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Abstract

Building floor plans with locations of safety, security and energy assets such as IoT sensors,

thermostats, fire sprinklers, EXIT signs, fire alarms, smoke detectors, routers etc. are vital for

climate control, emergency response, security, safety, and maintenance of building infrastructure.

Existing approaches to building survey are tedious, error prone, and usually involve an operator

with a clipboard and pen, or a tablet enumerating and localizing assets in each room. We propose

an interactive method for a human operator to use an app on a smart phone to expedite such

a task. One major component of this semi-automated building survey method is to accurately

detect and classify assets of interest. Our approach is to use deep learning methods to train a

neural network to recognize assets of interest, and uses human-in-the-loop interactive methods

to correct erroneous recognition. These corrections serve to improve the accuracy of the model

over time as more assets are recorded. A major hurdle faced when classifying via this method is

that the appearance of a single type of asset, e.g. power outlet, can vary greatly from building to

building or even from room to room, so a high rate of human correction is required to accurately

recognize every asset of interest, since the model is unable to adapt in real time. In this thesis,

we propose an online "one-shot learning" approach which combines aspects of long-term and

short-term memory to minimize the amount of human correction required for accurate asset

detection, even in situations involving never-before-seen asset appearances. We use a Neural

Turing Machine (NTM) architecture, a type of Memory Augmented Neural Network (MANN),

with augmented memory capacity which allows us to rapidly incorporate new data into our model

to improve prediction accuracy a�er only a few examples, all without compromising the ability to

remember previously learned data. This approach greatly improves the training time needed to

update the model between building survey sessions. Experiments show that our proposed method

matches and sometimes outperforms the prediction accuracy a�ained using more traditional

batch processing deep learning methods where new data is used in conjunction with all old data

to train the model. The advantage is especially pronounced for assets in new buildings that the

model has never seen prior.
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1. Introduction

Building floor plans with locations of safety, security and energy assets such as Internet of Things

(IoT) sensors, thermostats, fire sprinklers, EXIT signs, fire alarms, smoke detectors, routers etc.

are vital for climate control, emergency response, security, safety, and maintenance of building

infrastructure [10]. Existing approaches to building survey are tedious and error prone. They

usually involve an operator with a clipboard and pen, or a tablet enumerating and localizing assets

in each room as they traverse from room to room and from building to building.

Kostoeva et al. recently proposed a semi-automated approach to solving this problem by

creating a human operated smartphone app to create the 2D layout of a room, detect assets of

interest using a deep learning method, and localize them within the layout [4]. In this thesis, we

focus on improving the second task, detecting assets of interest. Authors of [4] use deep learning

methods to train a neural network to recognize the assets of interest in a captured image, and

use human-in-the-loop interactive methods to correct erroneous recognition. These corrections

serve to improve the accuracy of the model over time as more assets are recorded. One major

shortcoming in this approach is the high latency between a human correction and the ability

of the model to reflect the new information learned. In choosing a more traditional learning

approach for asset classification, the model requires a lengthy training session in order to update

its weights to incorporate the newly collected information. Depending on the number of asset

images to be trained upon, this training process could take hours or even days. Hence, in a new

environment, where the assets in the building do not resemble assets previously seen in the

training data, the human operator finds himself or herself correcting the categorization of the

asset at a very high rate.

It is important to note that the appearance of a single type of asset, e.g. power outlet, can

vary greatly from building to building or even from room to room, so we elect to implement a

model that is able to adapt in real time to avoid high training latency. In this thesis, we propose

an online "one-shot learning" approach which combines aspects of long-term and short-term

memory to minimize the amount of human correction required for accurate asset detection, even
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in situations involving previously unseen asset appearances. We use a Neural Turing Machine

(NTM) [2] architecture, a type of Memory Augmented Neural Network (MANN) [15], with aug-

mented memory capacity which allows us to rapidly incorporate new data into our ability to

make accurate predictions a�er only a few examples, all without compromising the ability to

remember previously learned data. This architecture lends itself nicely to the problem at hand.

The NTM combines the ability to slowly learn abstract representations of raw image data, through

gradient descent, with the ability to quickly store bindings for new information, a�er only a

single presentation, by utilizing an external memory component. This combination enables us to

tackle both a long-term category recognition problem where we can identify 10 di�erent classes

of objects across di�erent buildings as well as an instance recognition problem where the model

can quickly learn to recognize a particular never-before-seen instance of an asset as belonging to

a certain category.

Whereas in [4], the operator of the app would be required to completely retrain the model on all

the collected asset data before the performance would reflect the added information, now the new

information is assimilated almost instantly and can be robustly trained later on to be reflected

in a long-term capacity. Experiments show that our proposed method matches and sometimes

outperforms the prediction accuracy a�ained in [4], when detecting 10 di�erent classes of assets.

The advantage is especially pronounced when we evaluate the performance on asset images from

new buildings that the model has never seen prior.

The outline of this thesis is as follows: In Section 2, we describe related work in this area and

how they relate to and inspire the approach we present in this thesis. Section 3 contains the

detailed view of the method we use. This includes the specifics of the model, the dataset we

use, and the training and evaluation pipelines. In Section 4, we present the results and of our

experiments and analyze how this approach performed against the approach used in [4]. Lastly,

in Section 5, we discuss our findings, limitations in the experimental design and execution, and

next steps to take in pu�ing this approach into practice.

6



2. Related Works

In this Section, we review existing work in six areas: Interactive Asset Detection, Incremental

Learning, One-Shot and Few-Shot Classification, Online Learning, Neural Turing Machine (NTM),

Memory Augmented Neural Networks (MANN).

2.1. Interactive Asset Detection

The automation of the building survey process to be able to create a layout of rooms, detect assets,

and plot them within the room is critical in speeding up the otherwise manual process. The authors

in [4] propose an interactive human operated smartphone application using Augmented Reality

(AR) technology, which allows the placement of virtual anchors in the real world to detect location

of the assets. This is possible since phones nowadays are equipped with powerful processors and

many sensors, such as cameras and inertial measurement units. [4] also incorporates an object

detection pipeline residing on the smartphone itself used to classify each asset on the screen into

one of 10 classes. As mentioned in section 1, we intend to provide an alternative method to the

object detection pipeline presented in [4] so as to update the recognition model in near real time.

In Figure 2.1, screenshots of the application are visible where the operator points at an asset

and taps, following which the captured image is passed through a Single Shot Detector (SSD)

neural network and a class prediction is made along with the confidence level, which are both

presented on the screen. At this point, the application user has the opportunity to either move on

to the next asset if correctly classified or dis-validate the prediction by tapping "UNDO", selecting

the correct class label, and drawing a bounding box around the region of the screen containing

the asset of interest. This tuple of image, bounding box, and ground truth label is later used to

update the model during training.

The approach used in [4] for detecting assets is the Single Shot Detector (SSD) model which

has been pre-trained on the MSCOCO dataset [7]. For every session of new asset data collected

by the app operator, the last fully connected layer of the model is retrained on the entirety of the
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(a) (b)

Figure 2.1.: 3D Indoor Smartphone Application screenshots, highest probability classification of

the asset on the screen along with confidence displayed. (a) Router correctly classified.

(b) Light switch correctly classified.

dataset, including all past images. This is an extremely long process and only grows in duration

as the amount of sample data grows in size.

To reduce the size and complexity of the model to operate on a smartphone, the Tensorflow

neural network is frozen and the inference graph is converted into a much smaller 22 MB TFLite

model, which is an o�line model optimized for smartphone devices.

In this thesis, we present the MANN approach which uses an external memory component to

learn short-term bindings, allowing it to adapt to new data in real time without robust training

of the model weights. Additionally, a�er every session of new asset data collection, the model

weights can be incrementally updated by training on only the new images, since the model

weights are primarily used to extract general features and an abstract representation of the raw

input image. The approach we present in this paper is meant to replace the existing deep learning

architecture presented in [4].
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2.2. Incremental Learning for Mobile Object Detection

Currently, we focus on 10 object classes of interest, but it is possible a new type of asset is

developed or we encounter a new type of asset crucial to the building survey, which the model

does not account for. Generally, this problem is solved by incrementally adding objects of the

new class to the model’s understanding and by fine-tuning the model with training data from

the existing classes as well as the new one. However, this is not practical in many cases where

new classes must be incorporated there and now. Learning to detect new objects incrementally

in a timely and quality conscious manner is crucial in many application scenarios. Researches

from Samsung, Apple, and USC have proposed a solution to this incremental learning problem

by adding new object classes using only new class examples for training [5]. In order to prevent

the model from "catastrophically forge�ing" [3, 16] its understanding of the old classes in lieu of

the new, [5] developed a data collection and annotation pipeline along with a novel loss function

which allows the model to learn without forge�ing [6]. This concept is similar to the short-term

versus long-term memory approach we use in our approach.

2.3. Few-Shot and One-Shot Classification

In few-shot classification, the objective is to train a classifier from only a few labeled examples.

Recent advances in few-shot classification have involved meta-learning approaches where a pa-

rameterized model is defined and trained in episodes representing di�erent classification problems.

In [12], training episodes also include unlabeled examples which may either belong to one of the

same set of classes as the rest of the training data or from a completely new class. Through an ex-

tension of Prototypical Networks [17], the models can learn to leverage the unlabeled data during

training to improve the classification accuracy on the labeled data, much as in a semi-supervised

learning environment.

These techniques are not needed for our current problem since there is a finite number of

categories that persist throughout the di�erent buildings we test in. However, for future work,

the model might extend to new asset classes that may prove noteworthy but are not currently

included in our enumeration. In this case, including them during training should still increase the

robustness of our model even if the class itself has never been seen before.

The exploitation of an additional big dataset with di�erent categories can be used to improve

the accuracy of few-shot classification over a di�erent "target" dataset [8]. This idea is founded
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upon the observation that images can be decomposed into di�erent objects, which many di�erent

datasets may contain in common. Using this object level relation learned from the supplemental

dataset, the similarity of images from the target dataset can be be�er determined. The approach

presented in this thesis uses a similarity function to improve classification accuracy by generating

similarity key to asset category bindings, in external memory. Our approach does not introduce

an auxiliary dataset and the similarity key is generated by the model using the images it has

already seen prior.

2.4. Online Learning

The umbrella of online learning refers to a method of machine learning where the data becomes

available in a sequential order and the model trains on this information in a stream. O�line

training, which is more typical in object detection frameworks occurs when the entire static

dataset is collected beforehand and the training occurs on the whole data in one session. Online

training gives us the opportunity to quickly incorporate new information such that we can improve

our model rapidly to accommodate new situations.

Working systems using unsupervised and an online learning framework to detect moving

objects utilize an "automatic labeler" that uses motion information to supply labeled images

directly from a video feed. This video feed becomes a stream of images that an online learner

uses to train a classifier. With the development of an e�ective labeler, the classifier can be trained

in an online fashion using Winnow algorithm [11].

The problem with traditional object detection is amassing large annotated datasets and the

significant time required to train them o�line. While this is a viable starting point, we need our

system to react to new inputs and make decisions immediately. Some applications require training

in real-time on live video streams with a human-in-the-loop. This class of problem is referred to

as time ordered online training (ToOT) [19]. ClickBAIT-v2 takes a human annotated approach

where a quick single click by a human on an incoming video frame can provide the bounding

box annotation required to train an object detector in real time. They leverage the time-ordered

nature of the video input to track the object once an initial position is provided via a user click. In

this thesis, we leverage an actual human produced ground truth as part of the training pipeline.
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In [9], a novel pipeline for object detection training yielding 60x training speedup is proposed.

The pipeline combines (i) the Region Proposal Network and the deep feature extractor from [13]

to e�iciently select candidate RoIs and encode them into powerful representations, with (ii) the

FALKON [14] algorithm, a novel kernel-based method that allows fast training on large scale

problems. The approach promises learning tasks involving 10 classes of objects with 10000 images

of each class in a few seconds on a machine equipped with Intel(R) Xeon(R) E5- 2690 v4 CPUs

@2.60GHz, and a single NVIDIA(R) Tesla P100 GPU, with FALKON set to not use more than 10GB

of RAM. While this is tremendous improvement over traditional deep learning approaches using

CNNs, we are interested in a more nuanced training that can make incremental changes to an

existing model so that it does not forget prior data, but adapts quickly to the new incoming data.

2.5. Neural Turning Machine

A Neural Turing Machine (NTM) is a fully di�erentiable computer that can be trained using

gradient descent [2]. It closely resembles a "working memory system," defined by having a

capacity for short-term storage of information and its rule-based manipulation [1]. This is evident

because the architecture is built with a process to read from and write to memory selectively. The

NTM architecture consists of two major components, a neural network controller and a memory

bank. The NTM model is pictured in Figure 2.2. At every step, the controller network receives

inputs from the external environment and emits outputs in response. It also reads to and writes

from a memory matrix via a set of parallel read and write heads [2].

Figure 2.2.: Block diagram of Neural Turing Machine 2.2

The important part of the architecture in Figure 2.2 is that every component is di�erentiable

and this includes the read and writes to memory. This is accomplished via "blurry" read and write
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operations that interact to a greater or lesser degree with all the elements in memory. Because of

the di�erentiability, the weights of the entire model can be updated via backpropagation. We

describe the way we utilize this external memory for few-shot image classification in the following

sections.

2.6. Memory Augmented Neural Network

Traditional gradient-based neural networks, much like the one used in [4], require a large amount

of data to learn, through extensive iterations of training. As we have pointed out, when we

encounter new data, the network must completely relearn its parameters to adequately adapt to

the new information, which is very ine�icient. Architectures with augmented memory capacity

(MANNs) enable rapid encoding and retrieval of new information, which can eliminate the down-

sides of the more traditional approach [15].

In this approach, rather than a�empting to determine parameters θ to minimize a learning cost

L across some dataset D, parameters are chosen to reduce the expected learning cost across a

distribution of datasets p(D):

θ ∗ = argmin
θ

ED∼p(D)[L(D,θ )] (2.1)

To properly set this up, one must define an episode, which involves the presentation of a dataset

D = {xt ,yt }Tt=1 where in the classification case, yt is the class label for image xt . In this setup, yt

is both a target, and is presented as input along with xt , in a temporally o�set manner; that is,

the network sees the input sequence (x1, null), (x2,y1), . . . , (xT ,yT−1). Thus, at time t the correct

label for the previous data sample (yt−1) is provided as input along with a new query xt . The

network is tasked to output the appropriate label for xt , i.e. yt , at the given timestep. In order

to prevent the model from learning sample-class bindings during training, the samples from

the dataset are shu�led before being fed to the model. It must appropriately learn to hold data

samples in memory until the appropriate labels are presented at the next timestep, a�er which

sample-class information can be bound and stored for later use. The ideal performance would be a

random guess for the first presentation of a particular class since the appropriate label cannot be

inferred from previous episodes, due to shu�ling. However, beyond the first presentation, memory

is used to achieve be�er accuracy. The model a�empts to capture the predictive distribution

p(yt |xt ,D1:t−1;θ ) [15].
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We utilize this pipeline in the approach presented in this thesis with modifications to bet-

ter suit our use case, but the crux of the implementation lies in this meta-learning approach

which does not a�empt to directly fit the provided dataset but rather fit a more general distri-

bution. Note that this episodial form for training suits our real time asset detection problem

particularly well since even during an "evaluation" phase, which would be when an operator of

the smartphone app is in a never-before-seen building, he or she is still providing corrections

to the model if the incorrect asset class is predicted. This means even during evaluation, the

system receives ground truth labels in the subsequent timestep to be used in short term sample-

class bindings in external memory to improve the model’s performance using the new information.

The NTM, shown in Figure 2.2, is a fully di�erentiable implementation of a MANN [15]. It

consists of a controller, such as a feed-forward network or LSTM, which interacts with an external

memory module using read and write heads [2]. The NTM is perfect for few-shot prediction since

memory encoding and retrieval is rapid and can be done e�iciently using vector representations

at potentially every timestep. A NTM can learn a good long-term strategy, via model weight

updates, that determines the sample representations it should place into short-term memory. It

later uses these representations when making predictions, so accurate predictions are possible

even for classes that it has only seen once.

The work by Santoro et al. focused on testing this pipeline on the Omniglot dataset, which

consists of over 1600 separate classes of handwri�en characters from over 50 di�erent alphabets

with only a few examples per class. Two major di�erences in the problem we are solving are that

we have far fewer classes to handle and we are dealing with far more complex images. The images

of the assets can be taken from varying angles, tilts, lighting conditions, and, as mentioned prior,

the assets themselves may not have the same appearance due to intraclass variability. Additionally,

we are not necessarily interested in the entire image, but just a particular region of interest where

the asset exists. We take these factors into consideration when we adapt this implementation to

fit the problem at hand.
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3. Method

In this section we outline the model specifications we use in our approach, the dataset used to for

the asset detection problem we are addressing, as well as the training and evaluation pipeline.

Specifically, the model details are highlighted in Section 3.1, Section 3.2 details the dataset we

use to train and evaluate our approach, and in Sections 3.3 and 3.4 we describe the training and

evaluation pipelines respectively.

3.1. Model

We propose to solve this asset detection problem using a MANN, specifically the fully di�erentiable

NTM implementation. As described in Section 2.6, the NTM consists of a controller, chosen to be

a Long Short-term Memory (LSTM), which interfaces with an external memory module using read

and write heads [2]. The LSTM controller interacts with the memory using read and write heads,

which rapidly retrieve representations from memory or place them into memory, respectively.

3.1.1. External Memory

Let Mt be the contents of the N ×M memory matrix at time t , where M is the dimension of the

condensed representation created for an input image and N denotes the number of rows in the

matrix. We let N equal 10, the number of classes in our system. Having a finite, fixed N allows us

to limit the amount of space required for the external memory while also allowing the system to

learn sample representation-class bindings for each of the di�erent asset classes we intend to

classify. Given an input, xt , which in our case is a vectorized raw image, the controller produces

a (1 ×M)-dimensional vector key, kt , which is used to quickly read from memory in a specific

manner we describe below.

We index into the memory matrix Mt using the cosine similarity measures between each key

and each row of the matrix

K(kt ,Mt (i)) =
kt ·Mt (i)

‖kt ‖‖Mt (i)‖
(3.1)
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where Mt (i) denotes row i of the memory matrix. The similarity metric computed with each

row, equivalent to a class representation, in the memory matrix is then used to compute a read

weight for each row in memory, wr
t (i), using a so�max:

wr
t (i) =

expK(kt ,Mt (i))∑N
j=1 expK(kt ,Mt (j))

(3.2)

The (1 ×M)-dimensional "memory" vector rt that is ultimately read is a weighted sum of all

the rows using the (1 × N )-dimensional read weights vector wr
t .

rt = wr
tM
>
t (3.3)

The retrieved memory vector rt is returned to the controller and is then used as input to the

classifier which makes an asset class prediction ŷt for the original input xt . The class prediction

ŷt is also passed as an additional input to the next controller state, since reconciliation steps,

error calculation, are taken when the true label of the image is provided at the subsequent timestep.

Encoding and writing new information to memory is inspired by input and forget gates of an

LSTM [2]. Each write is broken into two parts, erase and add. We write into memory when the

model receives the true class label, yt , for a particular image xt in the following timestep (t + 1).

In the current implementation, at time t + 1, the controller generates a new erase vector et+1 of

M random values in range (0,1) during each write step and a scalar erasure weight wt+1, which is

set as a constant hyperparameter for the entire model. The write update to the appropriate row

of the memory matrix occurs as follows:

M̃t+1(yt ) = Mt (yt )[1 −wt+1et+1] (3.4)

Above, we add some noise to the row corresponding to the true class label we just received. This

is to partially "forget" the sample representation-class binding the model has already developed

to make room for the new information. In future improvements, we can have the erasure weight

chosen based on the sample and the class itself. This can improve the quality of the sample

representations stored in memory.

Next we add the representation for the image xt generated by the controller, kt , to the row:

Mt+1(yt ) = M̃t+1(yt ) +wt+1kt (3.5)
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Ideally, the model updates the row of the memory matrix Mt corresponding to the class label

in order to incorporate the representation of the image xt since we know it belongs to that class.

For future inputs, this added information should help accurately categorize assets belonging to

the same class.

3.1.2. Object Localization

Unlike existing one-shot and few-shot learning approaches, we face the additional challenge that

the raw image samples may contain assets of interest that occupy only a small portion of the entire

image. The methods mentioned in Sections 2.3 and 2.6 focus on the Omniglot dataset, shown in

Figure 3.1, which contains images consisting entirely of pixels pertaining to the characters to be

classified.

Figure 3.1.: Omniglot data example: grayscale 28 x 28 pixel images of characters

In our asset detection pipeline, we must deal with classifying objects with drastically lower

object to image ratio such as the fire sprinkler shown in Figure 3.2 below.

Figure 3.2.: Fire sprinkler asset training image example
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Rather than processing the entire raw image with no additional information on the pixel loca-

tion of the asset, we localize the problem to a region of interest before the model classification.

In order to accomplish this we use classical image segmentation techniques [18] such as edge

detection and clustering algorithms to identify a single 400 × 400 pixel region within the image

with the most significant pixel values which we assume pertains to the asset object of interest.

(a) (b)

Figure 3.3.: (a) Original image (b) Canny edge detection run on the on the original image, and the

pixels with greatest "activity" correspond to the exit sign

As can be seen in Figure 3.3, the edge detection algorithm finds the most significant di�er-

ences between pixel values along the contours of the exit sign. Using the Canny edge detection

output, we select the 400 × 400 pixel crop containing the most edges and instruct the model

to focus on this region when predicting the correct asset class. While in many cases, this ap-

proximation to object localization correctly bounds the asset within the image, whenever the

cropped image does not contain the entire asset, the model creates a bad sample representation

and the accuracy can be punished. We can alleviate this issue slightly by providing the model

with the true bounding box in the following timestep. We describe this in more detail in Section 3.3.

An even more ideal solution for reducing the size of the image is to capture the tap location

within the smartphone application itself when the operator taps on the intended asset. The

location of the tap is the best indicator of where within the captured image the asset of interest

lies. This will be incorporated in future iterations of the application. The precision of this tap

requires some additional a�ention and possible training for the phone application operator.

However, it is important to note that the amount of skill and time required to operate this
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application is still negligible compared to the time and training required to survey a building the

old-fashion way.

3.1.3. Controller

In our approach, the controller of the NTM is mostly a LSTM, which connects the inputs and

outputs of subsequent timesteps. However, there are a few other components comprising the

controller which we describe in this section. The controller takes in the (raw image, true label,

bounding box coordinates) tuple as input and interfaces with the external memory in order to

update the sample representation-class bindings we have stored. In our implementation, we use a

LSTM with 200 hidden units, which worked well for our input.

Figure 3.4 visualizes how the inputs to the controller are used. At time t , the controller receives

a 921614-dimensional vector consisting of 640 × 480 pixel raw image xt , one-hot encoded class

labelyt−1, and bounding box coordinates bt−1. We focus initially on the raw image, the first 921600

entries of the input vector. The controller crops the image using object localization methods

described in Section 3.1.2 above. This 400 × 400 pixel cropped image, is passed into the LSTM

and a key representation, kt , is outpu�ed. This key is used to read memory rt from the memory

matrix, Mt , via Equations 3.1-3.3. The memory, rt , is used to make a class prediction, ŷt , for the

input image, using a so�max layer. The raw image, key, and class prediction are passed via the

LSTM as additional inputs in the following timestep.

Meanwhile, the true label, yt−1, and bounding box information, bt−1, at time t are used in

combination with the additional inputs (xt−1, kt−1, ŷt−1) from the previous timestep to compute

the cross entropy loss for that particular class prediction using prediction ŷt−1 and ground

truth yt−1. This loss is used to update the pertinent weights of the LSTM via backpropagation.

Additionally, we update the sample representation-class binding for class yt−1 by writing to

memory using Equations 3.4-3.5. In Section 3.3, we discuss the exact update performed when

writing to memory.

3.2. Data

We use the same dataset created in [4] for training and testing purposes, consisting of the following

ten categories of assets: router, fire sprinkler, fire alarm, fire alarm handle, EXIT sign, card-key
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reader, light switch, emergency lights, fire extinguisher, and outlet.

The breakdown of the data collected through the use of the smartphone app is shown in Table

3.1, which includes images of assets that were both correctly and incorrectly classified.

Counts of Sample Images by Asset

Day of Collection Location A B C D E F G H I J Total

Day 0 (Before Training) Cory Hall 60 35 8 7 57 26 8 7 2 8 218

Day 1 Cory Hall 35 13 20 15 4 7 5 2 2 4 107

Day 2 Cory Hall 25 6 1 0 1 7 10 3 0 2 55

Day 3 Sutardja Dai Hall 6 7 6 3 7 8 9 0 4 2 52

Day 3 Evans Hall 0 8 10 6 3 9 0 14 1 7 58

Day 4 Cory Hall 31 11 15 6 9 6 10 3 4 4 99

Table 3.1.: A = Fire Sprinkler, B = Fire Alarm, C = Outlet, D = Light Switch, E = Router, F = EXIT

sign, G = Card-key Reader, H = Emergency Lights, I = Fire Extinguisher, J = Fire Alarm

Handle. Distribution of the classes of objects we trained and tested on, over 4 days of

data collection.

Every image in the dataset described above is accompanied by the true label of the pictured asset

as well as the top le� and bo�om right coordinates of a bounding box enclosing the asset of interest.

In [4], a smartphone application was used to collect 5 rounds of data, over a span of 4 days,

in 3 distinct buildings, as shown in Table 3.1. The Day 0 data was all collected before use of the

app and the labels and bounding boxes were assigned manually. A�erwards, a traditional SSD

deep learning model was trained on all the data from Day 0 and loaded onto the phone. Then an

operator took the phone with the trained model to Cory Hall and a�empted to detect 107 asset

images on Day 1 using the application. The collected data includes both the images for which the

model correctly predicted the class, as well as those that were misclassified where the operator

had to provide the true label manually.

Following Day 1, the model was again trained on the entirety of images from Day 0 along with

all the images the model had misclassified during Day 1, less than 107 total. This newly updated

model was loaded onto the phone for Day 2 and the process repeated through Day 4.

The performance of the model in [4] on each day is presented in Table 4.5 for comparison

against the approach presented in this paper. We use the data in the dataset in a manner which
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best matches how the traditional deep learning model approach used it.

Since this online learning approach should be able to adjust to new incoming data in real time,

we expect it to outperform the traditional approach most noticeably in the two previously unseen

buildings, Sutardja Dai and Evans Hall, since this is where the model is able to best utilize both its

long-term and short-term memory components to learn new asset appearances before undergoing

a long training phase. In the other cases, we expect to reach approximately the same prediction

accuracy as the traditional method since the assets from Cory Hall would be familiar to the model

already and the one-shot approach has no marked advantage.

3.3. Training

The dataset is denoted D = {xt , (yt ,bt )}Tt=1 where in our classification case, yt is the class

label for image xt and bt consists of the bounding box information pertaining to the location

of the asset within the image xt . In this setup, yt is both a target, and is presented as input

along with xt , in a temporally o�set manner; that is, the network sees the input sequence

(x1, null), (x2, (y1,b1)), . . . , (xT , (yT−1,bT−1)). So, at time t + 1 the correct label and bounding box

coordinates for the previous data sample, (yt ,bt ), are provided as input along with a new query

xt+1. This is a single concatenated input vector of dimension 921614, 921600 for 640 × 480 RGB

image, 10 for one-hot encoded label, 4 for bounding box coordinates, passed into the LSTM

controller. For timestep t + 1, the network is tasked to output the appropriate label for xt+1, i.e.

yt+1, at the given timestep. Simultaneously, the model is updating its class representation for

class yt since it is now given information pertaining to the true category of the image sample

from the previous timestep. Thus, in external memory, the model incorporates image data from

xt into the sample representation-class binding for class yt . In order to prevent the model from

learning sample-class bindings during training, the samples, and their corresponding label and

bounding box information, from the dataset are shu�led before being fed to the model. We want

the model to learn to hold data samples in memory until the appropriate labels are presented at

the next timestep, a�er which sample representation-class information can be bound and stored

for later use.

For all t from 1 toT , the total number of training images for this episode, we repeat the process

depicted in Figure 3.4. In Figure 3.4, we can see our NTM transition from time t to time t + 1. For

just this depiction, we assume asset light switch is associated with class label 1. The label and

bounding box information are used in combination with the information fed forward through the
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Figure 3.4.: The NTM transition from time t to timestep t +1. For just this depiction, we assume as-

set light switch is associated with class label 1. The label and bounding box information

is used in combination with the information fed forward through the LSTM controller

from the previous timestep to update the corresponding sample representation-class

binding in external memory. The asset in the raw image is localized and cropped to be

used in the memory read rt , which is then used to make a class prediction ŷt .

LSTM controller from the previous timestep to update the corresponding sample representation-

class binding in external memory. The asset in the raw image is localized and cropped to be used

in the memory read rt , which is then used to make a class prediction, ŷt .

Notice that if the external memory component does not yet have a robust sample representation-

class binding for a class, because it is the first presentation of this particular class a�er clearing

the memory, the model’s inference is close to a random guess. At the following timestep it

receives the true label and subsequent appearances of objects of the same class are classified

with more accuracy. In practice, we can eliminate this phenomenon by not clearing the external

memory component a�er a round of testing, as long as we know that the model architecture

and the number of classes have not changed. This does not work if the model is run on di�erent

phones, but for the same user repeatedly surveying di�erent buildings, this reduces the number

of erroneous predictions on even the first appearance.
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At the same time as the retrieval from memory, the model is also processing the other part of the

input, which is the label and bounding box information (yt−1,bt−1) passed in at time t alongside

image xt . The model combines the true label and bounding box with their corresponding image

from the previous timestep. The label is passed in as a one-hot vector, where each di�erent class

is assigned an integer label ranging from 0 to N − 1, 9 in our case. This one hot vector determines

which row of the external memory we alter in order to incorporate the sample representation kt−1
from the image xt . The sample representation, kt−1, is passed from the previous timestep to the

current one so the memory module can be updated. However, it is desirable and advantageous to

take into account the provided ground truth bounding box from the user during an erroneous

detection. Specifically, the controller computes a new key, k′t−1, using the true bounding box bt−1,

expanded or reduced to 400 × 400 pixels, to crop xt−1 rather than the approximation computed

through techniques for object localization. Since we are not updating the method by which the

object localization approximation is achieved, we cannot completely omit the key, kt−1, com-

puted using approximate localization. We update the memory matrix row specified by label yt−1,

following the write steps outlines in Equations 3.4-3.5. Instead of using kt−1 computed using

approximate onject localization, we add the sample representation defined by the mean of the

two keys we computed, that is

kt−1+k′t−1
2 .

M̃t (yt−1) = Mt−1(yt−1)[1 −wtet ] (3.6)

Mt (yt−1) = M̃t (yt−1) +wt
kt−1 + k′t−1

2
(3.7)

Later, when a sample from this same class is observed, it should retrieve the stored binding

pertaining to that class from the external memory to make a prediction. During the training

phase, we compute the loss using the true label of the asset arriving in the following timestep

and the model’s prediction, which is passed in as additional input. The error is backpropagated

from this prediction step to update the LSTM weights from the earlier steps in order to promote a

be�er binding strategy [15]. Note that the LSTM weights a�ect the generated key representation,

kt , for a provided sample image, so when the model weights are updated, the model moves away

from a binding strategy that yielded an incorrect prediction, or it enforces a binding strategy

which yielded in a correct prediction. This update of the LSTM weights enforces the long-term

memory behavior of learning a good general binding strategy. We note that the backpropogation

of error has no e�ect on the approximate object localization since that is accomplished purely

through classical image processing techniques.
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3.4. Evaluation

The evaluation of the model is meant to represent the model’s ability to adapt to never-before-seen

appearances of assets on the fly. The evaluation process should emulate how well a model can

perform while an operator of the smartphone application is out surveying a new building for the

first time. This means, the model does not make changes to its binding strategy, i.e. no weight

updates are performed, and the model is evaluated on its classification accuracy for new data,

only adapting via changing the external memory for short-term learning.

Hence, we define our evaluation pipeline to be exactly the same as our training flow with the

single change that there is no backpropagated signal updates during the prediction step. In other

words, the model weights remain fixed and the model is assessed on how well the long-term

strategies it has learned thus far allow it to adjust to accurately classify the new dataset.

We take a moment to point out that it makes sense to maintain the same pipeline as for training

because in our use case, when the operator is using the app to survey buildings, the model is

provided with a true label and a bounding box for every collected sample image. If the model

initially incorrectly classifies the asset, then the operator provides a correction in the form of a

label and bounding box. If the model correctly classifies the asset, then no correction is be made,

indicating to the model that it correctly predicted the ground truth label and the approximate

object localization it computed serves as a valid bounding box. Unlike the original application of

NTM to the Omniglot digit dataset, in our application, the testing process behaves as though the

model receives an input image, and the label and bounding box are provided "at the next timestep."

This further justifies our choice to use this episodic learning format to train and evaluate the

model.
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4. Experimental Results and Analysis

In this section, we evaluate our approach with 4 di�erent training and evaluation schemes. In

Section 4.1, we train our model weights using only the negative, or incorrectly classified, images

from the previous Day of data before evaluating on the next Day’s dataset. This most closely

resembles the training data used in [4], where the SSD model was trained a�er each day of data

collection on all the previous training images, plus the misclassified images from the current day.

In our approach, we do not retrain the model on all the old data, only the new. In Section 4.2, we

train the model weights a�er each Day of data using the entire dataset, including both positively

and negatively classified objects. In Sections 4.1-4.2, we always wipe the external memory a�er

each training phase and a�er each evaluation phase to determine the model’s ability to adapt to

new buildings and asset appearances using primarily short-term memory. Section 4.3 explores the

model’s performance when we train on both positive and negative samples, but we never wipe the

external memory matrix. A�er each training phase, the memory persists into the following testing

phase and similarly, a�er each testing phase the memory matrix persists into the next training

phase. This mitigates the first appearance problem where the model is forced to make a random

guess for the class of an asset on the first time it is presented due to an empty memory matrix.

By maintaining the memory throughout, the model always has a binding stored in memory for

each class it has seen, even for the first appearance of a class during evaluation. While memory

retention does lessen the first appearance problem, it prevents the model from best utilizing its

short-term learning capability since the information from all the previously seen old data is still

in external memory, placing less emphasis on the new incoming data. In Section 4.4, we take

a similar approach as before where the memory is retained a�er each training and evaluation

phase, but in order to place emphasis on the new data and the short-term learning of the model,

the retained memory is down-weighted by a "decay factor" a�er training, before it is passed

on to the evaluation phase. In Section 4.5, we compare the overall performance of all 4 of our

approaches on each Day of data with the method used in [4]. We note specifically where we see

improvement and analyze the reasons for variations in prediction accuracies. Lastly, in Section 4.6,

we discuss the advantages of our approach in terms of o�line training time as well as inference
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speed compared to that of [4].

The training phases in between each of the evaluation phases consist of training for 30000

episodes on the previous Day’s images, along with augmented versions of these input images. The

augmentations applied to these images include (a) flip the original image horizontally; (b) flip the

original image vertically; (c) adjust the brightness of the original image by a factor in the range [0,

0.2]; (d) rotate the original image by 90 degrees. These augmentations were accomplished using

options native to the Tensorflow Object Detection API and bounding box information was also

augmented accordingly, if applicable. The augmented images were passed into the model along

with the original images, in a shu�led order. Note that image augmentations were only used

during the training phase and not during the evaluation phase since we want that to be as close

to real time as possible.

During evaluation of the model, we take all the samples in the current dataset and shu�le

them into a random order. Since the model receives the data in a sequential fashion, we want

to measure how well the model adapts to the new data a�er it sees object of a certain class one

time, two times, three times, etc. The "k th
appearance" of a particular class is when the model

has already encountered, and incorporated into short-term memory, k − 1 previous images of

that particular class of object. So the accuracy of the model on the k th
appearance of a class

is computed by averaging the prediction accuracies for each of the 10 classes only on the k th

appearance of that particular class. Because we can capture the asset images in di�erent orders,

we want to see how well the model performs on the k th
appearance, across di�erent permutations

of the same dataset. We found that with 100 permutations, we converge towards a single accuracy.

Consequently, in our results tables, we present the accuracies for each of the 4 training schemes

on each of the 4 Days of data, where we provide the k th
appearance accuracies, for k from 1 to 10,

averaged over 100 di�erent permutations of the dataset.

In Sections 4.1-4.4, we provide the k th
appearance accuracies for each of the 4 methods of

training, averaged over the 10 di�erent classes of objects. In some cases, the k th
appearance

accuracy for higher k , i.e. 8, 9, 10, decreases in comparison to the smaller k . This is due to the fact

that in some of the datasets, some classes do not have 8, 9, or 10 appearances, so the accuracies

presented in the tables in this section are averaged over fewer classes, some of which may be

underrepresented. The k th
appearance accuracies found in the tables in Sections 4.1-4.4 can be

computed by averaging the k th
appearance accuracies of the 10 di�erent classes. For the detailed
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k th
appearance accuracy results for each class separately, refer to Appendix A.

4.1. Train on Negatives Only

In this first training setup, we train the one-shot approach model on Day 0 data, call this model v0,

prior to all evaluation. Then, we freeze the model weights and evaluate on Day 1 data. We then

do an episodic training on the previously saved model, v0, using the misclassified examples from

Day 1 only. Now we call this model v1. We then evaluate the model on never-before-seen Day 2

data. Continuing this pa�ern, we train the saved model v1 on incorrectly classified Day 2 images

only, now calling it model v2, and evaluate it separately on the two di�erent Day 3 collections.

Then, we train model v2 on both Day 3 collections’ incorrectly classified images, dubbing it model

v3, and evaluate it on the Day 4 data. We wipe the external memory component of the model

a�er every training and evaluation phase.

The combined-class results of this procedure are found in Table 4.1. For the class specific k th

appearance accuracies, refer to Tables A.1-A.5 in Appendix A. The last row of each of those tables

match the results presented in Table 4.1.

Results by Appearance (Trained on Negatives Only)

Appearance (average over 100 permutations)

Evaluation Set 1 2 3 4 5 6 7 8 9 10

Day 1 (Cory Hall) 0.151 0.413 0.55 0.609 0.632 0.632 0.632 0.64 0.658 0.655

Day 2 (Cory Hall) 0.169 0.458 0.554 0.683 0.71 0.705 0.66 0.595 0.6 0.625

Day 3 (SDH) 0.2 0.514 0.618 0.664 0.723 0.733 0.803 0.775 0.67 –

Day 3 (Evans Hall) 0.204 0.486 0.58 0.62 0.672 0.662 0.706 0.69 0.62 0.495

Day 4 (Cory Hall) 0.18 0.592 0.622 0.702 0.716 0.723 0.754 0.75 0.768 0.813

Table 4.1.: k th
appearance prediction accuracy, averaged over all 10 classes, averaged over 100

permutations of each evaluation dataset. Training method using negative samples only.

In Table 4.1, we observe the prediction accuracies improve as the model sees more instances of

the same class. Additionally, we can see that even in new buildings such as Sutardja Dai Hall and

Evans Hall, the model is able to adapt to the di�erent appearance of objects despite not seeing

them before. Since the memory is cleared, the first appearance prediction is clearly problematic
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in this method as can be seen by examining the first column.

4.2. Train on Positives and Negatives

In the second training setup, we train the one-shot approach model on Day 0 data, call this model

v0, prior to all evaluation. Then, we freeze the model weights and evaluate on Day 1 data. We then

do an episodic training on the previously saved model, v0, using both the misclassified examples

from Day 1 as well as the correctly classified samples. Call this model v1. We then evaluate the

model on never-before-seen Day 2 data. Repeating this process, we train the saved model v1 on

both positive and negative Day 2 images, now calling it model v2, and evaluate it separately on

the two di�erent Day 3 collections. Next, we train model v2 on both Day 3 collections, positive

and negative images, dubbing it model v3, and evaluate it on the Day 4 data. We wipe the external

memory component of the model a�er every training and evaluation phase.

The combined-class results of this procedure are found in Table 4.2. For the class specific k th

appearance accuracies, refer to Tables A.6-A.9 in Appendix A. The last row of each of those tables

match the results presented in Table 4.2.

Results by Appearance (Trained on Positives + Negatives)

Appearance (average over 100 permutations)

Evaluation Set 1 2 3 4 5 6 7 8 9 10

Day 1 (Cory Hall) 0.151 0.413 0.55 0.609 0.632 0.632 0.632 0.64 0.658 0.655

Day 2 (Cory Hall) 0.166 0.518 0.606 0.7425 0.768 0.775 0.72 0.66 0.67 0.675

Day 3 (SDH) 0.201 0.617 0.65 0.699 0.738 0.762 0.843 0.82 0.73 –

Day 3 (Evans Hall) 0.143 0.564 0.617 0.648 0.675 0.68 0.712 0.703 0.63 0.525

Day 4 (Cory Hall) 0.148 0.653 0.685 0.731 0.727 0.739 0.74 0.762 0.766 0.823

Table 4.2.: k th
appearance prediction accuracy, averaged over all 10 classes, averaged over 100

permutations of each evaluation dataset. Training method using all, positive and

negative, samples.

There is general improvement across the board in Table 4.2, compared to the previous method

since we are providing the model with more training data. By providing both correctly classified

and incorrectly classified images, we can enforce be�er binding strategies, by positively enforcing

27



the ones yielding correct classifications and moving away from the misclassifications.

4.3. All Memory Retained

We observe that the training and testing schemes presented in Sections 4.1 and 4.2 su�er from

the random prediction on the first appearance and the 1th
appearance accuracies are very low. In

this section, we maintain the memory matrix and the problem is reduced.

In this method, we train the one-shot approach model on Day 0 data, call this model v0, prior

to all evaluation. Then, we freeze the model weights, load the external memory state from the end

of training, and evaluate on Day 1 data. We then do an episodic training on the previously saved

model, v0, using both the misclassified examples from Day 1 as well as the correctly classified

samples. Call this model v1. We then load the memory matrix saved at the end of training and

evaluate the model on never-before-seen Day 2 data. Repeating this process, we train the saved

model v1 on both positive and negative Day 2 images, now calling it model v2, and evaluate it sep-

arately on the two di�erent Day 3 collections, starting both evaluations with the restored memory

matrix from the end of training. Next, we train model v2 on both Day 3 collections, positive and

negative images, dubbing it model v3, retain the memory matrix, and evaluate it on the Day 4 data.

The combined-class results of this procedure are found in Table 4.3. For the class specific k th

appearance accuracies, refer to Tables A.10-A.14 in Appendix A. The last row of each of those

tables match the results presented in Table 4.3.

Results by Appearance (All Memory Retained)

Appearance (average over 100 permutations)

Evaluation Set 1 2 3 4 5 6 7 8 9 10

Day 1 (Cory Hall) 0.488 0.554 0.654 0.668 0.701 0.722 0.714 0.708 0.725 0.743

Day 2 (Cory Hall) 0.6 0.695 0.704 0.775 0.805 0.808 0.763 0.755 0.765 0.735

Day 3 (SDH) 0.537 0.629 0.634 0.669 0.735 0.747 0.803 0.77 0.75 –

Day 3 (Evans Hall) 0.494 0.573 0.599 0.66 0.672 0.672 0.718 0.7 0.603 0.52

Day 4 (Cory Hall) 0.528 0.666 0.703 0.746 0.727 0.744 0.754 0.77 0.762 0.795

Table 4.3.: k th
appearance prediction accuracy, averaged over all 10 classes, averaged over 100

permutations of each evaluation dataset. Training method using all, positive and

negative, samples and memory is never wiped between training and evaluation.
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The performance improves significantly with the retention of memory, as can be seen in Table

4.3. There is not a significant improvement in the new buildings, SDH and Evans Hall, from

Section 4.2. This may be due to the fact that Cory Hall data bindings are still heavily present in the

memory matrix when we evaluate Day 3 data. In the Section 4.4 method, we avoid that problem

by decaying the older memory so as to not overpower the new data when making predictions.

4.4. Weighted Memory Retained

In Section 4.3, we retain the exact memory matrix a�er each training phase and evaluation

phase. This does not best utilize the model’s short-term learning functionality which can quickly

adapt to new information, since all the old information is still stored in memory. We overcome

this by down-weighting the existing memory each time we retain it, i.e. multiply the memory

matrix by a positive scalar less than 1, so that the older memory is gradually reduced in pres-

ence. This way the model is forced to place more weight on the new incoming data, but still

retain old bindings so that it can make informed predictions even on the first few appearances of

each class. In order to determine the best scalar to use when down-weighting the memory, we

treated it as a hyperparameter of the model. By repeatedly running the algorithm on the data with

di�erent decay factors, we empirically determine that the ideal decay weight for our model is 0.684.

In this weighted memory retention method, we train the one-shot approach model on Day

0 data, call this model v0, prior to all evaluation. Then, we freeze the model weights, load the

down-weighted external memory state from the end of training, and evaluate on Day 1 data.

We then do an episodic training on the previously saved model, v0, using both the misclassified

examples from Day 1 as well as the correctly classified samples. Call this model v1. We then load

the memory matrix saved at the end of training, multiply it by 0.684, and evaluate the model

on never-before-seen Day 2 data. Repeating this process, we train the saved model v1 on both

positive and negative Day 2 images, now calling it model v2, and evaluate it separately on the

two di�erent Day 3 collections, starting both evaluations with the decayed, restored memory

matrix from the end of training. Next, we train model v2 on both Day 3 collections, positive and

negative images, dubbing it model v3, retain the memory matrix, multiply it by our decay factor,

and evaluate it on the Day 4 data.
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The combined-class results of this procedure are found in Table 4.4. For the class specific k th

appearance accuracies, refer to Tables A.15-A.18 in Appendix A. The last row of each of those

tables match the results presented in Table 4.4.

Results by Appearance (Weighted Memory Retained)

Appearance (average over 100 permutations)

Evaluation Set 1 2 3 4 5 6 7 8 9 10

Day 1 (Cory Hall) 0.488 0.554 0.654 0.668 0.701 0.722 0.714 0.708 0.725 0.743

Day 2 (Cory Hall) 0.608 0.708 0.724 0.793 0.805 0.815 0.767 0.76 0.785 0.795

Day 3 (SDH) 0.561 0.656 0.662 0.703 0.75 0.768 0.818 0.77 0.79 –

Day 1 (Evans Hall) 0.564 0.634 0.693 0.745 0.752 0.758 0.796 0.765 0.693 0.61

Day 4 (Cory Hall) 0.579 0.725 0.745 0.783 0.78 0.79 0.818 0.822 0.82 0.835

Table 4.4.: k th
appearance prediction accuracy, averaged over all 10 classes, averaged over 100

permutations of each evaluation dataset. Training method using all, positive and

negative, samples and memory retained between training and evaluation, but gradually

decaying.

Using this method, we see in Table 4.4 the model reaches higher prediction accuracy with

less appearances of a class even in new buildings. This means the short-term adaptability of the

model is being utilized properly. There is also a general improvement across all the buildings

when we slowly decay the older memory. We see improvement in the Day 4 Cory Hall accuracies

as well, despite having decayed the memory matrix three times since the Day 1 and Day 2 Cory

Hall training phases. This is an interesting result and shows that this approach may be the most

powerful in both new buildings and in old buildings. If retaining the external memory is a possible

in practice, then opting to do so could provide the best results.

4.5. Comparison of Methods

Now we compare the performance of the approaches presented in this thesis with that of the

approach implemented in [4]. In order to best compare our results to their metrics, for each

dataset, we compute an overall prediction accuracy. This is computed by taking the total number

of objects classified correctly in the entire dataset divided by the total number of total images

in the dataset. This metric treats objects of all classes equally. The accuracy provided for each

dataset in [4] was computed by taking pictures of each asset in one particular order and classi-
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fying each object exactly once. In order to replicate this procedure, we shu�le the dataset into

a random order, a�empt to classify every single object once and record the overall accuracy.

We repeat this accuracy computation on 100 permutations of the same dataset. In Table 4.5,

we provide the overall accuracy computed averaged over all 100 permutations as well as the

standard deviation for the accuracy metric. We note that at 100 permutations, the accuracy

converges at a single number with low variance, so this number is comparable to the results

produced in [4]. Since we are looking at the distribution of accuracies over 100 permutations

of each dataset, we also provide the standard deviations of the overall accuracies measured as

well as the minimum and maximum accuracies in the 100 measurements collected for that dataset.

We observe that for a familiar building such as Cory Hall, the approach [4] outperforms our

variation with no memory retention. However, when it comes to generalizing to new buildings

and adapting to new information, our one-shot approach delivers impressive results in unfamiliar

surroundings such as in SDH and Evans Hall. When we incorporate the memory retention option,

our approach outperforms the traditional SSD approach in [4] even in previously seen buildings

despite not retraining on old data.

Our approach outlined in the paper does accomplish the goal we had in mind. The higher

overall accuracies in Table 4.5 indicate that in new environments, we reduce the amount of human

correction required when detecting assets of interest compared to the SSD approach used in [4].

Using our method, if we were to train on more samples of di�ering appearances and conditions,

we could learn a very robust sample representation-class binding strategy which would general-

ize far be�er to never-before-seen instances of these assets than the traditional approach [4] could.

The Section 4.4 approach presented in the table had the best performance out of the 4 variations

we tested. We a�ribute this to this gradual decay of the memory matrix, which enforces that the

model retains older information from prior buildings while incorporating newer information with

relatively higher weightage. Again, we note that retention of memory may not always be feasible

in practice, but if we have that option, Table 4.5 indicates that performance can be improved by

retaining it.

We can a�ribute some of our shortcomings in Table 4.5 to the fact that certain assets such as

emergency lights and fire extinguishers were greatly underrepresented and brought down the

overall prediction accuracy for our model, hiding the fact that the prediction accuracy for assets
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Evaluation Set

Day 1 Day 2 Day 3 Day 3 Day 4

Model (Cory Hall) (Cory Hall) (SDH) (Evans Hall) (Cory Hall)

SSD [4] 67.2% 81.7% 74.3% 54.7% 73.6%

Ours (Train on Negatives)

Accuracy (%) 58.6 60.9 63.5 62.9 69.78

Standard Deviation (%) 0.11 0.08 0.05 0.14 0.03

Min Accuracy (%) 54.1 55.7 60.6 56.2 60.1

Max Accuracy (%) 62.0 64.1 65.8 67.5 70.3

Ours (Train on Positives + Negatives)

Accuracy (%) 66.7 63.9 67.6 64.33 76.2

Standard Deviation (%) 0.21 0.11 0.08 0.13 0.02

Min Accuracy (%) 59.9 61.3 63.4 60.1 74.0

Max Accuracy (%) 70.0 66.2 69.3 66.7 77.3

Ours (All Memory Retained)

Accuracy (%) 73.1 74.3 76.2 69.3 77.1

Standard Deviation (%) 0.12 0.13 0.01 0.10 0.008

Min Accuracy (%) 68.8 70.2 75.1 68.8 76.0

Max Accuracy (%) 75.2 75.1 77.1 70.1 77.8

Ours (Weighted Memory Retained)

Accuracy (%) 73.1 82.3 74.7 69.8 79.0
Standard Deviation (%) 0.07 0.01 0.04 0.08 0.10

Min Accuracy (%) 71.8 77.8 70.9 67.1 77.2

Max Accuracy (%) 76.2 84.1 76.3 71.5 83.6

Table 4.5.: % Correctness using a traditional deep learning approach versus the approach presented

in this paper. SSD results were reproduced on the exact datasets we use in this paper.

We evaluated under four training schemes. One where the model weights were updated

by training only on negative samples from the previous day. Another where the model

weights trained using both positive and negative samples from the previous day. A

third where the model weights were trained on both positive and negative samples

from the previous day, and the short-term memory was never wiped. Lastly, the model

weights were trained on both positive and negative samples from the previous day,

and the short-term memory was retained a�er each dataset, but down-weighted by a

factor of 0.684, chosen empirically.

such as the fire alarm and fire alarm handle were almost perfect.

We can also observe from the tables in Appendix A that the accuracies improve significantly

a�er the first and second appearances of a particular class. If we look at the performance a�er
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the model has adjusted to the building, the predictions of the model match or outperform the

SSD [4] approach, even in the previously seen buildings.

Additionally, our model allows for the addition of new asset classes without needing to recreate

the architecture and retrain from scratch. This could prove very useful in a practical application

of this approach. If an asset we had not accounted for was present in a building, we could learn

on the fly that the asset does not fall into any one of the categories and dynamically allocate

more external memory space to construct a binding for this new asset type.

4.6. Timing Results

Arguably, the most significant result we find is that due to our approach’s long-term and short-

term learning capacities, we avoid the need to retrain on all the old data and can focus on training

the model on only the additional new data. The results in Table 4.6 show the drastic di�erence in

o�line training times between the SSD model in [4] and the approach described in this thesis.

O�line Training Online Training Online Inference

SSD Ours Ours SSD Ours SSD Ours

Data Set (Kostoeva et al.) (Negatives) (All) [4] [4]

Day 0 18hr 29m 5hr 27m 5hr 27m – – – –

Day 1 20hr 11m 2hr 29m 4hr 17m – 1.13 s 0.084 s 0.064 s
Day 2 20hr 56m 1hr 33m 3hr 4m – 1.06 s 0.082 s 0.041 s
Day 3 22hr 40m 2hr 50m 4hr 13m – 1.00 s 0.081 s 0.050 s
Day 4 – 2hr 1m 4hr 9m – 1.21 s 0.084 s 0.034 s

Table 4.6.: Timing information for our approach versus the traditional deep learning approach.

Note the SSD method has no Online Training component.

In Table 4.6, we present the timing results for each important function of the model compared

to that of the traditional approach. Note that we do not lose any speed in generating a prediction

and have less than 1 second of added latency when the model updates the memory matrix in its

"Online Training" step, but, in practice, this time is comfortably less than the time it takes for

an operator to move from one asset to the next. Most importantly, we cut down the total o�line

training time by a significant amount while still yielding comparable, if not be�er, performance.
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5. Conclusion and Future Work

We have improved upon the traditional deep learning methods in the ability to detect and accu-

rately classify indoor assets of interest. Our proposed method takes advantage of new information

as it is presented in order to minimize the instances of human intervention needed to correct a

misclassified example. The nature of the NTM allows us to take advantage of an external memory

module which need not take up vast amounts of space and grows in size linearly with the number

classes we can di�erentiate, rather than the number of sample images. This means even as we

increase the number of di�erent assets we are able to classify, the additional memory needed

does not approach the memory capacity of a smartphone, which means the entire short-term

memory system can reside on the smartphone itself. The long-term memory training, mainly

the slow update of model weights, takes more time, but can be conducted o�line and then the

original model can be replaced.

The approach mentioned in this paper su�ers from having to approximate the object’s position

within the image. When the model resides on the phone, we can eliminate this problem by

providing the model with the raw image as well as the coordinates of the point the app operator

tapped on the screen. It will be a much be�er approximation to use this tap location as the center

of the 400×400 pixel bounding box we choose to approximate the ground truth. Another limitation

of the model is the fact that on the very first appearance of a particular class during the evaluation

phase, the model has to resort to guessing since the memory may be wiped. We simulated a case

where the model retains its memory from the previous o�line training phase for just the first

prediction, and this did improve the prediction accuracy significantly from before. However, the

option to preserve the memory for just the first prediction may not always be available because

of memory limitations, changes in hardware, etc.

Future work includes: (a) migrating this approach onto the smartphone application and replac-

ing the current TFLite model in [4], which has high training latency, (b) improving the accuracy

of the system via pseudo-realistic augmentation of training examples, (c) extension to greater

number of classes without modification to the architecture of the model [5], by choosing an
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encoding schema other than one-hot, we can represent more than 10 classes, (d) improve the

robustness of the model via collection of data from a wide array of di�erent environments with

di�ering asset appearances, and (e) utilizing the location of the finger tap on the phone screen in

localizing the position of the asset within the captured sample image.
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A. Appendix

A.1. Train on Negatives Only

The following 5 detailed tables, A.1-A.5, pertain to the training scheme used where the model

weights were updated by training only on negative samples from the previous day.

Day 1 - Cory Hall (Trained on Day 0)

Appearance (average over 100 permutations)

Asset 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.21 0.29 0.45 0.53 0.54 0.62 0.62 0.65 0.65 0.66

Fire Alarm 0.14 0.45 0.63 0.72 0.69 0.65 0.73 0.78 0.75 0.73

Outlet 0.18 0.45 0.54 0.55 0.6 0.59 0.57 0.58 0.61 0.62

Light Switch 0.18 0.4 0.43 0.48 0.49 0.51 0.47 0.55 0.62 0.61

Router 0.15 0.35 0.49 0.57 – – – – – –

EXIT sign 0.23 0.65 0.74 0.76 0.81 0.79 0.77 – – –

Cardkey Reader 0.17 0.58 0.63 0.65 0.66 – – – – –

Emergency Lights 0.02 0.04 – – – – – – – –

Fire Extinguisher 0.13 0.4 – – – – – – – –

Fire Alarm Handle 0.1 0.52 0.53 0.61 – – – – – –

Total 0.151 0.413 0.55 0.609 0.632 0.632 0.632 0.64 0.658 0.655 11.531

Table A.1.: Model v0 evaluated on Day 1 data from Cory Hall
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Day 2 - Cory Hall (Trained on Day 1 negative predictions)

Appearance (average over 100 permutations)

Asset 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.3 0.35 0.48 0.5 0.53 0.53 0.54 0.56 0.56 0.59

Fire Alarm 0.16 0.52 1 0.98 1 1 – – – –

Outlet 0.12 – – – – – – – – –

Light Switch – – – – – – – – – –

Router 0.21 – – – – – – – – –

EXIT sign 0.19 0.54 0.63 0.65 0.7 0.68 0.81 – – –

Cardkey Reader 0.13 0.53 0.58 0.6 0.61 0.61 0.63 0.63 0.64 0.66

Emergency Lights 0.08 0.1 0.08 – – – – – – –

Fire Extinguisher – – – – – – – – – –

Fire Alarm Handle 0.16 0.71 – – – – – – – –

Total 0.169 0.458 0.554 0.683 0.71 0.705 0.66 0.595 0.6 0.625 10.146

Table A.2.: Model v1 trained on negatives, evaluated on Day 2 data from Cory Hall

Day 3 - SDH (Trained on Days 1-2 negative predictions)

Appearance (average over 100 permutations)

Asset 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.2 0.37 0.5 0.57 0.58 0.63 – – – –

Fire Alarm 0.15 0.87 1 1 1 1 1 – – –

Outlet 0.14 0.51 0.5 0.51 0.56 0.55 – – – –

Light Switch 0.09 0.31 0.54 – – – – – – –

Router 0.23 0.44 0.47 0.63 0.7 0.74 0.73 – – –

EXIT sign 0.18 0.7 0.79 0.81 0.86 0.84 0.82 0.89 – –

Cardkey Reader 0.15 0.36 0.61 0.63 0.64 0.64 0.66 0.66 0.67 –

Emergency Lights – – – – – – – – – –

Fire Extinguisher 0.4 0.51 0.53 0.5 – – – – – –

Fire Alarm Handle 0.26 0.56 – – – – – – – –

Total 0.2 0.514 0.618 0.664 0.723 0.733 0.803 0.775 0.67 – 12.562

Table A.3.: Model v2 trained on negatives, evaluated on Day 3 data from Sutardja Dai Hall
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Day 3 - Evans Hall (Trained on Days 1-2 negative predictions)

Appearance (average over 100 permutations)

Asset 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler – – – – – – – – – –

Fire Alarm 0.29 0.68 1 1 1 1 1 1 – –

Outlet 0.14 0.52 0.51 0.52 0.57 0.56 0.58 0.55 0.61 0.63

Light Switch 0.13 0.41 0.44 0.49 0.5 0.52 – – – –

Router 0.4 0.4 0.54 – – – – – – –

EXIT sign 0.18 0.63 0.72 0.74 0.79 0.77 0.75 0.82 0.84 –

Cardkey Reader – – – – – – – – – –

Emergency Lights 0.17 0.19 0.17 0.2 0.39 0.33 0.42 0.39 0.41 0.36

Fire Extinguisher 0.07 – – – – – – – – –

Fire Alarm Handle 0.25 0.57 0.68 0.77 0.78 0.79 0.78 – – –

Total 0.204 0.486 0.58 0.62 0.672 0.662 0.706 0.69 0.62 0.495 9.973

Table A.4.: Model v2 trained on negatives, evaluated on Day 3 data from Evans Hall

Day 4 - Cory Hall (Trained on Days 1-3 negative predictions)

Appearance (average over 100 permutations)

Asset 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.18 0.55 0.52 0.58 0.64 0.68 0.79 0.74 0.74 0.79

Fire Alarm 0.28 1 1 1 1 1 1 1 1 1

Outlet 0.05 0.62 0.61 0.62 0.67 0.66 0.68 0.65 0.71 0.73

Light Switch 0.12 0.54 0.57 0.62 0.63 0.65 – – – –

Router 0.14 0.4 0.54 0.52 0.55 0.57 0.6 0.66 0.68 –

EXIT sign 0.23 0.68 0.77 0.79 0.84 0.82 – – – –

Cardkey Reader 0.3 0.6 0.65 0.67 0.68 0.68 0.7 0.7 0.71 0.73

Emergency Lights 0.19 0.26 0.24 – – – – – – –

Fire Extinguisher 0.15 0.59 0.63 0.65 – – – – – –

Fire Alarm Handle 0.16 0.68 0.69 0.87 – – – – – –

Total 0.18 0.592 0.622 0.702 0.716 0.723 0.754 0.75 0.768 0.813 8.641

Table A.5.: Model v3 trained on negatives, evaluated on Day 4 data from Cory Hall

40



A.2. Train on Positives and Negatives

The following 4 detailed tables, A.6-A.9, pertain to the training scheme used where the model

weights trained using both positive and negative samples from the previous day.

Day 2 - Cory Hall (Trained on Day 1 positive + negative samples)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.28 0.42 0.56 0.6 0.61 0.62 0.62 0.64 0.63 0.63

Fire Alarm 0.17 0.62 1 1 1 1 – – – –

Outlet 0.12 – – – – – – – – –

Light Switch – – – – – – – – – –

Router 0.2 – – – – – – – – –

EXIT sign 0.16 0.59 0.68 0.69 0.75 0.78 0.81 – – –

Cardkey Reader 0.15 0.58 0.64 0.68 0.71 0.7 0.73 0.68 0.71 0.72

Emergency Lights 0.11 0.14 0.15 – – – – – – –

Fire Extinguisher – – – – – – – – – –

Fire Alarm Handle 0.14 0.76 – – – – – – – –

Total 0.166 0.518 0.606 0.7425 0.768 0.775 0.72 0.66 0.67 0.675 12.616

Table A.6.: Model v1 trained on positives and negatives, evaluated on Day 2 data from Cory Hall

Day 3 - SDH (Trained on Days 1-2 positive + negative samples)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.18 0.39 0.52 0.58 0.59 0.64 – – – –

Fire Alarm 0.13 1 1 1 1 1 1 – – –

Outlet 0.17 0.56 0.59 0.61 0.66 0.65 – – – –

Light Switch 0.11 0.35 0.57 – – – – – – –

Router 0.16 0.49 0.52 0.59 0.65 0.71 0.77 – – –

EXIT sign 0.21 0.74 0.79 0.85 0.84 0.88 0.89 0.94 – –

Cardkey Reader 0.25 0.45 0.65 0.68 0.69 0.69 0.71 0.7 0.73 –

Emergency Lights – – – – – – – – – –

Fire Extinguisher 0.29 0.57 0.56 0.58 – – – – – –

Fire Alarm Handle 0.31 1 – – – – – – – –

Total 0.201 0.617 0.65 0.699 0.738 0.762 0.843 0.82 0.73 – 13.782

Table A.7.: Model v2 trained on positives and negatives, evaluated on Day 3 data from Sutardja

Dai Hall (SDH)
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Day 3 - Evans Hall (Trained on Days 1-2 positive + negative samples)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler – – – – – – – – – –

Fire Alarm 0.24 1 1 1 1 1 1 1 – –

Outlet 0.11 0.56 0.54 0.55 0.58 0.56 0.55 0.57 0.59 0.63

Light Switch 0.12 0.46 0.52 0.51 0.57 0.59 – – – –

Router 0.14 0.31 0.51 – – – – – – –

EXIT sign 0.17 0.73 0.71 0.78 0.76 0.78 0.79 0.83 0.86 –

Cardkey Reader – – – – – – – – – –

Emergency Lights 0.09 0.18 0.21 0.24 0.34 0.35 0.41 0.41 0.44 0.42

Fire Extinguisher 0.05 – – – – – – – – –

Fire Alarm Handle 0.22 0.71 0.83 0.81 0.8 0.8 0.81 – – –

Total 0.143 0.564 0.617 0.648 0.675 0.68 0.712 0.703 0.63 0.525 12.108

Table A.8.: Model v2 trained on positives and negatives, evaluated on Day 3 data from Evans Hall

Day 4 - Cory Hall (Trained on Days 1-3 positive + negative samples)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.22 0.65 0.67 0.68 0.69 0.7 0.68 0.71 0.73 0.79

Fire Alarm 0.18 1 1 1 0.99 1 1 1 1 1

Outlet 0.14 0.65 0.64 0.64 0.67 0.71 0.69 0.7 0.69 0.73

Light Switch 0.1 0.62 0.64 0.66 0.67 0.66 – – – –

Router 0.2 0.41 0.52 0.55 0.57 0.58 0.62 0.67 0.66 –

EXIT sign 0.14 0.69 0.78 0.77 0.82 0.86 – – – –

Cardkey Reader 0.07 0.64 0.67 0.63 0.68 0.66 0.71 0.73 0.75 0.77

Emergency Lights 0.15 0.26 0.29 – – – – – – –

Fire Extinguisher 0.11 0.61 0.64 0.65 – – – – – –

Fire Alarm Handle 0.17 1 1 1 – – – – – –

Total 0.148 0.653 0.685 0.731 0.727 0.739 0.74 0.762 0.766 0.823 10.229

Table A.9.: Model v3 trained on positives and negatives, evaluated on Day 4 data from Cory Hall

A.3. All Memory Retained

The following 5 detailed tables, A.10-A.14, pertain to the training scheme used where the model

weights were trained on both positive and negative samples from the previous day, and the

short-term memory was never wiped.
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Day 1 - Cory Hall (Trained on Day 0, Memory Retained)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.7 0.71 0.72 0.75 0.78 0.74 0.73 0.72 0.75 0.74

Fire Alarm 0.81 0.85 0.92 0.93 0.96 0.94 0.96 0.94 0.95 0.98

Outlet 0.36 0.41 0.54 0.57 0.63 0.63 0.59 0.58 0.6 0.62

Light Switch 0.31 0.44 0.46 0.47 0.46 0.53 0.51 0.59 0.6 0.63

Router 0.62 0.65 0.69 0.68 – – – – – –

EXIT sign 0.53 0.63 0.71 0.74 0.76 0.77 0.78 – – –

Cardkey Reader 0.41 0.57 0.62 0.61 0.65 – – – – –

Emergency Lights 0.32 0.4 – – – – – – – –

Fire Extinguisher 0.31 0.32 – – – – – – – –

Fire Alarm Handle 0.51 0.56 0.57 0.59 – – – – – –

Total 0.488 0.554 0.654 0.668 0.701 0.722 0.714 0.708 0.725 0.743 10.23

Table A.10.: Model v0 trained on Day 0, with memory retained, evaluated on Day 1 data from

Cory Hall

Day 2 - Cory Hall (Trained on Day 1 positive + negative samples, Memory Retained)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.68 0.72 0.76 0.75 0.76 0.72 0.77 0.79 0.81 0.77

Fire Alarm 0.89 0.94 1 1 0.99 1 – – – –

Outlet 0.52 – – – – – – – – –

Light Switch – – – – – – – – – –

Router 0.63 – – – – – – – – –

EXIT sign 0.66 0.69 0.68 0.64 0.73 0.76 0.79 – – –

Cardkey Reader 0.57 0.62 0.66 0.71 0.74 0.75 0.73 0.72 0.72 0.7

Emergency Lights 0.31 0.44 0.42 – – – – – – –

Fire Extinguisher – – – – – – – – – –

Fire Alarm Handle 0.54 0.76 – – – – – – – –

Total 0.6 0.695 0.704 0.775 0.805 0.808 0.763 0.755 0.765 0.735 12.752

Table A.11.: Model v1 trained on positives and negatives, with memory retained, evaluated on

Day 2 data from Cory Hall
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Day 3 - SDH (Trained on Days 1-2 positive + negative samples, Memory Retained)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.48 0.49 0.57 0.62 0.64 0.68 – – – –

Fire Alarm 0.91 1 1 1 1 1 1 – – –

Outlet 0.49 0.58 0.62 0.65 0.67 0.69 – – – –

Light Switch 0.36 0.45 0.57 – – – – – – –

Router 0.56 0.59 0.62 0.69 0.75 0.76 0.78 – – –

EXIT sign 0.41 0.54 0.59 0.55 0.63 0.68 0.73 0.78 – –

Cardkey Reader 0.55 0.59 0.64 0.69 0.72 0.67 0.7 0.76 0.75 –

Emergency Lights – – – – – – – – – –

Fire Extinguisher 0.39 0.47 0.46 0.48 – – – – – –

Fire Alarm Handle 0.68 0.95 – – – – – – – –

Total 0.537 0.629 0.634 0.669 0.735 0.747 0.803 0.77 0.75 – 11.253

Table A.12.: Model v2 trained on positives and negatives, with memory retained, evaluated on

Day 3 data from Sutardja Dai Hall (SDH)

Day 3 - Evans Hall (Trained on Days 1-2 positive + negative samples, Memory Retained)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler – – – – – – – – – –

Fire Alarm 0.94 1 1 1 1 1 1 1 – –

Outlet 0.41 0.57 0.56 0.57 0.54 0.56 0.57 0.59 0.55 0.63

Light Switch 0.42 0.47 0.5 0.56 0.59 0.54 – – – –

Router 0.29 0.34 0.36 – – – – – – –

EXIT sign 0.47 0.66 0.73 0.75 0.78 0.79 0.81 0.82 0.84 –

Cardkey Reader – – – – – – – – – –

Emergency Lights 0.2 0.23 0.26 0.28 0.31 0.35 0.4 0.39 0.42 0.41

Fire Extinguisher 0.52 – – – – – – – – –

Fire Alarm Handle 0.7 0.74 0.78 0.8 0.81 0.79 0.81 – – –

Total 0.494 0.573 0.599 0.66 0.672 0.672 0.718 0.7 0.603 0.52 10.067

Table A.13.: Model v2 trained on positives and negatives, with memory retained, evaluated on

Day 3 data from Evans Hall
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Day 4 - Cory Hall (Trained on Days 1-3 positive + negative samples, Memory Retained)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.62 0.66 0.68 0.71 0.69 0.71 0.7 0.72 0.71 0.73

Fire Alarm 0.86 0.97 1 1 1 0.98 1 1 1 0.99

Outlet 0.43 0.67 0.65 0.66 0.63 0.68 0.66 0.72 0.7 0.72

Light Switch 0.36 0.6 0.63 0.63 0.66 0.65 – – – –

Router 0.46 0.51 0.56 0.58 0.59 0.62 0.65 0.66 0.65 –

EXIT sign 0.46 0.58 0.74 0.75 0.77 0.83 – – – –

Cardkey Reader 0.66 0.7 0.73 0.74 0.75 0.74 0.76 0.75 0.75 0.74

Emergency Lights 0.24 0.41 0.43 – – – – – – –

Fire Extinguisher 0.31 0.57 0.63 0.64 – – – – – –

Fire Alarm Handle 0.88 0.99 0.98 1 – – – – – –

Total 0.528 0.666 0.703 0.746 0.727 0.744 0.754 0.77 0.762 0.795 12.008

Table A.14.: Model v3 trained on positives and negatives, with memory retained, evaluated on

Day 4 data from Cory Hall
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A.4. Weighted Memory Retained

The following 4 detailed tables, A.15-A.18, pertain to the training scheme used where the model

weights were trained on both positive and negative samples from the previous day, and the

short-term memory was never wiped. The performance for Day 1 matches that in Table A.10.

Day 2 - Cory Hall (Trained on Day 1 positive + negative samples, Weighted Memory Retained)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.67 0.74 0.75 0.74 0.75 0.73 0.78 0.81 0.83 0.83

Fire Alarm 0.9 0.94 1 1 1 1 – – – –

Outlet 0.53 – – – – – – – – –

Light Switch – – – – – – – – – –

Router 0.64 – – – – – – – – –

EXIT sign 0.66 0.7 0.72 0.71 0.72 0.77 0.8 – – –

Cardkey Reader 0.57 0.64 0.67 0.72 0.75 0.76 0.72 0.71 0.74 0.76

Emergency Lights 0.34 0.46 0.48 – – – – – – –

Fire Extinguisher – – – – – – – – – –

Fire Alarm Handle 0.55 0.77 – – – – – – – –

Total 0.608 0.708 0.724 0.793 0.805 0.815 0.767 0.76 0.785 0.795 13.211

Table A.15.: Model v1 trained on positives and negatives, with down-weighted memory retained,

evaluated on Day 2 data from Cory Hall
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Day 3 - SDH (Trained on Days 1-2 positive + negative samples, Weighted Memory Retained)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.52 0.55 0.59 0.67 0.67 0.69 – – – –

Fire Alarm 0.95 1 1 1 1 1 1 – – –

Outlet 0.51 0.59 0.64 0.65 0.68 0.71 – – – –

Light Switch 0.37 0.49 0.56 – – – – – – –

Router 0.54 0.63 0.66 0.71 0.77 0.77 0.77 – – –

EXIT sign 0.47 0.53 0.57 0.61 0.63 0.67 0.72 0.76 – –

Cardkey Reader 0.58 0.64 0.71 0.73 0.75 0.77 0.78 0.78 0.79 –

Emergency Lights – – – – – – – – – –

Fire Extinguisher 0.42 0.52 0.56 0.55 – – – – – –

Fire Alarm Handle 0.69 0.95 – – – – – – – –

Total 0.561 0.656 0.662 0.703 0.75 0.768 0.818 0.77 0.79 – 13.338

Table A.16.: Model v2 trained on positives and negatives, with down-weighted memory retained,

evaluated on Day 3 data from Sutardja Dai Hall (SDH)

Day 3 - Evans Hall (Trained on Days 1-2 positive + negative samples, Weighted Memory Retained)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler – – – – – – – – – –

Fire Alarm 0.95 1 1 1 1 1 1 1 – –

Outlet 0.54 0.64 0.66 0.67 0.67 0.66 0.68 0.67 0.68 0.67

Light Switch 0.44 0.53 0.56 0.58 0.59 0.57 – – – –

Router 0.31 0.36 0.42 – – – – – – –

EXIT sign 0.52 0.68 0.74 0.76 0.79 0.82 0.82 0.83 0.83 –

Cardkey Reader – – – – – – – – – –

Emergency Lights 0.33 0.35 0.56 0.53 0.54 0.55 0.54 0.56 0.57 0.55

Fire Extinguisher 0.56 – – – – – – – – –

Fire Alarm Handle 0.86 0.88 0.91 0.93 0.92 0.95 0.94 – – –

Total 0.564 0.634 0.693 0.745 0.752 0.758 0.796 0.765 0.693 0.61 12.194

Table A.17.: Model v2 trained on positives and negatives, with down-weighted memory retained,

evaluated on Day 3 data from Evans Hall
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Day 4 - Cory Hall (Trained on Days 1-3 positive + negative samples, Weighted Memory Retained)

Appearance (average over 100 reps)

Category 1 2 3 4 5 6 7 8 9 10 Loss

Fire Sprinkler 0.65 0.69 0.73 0.75 0.74 0.76 0.75 0.76 0.77 0.77

Fire Alarm 0.98 1 1 1 1 1 1 0.99 1 0.99

Outlet 0.41 0.71 0.72 0.73 0.73 0.74 0.76 0.77 0.74 0.75

Light Switch 0.38 0.62 0.61 0.64 0.65 0.64 – – – –

Router 0.51 0.67 0.66 0.71 0.72 0.73 0.75 0.74 0.75 –

EXIT sign 0.49 0.62 0.74 0.75 0.77 0.8 – – – –

Cardkey Reader 0.68 0.82 0.83 0.82 0.85 0.86 0.83 0.85 0.84 0.83

Emergency Lights 0.34 0.51 0.52 – – – – – – –

Fire Extinguisher 0.43 0.62 0.64 0.65 – – – – – –

Fire Alarm Handle 0.92 0.99 1 1 – – – – – –

Total 0.579 0.725 0.745 0.783 0.78 0.79 0.818 0.822 0.82 0.835 12.815

Table A.18.: Model v3 trained on positives and negatives, with down-weighted memory retained,

evaluated on Day 4 data from Cory Hall

48


	Introduction
	Related Works
	Interactive Asset Detection
	Incremental Learning for Mobile Object Detection
	Few-Shot and One-Shot Classification
	Online Learning
	Neural Turning Machine
	Memory Augmented Neural Network

	Method
	Model
	External Memory
	Object Localization
	Controller

	Data
	Training
	Evaluation

	Experimental Results and Analysis
	Train on Negatives Only
	Train on Positives and Negatives
	All Memory Retained
	Weighted Memory Retained
	Comparison of Methods
	Timing Results

	Conclusion and Future Work
	References
	Appendix
	Train on Negatives Only
	Train on Positives and Negatives
	All Memory Retained
	Weighted Memory Retained


