
1

Lossless Compression Algorithms for

Hierarchical IC Layout
Allan Gu and Avideh Zakhor, Fellow, IEEE

Department of Electrical Engineering and Computer Sciences

University of California at Berkeley, CA 94720, USA

Email: {agu, avz}@eecs.berkeley.edu

Abstract

An important step in today’s Integrated Circuit (IC) manufacturing is optical proximity correction

(OPC). While OPC increases the fidelity of pattern transfer tothe wafer, it also significantly increases IC

layout file size. This has the undesirable side effect of increasing storage, processing, and I.O. times for

subsequent steps of mask preparation. In this paper, we propose two techniques for compressing layout

data, including OPC layout, while remaining compliant withexisting industry standard formats such as

OASIS and GDSII. Our approach is to eliminate redundancies in the representation of the geometrical

data by finding repeating groups of geometries between multiple cells and within a cell. We refer to

the former as “inter-cell sub-cell detection (InterSCD)”,and the latter as “intra-cell sub-cell detection

(IntraSCD)”. We show both problems to be non-deterministicpolyonmial time hard (NP-hard), and

propose two sets of heuristics to solve them. For OPC layout data, we also propose a fast compression

method based on IntraSCD which utilizes the hierarchical information in the pre-OPC layout data. We

show that the IntraSCD approach can also be effective in reconstructing hierarchy from flattened layout

data. We demonstrate the results of our proposed algorithmson actual IC layouts for 90nm, 130nm, and

180nm feature size circuit designs.

I. I NTRODUCTION

As the semiconductor industry moves toward denser designs with smaller feature sizes, pattern transfer

from reticles to wafers, referred to as lithography, becomes more challenging. To correctly fabricate these

circuits using current lithographic machines, resolutionenhancement techniques (RET) such as optical

proximity correction (OPC), phase shift masking, scattering bars, and tiling are routinely performed on

the layout data [1]. Denser circuit designs and increased usage of RET have resulted in significant data

2

volume explosion. Specifically, The International TechnologyRoadmap for Semiconductors indicates

that a single layer of uncompressed fractured layout will exceed 400 Gigabytes in 2007 [2], and GDSII

layout file sizes are likely to grow to many gigabytes [3]. In particular, OPC is a major contributor to

the expansion of layout data volume. It often destroys hierarchical structures in layout designs, and adds

vertices to polygons causing over 10X increase in file size. Toalleviate the growing volume of layout

data, a new layout data format, Open Artwork System Interchange Standard (OASIS), was introduced

in 2001 by SEMI’s Data Path Task Force. Even though OASIS results in a more efficient representation

than the previous industry standard format GDSII [4–6], there is still room for improvement by applying

data compression techniques.

There exist compression algorithms to reduce the mask data size in the rasterized domain for direct

write lithography system [7, 8]. There are also algorithms which can be adapted to compress hierarchical

IC layout data. Specifically, Chenet al. [9] have investigated algorithms to compress dummy fills in IC

layouts which exhibit high degree of spatial regularity. Veltman and Ashida [10] propose a compression

technique for E-Beam writers by finding a set of polygons with identical repetitions that can be referenced

as a single geometrical library.

In this paper, we propose two compression techniques to reduce the layout data size by finding repeating

groups of polygons between multiple cells and within a cell.We refer to the former as “inter-cell sub-

cell detection (InterSCD)” and latter as “intra-cell sub-cell detection (IntraSCD)”. Our techniques are

designed in such a way that the resulting compressed layoutsremain compliant with standard industry

formats such as GDSII and OASIS, and can therefore be read by industry standard CAD viewing and

editing tools without a decoder. In Section II, we describe the problem of finding repeating groups of

geometries between multiple cells and within a cell. We refer to these problems as inter-cell sub-cell

detection (InterSCD) and intra-cell sub-cell detection (IntraSCD) respectively. In Section III, we present a

set of greedy algorithms to solve these two problems. In Section III-D, we extend the IntraSCD algorithm

to exploit the hierarchical information in the pre-OPC layout in order to compress the post-OPC layout;

in doing so, we achieve a factor of five speed up with little or no loss in compression efficiency as

compared to the IntraSCD method in Section III-B. Section IV discusses experimental results on actual

IC layout data. Finally, conclusions and future research directions are included in Section V.

II. SUB-CELL DETECTION PROBLEM

IC layouts have a well defined hierarchical structure, and layout interchange formats such as OASIS

and GDSII provide syntax to describe the hierarchy efficiently. However, the hierarchical structure is

3

partially destroyed during the OPC process. Despite this, itis possible to reconstruct some hierarchy by

finding groups of polygons that undergo the same proximity correction. Empirical observation of post-

OPC data reveals repeating groups of polygons both across multiple cells and within a cell. As shown

later, we exploit both of these redundancies in reducing thefile size of the semi-hierarchical post-OPC

layout data.

We begin by defining terminologies used throughout the paper.We define rectangle, trapezoid, polygon,

and placement as geometries. A placement is a reference to another cell in the layout. A cell is a collection

of geometries in a two dimensional plane, and a sub-cell is a subset of the geometries that are within

a cell. A rigid transformation is associated with each placement. Two geometries are the same if they

are of the same geometrical shape; in the case of placement, they need to reference the same cell, and

have the same type of transformation. The compression ratio (CR) is the ratio of the size of the OASIS

layout file to the size of its compressed version.

A. Inter-cell Sub-cell Detection

In the InterSCD problem, we wish to find a group of geometries that appear in two or more cells. In

OASIS, geometries are defined each time they occur in a cell. For instance, if a group of 4 geometries

occur in N different cells, then they result in4N definitions when only 4 definitions would suffice.

By detecting this group of 4 geometries, it is possible to create one cell from them which can then be

referenced by each of theN cells with a placement operator. Figure 1 shows an example of four cells

and a group of 4 polygons that occur in each of the four cells. Rather than defining the 4 polygons

separately in each cell, we create a placement in each of the cells that references a new cell containing

the 4 polygons. In this case, it is sufficient to define the 4 polygons once rather than 4 times. In Figure 1,

the placement in cells A, B, and D are translated version of the sub-cell, and the placement in cell C is

a rotated and translated version of the sub-cell. We now formally define the InterSCD problem:

Inter-cell Sub-cell Detection Problem: Given m cells, {C1, C2, ..., Cm}, find the sub-cell which

maximizes|SCr| ∗ r for m ≥ r ≥ 2.

A sub-cell SC is defined to occur in a cellC if there exists a transformationL that maps every

geometry inSC to some geometry inC. |SCr| denotes the number of geometries in the sub-cell, and

r is the number of cells thatSCr occurs in. This problem is NP hard since it is a special case of

the largest common point set (LCP) problem [11] withr = m, each geometry mapped to a point,

and each cell mapped to a point set. In the LCP problem, for a collection of d-dimensional point sets

SS = {S1, S2, ..., Sm}, the objective is to find a maximal setU that is congruent to some subset ofSi

4

Fig. 1. Repeating group of polygons across multiple cells. The dashed line is the boundary of the sub-cell.

for i = {1, 2, ..., m}. A set U is congruent to a setV if there exists a transformation that takesU into

V .

B. Intra-cell Sub-cell Detection

In the IntraSCD problem, we wish to find groups of geometries that occur at multiple locations within

a cell. The OASIS format provides different operators for representing repetitive geometries[3]. In this

paper, we assume that all repetitive geometries are represented with the “TYPE 10” repetition operator.

With the “TYPE 10” operator, representingN instances of a geometry requires one geometry definition

andN two dimensional coordinates. Compression is achieved by finding sub-cells which occur multiple

times within the cell. For instance, 4 polygons occurringN times in a cell would require 4 definitions

and4N coordinates to represent. Grouping the 4 polygons togetherinto one cell would only requireN

rather than4N coordinates. Figure 2 shows a cell with 30 polygons and a groupof 4 polygons that occur

four times in the cell. Rather than using 16 coordinates to represent the 16 polygons, only 4 coordinates

are used to create 4 placements in the cell that reference thesub-cell. In Figure 2, the first, second,

and fourth placements are translated versions of the sub-cell, and the third placement is a rotated and

translated version of the sub-cell. We now formally define theIntraSCD problem:

Intra-cell Sub-cell Detection Problem: Given a cell,C, find the sub-cellSCr which maximizes

|SCr| ∗ r for 2 ≤ r ≤ m, subject to the constraint that the maximum Euclidean distance between any

two geometries inSCr is less than or equal todist.

5

Fig. 2. Repeating group of polygons within a cell. The dashed line is the boundary of the sub-cell.

The maximum Euclidean distance between two geometries is constrained because most circuit designs

are created by connecting smaller functional circuit unitstogether, and the smaller circuits are limited

in size. A sub-cellSC occurring inr locations implies that there existr transformations,T1, T2, ..., Tr

such thatTi(SC) maps uniquely to a group of geometries inC. m denotes the frequency of the most

repeated geometry inC. As shown in the appendix, IntraSCD is an NP hard problem.

III. SUB-CELL DETECTION ALGORITHMS

InterSCD and IntraSCD are both NP hard problems, and cannot be solved optimally within a reasonable

amount of time for large layouts. In this Section, we describetwo greedy algorithms to solve them. Our

proposed approach to the InterSCD problem currently detectsgroups of geometries that are translation

invariant. Future research will address rotation and reflection invariant cases.

A. Inter-cell Sub-cell Detection Algorithm

Before detecting a common sub-cell among a large collectionof cells, the cells are pre-processed

using hierarchical clustering algorithm [12] to group similar cells together. This results in computational

efficiency because cells that do not share any geometries withother cells are quickly eliminated from

further consideration. The distance between two clusters isdefined as:

6

d(Clusteri, Clusterj) =

Ni
∑

m=1

Nj
∑

n=1

d(Ci
m, Cj

n)

Ni ∗Nj

(1)

where

d(Ci
m, Cj

n) =
m− w

m
, (2)

and

w = |common shape(Ci
m, Cj

n)| (3)

m = min(|Ci
m|, |C

j
n|) (4)

Ni andNj denote the number of cells in the ith and jth cluster respectively, andd(Ci
m, Cj

n) is the distance

between the mth cell in cluster i and nth cell in cluster j.common shape is a function that determines

the number of geometries that cellsCi, Cj have in common irrespective of their locations. The distance

between two clusters is the average of the distances from anycell in one cluster to any other cell in the

other cluster. Once hierarchical clustering is completed,a collection of clusters are generated by cutting

the hierarchical tree at a certain height in such a way that each cluster contains cells that most likely share

a common group of geometries. We have empirically determined to cut the tree at the height in which

the distance between two clusters exceeds 0.35. Figure 3 shows an example of a hierarchical cluster tree

created after the clustering process. As seen, cutting the tree at distance 0.35 results in 3 clusters, namely

{C1, C2, C5} , {C3, C6}, and{C4}.

Having obtained a collection of clusters through the above hierarchical clustering and cutting procedure,

for each cluster the algorithm looks for a sub-cell which maximizes |SCr| ∗ r, wherer is the number

of cells the sub-cell occurs in for that cluster, and|SCr| is the number of geometries that the sub-cell

contains. Figure 4 shows the flowchart for our proposed InterSCDalgorithm. The basic idea behind

the algorithm is to recursively update the candidate sub-cell SC∗ which maximizes the benefit function

|SCr| ∗ r at each iteration as it goes through all the cells in the cluster one at a time. In the first stage,

the algorithm starts by choosing and removing two cells,Ci andCj , from the cluster that are closest in

terms of the distance metric in Equation(2). It then exhaustively searches for the largest sub-cell,SC(1),

that is common to both cells under translation in a manner to be described shortly.SC(1) is set as the

7

Fig. 3. Hierarchical clustering example.

initial sub-cell if its number of geometries exceeds some threshold. Otherwise, another pair of cells whose

distance is the next closest is chosen.

Having found the largest sub-cell,SC(1), betweenCi and Cj in the first stage, the algorithm sets

SC∗ ← SC(1), and numC ← 2 where in generalnumC denotes the number of cells which contain

SC∗ as a sub-cell. It then moves on to the next stage as it finds more cells in the cluster that contain

overlapping geometries withSC∗. Specifically, at stage 2, the algorithm re-computes the distance between

SC∗ and the remainder of the cells in the cluster according to Equation(2). The cell that is closest to

SC∗, i.e. C(2), is chosen from the cluster; then, exhaustive search is applied to find the largest sub-cell,

SC(2), betweenSC∗ and C(2). At this point, we need to decide whether to updateSC∗ with SC(2)

as the possible candidate to be considered in future stages.Our approach is to updateSC ← SC(2)

if |SC(2)| ∗ (numC + 1) > |SC∗| ∗ numC. The reason for havingnumC + 1 in the left side of the

inequality is that at this pointSC(2) is known to have appeared in 3 cells whileSC∗ has appeared in

only 2 cells. IfSC ← SC(2), thennumC ← numC +1. The algorithm then proceeds onto stage 3, and

follows the same steps taken in stage 2. This process is repeated until all the cells in the cluster have

been visited.

From the above description, it is clear that a major componentof the described algorithm has to do

with finding the largest group of overlapping geometries between 2 given cells,Ci andCj . Our approach

for the above problem is to perform an exhaustive search as follows: for every geometryG that occurs in

both Ci andCj , the algorithm finds a translation mapping,Γ, that takesG in Ci to Cj . This mapping is

applied to all of the geometries inCi, and the number of geometries thatΓ(Ci) andCj have in common

is determined. The group with the most number of common geometries is selected as the largest group

8

Cells in

cluster

Select two

most

similar cells

Search for

largest sub-

cell SC
(1)

SC
(1)
has

more than x

geoms?

Remove the

two cells from

cluster

No

Remove the two

cells from cluster,

2

)1(*

←
←

numC

SCSC

Yes

Select cell, Ck,

most similar to

SC* from cluster

Search for SC
(k)
,

the largest sub-

cell between Ck
and SC*

Is SC
(k)
better

than SC*?

Remove Ck
from

cluster

Remove Ck from

cluster,

)(* kSCSC ←
No Yes

1+← numCnumC

Fig. 4. Flowchart of the InterSCD algorithm.

of overlapping geometries. The exhaustive search step runs in O(N2) assuming each cell,Ci and Cj ,

hasN geometries.

Figure 5 shows an example of how the above approach works. After the hierarchical clustering step,

cells A, B, C, and D are assumed to be grouped together in a cluster. Cells A and B are the closest

with 6 geometries in common. The exhaustive search finds the largest group of geometries,SC(1), that

occurs in cells A and B, and setsSC∗ ← SC(1). Cell C andSC∗ are the closest, andSC(2) is the

largest group of geometries between cell C andSC∗. BecauseSC(2) has 4 geometries occurring in three

cells, whileSC has 4 geometries occurring in two cells, the algorithm updatesSC∗ asSC∗ ← SC(2).

9

(a)

(b) (c) (d)

Fig. 5. Inter-cell sub-cell detection example. (a) Cell cluster; (b) sub-cell between cells A and B; (c) sub-cell betweenSC
(1)

and cell C; (d) sub-cell betweenSC
(2) and cell D.

Finally SC(3) is the sub-cell found in the third stage.SC(3) has 3 geometries occurring in all four cells

as compared toSC(2) which has 4 geometries occurring in 3 cells; since|SC(3)| ∗ 4 = 12 is not greater

than |SC∗| ∗ 3 = 12, we do not updateSC∗. Hence, the final solution as computed by the proposed

InterSCD algorithm isSC∗ ← SC(2).

B. Intra-cell Sub-cell Detection Algorithm

For IntraSCD, we have developed a greedy algorithm that growsthe solution sub-cell at each iteration.

The basic idea behind our proposed iterative algorithm is to select an initial geometry as an initial sub-cell,

and to add more polygons to the sub-cell until there is no additional benefit in adding more polygons.

Once this happens, we replace all the geometries in the cell corresponding to the newly found sub-cell

with a reference to the sub-cell, and repeat the above process for the remaining geometries in the cell.

Figure 6 shows the flow diagram of our proposed IntraSCD algorithm. The algorithm begins by ranking

all the geometries according to the number of repetitions ofeach geometry in the cell. In this Section, we

are primarily concerned with repetitions under translation. In Section III-C, we will extend this algorithm

to rotations and reflections. The geometry,Gmax, with the most number of repetitions is selected, and set

to SC(0) if its number of repetitions is greater than some threshold.Let Gmax
k denote the kth instance

10

of the geometry in the cell; then for each instanceGmax
k , all possible combinations of 2 or 3 geometries

are created usingGmax
k and its closest neighbors that are within a certain distancefrom it. We have

empirically choosen the number of neighbors to be 200 so as tolimit complexity, and achieve reasonable

compression efficiency. Limiting the number of neighbors to 200 can still result in large number of

candidates. Specifically, there are
(200

2

)

= 19, 900 combinations of 2 geometries that can be paired with

Gmax
k to form a group of 3 geometries. If there are 2000 instances ofGmax, then there are over 39

million candidate groups to consider. Hence, even modest number of instances ofGmax
k results in large

number of candidate groups requiring significant computational time to select the best group.

To alleviate this, we have devised a pruning method to eliminate candidates that result in few instances

after adding 1 geometry toSC(0). Specifically, assume the maximum number of instances for a candidate

group with 1 added geometry isN ; then there is no need to add a second geometry to any of these

candidates withM instances ifM < 2N
3 . This is because at each iteration, the goal is to choose the

candidate sub-cell which maximizes the benefit; therefore, even in the best case scenario whereby the

number of occurrences for a candidate group with 1 added geometry remains atM after the addition of a

2nd geometry, the total score for this candidate group is still less than2N . In general, assumeSC(i) has

l geometries, and the maximum number of instances for a candidate group composed ofSC(i) and one

other geometry isN ; then, there is no need to add a second geometry to any candidate groups composed

of SC(i) and another geometry havingM instances ifM < l+1
l+2N .

At the end of the first iteration, the best candidate group consisting of 1 or 2 added geometries to

SC(0) is selected as follows:SC(1) ← arg max
SC

(1)
j

|SC
(1)
j | ∗ numInst

(1)
j , whereSC

(1)
j is the jth candidate

created during the 1st iteration; the algorithm checks to see whether|SC(1)| ∗ numInst(1) ≥ |SC(0)| ∗

numInst(0). If it is, then more geometries that are within a certain distance of the bounding box of

SC(1) are added toSC(1) by repeating the above process. If not, the iteration stops,the newly found

sub-cell replaces the repeating group of geometries in the cell, and the process repeats by selecting

another geometry in the cell as an initial sub-cell.

In general, letSC(i) denote the solution sub-cell at the ith iteration, andSC
(i)
j be be the jth candidate

sub-cell created during the ith iteration. We set

SC(i) ← arg max
SC

(i)
j

|SC
(i)
j | ∗ numInst

(i)
j .

where |SC
(i)
j | is the number of geometries in the jth candidate sub-cell generated at iteration i, and

numInst
(i)
j is the number of instances ofSC

(i)
j in the cell. After selecting the best candidate generated

11

Cell

Select geometry,

G
max

, with the

most repetitions

as initial sub-cell,

SC
(0)

Add 1 or 2

geometries to

each instance of

the sub-cell

Select candidate

group, , with

most number of

instances

)(k
jSC

Does

candidate

group increase

benefit?

Remove

geometries in

cell and add

reference to

SC
(k)

Set new sub-cell

as
)()1(kk SCSC ←+

Fig. 6. Flowchart of the IntraSCD algorithm.

during iteration i, i.e.SC(i), we continue adding more geometries to theSC(i) if the following condition

is satisfied,

|SC(i)| ∗ numInst(i) > |SC(i−1)| ∗ numInst(i−1).

If the condition is not satisfied, then the iterative step of adding more polygons toSC(i−1) ends, and

placements referencingSC(i−1) are created at the locations whereSC(i−1) occurs in the cell. The above

process is repeated until all of the geometries in the cell have been visited to determine whether they

can form repeating groups of geometries with their neighbors.

Figure 7 shows an example of the IntraSCD process for a cell with31 different geometries. Initially

in Figure 7(a), the polygon with 5 instances is selected and set to SC(0). Then all possible combinations

of 2 and 3 geometries are formed withSC(0) and its neighbors. Figure 7(b) shows the group of three

polygons that results in the highest score among all the combinations after the 1st iteration. Since|SC(0)|∗

numInst(0) < |SC(1)| ∗ numInst(1), the algorithm continues. At the end of the 2nd iteration, another

12

polygon is added toSC(1) resulting in a group of 4 polygons as shown in the top sub-cellin Figure III-B

called SC(2). Figure 7(c) also shows another group of geometries considered in the second iteration.

However, this group only occur once in the cell and are not selected.SC(2) with 4 geometries appearing on

the top of Figure 7(c) is selected because it is the one that maximizes our metric, namely|SC|∗numInst.

The algorithm continues since(|SC(2)| ∗numInst(2) = 16) > (|SC(1)| ∗numInst(1) = 12). In the third

iteration, the algorithm attempts to add more geometries toSC(2). However,(|SC(3)| ∗ numInst(3) =

7) < (|SC(2)| ∗numInst(2) = 16), and so the iterative step of adding polygons toSC(2) stops. The final

solution isSC(2) as shown in Figure III-B; all the geometries corresponding toSC(2) are removed from

the cell, and placements that referenceSC(2) are added to the original cell as shown in Figure III-B.

We continue by selecting the geometry with the most repetition in the cell and setting it as an initial

sub-cell. However, at this point either the remaining geometries do not have enough repetitions, or

the sub-cell created after their first iteration does not satisfy the condition|SC(1)| ∗ numInst(1) >

|SC(0)| ∗ numInst(0).

C. Extension of IntraSCD to Rotation and Reflection

The IntraSCD algorithm described above only considers geometries that are the same under translation.

However, circuit designs contain rotated and/or reflected geometries, and as such, the above algorithm is

unable to take advantage of those to further reduce the file size. We now extend the IntraSCD algorithm in

Section III-B in order to take into account rotations and reflections. We refer to IntraSCD with extensions

to rotation and reflection as IntraSCD+Ext.

Recall that in the algorithm of Section III-B, the geometry with the most number of repetitions under

translation is selected as an initial sub-cell. Geometriesare added to the sub-cell at each iteration until

there is no gain in the score by adding more polygons. To extend the algorithm to rotations and reflections,

the geometry,Gmax, with the most number of repetitions under translation, rotation, and reflection is

selected as the initial sub-cellSC(0). Because of the Manhattan nature of layouts, we only focus on

multiples of 90 degree rotations.

During the 1st iteration, for each instance,Gmax
i , we find a transformation such thatTi(G

max
i) = Gmax,

whereGmax is a given geometry with an arbitrarily chosen orientation.Let Group
(max)
i denote the set

of geometries that are within a certain distance ofGmax
i ; then the algorithm applies the transformation,

Ti, to Group
(max)
i , forms all possible candidate groups of 2 or 3 geometries containing Ti(G

max
i) and

its transformed neighborsTi(Group
(max)
i), and selects the group,SC(1), with the highest score using

the exact same steps described in the IntraSCD algorithm in Section III-B.

13

(a) (b)

(c)

Fig. 7. Intra-cell sub-cell detection example. (a)0
th iteration; (b) 1

st iteration; (c) 2
nd iteration; (d) final result.

Having foundSC(1), the algorithm proceeds in the same way as the IntraSCD algorithm. Specifically,

during the kth iteration, the algorithm selects geometries in the cell that are within a certain distance

to the bounding box of each instance ofSC(k−1) denoted bySC(k−1),l. In addition,SC(k−1),l contains

an instance ofGmax namelyGmax
m , with an associated transformationTm. The transformation,Tm, is

applied to neighboring geometries ofSC(k−1),l, and candidate groups are created using each instance

of SC(k−1) and its transformed neighboring geometries. The candidate group with the highest score is

selected as described in the IntraSCD algorithm. Specifically,

SC(k) ← arg max
SC

(k)
j

|SC
(k)
j | ∗ numInst

(k)
j

whereSC
(k)
j is the jth candidate group generated at iteration k, andnumInst

(k)
j is the number of instances

of SC
(k)
j in the cell. We continue the iteration by adding more polygons if |SC(k)| ∗ numInst(k) >

14

|SC(k−1)| ∗ numInst(k−1). If the above condition is not satisfied, then a new cell that contains the

geometries ofSC(k−1) is created, and placements with the proper transformation referencing the sub-cell

are created at the locations whereSC(k−1) occurs in the cell. The iteration steps described above are

repeated until all of the geometries in the cell have been examined.

Figure 8 shows an example of how IntraSCD+Ext algorithm works. In Figure 8(a), the polygon with

the most number of instances under translation, rotation, and reflection is selected and set asSC(0).

Figure 8(b) shows the group of three polygons that results in the highest score among all the combinations

after the1st iteration. Since|SC(0)| ∗ numInst(0) < |SC(1)| ∗ numInst(1), the iteration continues in

order to add more polygons toSC(1). At the end of the2nd iteration, we add another polygon toSC(1)

resulting in a group of 4 polygons as shown in the top sub-cellin Figure 8(c) which we callSC(2).

Since |SC(1)| ∗ numInst(1) = 12 < |SC(2)| ∗ numInst(2) = 16, we continue the iteration. Finally, in

Figure 8(d), we see that the groupSC(3) occurs only once in the cell, and|SC(3)| ∗ numInst(3) = 5

is less than|SC(2)| ∗ numInst(2) = 16; therefore, the iteration step stops, andSC(2) is chosen as

the solution. The algorithm continues by selecting another geometry with the most repetition in the

cell and setting it as an initial sub-cell. However, at this point either the remaining geometries do not

have enough repetitions, or the sub-cell created after their first iteration does not satisfy the condition

|SC(1)| ∗ numInst(1) > |SC(0)| ∗ numInst(0).

D. IntraSCD Exploiting Pre-OPC Hierarchy (IntraSCD + EHier)

The greedy IntraSCD algorithm can be computationally expensive on dense layouts. For isntance, it

takes 58 minutes to run the IntraSCD algorithm on the 1.8mm× 1.8mm 90nm Active layer using a

Pentium IV 2.0 GHz machine. Since part of the data expansion during OPC is due to the destruction

of the design hierarchy, it might be possible to exploit the original pre-OPC hierarchy to reconstruct the

hierarchy after OPC. As we will show shortly, in doing so, we can also speed up IntraSCD by up to a

factor of 6 with little or no loss in compression efficiency.

Close examination of the post-OPC data reveals that much of the original cell hierarchy is destroyed

during the OPC process, but some of the geometries from different instances of a cell undergo the same

proximity correction. It is possible to find the geometries inthe post-OPC layout that correspond to a

particular cell instance in the original pre-OPC layout. Thisway, rather than having to add one or two

geometries at a time within the IntraSCD algorithm, we can find all of the geometries that belong to

the same group in one step. However, due to proximity effects, not all corrections are identical for each

instance of a cell; hence, we need additional processing steps in order to find the repeating group of

15

(a) (b)

(c) (d)

Fig. 8. IntraSCD example with rotation and reflection. Repeating geometries are in gray. (a) 0
th iteration; (b) 1

st iteration;

(c) 2
nd iteration; (d) 3

rd iteration.

geometries.

We begin by collecting theN groups of geometries in the post-OPC layout,G1, G2, ..., GN , that belong

to theN instances of the same cell in the pre-OPC layout. This can be done by intersecting the bounding

box of each cell instance in the pre-OPC layout with the geometries in the post-OPC layout. Since OPC

only makes local modifications to the polygons, the geometries that intersect with the bounding box

correspond to the geometries of each instances of the same cell in the pre-OPC layout. Figure 9(a) shows

a portion of the pre-OPC layout, and Figure 9(b) shows the corresponding post-OPC layout. In the figure,

intersecting the bounding box of the cell ’Cell A’ in the pre-OPC layout, denoted with the dotted outline,

with the post-OPC layout results in 4 groups of geometries,G1, G2, G3, G4 as shown in Figure 9(c).

16

(a) Pre-OPC (b) Post-OPC

(c) Groups of geometries

Fig. 9. An example of how to use the pre-OPC hierarchy information to find the geometries belonging to the same cell instance

in the post-OPC layout.

Designers create complex logic circuits by connecting smaller, simpler functional circuit units such as

“AND” gates together. These smaller circuits, when placed ona layout, may be transformed geometrically

to satisfy some constraints placed by designers. For instance, supposeC in Figure 10(a) represents a small

circuit unit, andC1, C2 are two placements that referencesC in a pre-OPC layout; the corresponding

post-OPC layout is shown in Figure 10(b). Figure 10(b) also shows the two group of geometriesG1

and G2 that can be obtained by intersecting the post-OPC geometrieswith the bounding box ofC1

and C2 in the pre-OPC layout. As seen,C1 is a translated version ofC, and C2 is a translated and

17

(a) (b) (c)

Fig. 10. (a) Example of smaller circuit,C, and its instancesC1, C2 in a pre-OPC layout; (b) the corresponding post-OPC

layout with theC1’s and C2’s bounding box superimposed; (c) by applying the inverse transformations, G1 and G2 becomes

the same group of geometries.

90◦ rotated version ofC. These transformations are readily available in the pre-OPC layout data, and

therefore, corresponding inverse transformations can be applied toG1 andG2. In doing so, we map all

of the geometries inG1 andG2 to the same location and orientation as shown in Figure 10(c).

After obtaining the N groups of geometries in the post-OPC data, G1, G2, ..., GN , corresponding to

the N instances of the same cell in the pre-OPC data,C1, C2, ..., CN , we search for a group of repeating

geometries betweenG1, G2, ..., GN . This problem of finding a repeating group of geometries between

G1, G2, ..., GN can be solved with the InterSCD algorithm described in SectionIII-A. However, the

hierarchical clustering step can be omitted sinceG1, G2, ..., GN are known to share common geometries

as they correspond to the same cell instance in the pre-OPC layout. Additionally, since the transformations

that were applied toC to createC1, C2, ..., CN in the pre-OPC data are known, corresponding inverse

transformations can be applied toG1, G2, ..., GN so that the geometries inG1, G2, ..., GN are mapped

to the same location and orientation. In doing so, the exhaustive search performed by the InterSCD

algorithm to find the largest group of repeating geometries between two cells can be omitted. Rather, a

simple “AND” operation is required to find the largest group ofrepeating geometries between two cells.

Special attention must be paid to handle overlaps between placements. If two placements overlap in the

pre-OPC layout, then their bounding boxes must be restrictedto the portion which do not overlap rather

than the full bounding box of the cell that they reference. This is because a Boolean “OR” operation is

typically performed by the OPC software on the overlapping regions, and therefore, the geometries in

these regions are not likely be part of a repeating group of geometries. Figure 11(a) shows an example of a

cell P, Figure 11(b) shows an example of four placements of cell P with two of the them overlapping in the

18

(a) (b) (c)

Fig. 11. (a) Example of a cell P; (b) 4 placements of P with 2 of them overlapping in pre-OPC layout; (c) the corresponding

post-OPC layout; the overlapping region is highlighted in gray.

pre-OPC layout, and Figure 11(c) shows the corresponding post-OPC layout. As seen in Figure 11(c), the

geometries in the overlapping region, highlighted in gray,have been “ORed”, and are therefore completely

different from the other geometries in the post-OPC layout corresponding to other instances of cell P.

A top down, bottom up approach is used to handle multiple levels of hierarchy where children cells may

contain other children cells. This is needed in order to find repeating groups of geometries corresponding

to children cells within other children cells. Figure 12 shows an example of a layout with multiple levels

of hierarchies where cell C is a child cell of the top-cell, and cell D is a child cell of cell C. By merely

intersecting the bounding box of each instance of cell C in the post-OPC layout, the repeating geometries

corresponding to cell D would go undetected. To address this, we propose the following: Begin with the

largest cell,C, and gather all of the geometries in the post-OPC layout that correspond to each instance

of C in the pre-OPC layout. Then the inverse transformation is applied to each group of geometries to

obtainN groups of geometries in the same orientation. IfC contains children cells, then we gather all

of the geometries in the post-OPC corresponding to instancesof each child cell in the pre-OPC layout.

This is applied recursively until the there are no more children cells. Once the geometries corresponding

to the cell at the lowest level of the hierarchy have been reconstructed, the cell on the next higher level

of the hierarchy is reconstructed and so on. This process continues until the cell at the top level of the

hierarchy is reconstructed.

So far, we have described ways of exploiting the pre-OPC hierarchy information in order to find

repeating groups of geometries corresponding to cell instances in the pre-OPC layout. However, there

may also exist repeating groups of geometries in the post-OPClayout that do not belong to some cell in

19

Fig. 12. An example of a layout with multiple levels of hierarchy; cell C is a child cell oftop-cell and cell D is a child cell

of cell C.

the pre-OPC layout. Therefore, to ensure highest compressionratios, we apply the IntraSCD algorithm

to find any remaining repeating groups of polygons in the post-OPC layout.

IV. RESULTS AND DISCUSSIONS

We have applied the above InterSCD and IntraSCD algorithms to actual industrial post-OPC layouts.

The first data set consists of the Poly and Active layers for a 3.5mm × 3.5mm chip with 180nm feature

size. For this set, OPC has been carried out by the layout ownerwith industry standard OPC software.

The second data set consists of the Poly, Metal 1, and Metal 2 layers from 8mm× 8mm and 4.3mm×

4.3mm chips with 130nm feature size. The third data set consists of the Poly, and Active layers from

1.4mm× 1.4mm and 1.8mm× 1.8mm chips with 90nm feature size. We run OPC software from a

major vendor on the second and third data sets with standard OPC recipes. The original post-OPC data

and the compressed post-OPC data are encoded in the OASIS format.

A. InterSCD Results

For the first data set, we have found the InterSCD algorithm to work well, and the IntraSCD algorithm

not to result in noticeable gain. We believe this is due to theway the data is processed by the OPC

software. Furthermore, we notice that many of the post-OPC cells from the first layout data set are much

smaller than those from the second and third data sets. Therefore, IntraSCD, which detects similar groups

of polygons within a cell, can not result in significant gain onthe first layout data set containing small

cells. Table I shows the inter-cell sub-cell compressed file sizes in bytes encoded in OASIS format for

post-OPC data set 1. As shown, the average compression ratio is around 2 for both layers.

20

TABLE I

Compression results with InterSCD algorithm. File sizes are in bytes.

Post-OPC InterSCD CR

Size Size

Poly (L1) 6,391,097 2,793,277 2.29

Active (L1) 3,496,377 1,777,757 1.97

TABLE II

Compression result with IntraSCD and IntraSCD+Ext algorithm. The file sizes are in bytes.

Post-OPC IntraSCD IntraSCD+Ext CR CR Ratio of IntraSCD

Size Size Size IntraSCD IntraSCD+Ext to IntraSCD+Ext

Poly (L2a) 2,413,460 977,294 886,445 2.47 2.723 1.102

Poly (L2b) 1,036,664 576,491 554,949 1.80 1.894 1.053

Poly (L3a) 9,189,288 4,905,897 4,661,388 1.87 1.97 1.05

Poly (L3b) 34,515,762 18,960,928 17,924,204 1.82 1.93 1.06

Metal 1 (L2a) 2,490,423 1,791,495 1,731,540 1.39 1.44 1.04

Metal 1 (L2b) 1,194,192 1,060,746 1,034,056 1.12 1.16 1.03

Metal 2 (L2a) 1,444,367 1,143,360 1,136,757 1.26 1.27 1.01

Metal 2 (L2b) 947,981 775,561 768,770 1.22 1.23 1.01

Active (L3a) 9,666,584 6,899,025 6,514,057 1.40 1.48 1.06

Active (L3b) 35,945,586 23,209,262 22,118,134 1.55 1.63 1.05

B. IntraSCD Results

For the second and third data sets, the IntraSCD algorithm works well, while the InterSCD algorithm

results in little gain. The fifth column of Table II shows the results of applying the IntraSCD algorithm

on the second and third layout data sets. The compression ratios range from 1.80 to 2.46 for the Poly

layer, and 1.40 to 1.55 for the Active layer. However, the compression ratios for the Metal layers are

rather low i.e. in the range of 1.12 to 1.39. This can be explained by noting that the Metal layers contain

many polygons with only a few instances.

Comparing the fifth and sixth columns of Table II, we see that for all the layouts IntraSCD+Ext

achieves higher compression ratio than translation only IntraSCD. From the 7th column of Table II, the

compressed Poly and Active layouts using the IntraSCD algorithm are 5 to 10 percent larger than the

ones with IntraSCD+Ext. The corresponding gains for Metal 1 andMetal 2 are on average 3 and 1

21

TABLE III

Comparing CR of InterSCD with GZIP. File sizes are in bytes.

Post-OPC GZIP InterSCD InterSCD+GZIP

Size CR CR CR

Poly (L1) 6,391,097 7.79 2.29 8.99

Active (L1) 3,496,377 8.60 1.97 9.15

percent respectively. The rotation and reflection gains for Metal 2 are smaller than those of Poly and

Active because Metal 2 is created using routing software, and as such, has fewer geometries that are

invariant under rotation and reflection; on the other hand, Poly and Active layers are typically created

by placing reflected, rotated versions of standard cells.

C. Comparison with GZIP

GZIP [13] is a popular compression software found in many computer systems, and is commonly used

to compress GDSII and OASIS layout data. It is based on the Ziv-Lempel algorithm (LZ77) originally

proposed in 1977 [14]. Table III compares the compression ratios of GZIP and InterSCD. As seen in

the third column of Table III, GZIP performs well for the layouts with many small cells, achieving a

compression ratio of 8.6 for the Active layer in Layout 1. Although the compression ratio of InterSCD

shown in the fourth column of Table III is lower than that of GZIP, the InterSCD compressed files are

OASIS format compliant and as such, they can be further compressed by applying GZIP to them. As

seen in the fifth Column of Table III, the compression ratio of InterSCD follow by GZIP is higher than

GZIP by itself.

GZIP also does better than IntraSCD for layouts with larger cells. However, as seen in the third

and fourth columns of Table IV, the compression ratio of IntraSCD is much closer to the compression

ratio of GZIP for larger post-OPC layout file sizes. Specfically, for the largest layouts i.e. Layout 3b,

the compression ratio is 1.63 and 1.77 for the Active layer, and 1.93 and 2.34 for the Poly layer for

IntraSCD and GZIP respectively. Similar to InterSCD, IntraSCD compresses the files in such a way that

the layout files remain OASIS compliant, and therefore, GZIP canbe further applied to the IntraSCD

compressed files. Column 5 of Table IV shows the compression ratio of IntraSCD followed by GZIP is

higher than GZIP for all of the layouts, with the improvementsranging from 52% to 92% for Layout 3a

and 3b.

22

TABLE IV

Comparing CR of IntraSCD with GZIP. File sizes are in bytes.

Post-OPC GZIP IntraSCD+Ext IntraSCD+Ext+GZIP

Size CR CR CR

Poly (L2a) 2,413,460 4.97 2.72 6.17

Poly (L2b) 1,036,664 3.88 1.89 4.45

Poly (L3a) 9,189,288 2.53 1.97 4.79

Poly (L3b) 34,515,762 2.37 1.93 4.55

Metal 1 (L2a) 2,490,423 3.00 1.44 3.96

Metal 1 (L2b) 1,194,192 2.76 1.16 2.99

Metal 2 (L2a) 1,444,367 2.96 1.27 3.09

Metal 2 (L2b) 947,981 2.91 1.23 3.04

Active (L3a) 9,666,584 1.88 1.48 2.85

Active (L3b) 35,945,586 1.77 1.63 3.05

D. IntraSCD Applied on Flattened Layout

It is also possible to run IntraSCD algorithm to reconstruct the hierarchy for flattened layouts. We carry

out this process for pre-OPC data since we can compare the reconstructed hierarchy with the original

hierarchy to determine the performance of the IntraSCD algorithm.

There are two ways to flatten a layout; one is to push every geometry from the hierarchical layout to

the top level of the hierarchy which we call flattened layout (FL). Another is to push the geometry to

the top level and perform a Boolean “OR” operation to remove any overlaps between geometries; we

refer to this as flattened layout with “OR” (FLWOR). For the purpose of this discussion, we define FL

data as not having gone through a “OR” operation. Industry standard CAD tools offer both alternatives

as a way to flatten layout data. In general, we would expect the FLWOR not only to result in smaller

file size than FL, but also to have fewer repeating geometries than FL as the “OR” operation removes

some of the repetitions in the flattened layout.

Table V shows file sizes of the pre-OPC hierarchical layout, FLWOR, and the IntraSCD compressed

FLWOR in bytes. As shown in the Table, IntraSCD manages to do a reasonable job of reconstructing

the hierarchy by significantly reducing the size of the FLWOR even though the “OR” operation destroys

repetitions. However, as it is to be expected, IntraSCD cannot result in file sizes that are as small as

the original hierarchical ones. Specifically, the compressedfile sizes using IntraSCD are 1.31 and 2.11

times larger than the size of the pre-OPC hierarchical layoutfor the Poly and Active layers of layout

23

TABLE V

Comparison of pre-OPC hierarchical layouts with compressed FLWOR layouts using IntraSCD algorithm. File sizes are in

bytes.

Pre-OPC FLWOR Ratio of IntraSCD Ratio of FLWOR Ratio of IntraSCD

Hier. Size Size FLWOR to Hier. Size to IntraSCD to Hier.

Poly (L3a) 244,479 1,745,624 7.14 542,736 3.22 2.22

Poly (L3b) 897,578 4,085,736 4.55 1,176,777 3.47 1.31

Active (L3a) 267,104 1,345,587 5.04 859,160 1.57 3.22

Active (L3b) 1,255,861 3,702,918 2.95 2,654,989 1.40 2.11

(a) (b) (c)

Fig. 13. (a) Two overlapping group of geometries shown in gray and red; the overlapped region is outlined by the dashed

line; (b) group of 3 geometries that repeat twice in (a); (c)result of performing Boolean “OR” on (a).

3b respectively, and 2.22 and 3.22 times larger for the Poly and Active layers of layout 3a respectively.

The IntraSCD algorithm performs worse on the Active than Poly layers of both layouts 3a, and 3b. The

main reason is that the Active layer consists of many overlapping geometries, and once a Boolean “OR”

operation is performed, many groups of repeating geometries are removed.

To show the effects of the “OR” operation on repeating geometries, consider Figure 13. Figure 13(a)

shows an example of two overlapping groups of geometries without the “OR” operation, and Figure 13(b)

shows the group of repeating geometries consisting of 3 polygons within Figure 13(a). However, per-

forming a Boolean “OR” operation on Figure 13(a) as shown in Figure 13(c), does not results in a group

of 3 geometries that repeats twice; rather it results in one geometry that repeats only twice.

Table VI shows the file sizes of pre-OPC hierarchical layouts, FL,and the compressed FL layouts in

bytes. Comparing the fifth columns of Tables V and VI, we see that applying IntraSCD to FL results

24

TABLE VI

Comparison of pre-OPC hierarchical layouts with compressed flattenedwithout “OR” layouts using IntraSCD algorithm. File

sizes are in bytes.

Pre-OPC FL Ratio of IntraSCD Ratio of Ratio of Ratio of IntraSCD

Hier. Size FL to Size FL to IntraSCD to IntraSCD FLWOR to

Size Hier. IntraSCD Hier. IntraSCD FL

Poly (L3a) 244,479 2,449,539 10.02 525,530 4.65 2.15 1.03

Poly (L3b) 897,578 4,085,736 4.55 1,176,777 3.47 1.31 1.00

Active (L3a) 267,104 2,401,676 8.99 463,675 5.18 1.74 1.85

Active (L3b) 1,255,861 4,131,499 3.29 1,862,786 2.22 1.48 1.43

in smaller file sizes than to FLWOR. This implies that compressedIntraSCD file sizes are closer to the

original hierarchical file sizes if IntraSCD is applied to FL, rather than to FLWOR. This is also shown

in the last column of Table VI which shows that, the ratio of IntraSCD FLWOR to hierarchical is larger

than the IntraSCD FL to hierarchical. The gain is more pronounced for the Active than the Poly layers as

Active has many more overlapping geometries. The small 3.3% improvement in compression ratio of the

Poly layer of layout 3a and no improvement of the Poly layer of layout 3b can be attributed to the fact

that layout 3a contains memory cells with overlapping Poly geometries, while the Poly layer of layout

3b has no overlapping geometries. As explained earlier, performing a Boolean “OR” removes some of

the repeating groups of geometries that the IntraSCD algorithm exploits to reduce the file size.

E. IntraSCD+Ext on Flattened Layout

We apply the IntraSCD+Ext on the pre-OPC FL as shown in Table VII. By considering groups of

geometries that are the same under translation, rotation, and reflection, the file size can be further reduced

as compared to translation only. As seen in column 5 of Table VII, for FL data, IntraSCD+Ext decreases

the file size by 6 to 37 percent as compared to IntraSCD. In addition, the gain over IntraSCD is higher

for layout 3a than layout 3b. This is in part due to the fact thatlayout 3a contains memory, and memory

blocks are assembled by placing translated, rotated and reflected memory bit-cells together. As such, there

are many more groups of geometries that are invariant under rotation, and reflection in layout 3a than

in layout 3b. Overall, both IntraSCD and IntraSCD+Ext perform better on layout 3b than 3a. Layout 3a

contains memory blocks that are very compact and hierarchical, and our algorithm is unable to rediscover

all the repetitions that are present in the original, compact, hierarchical layout data.

25

TABLE VII

Comparison of IntraSCD+Ext to IntraSCD on the pre-OPC FL data.

Ratio of Ratio of FL Ratio of IntraSCD+Ext Ratio of IntraSCD

FL to Hier. to IntraSCD+Ext to Hier to IntraSCD+Ext

POLY (L3a) 10.02 6.41 1.57 1.37

POLY (L3b) 4.55 3.86 1.18 1.11

ACTIVE (L3a) 8.99 6.06 1.49 1.17

ACTIVE (L3b) 3.29 2.36 1.39 1.07

TABLE VIII

Compression ratio and run time of IntraSCD+EHier compared to IntraSCD.

Layout IntraSCD CR EHier + EHier+IntraSCD Speed

IntraSCD CR Run Time in Minutes Increase

Poly (L3a) 1.87 1.79 7.50 1.35

Poly (L3b) 1.82 1.78 8.50 6.08

Active (L3a) 1.40 1.38 8.50 5.89

Active (L3b) 1.55 1.47 12.0 4.89

F. Exploiting pre-OPC Hierarchy Results

Table VIII compares the compression ratio and run time of IntraSCD and IntraSCD+EHier described

in Section III-D. As seen in the fifth column of Table VIII, exploiting pre-OPC hierarchy can reduce

the run time by a factor of 1.35 to 6.08 with small or no loss in compression efficiency as compared to

the IntraSCD algorithm. The longest runtime for IntraSCD amongall the layouts is 58 minutes for the

post-OPC Active layer of layout 3b. Exploiting the pre-OPC hierarchy reduces the runtime by a factor

of 5. Comparing the second and third columns of Table VIII, inthe worst case we observe less than a

5.5% decrease in compression ratio.

V. CONCLUSIONS ANDFUTURE WORK

We have presented a class of lossless compression algorithms for post OPC IC layout data. In addition

to being lossless, the compressed layout data remains fullyformat compliant, which means that the

compressed data can be read by industry standard CAD viewing/editing tools without the need for a

decoder. Our proposed algorithms find redundancies in terms of repeating geometries within a cell and

between cells. We have shown that our approach achieves reasonable compression ratio on the Poly and

26

Active layers. Furthermore, we have developed a method to exploit the pre-OPC hierarchy information

in order to speed up the process of finding common groups of geometries within a cell. In doing so,

we have demonstrated an average of 5 times increase in speed while suffering a small or no loss in

compression efficiency.

In the future, we plan to run our algorithms on more extensivesets of data. We also need to gain a

better understanding of why the performance on the Metal layers is not as high as the Poly and Active

layers, and determine techniques to improve the compression ratio for the Metal layers. Future work also

involves extension of the InterSCD algorithm to rotations and reflections.

Acknowledgement

This research was conducted under the Research Network for Advanced Lithography, supported jointly

by the Semiconductor Research Corporation 2005-OC-460 and the Defense Advanced Research Project

Agency W911NF-04-1-0304 .

APPENDIX A

In this appendix, we show that the IntraSCD problem is NP-hard by reducing the known NP hard

1-dimensional largest common point set problem (LCP) to the IntraSCD problem.

Given a collection of point setsSS = {S1, S2, ..., Sn}, with each point set containing points on the

real number line, construct a cell ,Css, containing|S1|+ |S2|... + |Sn| geometries.

Define:

distance(Si) = max(Si)−min(Si) Sdmax = arg max
Sj

{distance(Sj)}. dmin = min
Sj

{distance(Sj)}

For each point,Pji, in the point setSi, define a corresponding square inCss, with bottom left coordinate

of the square at(L(pji), 0), whereL(·) is a function that mapsPji to some value inℜ, and setdist

to dmin. To make the notation simpler, each square inCss is considered as a 1-dimensional point with

valueL(pji), andCss as a 1-dimensional point set.

A new point setCss is created by initially setting it toSdmax. Then each point set fromSS is added

one at a time toCss. Let

D = distance(Css) P = max(Css) L(Pji) = Pji + P + D + 1 + distance(Si).

For every pointPji ∈ Si, a new point,L(Pji), is created inCss. Once all of the points fromSi

have been added toCss, D and P are recomputed, and another point setSi+1 is added toCss. This

27

is repeated until all of the point sets have been added. At theend of the process, there is a new point

setCss =
{

P ss
1,1, P

ss
2,1, ..., P

ss
m,2, P

ss
m+1,2, ..., P

ss
n,n

}

, whereP ss
i,j is theith point in Css that is mapped from

the point setSj . Clearly this construction process can be done in polynomial time. The construction of

Css guarantees any solution to the intraSCD problem can not come from points that are mapped from

two different point setsSi, Sj , i.e, T (P ss
i,m), T (P ss

j,n) /∈ Css
sub, because the distance between two points

P ss
i,m, P ss

j,n is greater thandist.

If SSsub is a solution to the LCP problem andSSsub containsK points, then it is also a solution to

the intraSCD problem. By construction, a point set that repeats n times in Css can not contain points

mapped from two different point setsSi andSj , and therefore can not have point set with more thanK

points that repeatsn times. If there exists such a set, thenSSsub would not have been a solution to the

LCP problem. SupposeCss
sub is a solution to the intraSCD problem withCss

sub having K points. Since

Css
sub occursn times in Css, andCss

sub can not contain points mapped from two different point sets in

SSsub, there must exist some mapping that takesCss
sub to each of point sets,Si, in SS.

For example, suppose we have 3 point sets,

S1 = {2, 6, 9, 12} S2 = {3, 5, 7} S3 = {12, 13, 16}.

ThenCss = {21, 61, 91, 121, 302, 322, 342, 753, 763, 793}, where the subscript denotes the point set from

the point came, anddist = 4. Notice any subsets ofCss which are mapped from two different point

sets have a distance greater than 4. In this example,{2, 6}, is a solution to the LCP and the intraSCD

problem.

REFERENCES

[1] W. Grobman, R. Boone, C. Philbin, and B. Jarvis, “Reticle enhancement technology trends: resource and manufacturability

implications for the implementation of physical designs,” inISPD ’01: Proceedingsof the 2001 internationalsymposium

on Physicaldesign. New York, NY, USA: ACM Press, 2001, pp. 45–51.

[2] International technology roadmap for semiconductors 2005 edition, lithography. [Online]. Available:

http://www.itrs.net/Links/2005ITRS/Litho2005.pdf

[3] OASIS – Open Artwork System Interchange Standard, SEMI. [Online]. Available:

http://webstore.ansi.org/ansidocstore/product.asp?sku=SEMI+P39-1105

[4] A. J. Reich, K. H. Nakagawa, and R. E. Boone, “OASIS vs. GDSII stream format efficiency,” inProceedingsof SPIE

– Volume 5256, 23rd Annual BACUS Symposiumon PhotomaskTechnology, K. R. Kimmel and W. Staud, Eds., Dec.

2003, pp. 163–173.

[5] S. F. Schulze, K. H. Nakagawa, and P. D. Buck, “OASIS: progress on implementing the new stream format for containing

data size explosion,” inProceedingsof SPIE– Volume5504,20thEuropeanConferenceon MaskTechnologyfor Integrated

Circuits andMicrocomponents, U. F. W. Behringer, Ed., Jun. 2004, pp. 53–59.

28

[6] K. Tabara, M. Sakurai, S. Makino, T. Itoh, and T. Okada, “Effectiveness of mask data process using OASIS format,” in

Photomaskand Next-GenerationLithography Mask TechnologyXII. Edited by Komuro, Masanori.Proceedingsof the

SPIE,Volume 5853,pp. 619-625(2005)., M. Komuro, Ed., Jun. 2005, pp. 619–625.

[7] V. Dai and A. Zakhor, “Advanced low-complexity compression for maskless lithography data,” inProceedingsof SPIE–

Volume 5374,EmergingLithographicTechnologiesVIII, R. S. Mackay, Ed., May 2004, pp. 610–618.

[8] H. Liu, V. Dai, A. Zakhor, and B. Nikolic, “Reduced complexity compression algorithms for direct-write maskless

lithography systems,” inProceedingsof SPIE – Volume 6151, Emerging Lithographic TechnologiesX, M. J. Lercel,

Ed., Mar. 2006, pp. 632–645.

[9] Y. Chen, A. B. Kahng, G. Robins, A. Zelikovsky, and Y. Zheng, “Compressible area fill synthesis.”IEEE Trans.on CAD

of IntegratedCircuits andSystems, vol. 24, no. 8, pp. 1169–1187, 2005.

[10] R. Veltman and I. Ashida, “Geometrical library recognition for mask data compression,” inProceedingsof SPIE– Volume

2793,PhotomaskandX-Ray Mask TechnologyIII, Y. Tarui, Ed., Jul. 1996, pp. 418–426.

[11] T. Akutsu and M. M. Halldorsson, “On the approximation of largestcommon subtrees and largest common point sets,” in

ISAAC ’94: Proceedingsof the 5th InternationalSymposiumon Algorithms and Computation. London, UK: Springer-

Verlag, 1994, pp. 405–413.

[12] S. Theodoridis and K. Koutroumbas,PatternRecognition. London, UK: Academic Press, 2006, ch. 13.

[13] P. Deutsch, “Gzip file format specification,” RFC 1952, May 1996. [Online]. Available: http://tools.ietf.org/html/rfc1952

[14] J. Ziv and A. Lempel, “A universal algorithm for sequential datacompression,”IEEE Transactionson InformationTheory,

vol. 23, no. 3, pp. 337–343, 1977.

