 
medium delay algorithm of Table 11. Adaptation time constant for adaptive distortion tag map, 7", is E = 40 s. 

Normalized bucket fullness ratio, corresponding to the first S frame slots of the constant distortion scaled substream hierarchy generated using the 

us < CL; < . . . < U:. The fact that this modification is required 
only rarely is confirmed in our experimental investigations. 
In particular, Fig. 17 indicates the percentage of frame slots 
in which one or more reference distortion values must be 
modified in order to prevent threshold misordering, as a 
function of the time constant, B. As predicted in Section 111-B, 
the number of modifications decreases rapidly as B increases. 
In fact, no modifications whatsoever are required for B > 18 
s. Given that B may well be on the order of about 10 min in 
a practical system, Fig. 17 suggests that the need to modify 
reference distortion values may virtually never arise. 

VII. CONCLUSION 

The principle contribution of this paper is the introduction 
of a layered substream abstraction to facilitate simple, generic 
scaling of highly scalable compressed data, with both constant 
bit rate and constant distortion (VBR) scaling criteria. The 
behavior of these scaling policies has been experimentally 
demonstrated within the context of a class of highly scal- 
able video compression schemes, which permit compression 
performance to be traded for delay and/or implementation 

memory requirements. The conclusion of these experiments 
is that compression performance similar to that of MPEG- 
1 should be attainable with similar end-to-end delay, while 
offering a high degree of scalability using simple, generic scal- 
ing mechanisms. The proposed layered substream hierarchies 
provide a particularly useful tool for rate scaling within high 
speed, shared digital networks, where computational resources 
are often relatively limited. Moreover, the generic nature of the 
associated scaling mechanisms renders the proposed layered 
substream abstraction suitable for distribution of a wide variety 
of highly scalable data streams. Exactly the same substream 
abstraction should, for example, be equally appropriate for 
highly scalable compressed audio data streams, which might 
be generated using similar approaches to those described here 
for video. Interesting application possibilities emerge as a 
result of the potential for both constant rate and constant 
distortion based scaling. For example, one might envisage 
a heterogeneous multicast environment, in which compressed 
video is delivered to some clients at constant bit rate, while to 
others with constant distortion, depending on the capabilities of 
their respective distribution paths. It should be noted that our 
work on constant distortion substream scaling has focused on 
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Fig. 17. Percentage of frame slots requiring slight modification to the refer- 
ence distortion values, in order to prevent misordering of fidelity thresholds 
during adaptive distortion tagging, as a function of the time constant, B. 
Obtained using the medium delay compression algorithm of Table I1 and the 
“Raiders of the Lost Arc” video sequence. 

the MSE distortion measure for demonstrative purposes only. 
More realistic psychovisual distortion measures must clearly 
be investigated for practical applications. 

APPENDIX 

In this appendix, we prove Observations 1 and 3. The 
proof of Observation 2 is essentially identical to that of 
Observation 1. 

Observation 1: 
Proof: Note that D&(dtl = d j  for some j. According 

to (I), we must have d j  5 d;, i.e., j 2 i .  From (4) then, 
V&(dc) 5 t j  5 t i ,  so that $ “ ( d i )  2 min{$lV$ 5 t i } .  On the 
other hand, suppose that V$ 5 t i ,  for some $. Then 23; 5 d i ,  
by (4) which implies that $‘ (d i )  5 IJI, by (1). We conclude 
that $“ (d i )  I min{$,IV$ I t i } .  

Proofi Consider a y x .  B y  assumption, the initial value 
+ [ R ( d ; )  - RI] .  Suppose also that a; < @”,”” + 

Observation 3: 

U: < +, 
[R(di) - RI] for some frame slot s. We have two cases. 

I )  Case 1 (a,! 2 @$r) 
In this case we have 

$’(&) = min {$ I@$ 2 a: j 
2 min{$I@$ 2 @?Tj 2 $%U, 

where we have used (9) and the fact that the maximum 
fidelity, QF, associated with the first $ substreams, is 
a nondeereasing function of $. It follows that 

+“(&) +: 

<.-I E=1 
>: RE - R(&) L RE - R(di) 2 0 

and so, according to (IO), we have 5 ai < 
(pmax +; + [n(di) - RI]. 

Observe that E::‘;“’’ RE - R ( d i )  2 RI - R(di) so 
that, according to (lo), we have a:+’ 5 a: + [R(di) - 

2)  Case 2 (U! < @$‘r) 
RI]  < a$’::,”” + [ R ( d i )  - RI] .  

By induction on s, we see that at < @;? + [R(di) - R I ]  
for all frame slots s 2 1. A similar argument establishes the 
lower bound, ayin. 
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