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Abstract

An important step in today’s Integrated Circuit (IC) maraitaing is optical proximity correction
(OPC). In model based OPC, masks are systematically moddiedmpensate for the non-ideal optical
and process effects of optical lithography system. The guolg in the layout are fragmented, and
simulations are performed to determine the image intengéitern on the wafer. If the simulated
pattern on the wafer does not match the desired one, the mgsértiurbed by moving the fragments.
This iterative process continues until the pattern on théemmatches the desired one. Although OPC
increases the fidelity of pattern transfer to the wafer, itjiste CPU intensive due to the simulations
performed at each iteration. In this paper, linear regosstéchniques from statistical learning are used
to predict the fragment movements. The goal is to reduce timber of iterations required in model
based OPC by using a fast, computationally efficient linegression solution as the initial guess to
model based OPC. Experimental results show that fragmemement predictions via linear regression
model significantly decrease the number of iterations requin model based OPC, thereby decreasing

the product development time in I.C. design and manufatguri

I. INTRODUCTION

An important step in today’s IC manufacturing is optical xinity correction (OPC); it is nearly
impossible to fabricate modern IC designs without OPC. OPCifiesdhe mask to compensate for the
non-ideal optical and process effects of optical lithopsagystem. As seen in Figure 1(a), the layout

pattern without OPC does not transfer properly onto the wafer there is a line end shortening and
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rounding on the wafer. However, the same layout pattern Wi#C transfers more accurately onto the
wafer as shown in Figure 1(b). Although OPC increases the fidefipattern transfer to the wafer, it is

quite CPU intensive.

Line shortening
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Fig. 1. (a) Layout pattern without OPC and the simulated image on the wafer; (lutayattern with OPC and the simulated

image on the wafer.

One approach to OPC is to decompose the mask into small pirdl$oaoptimize each pixel [1]-[4].
Since this results in complex masks that are difficult to mactufe, current OPC algorithms decompose
the mask into edges and corners and optimize their locatiimsre are two types of edge based OPC:
rule based and model based. In rule based OPC, the lithogeapjigeer creates different experiments to
determine the corrections that are needed to compensétesfapn-ideal effects of the optical lithography
system and the resist. Rules are empirically generateddlms¢he geometrical properties of the layout
patterns [5], [6]. Unlike rule based OPC, model based OPC 9T]gjpically uses simulations in an
iterative manner. The layout consisting of polygon edgesagriented, and at each iteration corresponding
to a particular position of the fragments, simulations aeefgrmed to determine the image intensity
on the wafer. If the simulated image on the wafer does not Im#te desired one, then the mask is
further perturbed by moving the fragments. This processimoes until the simulated image on the
wafer matches the desired one. Although model based OPC ie mbust than rule based OPC, it is
also much more computation intensive due to the simulatibats are performed at each iteration. For
instance, performing full chip model based OPC for modern da$l designs can take many days

using thousands of CPUs. A good initial estimate of the finalknesgtern supplied to the model based
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OPC algorithm can significantly reduce the number of iteratimquired for the algorithm to converge
and thereby, reduces the overall OPC run time. In practicejbaich solution is usually taken by OPC
engineers with simple rule based OPC being followed by modseth OPC [10]-[13].

In this paper, we propose a method to modify a layout usingalirregression so as to decrease the
number of iterations required for model based OPC to conyenge to decrease the OPC run time and
overall product development time. There has been prior worksising neural networks to correct for
non-idealities in lithography systems. Free al. [14] use neural networks to compensate for electron
scattering effects in E-beam lithography systems resultingignificant reduction in computation time
as compared to iterative algorithms. Jedrasik [15] hasqseg a neural network approach for one step
OPC. Recently, Huangl al. [16] have proposed a similar idea as the one presented hdrerEase
model based OPC convergence rate. Similar to the prior worlanglel al. train a neural network to
map the fragment movements. However, they have only tebtdmethod on a single polygon, and do
not consider more complex patterns with many polygons.

The outline of the paper is as follows: Linear regression isgmeed in Section 2. Section 3 describes
the training and evaluation methodology used to select éisélmear regression model. Section 4 presents
the prediction results on different portions of two 90nmdats using the linear regression model selected
in Section 3. In Section 4, we show that the fragment movemdrtsrned via linear regression can be
used as initial conditions for model based OPC to reduce thebeu of iterations. Finally, conclusions

and future work are presented in Section 5.

Il. LINEAR REGRESSION

Regression is a statistical technique [17] which modelsdiégendence of the outpyton the input
featuresz. Linear regression model assumes the outputs linearly dependent on the input featufe
plus some noise. This can be written as= ATZ + ¢, wheree is assumed to be a zero mean additive
Gaussian noise with varianee. 5 is the parameter vector, which specifies how much each compone
of & contributes to the output. This means thaP(y|3, 02, &) = N(37 %, o?2). Therefore, givers, the
best estimate of is E[y|#] = 3.

In order to estimate for a givenZz, 3 is needed. Howeveﬁ is usually unknown, and needs to be
estimated through a training process. Giv&nobservation pairs{(y;, z;),i = 1,2,..N}, it is possible

to estimate the value of as the one that minimizes the (y; — 57%)2’ or equivalently

ﬁzargglin"Xﬁ—ﬁ“z (1)
3
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where each input feature vectef is a row in the matrixX and each outputy;, is a component in
the vectory. It can be easily shown [18] that = (X7 X)~1(X ) is the solution to the least square

problem in Equation 1.

[11. TRAINING AND EVALUATION

In this section, we determine the best input feature andss®@ated dimension. Mentor Graphics
Calibrd™ is used to perform model based OPC using a vector optical meiil wavelength) =
193nm and NA = 0.85 for two 90nm IC designs. An annular aperivith o = 0.88/0.44 and a VT5
resist model is used. The surroundingn2 by 2um layout pattern for each fragment is captured and
used to derive its movement using our proposed method. Wesehthe 2m by 2um layout pattern
surrounding each fragment since the spatial influence of phiead model has a diameter of 1,28, and
the interaction diameter in the resist model is &8 The layout pattern is sampled at 5 nm per pixel
resulting in a 400 pixel by 400 pixel binary bitmap. The 5nm phng is chosen because the optical
model has a 5 nm optical grid size. Figure 2 shows a fragmentighperturbed by OPC software in
black and its surroundingi@n by 2um layout pattern. In addition, fragments are separatednotonal
edge, convex corner, and concave corner fragments as simofigure 3. Convex corner fragments are
those that form a convex corner with other fragments; com@rner fragments are those that form a
concave corner with other fragments; all other fragmenésramrmal edge fragments corresponding to
simple edges. For example, the two fragments shown in gre@iigure 3 are convex corner fragments,

and the two fragments in blue in Figure 3 are concave corngnfeats.

Fig. 2. Example of 2um by 2um layout pattern. The fragment of interest is in.black

In optical lithography, the maximum spatial frequencyﬁ’ké where N A is the numerical aperture of
the lens and\ is the wavelength of the illumination source. It has beerwshthat different resolution

enhancement technigues [19] can at most increase the maxgpatial frequency t@JX—A [20]. As such,
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convex normal concave
corner edge corner

Fig. 3. Examples of normal edge, convex corner, and concave corngmiats. Normal edge fragments are in violet, convex

corner fragments are in green, and concave corner fragments aréum b

patterns with sharp corners are not physically feasibld, therefore, we choose to use low pass filter

layout patterns as features in our linear regression modedddict the fragment movements. Specifically,
: - - - - 2N A

we filter the Zum by Zum layout pattern with a Gaussian low pass filter with cut offjrency of=5=.

Figure 4 shows the original layout pattern and the resultingrétl pattern that we use for training and

10

Fig. 4. Original layout pattern and the resulting filtered pattern.

evaluation.

The optimal fragment movement depends on then2by 2um pattern. However, it is impractical
to use all the layout pixels as the input feature vector; i§patly, the 400 pixel by 400 pixel pattern
translates into a feature vector Rf%°°%°, For this high dimensional vector, it is very difficult to cadit
enough sample patterns and the corresponding fragmentmenis in order to ensure that the resulting
matrix X7 X is invertible. In addition, evaluating the value Bfin the linear regression model is quite
computation intensive. However, because of the low passatipe, the pattern mainly consists of low
frequency components, and as such, only few frequency doowefficients, such as Discrete Cosine
Transform (DCT), are required to approximate it. Furthermsirgce optical and process proximity effects

decrease with distance, we can also sub-sample the 400lpix¢00 pixel patterns more densely near
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the fragment of interest.

In the remainder of this section, experiments are perfortoetbtermine the optimal input feature such
as space domain pixels or frequency domain DCT coefficiestayell as the number of components
for each type of feature. Additionally, we determine whethiltiple regression models are needed for
multiple types of fragments such as normal edge, and conmdxcancave corners. In Section IV, we
present prediction results on new data sets using the optimput features determined in this section.

We use the root mean square prediction error (RMSPE) as a metdonipare the performance of

the various approaches. The RMSPE is defined as

RMSPE = 4/ % > (yi —9)? ()

wherey; is the fragment movement determined by model based OPCy andhe predicted fragment
movement obtained in our proposed linear regression mddhe.smaller the RMSPE value, the more
effective is the linear regression model at predicting ttagrent movement. If the RMSPE is 0, then
every predicted fragment movement is exactly equal to thgnfient movement obtained via model based
OPC. In this paper, the RMSPE is calculated on new test datalsgtare not used during the training

process to estimate the parameter vegtor

A. Training

We perform model based OPC on a L@® x 100um section of logic layout from design A, and
select 4871 pairs of fragment movements and associateerpatamong all the available pairs in the
100um x 100um section of the layout. These pairs are selected in such a way eover all possible
values of model based OPC fragment movements in th@rh0® 100um patch. For example, if model
based OPC results in fragment movement of 36nm for any fratgriarthe 10@m x 100um patch,
we make sure that at least one of the 4871 pairs corresponaddelrbased OPC fragment movement
of 36nm. About half of the 4871 pairs, or 2436 pairs are usedriining, and the remaining half are
used for testing. The 4871 pairs are divided into training evaluation set in such a way that both sets
contain approximately equal number of the same fragmenemewnts. However, if a particular value of
fragment movement is associated with only one pattern, ithierplaced in the training set to ensure the
training set covers the entire range of fragment movemdihts.2436 training pairs consist of 625 pairs
with normal edge, 847 pairs with concave corner, and 964spaith convex corner fragments.

The linear regression model is trained with DCT coefficientsrfrthe filtered 2m by 2um layout

patterns. The first 200, 300, 400, and 500 DCT coefficients ard asethe input features, and the
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coefficients are encoded into a feature vector using zig-zdgrimg from lowest to highest frequency.
As seen in Figure 5, the DC component of the DCT coefficients nesothe first component of the
feature vector, and the rest of the feature vector is popdlatth the low to high frequency coefficients.
In addition to the DCT coefficients, each input feature veelsp contains 3 binary variables indicating

the type of fragment whose movement is being predicted.
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Fig. 5. Zig-Zag ordering of DCT coefficients.

We also train the regression model with sampled pixel vadii¢ise filtered layout pattern. A concentric
square sampling method as shown in Figure 6 is used to createdture vectors. Pixel values are sampled
at the 4 corners and the mid point of each side of the squaedsotterlay the pattern. The radius
of the concentric squares afe4,8,12, ..., R, Rint + 8, Rine + 16, ..., 200 pixels respectively where
R;,: controls the sampling density. The regression model isédhinith R;,, = {60, 80, 100, 120, 140}
resulting in 257, 281, 297, 321, and 337 pixel values regpdygt Similar to DCT coefficients, in addition
to the pixel values, each input feature vector also cont8irisnary variables indicating the type of

fragments whose movement is being predicted.

B. Evaluation

As described earlier, we use 2435 of the 4821 pairs from deAidor evaluation. The testing set
contains 625 pairs with normal edge, 846 pairs with concareear, and 964 pairs with convex corner
fragments. The linear regression model is trained with aewarof number of DCT coefficients as
described earlier. For each pattern, the fragment movermgmedicted ag = ATz, wherei is a feature
vector containing 3 indicator variables and the DCT coeffiie The RMSPE as defined in Equation 2
is shown in Table I. As seen, the 200 DCT coefficients resulh@ lighest, and 500 DCT coefficients

result in the lowest RMSPE at 8.84nm and 5.20nm respectively.
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Fig. 6. Concentric square sampling of the pixel values.

TABLE |
RMSPE for different number of DCT coefficients. RMSPE is in nm.

# DCT Coeff. | RMSPE
200 8.840
300 7.191
400 6.240
500 5.198

Linear regression model is also trained with input featuretars containing sub-sampled pixel values
on concentric squares. The model is applied on the 2435 téstpdints, and the RMSPE as defined in
Equation 2 is shown in Table Il. As seen in th& Zolumn of Table Il, the largest RMSPE is 3.51 nm
when Ry, ner = 60 and the smallest RMSPE is 3.44 nm whBp,,.... = 120. The largest RMSPE using
pixel values as input features is 34% smaller than the ssta®ISPE using DCT coefficients as input
features. This means that the pixel values are likely to atdpa DCT coefficients as input features.
As mentioned earlier, OPC increases the spatial frequendheofesulting patterns on the wafer, and
therefore, it is possible that both the low and high frequeD€T coefficients are needed to effectively
predict the fragment movements.

Examining the data more closely, we find that different typesagfments possess different movements
characteristics as obtained via model based OPC. Natutzibyraises the question as to whether training
separate models for each fragment type is likely to imprdwee gerformance. Since sub-sampled pixel
values have been shown to outperform DCT coefficients, wehesa to create separate models for each

fragment type. In doing so, we remove the indicator varisiméicating the fragment type from the input
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TABLE Il
RMSPE for different values @®;,ne-. RMSPE is in nm.

Rinner RMSPE
60 (257 values)| 3.509
80 (281 values)| 3.453
100 (297 values) 3.481
120 (321 values) 3.439
140 (337 values) 3.483

feature vector. The RMSPE for each type of fragment using a aoenbsingle regression model on sub-
sampled pixel values for different values Bf,,,.., are shown in columns 2, 3, and 4 of Table Ill. Also
shown in columns 5, 6, and 7 of Table Il are the RMSPE values éomal edge, concave corner, and
convex corner fragments using separate regression mdgketsparing the columns, it is clear that using
separate regression models for each type of fragment seisultignificantly lower RMSPE than single
model for all values ofR;,,.,-. From Table Ill, we conclude that the best feature vectoresponds to

having a separate model for each fragment type consistisglwsampled pixel values witR;,,,., = 80.

TABLE Il
Comparison of RMSPE for normal edge, concave corner, and gocer fragments using a combined linear regression

model with RMSPE using separate linear regression models. RMSPE is.in nm

normal | concave| convex | normal | concave| convex | normal | concave| convex
Rinner | (single) | (single) | (single) | (sep.) (sep.) (sep.) | % diff. | % diff. | % diff.
60 3.519 | 3.895 | 3.1198 | 2.893 | 3.565 | 2.277 | 17.8% | 85% | 27.0%
80 3.545 3.721 3.1209 | 2.434 3.459 2.420 | 31.3% 7.0% 22.4%
100 3.551 3.799 3.1195 | 2.587 3.522 2.344 | 27.1% 7.3% 24.9%
120 3.532 | 3.676 | 3.1408 | 2.763 | 3.546 | 2.412 | 21.8% | 3.5% | 23.2%
140 3.573 3.737 3.1773 | 2.932 3.731 2.462 | 17.9% 0.2% 22.5%

IV. RESULTS

In this section, we use sub-sampled pixel values with,., = 80 as input feature vector to train a
different model for normal edge, concave corner, and comerer fragments using a fth by 5Q:m
portion of design A. Even though the optimum model obtaine®éttion 3 also corresponds to sub-

sampled pixel values wittR;,,,,., = 80, its training set does not necessarily cover the entire aanfg
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fragment movements for every training type. To this end, wkect a subset of all the pairs of layout
patterns and their corresponding fragment movementsraataiia model based OPC in a;8@ by 5Qum
patch of layout A for training purpose. Specifically, we call2é75 pairs of pattern and movement with
normal edge, 2784 pairs with concave corner, and 2680 pailsamnvex corner fragments in such a
way to ensure the training data covers the range of fragmenmements for each type of fragment. The
resulting parameter vectof, is used to test on another section of logic layout from degig as well

as a section of logic layout from design B.

A. Comparison with model based OPC

The model is tested on a different /@ by 5Q.m section of logic layout from design A, which has
27432 normal edge, 2796 concave corner, and 8203 converrcioagments. As shown in Figure 7, the
predictions via linear regression model shown in yellowdiek the fragment movements obtained via
model based OPC shown in black reasonably well. Table IV shbassthe smallest RMSPE is 2.125
nm for convex corner fragments, and the largest RMSPE is 2.87&on concave corner fragments.
Furthermore, as seen in thé& 4olumn of Table 1V, for all fragment types, more than 93% peaicof
the predicted fragment movements are in the same directitimamodel based OPC fragment movement.
Figure 8 shows the cummulative distributive function (CDF}haf absolute prediction errors for the three
fragment types. As seen, more than 63%, 70%, and 77% of th@usdgprediction errors are less than

2 nm for concave corner, normal edge, and convex corner atgirespectively.

TABLE IV
RMSPE and percentage of predicted fragment movement in the samgodiras model based OPC fragment movement for
the three types of fragments. RMSPE is in nm. The data are from a secti@sighd.

# of fragments| RMSPE | % Right Dir.
normal 27432 2.494 93.7
concave 2796 2.876 95.3
convex 2784 2.125 97.9

B. Comparison with model based OPC on a different layout

The linear regression model is also tested on@ai& 16,m section of logic layout from a different IC
design B, with 4055 normal edge, 455 concave corner, and 88%& corner fragments. Figure 9 shows

the predicted movement obtained via linear regression shiowellow and the corresponding movement
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(a) (b)

(©

Fig. 7. The model based OPC fragment movement and the predicted fragnogement using separate linear regression
models for each type of fragment on a section of layout from design Ao(a)al edge fragment; (b) concave corner fragment;
(c) convex corner fragment. The yellow indicates predicted movenuentlinear regression, and the black shows the movement

obtained from model based OPC software.

determined by model based OPC shown in black. It can be seen Figure 9 and Table V that the

predicted fragment movements match the edge movementsettaia model based OPC reasonably
well. In particular, as shown in column 4 of Table V, for alagqgment types, over 90% of the predicted
fragment movements are in the same direction as the fragmewements generated by model based
OPC. Furthermore, as shown in column 3 of Table V, the largesERElis 3.94 nm for concave corner
fragments. Figure 10 shows that more than 63% of the absotatigbion errors are less than 2 nm for
convex corner and normal edge fragements, and more than ##% absolute prediction errors are less

than 2 nm for concave corner fragments.
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Fig. 8. Cumulative distribution of the absolute prediction error for a section of degign

The RMSPE for design B is higher than design A, and the percemtBigeedicted movements in the
right direction is lower for design B than for design A. Algbe percentage of absolute prediction errors
below 2nm for design B is lower than of design A. We would expbe prediction on test data set from
design A to outperform design B since the training data atsnes from a portion of design A.

TABLE V

RMSPE and percentage of predicted edge movement in the same diestnadel based OPC edge movement for three
types of fragments. RMSPE is in nm. The data are from a section of layoutdesign B.

# of edges| RMSPE | % Right Dir.
normal 4055 2.780 90.2
concave 455 3.935 90.8
convex 995 2.829 97.8

C. Improving convergence rate of model based OPC
We now provide the predictions as initial conditions to tkerations of model based OPC software

to determine whether the number of iterations can be redudes predictions are applied before model

DRAFT
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Fig. 9. The fragment movement obtained via model based OPC and the preftagetent movement obtained via separate
linear regression models for each type of fragment on a section of ldyautdesign B. (a) normal edge fragment; (b) concave
corner fragment; (c) convex corner fragment. The yellow indicategigied movement from linear regression, and the black
shows the movement obtained via model based OPC.

based OPC by creating tags on fragments for each value ofcpgddmovement in Mentor Graphics
Calibre™ | and using the command “opcTag hintoffset”. Figure 11 shdvesdistributions of the edge
placement errors (EPE) using model based OPC with and withoupréndictions from our proposed
linear regression model for a section of layout from designA4& seen in Figure 11(a), the EPE with
prediction after 2 iterations is more tightly distributetband zero than without predictions at 2 or 4
iterations. In fact, as shown in Figure 11(b) it takes 6 iierat for model based OPC without predictions

to achieve approximately the same EPE distribution as 2 ibesmbf model based OPC with predictions.
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Fig. 10. Cumulative distribution of the absolute prediction error for a portion of layfsam a design B.

Also notice that in Figure 11(b), even after 8 iterations withpredictions, there is still a large number
of EPEs between 4 and 5 nm. As shown in Figure 11(c), it takes 1&tites of model based OPC
without predictions to reduce the number of EPEs between 4 amd to the same level as 2 iterations of
model based OPC with predictions. As seen in Table VI, theawag of the distribution for the iteration

with prediction is approximately equal to that of 16 iteoas without predictions. We can make similar
observations for EPE distribution of design B test data sethasis in Figure 12 and Table VII. This

reduction in iteration number corresponds to an overalucédn in the OPC run time. For instance,
using the proposed prediction method, it takes 230 and 1d6nsis to perform model based OPC for
designs A and B respectively on a given computing platfoormcdémparison on the same computing
platform, it takes 340 and 220 seconds to perform model b&@ without predictions for designs
A and B to achieve the same EPE variance as the model based OP@radibtions. As such, in this

example, OPC run time has been reduced by more than 32% wheictjmes via linear regression are

applied.
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Fig. 11. The EPE distributions for 2, 4, 6, 8, 12, and 16 iterations of model bade@ @ithout predictions and 2 iterations of
model based OPC with predictions for design A. EPE is in nm. (a) 2 and 4igasof model based OPC without predictions and
2 iterations with predictions; (b) 6 and 8 iterations of model based OPC witpeedictions and 2 iterations with predictions;

(c) 12 and 16 iterations of model based OPC without predictions and 2tibes with predictions.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have presented a method to predict OPC fragmevement from layout patterns
using linear regression models. We use sub-sampled piret®acentric squares of the low pass filtered
layout pattern as input features, and create separate snfmteiormal edge, concave corner, and convex
corner fragments. We have shown that the proposed schemacb&ve RMSPE of 2.78 nm when the

model is trained on one design and tested on a different iesigd more than 63% of the absolute
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TABLE VI

Variance and standard deviation for the various EPE distributions with andowttipredictions on design A.

variance | std. dev
pred - 2 4.34 2.08
no pred -2 | 18.95 4.35
no pred - 4 | 10.49 3.24
no pred - 6 7.06 2.66
no pred - 8 5.47 2.34
no pred - 12| 5.03 2.24
no pred - 14| 4.65 2.16
no pred - 16| 4.28 2.07

TABLE VII

Variance and standard deviation for the various EPE distributions with andouttipredictions on design B.

variance | std. dev.
pred - 2 6.81 2.61
no pred -2 | 20.72 4.55
no pred -4 | 11.70 3.42
no pred - 6 8.19 2.86
no pred - 8 6.53 2.56
no pred - 12| 5.94 2.44
no pred - 4 5.49 2.34
no pred - 16| 5.24 2.29

predictions errors for normal edge and convex corner fragsnare less than 2 nm. In addition, using
the predicted fragment movements presented in this paptreamtitial condition for the iterations of
Model based OPC, it is possible to reduce the number of igratin model based OPC from 6 to 2 to
obtain the same EPE distribution, and from 16 to 2 to obtain EPt&Ehklison with approximately same
variance. The reduction in the number of iterations traaslato more than 32% reduction in the run
time.

This paper has been primarily focused on reducing the ovediputational time of model based
OPC. There are other open issues in OPC which have not been seltitgsthe paper. For instance, it is
well known that certain mask patterns such as "jogs” causweargence problems in most model based

OPC algorithms. Clearly, the work presented here is not ieagiplicable to the convergence problem.
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Fig. 12. The EPE distributions for 2, 4, 6, 8, 12, and 16 iterations of model bade@ @ithout predictions and 2 iterations of
model based OPC with predictions for design B. EPE is in nm. (a) 2 and 4igasof model based OPC without predictions and
2 iterations with predictions; (b) 6 and 8 iterations of model based OPC witpeedictions and 2 iterations with predictions;

(c) 12 and 16 iterations of model based OPC without predictions and 2tibes with predictions.

In the future, we plan to investigate more complex, geneatslribution models, such as Gaussian
Mixture model [21]. As shown in Section 3, more accurate migalis are obtained by creating a
separate regression model for each type of fragment. Howiéve considerbly more difficult to separate
the fragments within each fragment type in order to creaparsge regression models for improved
predictions. This separation can potentially be learnenhftioe data by using Gaussian mixture models.

Furthermore, all of the results presented in this paper haes lfor logic designs. In the future, we

plan to investigate whether the same models can be applisttoory and mixed designs, and whether
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the 32% reduction in OPC run time holds true across many dgsign
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