Lossless Compression Algorithms for

Hierarchical IC Layout

Allan Gu and Avideh Zakhor, Fellow, IEEE
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, CA 94720, USA

Email: {agu, avz @eecs.berkeley.edu

Abstract

An important step in today’s Integrated Circuit (IC) margitaing is optical proximity correction
(OPC). While OPC increases the fidelity of pattern transfehé&owafer, it also significantly increases IC
layout file size. This has the undesirable side effect ofdasing storage, processing, and 1.O. times for
subsequent steps of mask preparation. In this paper, we@gedwo techniques for compressing layout
data, including OPC layout, while remaining compliant wétkisting industry standard formats such as
OASIS and GDSII. Our approach is to eliminate redundanciethé representation of the geometrical
data by finding repeating groups of geometries between pheltells and within a cell. We refer to
the former as “inter-cell sub-cell detection (InterSCDahd the latter as “intra-cell sub-cell detection
(IntraSCD)". We show both problems to be non-determinigtadyonmial time hard (NP-hard), and
propose two sets of heuristics to solve them. For OPC layat#, dve also propose a fast compression
method based on IntraSCD which utilizes the hierarchicirimation in the pre-OPC layout data. We
show that the IntraSCD approach can also be effective inngnacting hierarchy from flattened layout
data. We demonstrate the results of our proposed algoritmesctual IC layouts for 90nm, 130nm, and

180nm feature size circuit designs.

I. INTRODUCTION

As the semiconductor industry moves toward denser desighsswaller feature sizes, pattern transfer
from reticles to wafers, referred to as lithography, becemere challenging. To correctly fabricate these
circuits using current lithographic machines, resolut@mhancement techniques (RET) such as optical
proximity correction (OPC), phase shift masking, scatgetiars, and tiling are routinely performed on

the layout data [1]. Denser circuit designs and increasedeisf RET have resulted in significant data

volume explosion. Specifically, The International Technold®yadmap for Semiconductors indicates
that a single layer of uncompressed fractured layout witleexi 400 Gigabytes in 2007 [2], and GDSII
layout file sizes are likely to grow to many gigabytes [3]. Irrtfmaular, OPC is a major contributor to
the expansion of layout data volume. It often destroys hidiiaal structures in layout designs, and adds
vertices to polygons causing over 10X increase in file sizealleviate the growing volume of layout
data, a new layout data format, Open Artwork System IntergbaBtandard (OASIS), was introduced
in 2001 by SEMI’'s Data Path Task Force. Even though OASIS resulésmore efficient representation
than the previous industry standard format GDSII [4—6], eéhisrstill room for improvement by applying
data compression technigues.

There exist compression algorithms to reduce the mask dagairsithe rasterized domain for direct
write lithography system [7, 8]. There are also algorithmscivitan be adapted to compress hierarchical
IC layout data. Specifically, Cheet al. [9] have investigated algorithms to compress dummy fills in IC
layouts which exhibit high degree of spatial regularityltiven and Ashida [10] propose a compression
technique for E-Beam writers by finding a set of polygons witmitical repetitions that can be referenced
as a single geometrical library.

In this paper, we propose two compression techniques t@esithe layout data size by finding repeating
groups of polygons between multiple cells and within a calk refer to the former as “inter-cell sub-
cell detection (InterSCD)” and latter as “intra-cell subltaetection (IntraSCD)”. Our techniques are
designed in such a way that the resulting compressed layentain compliant with standard industry
formats such as GDSII and OASIS, and can therefore be read bgtigdstandard CAD viewing and
editing tools without a decoder. In Section I, we describe finoblem of finding repeating groups of
geometries between multiple cells and within a cell. We rédethese problems as inter-cell sub-cell
detection (InterSCD) and intra-cell sub-cell detectionrd8CD) respectively. In Section Ill, we present a
set of greedy algorithms to solve these two problems. In &edli-D, we extend the IntraSCD algorithm
to exploit the hierarchical information in the pre-OPC layouorder to compress the post-OPC layout;
in doing so, we achieve a factor of five speed up with little orlass in compression efficiency as
compared to the IntraSCD method in Section 1lI-B. Section I\tdsses experimental results on actual

IC layout data. Finally, conclusions and future researchdtiions are included in Section V.

[I. SUB-CELL DETECTION PROBLEM

IC layouts have a well defined hierarchical structure, anduaynterchange formats such as OASIS

and GDSII provide syntax to describe the hierarchy efficiertlgwever, the hierarchical structure is

partially destroyed during the OPC process. Despite this, fiossible to reconstruct some hierarchy by
finding groups of polygons that undergo the same proximityemtion. Empirical observation of post-
OPC data reveals repeating groups of polygons both acrogfplawtells and within a cell. As shown
later, we exploit both of these redundancies in reducingdfitbesize of the semi-hierarchical post-OPC
layout data.

We begin by defining terminologies used throughout the pajderdefine rectangle, trapezoid, polygon,
and placement as geometries. A placement is a referencetioeautell in the layout. A cell is a collection
of geometries in a two dimensional plane, and a sub-cell isbset of the geometries that are within
a cell. A rigid transformation is associated with each ptaest. Two geometries are the same if they
are of the same geometrical shape; in the case of placerhegtnted to reference the same cell, and
have the same type of transformation. The compression ratk) {s the ratio of the size of the OASIS

layout file to the size of its compressed version.

A. Inter-cell Sub-cell Detection

In the InterSCD problem, we wish to find a group of geometries dpgear in two or more cells. In
OASIS, geometries are defined each time they occur in a cell.ristarice, if a group of 4 geometries
occur in N different cells, then they result idN definitions when only 4 definitions would suffice.
By detecting this group of 4 geometries, it is possible taatxeone cell from them which can then be
referenced by each of th& cells with a placement operator. Figure 1 shows an examplewf dells
and a group of 4 polygons that occur in each of the four celh& than defining the 4 polygons
separately in each cell, we create a placement in each ofeflethat references a new cell containing
the 4 polygons. In this case, it is sufficient to define the 4 payggonce rather than 4 times. In Figure 1,
the placement in cells A, B, and D are translated version efstib-cell, and the placement in cell C is
a rotated and translated version of the sub-cell. We now dtiyndefine the InterSCD problem:

Inter-cell Sub-cell Detection Problem: Given m cells, {C1,Co, ..., Cy,}, find the sub-cell which
maximizes|SC, |« r for m > r > 2.

A sub-cell SC is defined to occur in a cell’ if there exists a transformatioh that maps every
geometry inSC' to some geometry i. |[SC,| denotes the number of geometries in the sub-cell, and
r is the number of cells thatC, occurs in. This problem is NP hard since it is a special case of
the largest common point set (LCP) problem [11] with= m, each geometry mapped to a point,
and each cell mapped to a point set. In the LCP problem, for leatmn of d-dimensional point sets

SS = {51, S, ...,Sn}, the objective is to find a maximal sét that is congruent to some subset$f

Fig. 1. Repeating group of polygons across multiple cells. The dashed line is theléy of the sub-cell.

for i = {1,2,...,m}. A setU is congruent to a set’ if there exists a transformation that také&sinto

V.

B. Intra-cell Sub-cell Detection

In the IntraSCD problem, we wish to find groups of geometries dloaur at multiple locations within
a cell. The OASIS format provides different operators for espnting repetitive geometries[3]. In this
paper, we assume that all repetitive geometries are repsssavith the “TYPE 10" repetition operator.
With the “TYPE 10” operator, representiny instances of a geometry requires one geometry definition
and N two dimensional coordinates. Compression is achieved bynfinsub-cells which occur multiple
times within the cell. For instance, 4 polygons occurriNgtimes in a cell would require 4 definitions
and4N coordinates to represent. Grouping the 4 polygons togeti@rone cell would only requirév
rather thard N coordinates. Figure 2 shows a cell with 30 polygons and a goddppolygons that occur
four times in the cell. Rather than using 16 coordinates poegent the 16 polygons, only 4 coordinates
are used to create 4 placements in the cell that referencsuttreell. In Figure 2, the first, second,
and fourth placements are translated versions of the dybacel the third placement is a rotated and
translated version of the sub-cell. We now formally define ItiteaSCD problem:

Intra-cell Sub-cell Detection Problem: Given a cell,C, find the sub-cellSC, which maximizes
|SC,| x r for 2 < r < m, subject to the constraint that the maximum Euclidean digtdretween any

two geometries inSC,. is less than or equal tdist.

Cell

Placement 1 Placement 2

Sub-cell

Fig. 2. Repeating group of polygons within a cell. The dashed line is the boundahe sub-cell.

The maximum Euclidean distance between two geometries idraomed because most circuit designs
are created by connecting smaller functional circuit utotgether, and the smaller circuits are limited
in size. A sub-cellSC occurring inr locations implies that there existtransformationsyy, T, ..., T,
such thatT;(SC) maps uniquely to a group of geometriesGh m denotes the frequency of the most

repeated geometry i@'. As shown in the appendix, IntraSCD is an NP hard problem.

IIl. SuB-CELL DETECTIONALGORITHMS

InterSCD and IntraSCD are both NP hard problems, and cannathedsoptimally within a reasonable
amount of time for large layouts. In this Section, we desctibe greedy algorithms to solve them. Our
proposed approach to the InterSCD problem currently detgoisps of geometries that are translation

invariant. Future research will address rotation and refladtivariant cases.

A. Inter-cell Sub-cell Detection Algorithm

Before detecting a common sub-cell among a large colleatibrells, the cells are pre-processed
using hierarchical clustering algorithm [12] to group damnicells together. This results in computational
efficiency because cells that do not share any geometriesatligtr cells are quickly eliminated from

further consideration. The distance between two clustedefined as:

J

> 2 d(Cn, CR)

) N\ _ m=ln=1
d(Cluster;, Cluster;) = N, <N, (1)
where
A(Ch CF) = ==, 2
m
and
w = |common_shape(C",, C3)| (3)
m = min(|Cy, |, |C5]) 4)

N; and NV; denote the number of cells in thé iand " cluster respectively, and(C? , C7) is the distance
between the i cell in cluster i and # cell in cluster j.common_shape is a function that determines
the number of geometries that cell$, C; have in common irrespective of their locations. The distance
between two clusters is the average of the distances front@hyn one cluster to any other cell in the
other cluster. Once hierarchical clustering is complegedollection of clusters are generated by cutting
the hierarchical tree at a certain height in such a way thet ekuster contains cells that most likely share
a common group of geometries. We have empirically deterthioecut the tree at the height in which
the distance between two clusters exceeds 0.35. Figure Bslmowxample of a hierarchical cluster tree
created after the clustering process. As seen, cuttingdleeat distance 0.35 results in 3 clusters, namely
{C1,02,C5},{C3,C6}, and{C4}.

Having obtained a collection of clusters through the abdgeanchical clustering and cutting procedure,
for each cluster the algorithm looks for a sub-cell which mmazes |SC; | « r, wherer is the number
of cells the sub-cell occurs in for that cluster, aiti”,.| is the number of geometries that the sub-cell
contains. Figure 4 shows the flowchart for our proposed Inter@@prithm. The basic idea behind
the algorithm is to recursively update the candidate suib#€* which maximizes the benefit function
|SC,| = r at each iteration as it goes through all the cells in the elushe at a time. In the first stage,
the algorithm starts by choosing and removing two ce&llsand C;, from the cluster that are closest in
terms of the distance metric in Equation(2). It then exhaabtisearches for the largest sub-cél; (),

that is common to both cells under translation in a manneretaldscribed shortlySC() is set as the

0.4

0.35

) (@) (/) (co) ey

Cluster 3

Cluster 1

Fig. 3. Hierarchical clustering example.

initial sub-cell if its number of geometries exceeds sormeghold. Otherwise, another pair of cells whose
distance is the next closest is chosen.

Having found the largest sub-celfC("), betweenC; and C; in the first stage, the algorithm sets
SC* — SCW, andnumC «— 2 where in generahumC denotes the number of cells which contain
SC* as a sub-cell. It then moves on to the next stage as it finds nediein the cluster that contain
overlapping geometries withC*. Specifically, at stage 2, the algorithm re-computes thentisthetween
SC* and the remainder of the cells in the cluster according to &u@). The cell that is closest to
SC*, i.e.C@ is chosen from the cluster; then, exhaustive search iseapf find the largest sub-cell,
SC?), betweenSC* and C(?). At this point, we need to decide whether to updat@* with SC?)
as the possible candidate to be considered in future st@esapproach is to updatéC — SC®
if [SC®)| % (numC + 1) > |SC*| * numC. The reason for havingumC + 1 in the left side of the
inequality is that at this poinfC? is known to have appeared in 3 cells wh#&* has appeared in
only 2 cells. If SC — SC?), thennumC — numC + 1. The algorithm then proceeds onto stage 3, and
follows the same steps taken in stage 2. This process is sgpeatil all the cells in the cluster have
been visited.

From the above description, it is clear that a major compooénihe described algorithm has to do
with finding the largest group of overlapping geometries leetv2 given cellsC; andC;. Our approach
for the above problem is to perform an exhaustive searchlisvi for every geometrys that occurs in
both C; and C}, the algorithm finds a translation mappirig, that takesG in C; to C;. This mapping is
applied to all of the geometries ifi;, and the number of geometries tHgiC;) andC; have in common

is determined. The group with the most number of common geigset selected as the largest group

=74

Select two
most
similar cells

v

Search for
largest sub-
Remove the cell SC
two cells from
cluster

A4

A

SC" has
more than x
geoms?

Yes

Remove the two
cells from cluster,

SC ~ sc¥

numC ~ 2

!

Select cell, Cy,
most similar to
SC* from cluster

v

Search for SC¥,

the largest sub-

cell between Cy
and SC*

A 4

A

Remove Cy from
cluster,

SC ~ sc®
numC — numC+1

Remove Cy
— from «—N
cluster

Is SC™ better
than SC*?

Yes—p

Fig. 4. Flowchart of the InterSCD algorithm.

of overlapping geometries. The exhaustive search step rung N?) assuming each celty; and C;,
has N geometries.

Figure 5 shows an example of how the above approach workst #hftehierarchical clustering step,
cells A, B, C, and D are assumed to be grouped together in &cluWBells A and B are the closest
with 6 geometries in common. The exhaustive search finds tigedagroup of geometries,C'("), that
occurs in cells A and B, and se8C* — SC(M). Cell C andSC* are the closest, andC? is the
largest group of geometries between cell C &, BecauseSC(?) has 4 geometries occurring in three

cells, while SC' has 4 geometries occurring in two cells, the algorithm upsl§C* as SC* — SC®).

ne&uﬂ Hﬁ T1e
== i 1S

18|) LT

|

a)

SC*<— sc® SC*<— sc¥? SC*<+ Sc®

(b) (© (d)

Fig. 5. Inter-cell sub-cell detection example. (a) Cell cluster; (b) sub-cetiveen cells A and B; (c) sub-cell betwes@' (")
and cell C; (d) sub-cell betweefiC® and cell D.

Finally SC®) is the sub-cell found in the third stagéC(®) has 3 geometries occurring in all four cells
as compared t6¢'C(? which has 4 geometries occurring in 3 cells; sin€'®) | x4 = 12 is not greater
than |SC*| * 3 = 12, we do not update&SC*. Hence, the final solution as computed by the proposed
InterSCD algorithm isSC* «— SC?).

B. Intra-cell Sub-cell Detection Algorithm

For IntraSCD, we have developed a greedy algorithm that gtbesolution sub-cell at each iteration.
The basic idea behind our proposed iterative algorithm iglecs an initial geometry as an initial sub-cell,
and to add more polygons to the sub-cell until there is notewidil benefit in adding more polygons.
Once this happens, we replace all the geometries in the eetsponding to the newly found sub-cell
with a reference to the sub-cell, and repeat the above pdoedhe remaining geometries in the cell.

Figure 6 shows the flow diagram of our proposed IntraSCD alguritfhe algorithm begins by ranking
all the geometries according to the number of repetitionsach geometry in the cell. In this Section, we
are primarily concerned with repetitions under transtatio Section I11-C, we will extend this algorithm
to rotations and reflections. The geomet#'**, with the most number of repetitions is selected, and set

to SC if its number of repetitions is greater than some threshiotd. G2 denote the ¥ instance

10

of the geometry in the cell; then for each instaid€g®”, all possible combinations of 2 or 3 geometries
are created using/"** and its closest neighbors that are within a certain distdroma it. We have
empirically choosen the number of neighbors to be 200 so Asiilbcomplexity, and achieve reasonable
compression efficiency. Limiting the number of neighbors t® 2@n still result in large humber of
candidates. Specifically, there a(@o): 19,900 combinations of 2 geometries that can be paired with
G;'** to form a group of 3 geometries. If there are 2000 instance&'df*, then there are over 39
million candidate groups to consider. Hence, even modestbeu of instances ofs;*** results in large
number of candidate groups requiring significant computafitime to select the best group.

To alleviate this, we have devised a pruning method to eliweitandidates that result in few instances
after adding 1 geometry t6C(©), Specifically, assume the maximum number of instances for didaie
group with 1 added geometry i%; then there is no need to add a second geometry to any of these
candidates withM/ instances ifM < % This is because at each iteration, the goal is to choose the
candidate sub-cell which maximizes the benefit; thereforenen the best case scenario whereby the
number of occurrences for a candidate group with 1 added gegpmremains ail/ after the addition of a
274 geometry, the total score for this candidate group is t#slthar2N. In general, assum&C() has
| geometries, and the maximum number of instances for a catedgtoup composed fC? and one
other geometry isV; then, there is no need to add a second geometry to any cémdidaips composed
of SC and another geometry haviny instances if\ < {1 N.

At the end of the first iteration, the best candidate group isting of 1 or 2 added geometries to

SCO) is selected as followsSC'") «— arg max \SC’](.U\ * numlnstgl), whereSCj(.l) is the " candidate
scit

created during the*{ iteration; the algorithm checks to see wheth8€' (V| x numInst) > |SCO)| «
numlInst©® . If it is, then more geometries that are within a certainafise of the bounding box of
SCM are added t&SC(Y) by repeating the above process. If not, the iteration sttyesnewly found
sub-cell replaces the repeating group of geometries in élle and the process repeats by selecting
another geometry in the cell as an initial sub-cell.

In general, letSC® denote the solution sub-cell at tHé iteration, andS*CJ(.i) be be thetﬁ candidate

sub-cell created during théiiteration. We set

(@)

SC®) — arg max |SC’(.i)| « numlInst;’.
sc® 7 J

where \SC]@| is the number of geometries in th& jcandidate sub-cell generated at iteration i, and

numlnst§i) is the number of instances (Sij(-i) in the cell. After selecting the best candidate generated

11

v
Select geometry,
G with the
» most repetitions
as initial sub-cell,
Sc(o)

A 4

Add 1 or2
geometries to
each instance of |~
the sub-cell

A 4

Select candidate

group, sqk), with

most number of
instances

esr:r:tﬂ\éz in Does Set new sub-cell
— gceII and add candidate as
Sdkﬂ) - Sdk)
refe‘rse(r;(%e © benefit?

Fig. 6. Flowchart of the IntraSCD algorithm.

during iteration i, i.e.SC, we continue adding more geometries to #&(if the following condition

is satisfied,
1SCO| x numInst® > |SCEV| % numInst(=1),

If the condition is not satisfied, then the iterative step ofiiag more polygons t&sC(—1) ends, and
placements referencingC~1) are created at the locations whef€'("~1) occurs in the cell. The above
process is repeated until all of the geometries in the celéHzeen visited to determine whether they
can form repeating groups of geometries with their neigbbor

Figure 7 shows an example of the IntraSCD process for a cell 3ditklifferent geometries. Initially
in Figure 7(a), the polygon with 5 instances is selected ahtbs&C(?). Then all possible combinations
of 2 and 3 geometries are formed wifiC(?) and its neighbors. Figure 7(b) shows the group of three
polygons that results in the highest score among all the owatibns after the ¥ iteration. Sinceg.SC(©)|«

numlInst®) < |SCW| s numlInst™V), the algorithm continues. At the end of thé?2teration, another

12

polygon is added t&'C' () resulting in a group of 4 polygons as shown in the top subiadfigure 111-B
called SC®. Figure 7(c) also shows another group of geometries coresidier the second iteration.
However, this group only occur once in the cell and are netcet.SC2) with 4 geometries appearing on
the top of Figure 7(c) is selected because it is the one thaimi@es our metric, namelySC'|xnumlinst.
The algorithm continues singeSC? |« numlInst® = 16) > (|SCW|xnumInst™™) = 12). In the third
iteration, the algorithm attempts to add more geometrieS@? . However, (|SC®)| x numInst® =

7) < (|SCP | xnumInst® = 16), and so the iterative step of adding polygonssts(®) stops. The final
solution isSC(? as shown in Figure I1I-B; all the geometries corresponding €2 are removed from
the cell, and placements that referer§€(® are added to the original cell as shown in Figure I-B.
We continue by selecting the geometry with the most repetith the cell and setting it as an initial
sub-cell. However, at this point either the remaining getnie® do not have enough repetitions, or
the sub-cell created after their first iteration does notsiatihe condition|SC(V| x numInst®) >
|SCO)| x numInst0).

C. Extension of IntraSCD to Rotation and Reflection

The IntraSCD algorithm described above only considers ge@adhat are the same under translation.
However, circuit designs contain rotated and/or reflectemhgpries, and as such, the above algorithm is
unable to take advantage of those to further reduce the fide 82 now extend the IntraSCD algorithm in
Section 11I-B in order to take into account rotations and reiters. We refer to IntraSCD with extensions
to rotation and reflection as IntraSCD+EXxt.

Recall that in the algorithm of Section III-B, the geometntiwihe most number of repetitions under
translation is selected as an initial sub-cell. Geomewiesadded to the sub-cell at each iteration until
there is no gain in the score by adding more polygons. To extemalgorithm to rotations and reflections,
the geometryG™*, with the most number of repetitions under translationatiot, and reflection is
selected as the initial sub-cefiC(?). Because of the Manhattan nature of layouts, we only focus on
multiples of 90 degree rotations.

During the ! iteration, for each instancé&;"**, we find a transformation such tHE{ G}***) = G™**,

{maz) denote the set

whereG™* is a given geometry with an arbitrarily chosen orientatibet Group

of geometries that are within a certain distance§t**; then the algorithm applies the transformation,

(maz)

T;, to Group , forms all possible candidate groups of 2 or 3 geometriesaguing 7;(G;"**) and

(maz)

its transformed neighbor®;(Group), and selects the grougC™"), with the highest score using

the exact same steps described in the IntraSCD algorithm itio8dd-B.

13

<EL [ﬂ SC(O) SC(1)
i LEJ i L L _____ L
iy 5 | s
? = 5 instances 5 Instance
SL (s
(a) (b)
CELL CELL
0 SC(Z) o SC(Z)

y——= |4 Instances

-4 |1 |nstance

Fig. 7. Intra-cell sub-cell detection example. (&)" iteration; (b) 1° iteration; (c) 2"¢ iteration; (d) final result.

Having foundSC'™), the algorithm proceeds in the same way as the IntraSCD #iguriSpecifically,
during the K iteration, the algorithm selects geometries in the celt tira@ within a certain distance
to the bounding box of each instance $€(*~1) denoted bySC*~1- In addition, SC*~1- contains
an instance ofZ™** namely G]**, with an associated transformatidry,. The transformation?,,,, is
applied to neighboring geometries 81"~ and candidate groups are created using each instance
of SC*—1) and its transformed neighboring geometries. The candidatepgwith the highest score is
selected as described in the IntraSCD algorithm. Specifically,

SC®) — arg max]SC’](’C)| * num]nstgk)
sci

WhereSC](k) is the f* candidate group generated at iteration k, an@hlnsty“) is the number of instances

of SC](.'“) in the cell. We continue the iteration by adding more polmdm\SC(’“H « numInst®) >

14

|SCH=D| x numlInst*=D . If the above condition is not satisfied, then a new cell thatt@ios the
geometries ofSC*~1) is created, and placements with the proper transformagiferencing the sub-cell
are created at the locations whe$€'(*~1) occurs in the cell. The iteration steps described above are
repeated until all of the geometries in the cell have beemaxad.

Figure 8 shows an example of how IntraSCD+Ext algorithm wormkgFigure 8(a), the polygon with
the most number of instances under translation, rotatiad, reflection is selected and set 8§,
Figure 8(b) shows the group of three polygons that resultsarhtghest score among all the combinations
after the1*! iteration. SincelSC©)| x numInst® < [SCW| % numlInst™V), the iteration continues in
order to add more polygons t6C()). At the end of the2"? iteration, we add another polygon &C(!)
resulting in a group of 4 polygons as shown in the top sub-ceffigure 8(c) which we callSC'®.
Since |SCW| s numInstV) = 12 < [SCP)| « numlInst® = 16, we continue the iteration. Finally, in
Figure 8(d), we see that the grofi®® occurs only once in the cell, andC®)| « numlInst® =5
is less than|SC®?)| x numlInst®) = 16; therefore, the iteration step stops, afid'® is chosen as
the solution. The algorithm continues by selecting anothewngetry with the most repetition in the
cell and setting it as an initial sub-cell. However, at th@np either the remaining geometries do not
have enough repetitions or the sub-cell created after thet iteration does not satisfy the condition

|SCW |« numInst) > |SCO)| x numInst(©),

D. IntraSCD Exploiting Pre-OPC Hierarchy (IntraSCD + EHier)

The greedy IntraSCD algorithm can be computationally expensh dense layouts. For isntance, it
takes 58 minutes to run the IntraSCD algorithm on the 1.8mm.8mm 90nm Active layer using a
Pentium IV 2.0 GHz machine. Since part of the data expansiomg@PC is due to the destruction
of the design hierarchy, it might be possible to exploit thigioal pre-OPC hierarchy to reconstruct the
hierarchy after OPC. As we will show shortly, in doing so, we @so speed up IntraSCD by up to a
factor of 6 with little or no loss in compression efficiency.

Close examination of the post-OPC data reveals that mucheobtiginal cell hierarchy is destroyed
during the OPC process, but some of the geometries from éliffenstances of a cell undergo the same
proximity correction. It is possible to find the geometriestlire post-OPC layout that correspond to a
particular cell instance in the original pre-OPC layout. TWay, rather than having to add one or two
geometries at a time within the IntraSCD algorithm, we can fithdbfathe geometries that belong to
the same group in one step. However, due to proximity effexisall corrections are identical for each

instance of a cell; hence, we need additional processins ste order to find the repeating group of

15

ol K =
H LJ H l—l 7 Instances H L[ﬂ H L H-n“

EETE@ Igifmm IIFEE ﬂ!i1ﬂ| 4 instances

@) (b)
Cell sc? Cell sc®

) DRI} e [l 17 |IRend
H-nn 4&:523 H_ml Ei—l—[”]m L&:ﬂes
Ef

'Tﬂum
ll-rm F Eg:mm

(© ()

Fig. 8. IntraSCD example with rotation and reflection. Repeating geometries areain ¢p) 0" iteration; (b) 1% iteration;

(c) 2™ iteration; (d) 37 iteration.

geometries.

We begin by collecting thé/ groups of geometries in the post-OPC laydit, Go, ..., G x, that belong
to the N instances of the same cell in the pre-OPC layout. This can be bigintersecting the bounding
box of each cell instance in the pre-OPC layout with the genoasein the post-OPC layout. Since OPC
only makes local modifications to the polygons, the geonwtitiat intersect with the bounding box
correspond to the geometries of each instances of the sdhie ttee pre-OPC layout. Figure 9(a) shows
a portion of the pre-OPC layout, and Figure 9(b) shows the sparding post-OPC layout. In the figure,
intersecting the bounding box of the cell 'Cell A’ in the po&RC layout, denoted with the dotted outline,
with the post-OPC layout results in 4 groups of geometiieés,G», G3, G4 as shown in Figure 9(c).

16

CellA Cell A CellA CellA
Cell A] Cell A]

CellA Cell A

(a) Pre-OPC (b) Post-OPC
Cell A Cell A
G1 G2
E® Y %

Cell A Cell A

™ o
X

G3 G4

£

(c) Groups of geometries

Fig. 9. An example of how to use the pre-OPC hierarchy information to find the gfeiesibelonging to the same cell instance
in the post-OPC layout.

Designers create complex logic circuits by connecting Emaimpler functional circuit units such as
“AND” gates together. These smaller circuits, when placea tayout, may be transformed geometrically
to satisfy some constraints placed by designers. For iosfauppos€’ in Figure 10(a) represents a small
circuit unit, andC'1,C2 are two placements that referena@sin a pre-OPC layout; the corresponding
post-OPC layout is shown in Figure 10(b). Figure 10(b) also shtve two group of geometrieS1
and G2 that can be obtained by intersecting the post-OPC geometitbsthe bounding box oiC1

and C2 in the pre-OPC layout. As seeni1 is a translated version af', and C2 is a translated and

17

@
=T

[L 1L
[I
G

G i g
C2

G2 G2

@ (b) (c)

Fig. 10. (a) Example of smaller circuit(, and its instance€’;, Cs in a pre-OPC layout; (b) the corresponding post-OPC
layout with theC;'s and C2’s bounding box superimposed; (c) by applying the inverse transfioms G1 and G2 becomes

the same group of geometries.

90 rotated version ofC. These transformations are readily available in the pre-GB@ut data, and
therefore, corresponding inverse transformations canppéeal to G1 and G2. In doing so, we map all
of the geometries iiz1 and G2 to the same location and orientation as shown in Figure 10(c).

After obtaining the N groups of geometries in the post-OP@dat, G, ..., Gy, corresponding to
the N instances of the same cell in the pre-OPC data(s, ..., Cy, we search for a group of repeating
geometries betwee@'(, Go, ..., Gn. This problem of finding a repeating group of geometries betwee
G1,Go,...,GN can be solved with the InterSCD algorithm described in SeclibA. However, the
hierarchical clustering step can be omitted sitgeGo, ..., Gy are known to share common geometries
as they correspond to the same cell instance in the pre-ORGtladdditionally, since the transformations
that were applied ta@’ to createC', Cs, ..., Cy in the pre-OPC data are known, corresponding inverse
transformations can be applied €, G-, ..., G so that the geometries i@, Go, ..., Gy are mapped
to the same location and orientation. In doing so, the exha@usearch performed by the InterSCD
algorithm to find the largest group of repeating geometridsvéen two cells can be omitted. Rather, a
simple "AND” operation is required to find the largest grouprepeating geometries between two cells.

Special attention must be paid to handle overlaps betweeemlents. If two placements overlap in the
pre-OPC layout, then their bounding boxes must be restricteéde portion which do not overlap rather
than the full bounding box of the cell that they reference.sTikibecause a Boolean “OR” operation is
typically performed by the OPC software on the overlappirgjams, and therefore, the geometries in
these regions are not likely be part of a repeating group ofrgtries. Figure 11(a) shows an example of a

cell P, Figure 11(b) shows an example of four placements bPceith two of the them overlapping in the

18

[

==
[

[

T 7 T
-
i
mll

= E’j{%&f

[

—
cell P
(@ (b) (c)

Fig. 11. (a) Example of a cell P; (b) 4 placements of P with 2 of them overlappingagrQiC layout; (c) the corresponding
post-OPC layout; the overlapping region is highlighted in gray.

pre-OPC layout, and Figure 11(c) shows the corresponding@B€l layout. As seen in Figure 11(c), the
geometries in the overlapping region, highlighted in greaye been “ORed”, and are therefore completely
different from the other geometries in the post-OPC layoutesponding to other instances of cell P.

A top down, bottom up approach is used to handle multiplel$evkhierarchy where children cells may
contain other children cells. This is needed in order to findtatipg groups of geometries corresponding
to children cells within other children cells. Figure 12 sisoan example of a layout with multiple levels
of hierarchies where cell C is a child cell of the top-celldarell D is a child cell of cell C. By merely
intersecting the bounding box of each instance of cell C enpgbst-OPC layout, the repeating geometries
corresponding to cell D would go undetected. To address wespropose the following: Begin with the
largest cell,C', and gather all of the geometries in the post-OPC layout thatspond to each instance
of C in the pre-OPC layout. Then the inverse transformation isieggb each group of geometries to
obtain N groups of geometries in the same orientationClItontains children cells, then we gather all
of the geometries in the post-OPC corresponding to instanceach child cell in the pre-OPC layout.
This is applied recursively until the there are no more chkitdcells. Once the geometries corresponding
to the cell at the lowest level of the hierarchy have beenmsitacted, the cell on the next higher level
of the hierarchy is reconstructed and so on. This processncmst until the cell at the top level of the
hierarchy is reconstructed.

So far, we have described ways of exploiting the pre-OPC hibyainformation in order to find
repeating groups of geometries corresponding to cell iiest® in the pre-OPC layout. However, there

may also exist repeating groups of geometries in the post-lajaglit that do not belong to some cell in

19

cellC

cellD

top-cell

Fig. 12. An example of a layout with multiple levels of hierarchy; cell C is a child celiopfcell and cell D is a child cell
of cell C.

the pre-OPC layout. Therefore, to ensure highest compresatmws, we apply the IntraSCD algorithm

to find any remaining repeating groups of polygons in the @€ layout.

IV. RESULTS AND DISCUSSIONS

We have applied the above InterSCD and IntraSCD algorithmgttieahindustrial post-OPC layouts.
The first data set consists of the Poly and Active layers for a 815m3.5mm chip with 180nm feature
size. For this set, OPC has been carried out by the layout owitlerindustry standard OPC software.
The second data set consists of the Poly, Metal 1, and Metaleé2ddyom 8mmx 8mm and 4.3mmx
4.3mm chips with 130nm feature size. The third data set ctnefsthe Poly, and Active layers from
1.4mm x 1.4mm and 1.8mmx 1.8mm chips with 90nm feature size. We run OPC software from a
major vendor on the second and third data sets with standBfd @cipes. The original post-OPC data

and the compressed post-OPC data are encoded in the OASIS.forma

A. InterSCD Results

For the first data set, we have found the InterSCD algorithm tdkwell, and the IntraSCD algorithm
not to result in noticeable gain. We believe this is due to way the data is processed by the OPC
software. Furthermore, we notice that many of the post-OPIS freim the first layout data set are much
smaller than those from the second and third data sets. TheréfitraSCD, which detects similar groups
of polygons within a cell, can not result in significant gain the first layout data set containing small
cells. Table | shows the inter-cell sub-cell compressed fdessin bytes encoded in OASIS format for

post-OPC data set 1. As shown, the average compression saiound 2 for both layers.

TABLE |

Compression results with InterSCD algorithm. File sizes are in bytes.

Post-OPC| InterSCD | CR
Size Size
Poly (L1) | 6,391,097 2,793,277| 2.29
Active (L1) | 3,496,377| 1,777,757| 1.97
TABLE I

Compression result with IntraSCD and IntraSCD+Ext algorithm. The fidesare in bytes.

Post-OPC | IntraSCD | IntraSCD+Ext CR CR Ratio of IntraSCD

Size Size Size IntraSCD | IntraSCD+Ext| to IntraSCD+Ext
Poly (L2a) 2,413,460 | 977,294 886,445 247 2.723 1.102
Poly (L2b) | 1,036,664 | 576,491 554,949 1.80 1.894 1.053
Poly (L3a) 9,189,288 | 4,905,897 4,661,388 1.87 1.97 1.05
Poly (L3b) | 34,515,762| 18,960,928 17,924,204 1.82 1.93 1.06
Metal 1 (L2a) | 2,490,423 | 1,791,495 1,731,540 1.39 1.44 1.04
Metal 1 (L2b) | 1,194,192 | 1,060,746 1,034,056 1.12 1.16 1.03
Metal 2 (L2a) | 1,444,367 | 1,143,360 1,136,757 1.26 1.27 1.01
Metal 2 (L2b) 947,981 775,561 768,770 1.22 1.23 1.01
Active (L3a) 9,666,584 | 6,899,025 6,514,057 1.40 1.48 1.06
Active (L3b) | 35,945,586| 23,209,262 22,118,134 1.55 1.63 1.05

20

B. IntraSCD Results

For the second and third data sets, the IntraSCD algorithnksmeell, while the InterSCD algorithm
results in little gain. The fifth column of Table Il shows theuts of applying the IntraSCD algorithm
on the second and third layout data sets. The compressiars natnge from 1.80 to 2.46 for the Poly
layer, and 1.40 to 1.55 for the Active layer. However, the pogssion ratios for the Metal layers are
rather low i.e. in the range of 1.12 to 1.39. This can be expliioy noting that the Metal layers contain
many polygons with only a few instances.

Comparing the fifth and sixth columns of Table I, we see thatdth the layouts IntraSCD+Ext
achieves higher compression ratio than translation ortha®CD. From the % column of Table Il, the
compressed Poly and Active layouts using the IntraSCD alguoriare 5 to 10 percent larger than the

ones with IntraSCD+Ext. The corresponding gains for Metal 1 Bledal 2 are on average 3 and 1

21

TABLE Il
Comparing CR of InterSCD with GZIP. File sizes are in bytes.

Post-OPC| GZIP | InterSCD | InterSCD+GZIP

Size CR CR CR
Poly (L1) | 6,391,097| 7.79 2.29 8.99
Active (L1) | 3,496,377| 8.60 1.97 9.15

percent respectively. The rotation and reflection gains fotaM2 are smaller than those of Poly and
Active because Metal 2 is created using routing software, @ such, has fewer geometries that are
invariant under rotation and reflection; on the other handy Roldd Active layers are typically created

by placing reflected, rotated versions of standard cells.

C. Comparison with GZIP

GZIP [13] is a popular compression software found in many asepsystems, and is commonly used
to compress GDSII and OASIS layout data. It is based on the Zivpetralgorithm (LZ77) originally
proposed in 1977 [14]. Table Il compares the compressitiogaf GZIP and InterSCD. As seen in
the third column of Table Ill, GZIP performs well for the layisuwith many small cells, achieving a
compression ratio of 8.6 for the Active layer in Layout 1. Altlgh the compression ratio of InterSCD
shown in the fourth column of Table Il is lower than that of ®Zthe InterSCD compressed files are
OASIS format compliant and as such, they can be further cosspteby applying GZIP to them. As
seen in the fifth Column of Table Ill, the compression ratio mtetSCD follow by GZIP is higher than
GZIP by itself.

GZIP also does better than IntraSCD for layouts with largetscéfiowever, as seen in the third
and fourth columns of Table IV, the compression ratio ofd®€D is much closer to the compression
ratio of GZIP for larger post-OPC layout file sizes. Specfically, thee largest layouts i.e. Layout 3b,
the compression ratio is 1.63 and 1.77 for the Active layad &4.93 and 2.34 for the Poly layer for
IntraSCD and GZIP respectively. Similar to InterSCD, IntraSCinpresses the files in such a way that
the layout files remain OASIS compliant, and therefore, GZIP larfurther applied to the IntraSCD
compressed files. Column 5 of Table IV shows the compressiim o IntraSCD followed by GZIP is
higher than GZIP for all of the layouts, with the improvemerasging from 52% to 92% for Layout 3a
and 3b.

TABLE IV
Comparing CR of IntraSCD with GZIP. File sizes are in bytes.

Post-OPC | GZIP | IntraSCD+Ext| IntraSCD+Ext+GZIP

Size CR CR CR

Poly (L2a) | 2,413,460 | 4.97 2.72 6.17
Poly (L2b) | 1,036,664 | 3.88 1.89 4.45
Poly (L3a) | 9,189,288 | 2.53 1.97 4.79
Poly (L3b) 34,515,762| 2.37 1.93 4.55
Metal 1 (L2a) | 2,490,423 | 3.00 1.44 3.96
Metal 1 (L2b) | 1,194,192 | 2.76 1.16 2.99
Metal 2 (L2a) | 1,444,367 | 2.96 1.27 3.09
Metal 2 (L2b) 947,981 291 1.23 3.04
Active (L3a) 9,666,584 | 1.88 1.48 2.85
Active (L3b) | 35,945,586| 1.77 1.63 3.05

22

D. IntraSCD Applied on Flattened Layout

It is also possible to run IntraSCD algorithm to reconstrhethierarchy for flattened layouts. We carry
out this process for pre-OPC data since we can compare thasteected hierarchy with the original
hierarchy to determine the performance of the IntraSCD dlyor

There are two ways to flatten a layout; one is to push every gegritein the hierarchical layout to
the top level of the hierarchy which we call flattened layout (FApother is to push the geometry to
the top level and perform a Boolean “OR” operation to remong averlaps between geometries; we
refer to this as flattened layout with “OR” (FLWOR). For the posp of this discussion, we define FL
data as not having gone through a “OR” operation. Industimddrd CAD tools offer both alternatives
as a way to flatten layout data. In general, we would expect th@R not only to result in smaller
file size than FL, but also to have fewer repeating geometrias fthaas the “OR” operation removes
some of the repetitions in the flattened layout.

Table V shows file sizes of the pre-OPC hierarchical layout, FIRV@nd the IntraSCD compressed
FLWOR in bytes. As shown in the Table, IntraSCD manages to dasoreble job of reconstructing
the hierarchy by significantly reducing the size of the FLWORrethough the “OR” operation destroys
repetitions. However, as it is to be expected, IntraSCD canesult in file sizes that are as small as
the original hierarchical ones. Specifically, the compredgedsizes using IntraSCD are 1.31 and 2.11

times larger than the size of the pre-OPC hierarchical layouthe Poly and Active layers of layout

23

TABLE V

Comparison of pre-OPC hierarchical layouts with compressed FLWQ@BuUl® using IntraSCD algorithm. File sizes are in

bytes.
Pre-OPC | FLWOR Ratio of IntraSCD | Ratio of FLWOR | Ratio of IntraSCD
Hier. Size Size FLWOR to Hier. Size to IntraSCD to Hier.
Poly (L3a) 244,479 | 1,745,624 7.14 542,736 3.22 2.22
Poly (L3b) 897,578 | 4,085,736 4.55 1,176,777 3.47 1.31
Active (L3a) | 267,104 | 1,345,587 5.04 859,160 1.57 3.22
Active (L3b) | 1,255,861 3,702,918 2.95 2,654,989 1.40 2.11

] |

(@) (b) (©

Fig. 13. (a) Two overlapping group of geometries shown in gray and red; trexlapped region is outlined by the dashed
line; (b) group of 3 geometries that repeat twice in (a); (c)result affgrening Boolean “OR” on (a).

3b respectively, and 2.22 and 3.22 times larger for the PollyAative layers of layout 3a respectively.
The IntraSCD algorithm performs worse on the Active than Pojgra of both layouts 3a, and 3b. The
main reason is that the Active layer consists of many oveitapgeometries, and once a Boolean “OR”
operation is performed, many groups of repeating geonsestie removed.

To show the effects of the “OR” operation on repeating geoie®tconsider Figure 13. Figure 13(a)
shows an example of two overlapping groups of geometridsonttthe “OR” operation, and Figure 13(b)
shows the group of repeating geometries consisting of 3gooly within Figure 13(a). However, per-
forming a Boolean “OR” operation on Figure 13(a) as shown irufddL3(c), does not results in a group
of 3 geometries that repeats twice; rather it results in armgetry that repeats only twice.

Table VI shows the file sizes of pre-OPC hierarchical layouts, dfd the compressed FL layouts in

bytes. Comparing the fifth columns of Tables V and VI, we se¢ #pplying IntraSCD to FL results

24

TABLE VI
Comparison of pre-OPC hierarchical layouts with compressed flattevidtbut “OR” layouts using IntraSCD algorithm. File

sizes are in bytes.

Pre-OPC FL Ratio of | IntraSCD | Ratio of Ratio of Ratio of IntraSCD
Hier. Size FL to Size FL to IntraSCD to | IntraSCD FLWOR to
Size Hier. IntraSCD Hier. IntraSCD FL
Poly (L3a) | 244,479 | 2,449,539| 10.02 | 525,530 4.65 2.15 1.03
Poly (L3b) | 897,578 | 4,085,736 4.55 | 1,176,777| 3.47 1.31 1.00
Active (L3a) | 267,104 | 2,401,676 8.99 463,675 5.18 1.74 1.85
Active (L3b) | 1,255,861| 4,131,499| 3.29 1,862,786 2.22 1.48 1.43

in smaller file sizes than to FLWOR. This implies that compreds#@SCD file sizes are closer to the
original hierarchical file sizes if IntraSCD is applied to FL,hat than to FLWOR. This is also shown
in the last column of Table VI which shows that, the ratio af&$CD FLWOR to hierarchical is larger
than the IntraSCD FL to hierarchical. The gain is more pronodricethe Active than the Poly layers as
Active has many more overlapping geometries. The small 3rBffsdvement in compression ratio of the
Poly layer of layout 3a and no improvement of the Poly layer gbld 3b can be attributed to the fact
that layout 3a contains memory cells with overlapping Polgrgetries, while the Poly layer of layout
3b has no overlapping geometries. As explained earliefopeing a Boolean “OR” removes some of

the repeating groups of geometries that the IntraSCD algorixploits to reduce the file size.

E. IntraSCD+Ext on Flattened Layout

We apply the IntraSCD+Ext on the pre-OPC FL as shown in Table Wi.cBnsidering groups of
geometries that are the same under translation, rotatimhredlection, the file size can be further reduced
as compared to translation only. As seen in column 5 of Tablefsf FL data, IntraSCD+Ext decreases
the file size by 6 to 37 percent as compared to IntraSCD. In adlithe gain over IntraSCD is higher
for layout 3a than layout 3b. This is in part due to the fact thgout 3a contains memory, and memory
blocks are assembled by placing translated, rotated andteflenemory bit-cells together. As such, there
are many more groups of geometries that are invariant uratation, and reflection in layout 3a than
in layout 3b. Overall, both IntraSCD and IntraSCD+Ext perforettér on layout 3b than 3a. Layout 3a
contains memory blocks that are very compact and hieraa;ldod our algorithm is unable to rediscover

all the repetitions that are present in the original, complaierarchical layout data.

25

TABLE VII
Comparison of IntraSCD+EXxt to IntraSCD on the pre-OPC FL data.

Ratio of Ratio of FL Ratio of IntraSCD+Ext| Ratio of IntraSCD
FL to Hier. | to IntraSCD+Ext to Hier to IntraSCD+Ext
POLY (L3a) 10.02 6.41 1.57 1.37
POLY (L3b) 4.55 3.86 1.18 1.11
ACTIVE (L3a) 8.99 6.06 1.49 1.17
ACTIVE (L3b) 3.29 2.36 1.39 1.07
TABLE VIl

Compression ratio and run time of IntraSCD+EHier compared to IntraSCD

Layout IntraSCD CR EHier + EHier+IntraSCD Speed
IntraSCD CR| Run Time in Minutes| Increase
Poly (L3a) 1.87 1.79 7.50 1.35
Poly (L3b) 1.82 1.78 8.50 6.08
Active (L3a) 1.40 1.38 8.50 5.89
Active (L3b) 1.55 1.47 12.0 4.89

F. Exploiting pre-OPC Hierarchy Results

Table VIII compares the compression ratio and run time ofalBCD and IntraSCD+EHier described
in Section 1lI-D. As seen in the fifth column of Table VIII, exjiog pre-OPC hierarchy can reduce
the run time by a factor of 1.35 to 6.08 with small or no loss ampression efficiency as compared to
the IntraSCD algorithm. The longest runtime for IntraSCD amalidhe layouts is 58 minutes for the
post-OPC Active layer of layout 3b. Exploiting the pre-OPC &iehy reduces the runtime by a factor
of 5. Comparing the second and third columns of Table Vllithia worst case we observe less than a

5.5% decrease in compression ratio.

V. CONCLUSIONS ANDFUTURE WORK

We have presented a class of lossless compression algsritiimost OPC IC layout data. In addition
to being lossless, the compressed layout data remains flulfgat compliant, which means that the
compressed data can be read by industry standard CAD vigditigg tools without the need for a
decoder. Our proposed algorithms find redundancies in tefmspeating geometries within a cell and

between cells. We have shown that our approach achievesnadas compression ratio on the Poly and

26

Active layers. Furthermore, we have developed a method ttitpe pre-OPC hierarchy information
in order to speed up the process of finding common groups of ge@m® within a cell. In doing so,
we have demonstrated an average of 5 times increase in spat suffering a small or no loss in
compression efficiency.

In the future, we plan to run our algorithms on more extensets of data. We also need to gain a
better understanding of why the performance on the Metarkis not as high as the Poly and Active
layers, and determine techniques to improve the compresatm for the Metal layers. Future work also

involves extension of the InterSCD algorithm to rotations asflections.
Acknowledgement

This research was conducted under the Research Network feangdd Lithography, supported jointly
by the Semiconductor Research Corporation 2005-OC-460 @ efense Advanced Research Project
Agency W911NF-04-1-0304 .

APPENDIXA

In this appendix, we show that the IntraSCD problem is NP-harddducing the known NP hard
1-dimensional largest common point set problem (LCP) to the8CD problem.
Given a collection of point set§'S = {S1, So, ..., S, }, with each point set containing points on the
real number line, construct a cel(;**, containing|S1| + |Sz2|... + |S,| geometries.
Define:
distance(S;) = max(S;) — min(S;) Samar = arg n}gzjx{distance(Sj)}. Amin = I%{Il {distance(S;)}
For each pointP;;, in the point set5;, define a corresponding square(ify’, with bottom left coordinate
of the square afL(pj;),0), where L(-) is a function that map$>; to some value inR, and setdist
to din. TO make the notation simpler, each squareCiii is considered as a 1-dimensional point with
value L(p;;), andC*® as a 1-dimensional point set.
A new point setC** is created by initially setting it t&54,,... Then each point set frorS is added

one at a time taC*°. Let
D = distance(C*®) P = max(C*®) L(Pj;) = Pj; + P + D + 1 + distance(S;).

For every pointP;; € S;, a new point,L(Pj;), is created inC**. Once all of the points fronf;

have been added t0'**, D and P are recomputed, and another point $et; is added toC*®. This

27

is repeated until all of the point sets have been added. Aettieof the process, there is a new point
setC*® = { T B3 s Poroy Piig oy s Pnsfn}, whereP;? is thei'" point in C** that is mapped from
the point setS;. Clearly this construction process can be done in polynbtimege. The construction of
C** guarantees any solution to the intraSCD problem can not coome points that are mapped from
two different point setsS;, S, i.e, T(P7;,), T(Ps,) ¢ Cs,, because the distance between two points

sub?
Pih., Pry, 1s greater thanlist.

If SS. is a solution to the LCP problem ariS,,;, containsK points, then it is also a solution to
the intraSCD problem. By construction, a point set that repedimes in Cs; can not contain points
mapped from two different point sefs and.S;, and therefore can not have point set with more than
points that repeats times. If there exists such a set, th88,,;, would not have been a solution to the
LCP problem. Supposé€’;;, is a solution to the intraSCD problem withi’?, having K points. Since
5, oceursn times in C*%, and C5, can not contain points mapped from two different point sats i
SSsup, there must exist some mapping that takegl§, to each of point sets§;, in SS.

For example, suppose we have 3 point sets,
S1=142,6,9,12} Sy, ={3,5,7} S3 = {12,13,16}.

ThenC*® = {21,61,91, 121, 302, 322, 342, 753, 763, 793 }, where the subscript denotes the point set from
the point came, andist = 4. Notice any subsets af'** which are mapped from two different point
sets have a distance greater than 4. In this exarjglé}, is a solution to the LCP and the intraSCD

problem.

REFERENCES

[1] W. Grobman, R. Boone, C. Philbin, and B. Jarvis, “Reticle enharere technology trends: resource and manufacturability

implications for the implementation of physical designs,’|8PD '01: Proceeding®f the 2001 internationalsymposium

on Physicaldesign. New York, NY, USA: ACM Press, 2001, pp. 45-51.

[2] International technology roadmap for semiconductors 2005 edlitidithography. [Online]. Available:
http://www.itrs.net/Links/2005ITRS/Litho2005.pdf

[3] OASIS - Open Artwork System Interchange Standard, SEMI. [Online]. Available:

http://webstore.ansi.org/ansidocstore/product.asp?sku=SEM I+ FED-

[4] A.J. Reich, K. H. Nakagawa, and R. E. Boone, “OASIS vs. GDsteam format efficiency,” irProceedingof SPIE
— Volume 5256, 23rd Annual BACUS Symposiumon PhotomasKTechnology, K. R. Kimmel and W. Staud, Eds., Dec.
2003, pp. 163-173.

[5] S. F. Schulze, K. H. Nakagawa, and P. D. Buck, “OASIS: pesgron implementing the new stream format for containing

data size explosion,” ifroceeding®f SPIE— Volume 5504,20th EuropearConferencen Mask Technologyfor Integrated

Circuits and Microcomponents, U. F. W. Behringer, Ed., Jun. 2004, pp. 53-59.

28

[6] K. Tabara, M. Sakurai, S. Makino, T. Itoh, and T. Okada, “Effeeness of mask data process using OASIS format,” in
Photomaskand Next-GeneratiorLithography Mask TechnologyXIIl. Edited by Komuro, Masanori.Proceedingf the
SPIE, Volume 5853, pp. 619-625(2005)., M. Komuro, Ed., Jun. 2005, pp. 619-625.

[7] V. Dai and A. Zakhor, “Advanced low-complexity compressiom foaskless lithography data,” iRroceeding®f SPIE—
Volume 5374, EmergingLithographicTechnologiesVlll, R. S. Mackay, Ed., May 2004, pp. 610-618.

[8] H. Liu, V. Dai, A. Zakhor, and B. Nikolic, “Reduced complexity comgssion algorithms for direct-write maskless
lithography systems,” irProceedingsof SPIE — Volume 6151, Emerging Lithographic TechnologiesX, M. J. Lercel,
Ed., Mar. 2006, pp. 632—645.

[9] Y. Chen, A. B. Kahng, G. Robins, A. Zelikovsky, and Y. Zhen@dmpressible area fill synthesi$EEE Trans.on CAD
of IntegratedCircuits and Systems, vol. 24, no. 8, pp. 1169-1187, 2005.

[10] R. Veltman and I. Ashida, “Geometrical library recognition for asata compression,” iRroceeding®f SPIE— Volume
2793, Photomaslkand X-Ray Mask Technologylll, Y. Tarui, Ed., Jul. 1996, pp. 418-426.

[11] T. Akutsu and M. M. Halldorsson, “On the approximation of largemtnmon subtrees and largest common point sets,” in
ISAAC '94: Proceeding®f the 5th InternationalSymposiumon Algorithms and Computation. London, UK: Springer-
Verlag, 1994, pp. 405-413.

[12] S. Theodoridis and K. KoutroumbaBatternRecognition. London, UK: Academic Press, 2006, ch. 13.

[13] P. Deutsch, “Gzip file format specification,” RFC 1952, May 19@Bnline]. Available: http://tools.ietf.org/html/rfc1952

[14] J. Ziv and A. Lempel, “A universal algorithm for sequential datenpression,|IEEE Transaction®n Information Theory,
vol. 23, no. 3, pp. 337-343, 1977.

