
2019 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, OCT. 13–16, 2019, PITTSBURGH, PA, USA

ONLINE ONE-SHOT LEARNING FOR INDOOR ASSET DETECTION

Adith Balamurugan and Avideh Zakhor
University of California, Berkeley
{abala,avz}@berkeley.edu

ABSTRACT

Building floor plans with locations of safety, security, and energy as-
sets such as IoT sensors, fire alarms, etc. are vital for climate control,
emergency response, safety, and maintenance of building infrastruc-
ture. Existing approaches to building survey are tedious, error prone,
and involve an operator with a clipboard and pen, enumerating and
localizing assets in each room. We propose an interactive method
for a human operator to use an app on a smartphone, which can ac-
curately detect and classify assets of interest, to expedite such a task.
We must overcome the fact that appearances of a single type of as-
set, e.g. power outlet, vary greatly from building to building or even
from room to room. In this paper we propose an online ”one-shot
learning” approach using a Neural Turing Machine (NTM) architec-
ture with augmented memory capacity, which allows us to rapidly
incorporate new data into our model, improving prediction accuracy
after only a few examples, without compromising its ability to re-
member previously learned data. This approach reduces the training
time needed to update the model between building survey sessions
by up to a factor of 10. Experiments show that our proposed method
outperforms the prediction accuracy attained by using more tradi-
tional, batch processing deep learning methods where new data is
combined with all old data to train the model. The advantage is es-
pecially pronounced for assets in never-before-seen buildings.

Index Terms— Asset Detection, Asset Recognition, Object De-
tection, Online Learning, One-Shot Learning

1. INTRODUCTION

Building floor plans with locations of safety, security, and energy
assets such as Internet of Things (IoT) sensors, fire alarms, routers
etc. are vital for asset management, climate control, emergency se-
curity, safety, and maintenance of building infrastructure. Existing
approaches to building survey are manual, and usually involve an
operator with a clipboard and a pen or a tablet, enumerating and lo-
calizing assets in each room. As such, the process is tedious, time
consuming, and error prone. Also, it does not result in any contex-
tual data, i.e. the proximity and relationship between the sensors,
and the proximity and relationship between the assets and the room.

When using a human operated, semi-automated smartphone app
to solve the building survey problem, we must use deep learning to
detect assets of interest quickly and correctly. Authors of [1] use
deep learning methods to train a neural network to recognize the
assets of interest in a captured image, and use human-in-the-loop
interactive methods to correct erroneous recognition. These correc-
tions serve to improve the accuracy of the model as more assets are
recorded. One major shortcoming in this approach is the latency be-
tween a human correction and the model’s ability to reflect the new
information. In choosing a more traditional learning approach for as-
set classification, the model requires long training sessions in order

to update its weights to incorporate the newly collected information.
This training process could take hours or even days as the training
data grows. In a new environment, where the assets in the building
do not resemble assets previously seen in the training data, the hu-
man operator finds himself or herself correcting the categorization of
the asset very often. We propose a method which reduces this train-
ing time by up to a factor of 10 and improves performance accuracy
so the operator will not need to intervene frequently.

In this paper, we use a Neural Turing Machine (NTM) [2] archi-
tecture, a type of Memory Augmented Neural Network (MANN) [3],
with augmented memory capacity that allows us to rapidly incorpo-
rate new data to make accurate predictions after only a few examples,
all without compromising the ability to remember previously learned
data. This architecture lends itself nicely to the problem at hand: The
NTM combines the ability to slowly learn abstract representations of
raw image data, through gradient descent, with the ability to quickly
store bindings for new information, after only a single presentation,
by utilizing an external memory component. This combination en-
ables us to tackle both a long-term category recognition problem
where we can identify 10 different classes of objects across differ-
ent buildings as well as an instance recognition problem where the
model can quickly learn to recognize a particular never-before-seen
instance of an asset as belonging to a certain category.

Whereas in [1], the operator is required to retrain the model on
all the collected data before the performance reflects the added infor-
mation, now the new information is assimilated almost instantly and
can be robustly trained later to be reflected in a long-term capacity.

2. RELATED WORKS

Authors of [1] propose an interactive human operated smartphone
application using Augmented Reality (AR) technology, which al-
lows the placement of virtual anchors in the real world to detect
location of the assets. This is possible since phones nowadays are
equipped with powerful processors and many sensors, such as cam-
eras and inertial measurement units. [1] also incorporates an object
detection pipeline residing on the smartphone itself used to classify
each asset on the screen into one of 10 classes.

In Fig. 1, screenshots of the application are visible where the op-
erator points at an asset and taps, following which the captured im-
age is passed through a Single Shot Detector (SSD) neural network,
pre-trained on the MSCOCO dataset [4], and a class prediction is
made along with the confidence level, which are both presented on
the screen. At this point, the application user has the opportunity to
either move on to the next asset if correctly classified or override the
prediction by tapping ”UNDO,” selecting the correct class label, and
drawing a bounding box on the screen containing the asset of inter-
est. The image, bounding box, and true label are later used to update
the model during training.

To reduce the size and complexity of the model to operate on a

978-1-7281-0824-7/19/$31.00 c©2019 IEEE



(a) (b)

Fig. 1. 3D Indoor Smartphone Application. (a) Router correctly
classified. (b) Light switch correctly classified.

smartphone, the Tensorflow neural network is frozen and the infer-
ence graph is converted into a much smaller 22 MB TFLite model,
which is an offline model optimized for smartphone devices.

Recent advances in few-shot classification have involved meta-
learning approaches where a parameterized model is defined and
trained in episodes representing different classification problems. In
[5], training episodes also include unlabeled examples which may
either belong to one of the same set of classes as the rest of the train-
ing data or from a completely new class. Through an extension of
Prototypical Networks [6], the models can learn to leverage the unla-
beled data during training to improve the classification accuracy on
the labeled data, much as in a semi-supervised learning environment.

The exploitation of an additional big dataset with different cate-
gories can be used to improve the accuracy of few-shot classification
over a different ”target” dataset [7]. This idea is founded upon the
observation that images can be decomposed into different objects,
which many different datasets may contain in common. Using this
object level relation learned from the supplemental dataset, the sim-
ilarity of images from the target dataset can be better determined.
The approach presented in this paper uses a similarity function to
improve classification accuracy by generating similarity key to asset
category bindings, in external memory.

A Neural Turing Machine (NTM) closely resembles a ”work-
ing memory system,” defined by having a capacity for short-term
storage of information and its rule-based manipulation [8]. This is
evident because the architecture is built with a process to read from
and write to memory selectively. The NTM architecture consists of
two major components, a neural network controller and a memory
bank. The NTM model is pictured in Fig. 2. At every step, the con-
troller network receives inputs from the external environment and
emits outputs in response. It also reads to and writes from a memory
matrix via a set of parallel read and write heads [2].

Fig. 2. Block diagram of Neural Turing Machine [2]

Most importantly, every component is differentiable, including
the read and writes to memory. This is accomplished via ”blurry”

read and write operations that interact to a greater or lesser degree
with all the elements in memory. Because of the differentiability, the
weights of the entire model can be updated via backpropagation.

Traditional gradient-based neural networks, much like the one
used in [1], inefficiently require a large amount of data to learn,
through extensive iterations of training. Architectures with aug-
mented memory capacity (MANNs) enable rapid encoding and re-
trieval of new information, which can eliminate the downsides of the
more traditional approach [3]. Rather than attempting to determine
parameters θ to minimize a learning cost L across some dataset D,
parameters are chosen to reduce the expected learning cost across a
distribution of datasets p(D) [3].

To properly set this up, one must define an episode, which in-
volves the presentation of a dataset D = {xt, yt}Tt=1 where in the
classification case, yt is the class label for image xt. In this setup,
yt is both a target, and is presented as input along with xt, in a tem-
porally offset manner; that is, the network sees the input sequence
(x1, null), (x2, y1), . . . , (xT , yT−1). Thus, at time t the correct la-
bel for the previous data sample (yt−1) is provided as input along
with a new query xt. The network is tasked to output the appro-
priate label for xt, i.e. yt, at the given timestep. The model must
learn to hold data samples in memory until the appropriate labels are
presented at the next timestep, after which sample-class information
can be bound and stored for later use. The model attempts to capture
the predictive distribution p(yt|xt, D1:t−1; θ) [3].

The NTM, shown in Fig. 2, is a fully differentiable implemen-
tation of a MANN [3]. It consists of a controller, such as a feed-
forward network or LSTM, which interacts with an external memory
module using read and write heads [2]. The NTM is perfect for one-
shot prediction since memory encoding and retrieval is rapid and
can be done efficiently using vector representations at potentially
every timestep. A NTM can learn a good long-term strategy, via
model weight updates, that determines the sample representations it
places into short-term memory. It later uses these representations
when making predictions, so accurate predictions are possible even
for classes that it has only seen once.

3. METHOD

We outline the model specifications we use in our approach, the
dataset used to for the asset detection problem we are addressing,
as well as the training and evaluation pipeline.

3.1. Model

We propose to solve this asset detection problem using a NTM. As
described in [3], the NTM consists of a controller, chosen to be a
Long Short-term Memory (LSTM), which interfaces with an exter-
nal memory module using read and write heads [2]. The LSTM
controller interacts with the memory using read and write heads,
which rapidly retrieve representations from memory or place them
into memory, respectively.

3.1.1. External Memory

Let Mt be the contents of the N × M memory matrix at time t,
where M is the dimension of the condensed representation created
for an input image and N denotes the number of rows in the matrix.
We let N equal 10, the number of classes in our system. Having a
finite, fixed N allows us to limit the amount of space required for
the external memory while also allowing the system to learn sample
representation-class bindings for each of the different asset classes



we intend to classify. Given an input, xt, which in our case is a vec-
torized raw image, the controller produces a M -dimensional vector
key, kt, which is used to quickly read from memory in a specific
manner we describe below.

We index into the memory matrix Mt using the cosine similarity
measures between each key and each row of the matrix

K(kt,Mt(i)) =
kt ·Mt(i)

‖kt‖‖Mt(i)‖
(1)

where Mt(i) denotes row i of the memory matrix. The similarity
metric computed with each row, equivalent to a class representation,
in the memory matrix is then used to compute a read weight for each
row in memory, wr

t (i), using a softmax:

wr
t (i) =

expK(kt,Mt(i))∑N
j=1 expK(kt,Mt(j))

(2)

TheM -dimensional memory vector rt that is read is a weighted sum
of all the rows using the N -dimensional read weights vector wr

t .

rt = wr
tM
>
t (3)

The retrieved memory vector rt is returned to the controller and is
then used as input to a softmax classifier which makes an asset class
prediction ŷt for the original input xt.

Encoding and writing new information to memory is inspired by
input and forget gates of an LSTM [2]. Each write is broken into
two parts, erase and add. We write into memory when the model
receives the true class label, yt, for a particular image xt in the fol-
lowing timestep (t + 1). At time t + 1, the controller generates a
new erase vector et+1 of M random values in range (0,1) during
each write step and a scalar erasure weight wt+1, which is set as a
constant hyperparameter for the entire model. The write update to
the appropriate row of the memory matrix occurs as follows:

M̃t+1(yt) = Mt(yt)[1− wt+1et+1] (4)

We add some noise to the row corresponding to the true class
label we just received. This is to partially ”forget” the sample
representation-class binding the model has already developed to
make room for the new information. Next we add the representation
for the image xt generated by the controller, kt, to the row:

Mt+1(yt) = M̃t+1(yt) + wt+1kt (5)

Ideally, the model updates the row of the memory matrix Mt corre-
sponding to the class label in order to incorporate the representation
of the image xt since we know it belongs to that class. For future
inputs, this added information helps accurately categorize assets be-
longing to the same class.

3.1.2. Object Localization

Unlike existing one-shot and few-shot learning approaches evaluated
on the Omniglot dataset, we face the additional challenge that the
raw image samples may contain assets of interest that occupy only
a small portion of the entire image. In our asset detection pipeline,
we must deal with classifying objects with drastically lower object
to image ratio such as the EXIT sign shown in Fig. 3.

Rather than processing the entire raw image with no additional
information on the pixel location of the asset, we localize the prob-
lem to a region of interest before the model classification. In order to
accomplish this we use classical image segmentation techniques [9]

(a) (b)

Fig. 3. (a) Original image; (b) Edge detection on (a) for localization

such as edge detection and clustering algorithms to identify a single
400 × 400 pixel region within the image with the most significant
pixel values which we assume pertains to the asset object of interest.

In Fig. 3, the edge detection algorithm finds the most significant
differences between pixel values along the contours of the exit sign.
Using the Canny edge detection [10] output, we select the 400 ×
400 pixel crop containing the most edges and instruct the model to
focus on this region when predicting the correct asset class. Note
that the approximate localization does not always contain the asset
of interest, but is fast and provides us reasonably effective bounds.
We can alleviate this issue slightly by providing the model with the
true bounding box in the following timestep as seen in Section 3.3.

3.1.3. Controller

In our approach, the controller of the NTM is mostly a LSTM, which
connects the inputs and outputs of subsequent timesteps. There are
other components comprising the controller which we describe in
this section. The controller takes in the (raw image, true label,
bounding box coordinates) tuple as input and interfaces with the
external memory in order to update the sample representation-class
bindings we store. In our implementation, we use a LSTM with 200
hidden units, which worked well for our input.

Fig. 4 visualizes how the inputs to the controller are used. At
time t, the controller receives a 921614-dimensional vector consist-
ing of 640 × 480 pixel raw image xt, one-hot encoded class label
yt−1, and bounding box coordinates bt−1. We first focus on the raw
image, the first 921600 entries of the input vector. The controller
crops the image using object localization methods described in Sec-
tion 3.1.2. This 400 × 400 pixel cropped image, is passed into the
LSTM and a key representation, kt, is outputted. This key is used to
read memory rt from the memory matrix, Mt, via Equations 1-3. A
softmax classifier uses the memory, rt, to make a class prediction,
ŷt for the input image. The raw image, key, and class prediction are
passed as additional inputs to the following timestep of the LSTM.

Meanwhile, the true label, yt−1, and bounding box information,
bt−1, at time t are used in combination with the additional inputs
(xt−1, kt−1, ŷt−1) from the previous timestep to compute the cross
entropy loss for that particular class prediction using prediction ŷt−1

and ground truth yt−1. This loss is used to update the weights of
the LSTM via backpropagation. Additionally, we update the sample
representation-class binding for class yt−1 by writing to memory
using Equations 4-5. In Section 3.3, we discuss the exact update
performed when writing to memory.

3.2. Data

We use the same dataset created in [1] for training and evaluating. It
consists of the following ten categories of assets: router, fire sprin-



kler, fire alarm, fire alarm handle, EXIT sign, card-key reader, light
switch, emergency lights, fire extinguisher, and outlet.

The breakdown of the data collected through the use of the
smartphone app, including both images of correctly and incorrectly
classified assets, is shown in Table 1. Each row of Table 1 refers to
a different Day-Building pair dataset, defined in the Data column.

Counts of Sample Images by Asset
Data A B C D E F G H I J
0-CH 60 35 8 7 57 26 8 7 2 8
1-CH 35 13 20 15 4 7 5 2 2 4
2-CH 25 6 1 0 1 7 10 3 0 2

3-SDH 6 7 6 3 7 8 9 0 4 2
3-EH 0 8 10 6 3 9 0 14 1 7
4-CH 31 11 15 6 9 6 10 3 4 4

Table 1. A = Fire Sprinkler, B = Fire Alarm, C = Outlet, D = Light
Switch, E = Router, F = EXIT sign, G = Card-key Reader, H = Emer-
gency Lights, I = Fire Extinguisher, J = Fire Alarm Handle. Distri-
bution of the classes of objects we trained and tested on, over 4 days
of data collection. CH = Cory Hall, SDH = Sutardja Dai Hall, EH =
Evans Hall

Every image in the dataset described in Table 1 is accompanied
by the true label of the pictured asset as well as the top left and
bottom right coordinates of a bounding box enclosing the asset.

The performance of the model in [1] on each day is presented in
Table 2 for comparison against the approach presented in this paper.
We use the data in the dataset in a manner which best matches how
the traditional deep learning model approach used it.

3.3. Training

We denote the dataset D = {xt, (yt, bt)}Tt=1, where yt is the
class label for image xt and bt is the bounding box informa-
tion for the asset within the image xt. In this setup, yt is both
a target, and is presented as input along with xt, in a tempo-
rally offset manner; that is, the network sees the input sequence
(x1, null), (x2, (y1, b1)), . . . , (xT , (yT−1, bT−1)). At time t + 1,
the correct label and bounding box coordinates for the previous
data sample, (yt, bt), are provided as input along with a new query
xt+1. This is a single input vector of dimension 921614, 921600
for 640 × 480 RGB image, 10 for one-hot encoded label, 4 for
bounding box coordinates, passed into the LSTM controller. For
timestep t + 1, the network is tasked to output the appropriate la-
bel for xt+1, i.e. yt+1. Simultaneously, the model is updating its
class representation for class yt since it is now given information
pertaining to the true category of the image sample from the pre-
vious timestep. Thus, in external memory, the model incorporates
image data from xt into the sample representation-class binding for
class yt. In order to prevent the model from learning sample-class
bindings during training, the samples, and their corresponding label
and bounding box information, from the dataset are shuffled before
being fed to the model. We want the model to learn to hold data
samples in memory until the appropriate labels are presented at the
next timestep, after which sample representation-class information
can be bound and stored for later use.

For all t from 1 to T , the total number of images in an episode,
we repeat the process depicted in Fig. 4, where the NTM transitions
from time t to time t+ 1. For only Fig. 4, assume asset light switch
is associated with class label 1. The label and bounding box infor-
mation are used in combination with the information fed forward

Fig. 4. The NTM transition from time t to timestep t+ 1.

through the LSTM controller from the previous timestep to update
the correct sample representation-class binding in external memory.
The asset in the raw image is localized and cropped to be used to
read memory rt, which is then used to make class prediction ŷt.

If the external memory component does not yet have a robust
sample representation-class binding for a class, e.g. in the first
presentation of this particular class after clearing the memory, the
model’s inference is close to a random guess. At the following
timestep it receives the true label and subsequent appearances of ob-
jects of the same class are classified with more accuracy. In practice,
we can eliminate this phenomenon by retaining the external memory
component after a round of testing, as long as the model architecture
and the number of classes have not changed. This is not feasible
when the model is run on different phones, but for the same user
continuously surveying different buildings, this reduces the number
of erroneous predictions on even the first appearance.

The model is also processing (yt−1, bt−1) passed in at time t,
alongside image xt. The model combines the true label and bound-
ing box with their corresponding image from the previous timestep.
The label is passed in as a one-hot vector, where each different class
is assigned an integer label ranging from 0 to (N −1), 9 in our case.
This one hot vector determines which row of the external memory
we alter in order to incorporate the sample representation kt−1 from
the image xt. The sample representation, kt−1, is passed from the
previous timestep to the current one so the memory module can be
updated. However, it is desirable and advantageous to take into ac-
count the provided ground truth bounding box from the user during
an erroneous detection. Specifically, the controller computes a new
key, k′t−1, using the true bounding box bt−1, expanded or reduced
to 400 × 400 pixels, to crop xt−1. Since we are not updating the
method by which the object localization approximation is achieved,
we cannot completely ignore the original key, kt−1, computed using
approximate localization. We update the memory matrix row spec-
ified by label yt−1, following the write steps outlines in Equations
4-5. Instead of using kt−1 computed using approximate object lo-
calization, we add the sample representation defined by the mean of
the two keys we computed, that is 1

2
(kt−1 + k′t−1). This results in

an updated Equation 5 where kt−1 is replaced with 1
2
(kt−1+k′t−1).

Later, when a sample from this same class is observed, it re-
trieves the stored binding pertaining to that class from the external
memory to make a prediction. During the training phase, we com-
pute the loss using the model’s prediction and the true label of the
asset arriving in the following timestep. The error is backpropa-
gated to update the LSTM weights from the earlier steps in order to
promote a better binding strategy [3]. Note that the LSTM weights



affect the generated key representation, kt, for a provided sample
image, so when the model weights are updated, the model moves
away from a binding strategy that yielded an incorrect prediction.
This update of the LSTM weights enforces the long-term memory
behavior of learning a good general binding strategy. We note that
the weight update has no effect on the approximate object localiza-
tion since that is accomplished through classical image processing
techniques.

3.4. Evaluation

The evaluation of the model is meant to represent the model’s ability
to adapt to never-before-seen appearances of assets. The evaluation
process emulates how well a model can perform while an operator of
the smartphone application is surveying a new building for the first
time. This means the model does not make changes to its binding
strategy, i.e. no weight updates are performed, and the model is
evaluated on its classification accuracy for new data, only adapting
via external memory updates.

Our evaluation pipeline is exactly the same as our training flow,
except there is no backpropagated signal updates during the predic-
tion step. In other words, the model weights remain fixed and the
model is assessed on how well the long-term strategies it has learned
thus far allow it to adjust to accurately classify the new dataset. In
our use case, when the operator is using the app to survey buildings,
the model is always provided with a true label and a bounding box
for every collected sample image. The testing process behaves as
though the model receives an input image, and the label and bound-
ing box are provided ”at the next timestep.” This further justifies our
choice to use this episodic learning format to train and evaluate the
model.

4. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate our approach with 4 different training
and evaluation modes. In mode (1), we train our model weights
using only the negative, or incorrectly classified, images from the
previous Day of data before evaluating on the next Day’s dataset.
This most closely resembles the training scheme used in [1], where
the SSD model was trained after each day of data collection on all
the previous training images, plus the misclassified images from the
current day. In our approach, we do not retrain the model on all the
old data, only the new.

In mode (2), we train the model weights after each Day of data
using the entire dataset, including both positively and negatively
classified objects from the previous day. In both modes (1) and
(2), we wipe the external memory after each training and evalua-
tion phase to determine the model’s ability to adapt to new buildings
and asset appearances using primarily short-term memory.

In mode (3), we train on both positive and negative samples, but
we never wipe the external memory matrix. After each training or
testing phase, the memory persists into the following testing or train-
ing phase respectively. This mitigates the first appearance problem
where the model is forced to make a random guess for the class of an
asset on the first time it is presented due to an empty memory matrix.
However, since the information from all the previously seen old data
is still in external memory, it prevents the model from best utilizing
its short-term learning by emphasizing the new incoming data.

In mode (4), we take a similar approach where the memory is re-
tained after each training and evaluation phase, but in order to place
emphasis on the new data, the retained memory is down-weighted

by a ”decay factor” of 0.684, determined empirically, after training,
before it is passed on to the evaluation phase.

The training phase before each evaluation phase consists of
training for 30000 episodes on the previous Day’s images, along
with augmented versions of these input images. The augmentations
applied to these images include (a) flip the original image horizon-
tally; (b) flip the original image vertically; (c) adjust the brightness
of the original image by a factor in the range [0, 0.2]; (d) rotate the
original image by 90 degrees. These augmentations were accom-
plished using options native to the Tensorflow Object Detection API
and bounding box information was also augmented accordingly.
The augmented images were passed into the model along with the
original images, in a shuffled order. Note that image augmentations
were only used during the training phase and not during evaluation.

We compare the performance of the approach presented in this
paper with that of the approach implemented in [1]. In order to best
compare the results for each dataset, we report an overall predic-
tion accuracy. This is computed by taking the total number of ob-
jects classified correctly in the dataset divided by the total number
of images in the dataset, treating assets of all classes equally. The
accuracy provided for each dataset in [1] was computed by taking
pictures of each asset in one particular order and classifying each
object exactly once. In order to replicate this procedure, we shuf-
fle the dataset into a random order, attempt to classify every single
object once sequentially and record the overall accuracy. We repeat
this accuracy computation on 100 permutations of the same dataset.
We note that at 100 permutations, the accuracy converges at a single
number with low variance, comparable to the results produced in [1].
Since we are looking at the distribution of accuracies over 100 per-
mutations of each dataset, we also provide the standard deviations,
the minimum accuracies, and maximum accuracies in the 100 mea-
surements collected for that dataset. These results are presented for
each of the 4 modes of training we outlined at the start of Section 4.

Evaluation Set
Day 1 Day 2 Day 3 Day 3 Day 4

Model (CH) (CH) (SDH) (EH) (CH)
SSD [1] 67.2 81.7 74.3 54.7 73.6
Ours

M
od

e
(1

) Acc.(%) 58.6 60.9 63.5 62.9 69.78
Std Dev.(%) 0.11 0.08 0.05 0.14 0.03
Min Acc.(%) 54.1 55.7 60.6 56.2 60.1
Max Acc.(%) 62.0 64.1 65.8 67.5 70.3

M
od

e
(2

) Acc.(%) 66.7 63.9 67.6 64.33 76.2
Std Dev.(%) 0.21 0.11 0.08 0.13 0.02
Min Acc.(%) 59.9 61.3 63.4 60.1 74.0
Max Acc.(%) 70.0 66.2 69.3 66.7 77.3

M
od

e
(3

) Acc.(%) 73.1 74.3 76.2 69.3 77.1
Std Dev.(%) 0.12 0.13 0.01 0.10 0.008
Min Acc.(%) 68.8 70.2 75.1 68.8 76.0
Max Acc.(%) 75.2 75.1 77.1 70.1 77.8

M
od

e
(4

) Acc.(%) 73.1 82.3 74.7 69.8 79.0
Std Dev.(%) 0.07 0.01 0.04 0.08 0.10
Min Acc.(%) 71.8 77.8 70.9 67.1 77.2
Max Acc.(%) 76.2 84.1 76.3 71.5 83.6

Table 2. Accuracy of traditional deep learning approach [1] versus
our approach, modes (1)-(4). SSD results were reproduced on exact
datasets we use in this paper. CH = Cory Hall, SDH = Sutardja Dai
Hall, EH = Evans Hall

We observe that for a familiar building such as Cory Hall, the ap-



proach in [1] outperforms our variation with no memory retention.
However, when it comes to generalizing to new buildings and adapt-
ing to new information, our one-shot approach delivers impressive
results in unfamiliar surroundings such as in SDH and Evans Hall.
When we incorporate the memory retention option, our approach
outperforms the traditional SSD approach [1] even in previously
seen buildings, despite not retraining on old data. The higher overall
accuracies in Table 2 indicate that in new environments, we reduce
the amount of human correction required when detecting assets of
interest compared to [1]. Using our method, if we were to train on
more samples of differing appearances and conditions, we learn a
very robust sample representation-class binding strategy which gen-
eralizes far better to never-before-seen instances of these assets than
the traditional approach [1].

Mode (4) achieved the best performance out of the 4 variations
we tested. We attribute this to this gradual decay of the memory ma-
trix, which enforces that the model retains older information from
prior buildings while incorporating newer information with rela-
tively higher weightage. Again, we note that retention of memory
may not always be feasible in practice, but if we have that option,
Table 2 indicates that performance can be improved by retaining it.

Our model also allows for the addition of new asset classes with-
out needing to recreate the architecture and retrain from scratch. This
could prove very useful in a practical application of this approach.
If an asset we had not accounted for was present in a building, we
could learn on the fly that the asset does not fall into any of the
known categories and dynamically allocate more external memory
space to construct a binding for this new asset type.

Arguably, the most significant result we find is that due to our
approach’s long-term and short-term learning capacities, we avoid
the need to retrain on all the old data and can focus on training the
model on only the new data. The results in Table 3 show the drastic
difference in offline training times between the SSD model in [1] and
the approach described in this paper.

Offline Training
SSD Ours Ours

Data Set (Kostoeva et al.) Mode (1) Mode (2)-(4)
Day 0 18hr 29m 5hr 27m 5hr 27m
Day 1 20hr 11m 2hr 29m 4hr 17m
Day 2 20hr 56m 1hr 33m 3hr 4m
Day 3 22hr 40m 2hr 50m 4hr 13m
Day 4 – 2hr 1m 4hr 9m

Table 3. Offline Training timing results for our approach versus the
traditional deep learning approach.

In Table 3, we present the timing results for the offline training
required to update the model compared to that of the traditional ap-
proach. Note that we do not lose any speed in generating a prediction
and have less than 1 second of added latency when the model updates
the memory matrix in its ”Online Training” step, but, in practice, this
time is comfortably less than the time it takes for an operator to move
from one asset to the next. Most importantly, we cut down the to-
tal offline training time by a significant amount while still yielding
comparable, if not better, performance.

5. CONCLUSION

Our proposed method takes advantage of new information as it is
presented in order to minimize the instances of human intervention
needed to correct a misclassified example. The nature of the NTM

allows us to take advantage of an external memory module which
need not take up vast amounts of space and grows in size linearly
with the number classes we can differentiate, rather than the num-
ber of sample images, which means the entire short-term memory
system can reside on the smartphone itself. The long-term memory
training, mainly the slow update of model weights, can be conducted
offline and the original model can be replaced.

Future work includes: (a) migrating this approach onto the
smartphone application and replacing the current TFLite model in
[1], which has high training latency, (b) improving the accuracy of
the system via pseudo-realistic augmentation of training examples,
(c) extension to greater number of classes without modification to
the architecture of the model [11], by choosing an encoding schema
other than one-hot, we can represent more than 10 classes, (d) im-
prove the robustness of the model via collection of data from a wide
array of different environments with differing asset appearances,
and (e) utilizing the location of the finger tap on the phone screen in
localizing the position of the asset within the sample image.

6. REFERENCES

[1] R. Kostoeva, R Upadhyay, Y. Sapar, and A. Zakhor, “Indoor
3d interactive asset detection using a smartphone,” in ISPRS,
2019, Indoor 3D workshop.

[2] Alex Graves, Greg Wayne, and Ivo Danihelka, “Neural turing
machines,” CoRR, vol. abs/1410.5401, 2014.

[3] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan
Wierstra, and Timothy P. Lillicrap, “One-shot learning
with memory-augmented neural networks,” CoRR, vol.
abs/1605.06065, 2016.

[4] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.
Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick, “Mi-
crosoft COCO: common objects in context,” CoRR, vol.
abs/1405.0312, 2014.

[5] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, and
Richard S. Zemel, “Meta-learning for semi-supervised few-
shot classification,” CoRR, vol. abs/1803.00676, 2018.

[6] Jake Snell, Kevin Swersky, and Richard Zemel, “Prototypical
networks for few-shot learning,” in Advances in Neural Infor-
mation Processing Systems, 2017, pp. 4077–4087.

[7] Liangqu Long, Wei Wang, Jun Wen, Meihui Zhang, Qian Lin,
and Beng Chin Ooi, “Object-level representation learning for
few-shot image classification,” CoRR, vol. abs/1805.10777,
2018.

[8] A. Baddeley, M. Eysenck, and M. Anderson, Memory, 2009.

[9] George Stockman and Linda G. Shapiro, Computer Vision,
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition,
2001.

[10] John Canny, “A computational approach to edge detection,” in
Readings in computer vision, pp. 184–203. Elsevier, 1987.

[11] Dawei Li, Serafettin Tasci, Shalini Ghosh, Jingwen Zhu, Junt-
ing Zhang, and Larry P. Heck, “Efficient incremental learn-
ing for mobile object detection,” CoRR, vol. abs/1904.00781,
2019.


