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Abstract

An important step in today’s Integrated Circuit (IC) manufacturing is optical proximity correction

(OPC). In model based OPC, masks are systematically modifiedto compensate for the non-ideal optical

and process effects of optical lithography system. The polygons in the layout are fragmented, and

simulations are performed to determine the image intensitypattern on the wafer. If the simulated

pattern on the wafer does not match the desired one, the mask is perturbed by moving the fragments.

This iterative process continues until the pattern on the wafer matches the desired one. Although OPC

increases the fidelity of pattern transfer to the wafer, it isquite CPU intensive due to the simulations

performed at each iteration. In this paper, linear regression techniques from statistical learning are used

to predict the fragment movements. The goal is to reduce the number of iterations required in model

based OPC by using a fast, computationally efficient linear regression solution as the initial guess to

model based OPC. Experimental results show that fragment movement predictions via linear regression

model significantly decrease the number of iterations required in model based OPC, thereby decreasing

the product development time in I.C. design and manufacturing.

I. I NTRODUCTION

An important step in today’s IC manufacturing is optical proximity correction (OPC); it is nearly

impossible to fabricate modern IC designs without OPC. OPC modifies the mask to compensate for the

non-ideal optical and process effects of optical lithography system. As seen in Figure 1(a), the layout

pattern without OPC does not transfer properly onto the wafer, i.e. there is a line end shortening and
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rounding on the wafer. However, the same layout pattern withOPC transfers more accurately onto the

wafer as shown in Figure 1(b). Although OPC increases the fidelity of pattern transfer to the wafer, it is

quite CPU intensive.

(a) (b)

Fig. 1. (a) Layout pattern without OPC and the simulated image on the wafer; (b) layout pattern with OPC and the simulated

image on the wafer.

One approach to OPC is to decompose the mask into small pixels and to optimize each pixel [1]–[4].

Since this results in complex masks that are difficult to manufacture, current OPC algorithms decompose

the mask into edges and corners and optimize their locations. There are two types of edge based OPC:

rule based and model based. In rule based OPC, the lithographyengineer creates different experiments to

determine the corrections that are needed to compensate forthe non-ideal effects of the optical lithography

system and the resist. Rules are empirically generated based on the geometrical properties of the layout

patterns [5], [6]. Unlike rule based OPC, model based OPC [7]–[9] typically uses simulations in an

iterative manner. The layout consisting of polygon edges is fragmented, and at each iteration corresponding

to a particular position of the fragments, simulations are performed to determine the image intensity

on the wafer. If the simulated image on the wafer does not match the desired one, then the mask is

further perturbed by moving the fragments. This process continues until the simulated image on the

wafer matches the desired one. Although model based OPC is more robust than rule based OPC, it is

also much more computation intensive due to the simulationsthat are performed at each iteration. For

instance, performing full chip model based OPC for modern dayVLSI designs can take many days

using thousands of CPUs. A good initial estimate of the final mask pattern supplied to the model based
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OPC algorithm can significantly reduce the number of iterations required for the algorithm to converge

and thereby, reduces the overall OPC run time. In practice, a hybrid solution is usually taken by OPC

engineers with simple rule based OPC being followed by model based OPC [10]–[13].

In this paper, we propose a method to modify a layout using linear regression so as to decrease the

number of iterations required for model based OPC to converge, and to decrease the OPC run time and

overall product development time. There has been prior workson using neural networks to correct for

non-idealities in lithography systems. Fryeet al. [14] use neural networks to compensate for electron

scattering effects in E-beam lithography systems resultingin significant reduction in computation time

as compared to iterative algorithms. Jedrasik [15] has proposed a neural network approach for one step

OPC. Recently, Huangel al. [16] have proposed a similar idea as the one presented here toincrease

model based OPC convergence rate. Similar to the prior work, Huang el al. train a neural network to

map the fragment movements. However, they have only tested their method on a single polygon, and do

not consider more complex patterns with many polygons.

The outline of the paper is as follows: Linear regression is presented in Section 2. Section 3 describes

the training and evaluation methodology used to select the best linear regression model. Section 4 presents

the prediction results on different portions of two 90nm layouts using the linear regression model selected

in Section 3. In Section 4, we show that the fragment movements obtained via linear regression can be

used as initial conditions for model based OPC to reduce the number of iterations. Finally, conclusions

and future work are presented in Section 5.

II. LINEAR REGRESSION

Regression is a statistical technique [17] which models thedependence of the outputy on the input

features~x. Linear regression model assumes the output,y, is linearly dependent on the input feature~x

plus some noise. This can be written asy = ~βT~x + ǫ, whereǫ is assumed to be a zero mean additive

Gaussian noise with varianceσ2. ~β is the parameter vector, which specifies how much each component

of ~x contributes to the output,y. This means thatP (y|~β, σ2, ~x) = N(~βT~x, σ2). Therefore, given~x, the

best estimate ofy is E[y|~x] = ~βT~x.

In order to estimatey for a given~x, ~β is needed. However,~β is usually unknown, and needs to be

estimated through a training process. GivenN observation pairs,{(yi, ~xi), i = 1, 2, ..N}, it is possible

to estimate the value of~β as the one that minimizes the
∑

(yi − ~βT xi)
2, or equivalently

~β = arg min
~β

∥

∥

∥X~β − ~y
∥

∥

∥

2

(1)
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where each input feature vector~xi is a row in the matrixX and each output,yi, is a component in

the vector~y. It can be easily shown [18] that~β = (XT
X)−1(XT ~y) is the solution to the least square

problem in Equation 1.

III. T RAINING AND EVALUATION

In this section, we determine the best input feature and its associated dimension. Mentor Graphics

CalibreTM is used to perform model based OPC using a vector optical modelwith wavelengthλ =

193nm and NA = 0.85 for two 90nm IC designs. An annular aperture with σ = 0.88/0.44 and a VT5

resist model is used. The surrounding 2µm by 2µm layout pattern for each fragment is captured and

used to derive its movement using our proposed method. We choose the 2µm by 2µm layout pattern

surrounding each fragment since the spatial influence of the optical model has a diameter of 1.28µm, and

the interaction diameter in the resist model is 1.8µm. The layout pattern is sampled at 5 nm per pixel

resulting in a 400 pixel by 400 pixel binary bitmap. The 5nm sampling is chosen because the optical

model has a 5 nm optical grid size. Figure 2 shows a fragment that is perturbed by OPC software in

black and its surrounding 2µm by 2µm layout pattern. In addition, fragments are separated intonormal

edge, convex corner, and concave corner fragments as shown in Figure 3. Convex corner fragments are

those that form a convex corner with other fragments; concave corner fragments are those that form a

concave corner with other fragments; all other fragments are normal edge fragments corresponding to

simple edges. For example, the two fragments shown in green in Figure 3 are convex corner fragments,

and the two fragments in blue in Figure 3 are concave corner fragments.

Fig. 2. Example of 2um by 2um layout pattern. The fragment of interest is in black.

In optical lithography, the maximum spatial frequency isNA
λ

whereNA is the numerical aperture of

the lens andλ is the wavelength of the illumination source. It has been shown that different resolution

enhancement techniques [19] can at most increase the maximum spatial frequency to2NA
λ

[20]. As such,
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Fig. 3. Examples of normal edge, convex corner, and concave corner fragments. Normal edge fragments are in violet, convex

corner fragments are in green, and concave corner fragments are in blue.

patterns with sharp corners are not physically feasible, and therefore, we choose to use low pass filter

layout patterns as features in our linear regression model to predict the fragment movements. Specifically,

we filter the 2µm by 2µm layout pattern with a Gaussian low pass filter with cut off frequency of2NA
λ

.

Figure 4 shows the original layout pattern and the resulting filtered pattern that we use for training and

evaluation.

Fig. 4. Original layout pattern and the resulting filtered pattern.

The optimal fragment movement depends on the 2µm by 2µm pattern. However, it is impractical

to use all the layout pixels as the input feature vector; specifically, the 400 pixel by 400 pixel pattern

translates into a feature vector inR160000. For this high dimensional vector, it is very difficult to collect

enough sample patterns and the corresponding fragment movements in order to ensure that the resulting

matrix XT X is invertible. In addition, evaluating the value of~β in the linear regression model is quite

computation intensive. However, because of the low pass operation, the pattern mainly consists of low

frequency components, and as such, only few frequency domain coefficients, such as Discrete Cosine

Transform (DCT), are required to approximate it. Furthermore, since optical and process proximity effects

decrease with distance, we can also sub-sample the 400 pixelby 400 pixel patterns more densely near
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the fragment of interest.

In the remainder of this section, experiments are performedto determine the optimal input feature such

as space domain pixels or frequency domain DCT coefficients, as well as the number of components

for each type of feature. Additionally, we determine whether multiple regression models are needed for

multiple types of fragments such as normal edge, and convex and concave corners. In Section IV, we

present prediction results on new data sets using the optimum input features determined in this section.

We use the root mean square prediction error (RMSPE) as a metric to compare the performance of

the various approaches. The RMSPE is defined as

RMSPE =

√

1

N

∑

(yi − ŷ)2 (2)

whereyi is the fragment movement determined by model based OPC, andŷ is the predicted fragment

movement obtained in our proposed linear regression model.The smaller the RMSPE value, the more

effective is the linear regression model at predicting the fragment movement. If the RMSPE is 0, then

every predicted fragment movement is exactly equal to the fragment movement obtained via model based

OPC. In this paper, the RMSPE is calculated on new test data sets that are not used during the training

process to estimate the parameter vector~β.

A. Training

We perform model based OPC on a 100µm × 100µm section of logic layout from design A, and

select 4871 pairs of fragment movements and associated patterns among all the available pairs in the

100µm × 100µm section of the layout. These pairs are selected in such a way as to cover all possible

values of model based OPC fragment movements in the 100µm × 100µm patch. For example, if model

based OPC results in fragment movement of 36nm for any fragments in the 100µm × 100µm patch,

we make sure that at least one of the 4871 pairs correspond to model based OPC fragment movement

of 36nm. About half of the 4871 pairs, or 2436 pairs are used for training, and the remaining half are

used for testing. The 4871 pairs are divided into training andevaluation set in such a way that both sets

contain approximately equal number of the same fragment movements. However, if a particular value of

fragment movement is associated with only one pattern, thenit is placed in the training set to ensure the

training set covers the entire range of fragment movements.The 2436 training pairs consist of 625 pairs

with normal edge, 847 pairs with concave corner, and 964 pairs with convex corner fragments.

The linear regression model is trained with DCT coefficients from the filtered 2µm by 2µm layout

patterns. The first 200, 300, 400, and 500 DCT coefficients are used as the input features, and the
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coefficients are encoded into a feature vector using zig-zag ordering from lowest to highest frequency.

As seen in Figure 5, the DC component of the DCT coefficients becomes the first component of the

feature vector, and the rest of the feature vector is populated with the low to high frequency coefficients.

In addition to the DCT coefficients, each input feature vectoralso contains 3 binary variables indicating

the type of fragment whose movement is being predicted.

Fig. 5. Zig-Zag ordering of DCT coefficients.

We also train the regression model with sampled pixel valuesof the filtered layout pattern. A concentric

square sampling method as shown in Figure 6 is used to create the feature vectors. Pixel values are sampled

at the 4 corners and the mid point of each side of the squares that overlay the pattern. The radius

of the concentric squares are0, 4, 8, 12, ..., Rint, Rint + 8, Rint + 16, ..., 200 pixels respectively where

Rint controls the sampling density. The regression model is trained with Rint = {60, 80, 100, 120, 140}

resulting in 257, 281, 297, 321, and 337 pixel values respectively. Similar to DCT coefficients, in addition

to the pixel values, each input feature vector also contains3 binary variables indicating the type of

fragments whose movement is being predicted.

B. Evaluation

As described earlier, we use 2435 of the 4821 pairs from design A for evaluation. The testing set

contains 625 pairs with normal edge, 846 pairs with concave corner, and 964 pairs with convex corner

fragments. The linear regression model is trained with a variety of number of DCT coefficients as

described earlier. For each pattern, the fragment movementis predicted aŝy = ~βT~x, where~x is a feature

vector containing 3 indicator variables and the DCT coefficients. The RMSPE as defined in Equation 2

is shown in Table I. As seen, the 200 DCT coefficients result in the highest, and 500 DCT coefficients

result in the lowest RMSPE at 8.84nm and 5.20nm respectively.
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Fig. 6. Concentric square sampling of the pixel values.

TABLE I

RMSPE for different number of DCT coefficients. RMSPE is in nm.

# DCT Coeff. RMSPE

200 8.840

300 7.191

400 6.240

500 5.198

Linear regression model is also trained with input feature vectors containing sub-sampled pixel values

on concentric squares. The model is applied on the 2435 test data points, and the RMSPE as defined in

Equation 2 is shown in Table II. As seen in the 2nd column of Table II, the largest RMSPE is 3.51 nm

whenRinner = 60 and the smallest RMSPE is 3.44 nm whenRinner = 120. The largest RMSPE using

pixel values as input features is 34% smaller than the smallest RMSPE using DCT coefficients as input

features. This means that the pixel values are likely to outperform DCT coefficients as input features.

As mentioned earlier, OPC increases the spatial frequency ofthe resulting patterns on the wafer, and

therefore, it is possible that both the low and high frequency DCT coefficients are needed to effectively

predict the fragment movements.

Examining the data more closely, we find that different types offragments possess different movements

characteristics as obtained via model based OPC. Naturally,this raises the question as to whether training

separate models for each fragment type is likely to improve the performance. Since sub-sampled pixel

values have been shown to outperform DCT coefficients, we use them to create separate models for each

fragment type. In doing so, we remove the indicator variables indicating the fragment type from the input
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TABLE II

RMSPE for different values ofRinner. RMSPE is in nm.

Rinner RMSPE

60 (257 values) 3.509

80 (281 values) 3.453

100 (297 values) 3.481

120 (321 values) 3.439

140 (337 values) 3.483

feature vector. The RMSPE for each type of fragment using a combined single regression model on sub-

sampled pixel values for different values ofRinner are shown in columns 2, 3, and 4 of Table III. Also

shown in columns 5, 6, and 7 of Table III are the RMSPE values for normal edge, concave corner, and

convex corner fragments using separate regression models.Comparing the columns, it is clear that using

separate regression models for each type of fragment results in significantly lower RMSPE than single

model for all values ofRinner. From Table III, we conclude that the best feature vector corresponds to

having a separate model for each fragment type consisting ofsub-sampled pixel values withRinner = 80.

TABLE III

Comparison of RMSPE for normal edge, concave corner, and convex corner fragments using a combined linear regression

model with RMSPE using separate linear regression models. RMSPE is in nm.

normal concave convex normal concave convex normal concave convex

Rinner (single) (single) (single) (sep.) (sep.) (sep.) % diff. % diff. % diff.

60 3.519 3.895 3.1198 2.893 3.565 2.277 17.8% 8.5% 27.0%

80 3.545 3.721 3.1209 2.434 3.459 2.420 31.3% 7.0% 22.4%

100 3.551 3.799 3.1195 2.587 3.522 2.344 27.1% 7.3% 24.9%

120 3.532 3.676 3.1408 2.763 3.546 2.412 21.8% 3.5% 23.2%

140 3.573 3.737 3.1773 2.932 3.731 2.462 17.9% 0.2% 22.5%

IV. RESULTS

In this section, we use sub-sampled pixel values withRinner = 80 as input feature vector to train a

different model for normal edge, concave corner, and convexcorner fragments using a 60µm by 50µm

portion of design A. Even though the optimum model obtained inSection 3 also corresponds to sub-

sampled pixel values withRinner = 80, its training set does not necessarily cover the entire range of
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fragment movements for every training type. To this end, we collect a subset of all the pairs of layout

patterns and their corresponding fragment movements obtained via model based OPC in a 60µm by 50µm

patch of layout A for training purpose. Specifically, we collect 2675 pairs of pattern and movement with

normal edge, 2784 pairs with concave corner, and 2680 pairs with convex corner fragments in such a

way to ensure the training data covers the range of fragment movements for each type of fragment. The

resulting parameter vector,~β, is used to test on another section of logic layout from design A, as well

as a section of logic layout from design B.

A. Comparison with model based OPC

The model is tested on a different 70µm by 50µm section of logic layout from design A, which has

27432 normal edge, 2796 concave corner, and 8203 convex corner fragments. As shown in Figure 7, the

predictions via linear regression model shown in yellow follows the fragment movements obtained via

model based OPC shown in black reasonably well. Table IV showsthat the smallest RMSPE is 2.125

nm for convex corner fragments, and the largest RMSPE is 2.876 nm for concave corner fragments.

Furthermore, as seen in the 4th column of Table IV, for all fragment types, more than 93% percent of

the predicted fragment movements are in the same direction as the model based OPC fragment movement.

Figure 8 shows the cummulative distributive function (CDF) ofthe absolute prediction errors for the three

fragment types. As seen, more than 63%, 70%, and 77% of the absolute prediction errors are less than

2 nm for concave corner, normal edge, and convex corner fragments respectively.

TABLE IV

RMSPE and percentage of predicted fragment movement in the same direction as model based OPC fragment movement for

the three types of fragments. RMSPE is in nm. The data are from a section of design A.

# of fragments RMSPE % Right Dir.

normal 27432 2.494 93.7

concave 2796 2.876 95.3

convex 2784 2.125 97.9

B. Comparison with model based OPC on a different layout

The linear regression model is also tested on a 18µm× 16µm section of logic layout from a different IC

design B, with 4055 normal edge, 455 concave corner, and 995 convex corner fragments. Figure 9 shows

the predicted movement obtained via linear regression shown in yellow and the corresponding movement
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Fig. 7. The model based OPC fragment movement and the predicted fragment movement using separate linear regression

models for each type of fragment on a section of layout from design A. (a)normal edge fragment; (b) concave corner fragment;

(c) convex corner fragment. The yellow indicates predicted movement from linear regression, and the black shows the movement

obtained from model based OPC software.

determined by model based OPC shown in black. It can be seen from Figure 9 and Table V that the

predicted fragment movements match the edge movements obtained via model based OPC reasonably

well. In particular, as shown in column 4 of Table V, for all fragment types, over 90% of the predicted

fragment movements are in the same direction as the fragmentmovements generated by model based

OPC. Furthermore, as shown in column 3 of Table V, the largest RMSPE is 3.94 nm for concave corner

fragments. Figure 10 shows that more than 63% of the absolute prediction errors are less than 2 nm for

convex corner and normal edge fragements, and more than 42% of the absolute prediction errors are less

than 2 nm for concave corner fragments.
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Fig. 8. Cumulative distribution of the absolute prediction error for a section of designA.

The RMSPE for design B is higher than design A, and the percentageof predicted movements in the

right direction is lower for design B than for design A. Also,the percentage of absolute prediction errors

below 2nm for design B is lower than of design A. We would expect the prediction on test data set from

design A to outperform design B since the training data also comes from a portion of design A.

TABLE V

RMSPE and percentage of predicted edge movement in the same directionas model based OPC edge movement for three

types of fragments. RMSPE is in nm. The data are from a section of layout from design B.

# of edges RMSPE % Right Dir.

normal 4055 2.780 90.2

concave 455 3.935 90.8

convex 995 2.829 97.8

C. Improving convergence rate of model based OPC

We now provide the predictions as initial conditions to the iterations of model based OPC software

to determine whether the number of iterations can be reduced. The predictions are applied before model
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Fig. 9. The fragment movement obtained via model based OPC and the predictedfragment movement obtained via separate

linear regression models for each type of fragment on a section of layoutfrom design B. (a) normal edge fragment; (b) concave

corner fragment; (c) convex corner fragment. The yellow indicates predicted movement from linear regression, and the black

shows the movement obtained via model based OPC.

based OPC by creating tags on fragments for each value of predicted movement in Mentor Graphics

CalibreTM , and using the command “opcTag hintoffset”. Figure 11 shows the distributions of the edge

placement errors (EPE) using model based OPC with and without thepredictions from our proposed

linear regression model for a section of layout from design A. As seen in Figure 11(a), the EPE with

prediction after 2 iterations is more tightly distributed around zero than without predictions at 2 or 4

iterations. In fact, as shown in Figure 11(b) it takes 6 iterations for model based OPC without predictions

to achieve approximately the same EPE distribution as 2 iterations of model based OPC with predictions.
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Fig. 10. Cumulative distribution of the absolute prediction error for a portion of layoutfrom a design B.

Also notice that in Figure 11(b), even after 8 iterations without predictions, there is still a large number

of EPEs between 4 and 5 nm. As shown in Figure 11(c), it takes 16 iterations of model based OPC

without predictions to reduce the number of EPEs between 4 and 5 nm to the same level as 2 iterations of

model based OPC with predictions. As seen in Table VI, the variance of the distribution for the iteration

with prediction is approximately equal to that of 16 iterations without predictions. We can make similar

observations for EPE distribution of design B test data set as shown in Figure 12 and Table VII. This

reduction in iteration number corresponds to an overall reduction in the OPC run time. For instance,

using the proposed prediction method, it takes 230 and 140 seconds to perform model based OPC for

designs A and B respectively on a given computing platform. In comparison on the same computing

platform, it takes 340 and 220 seconds to perform model basedOPC without predictions for designs

A and B to achieve the same EPE variance as the model based OPC withpredictions. As such, in this

example, OPC run time has been reduced by more than 32% when predictions via linear regression are

applied.
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Fig. 11. The EPE distributions for 2, 4, 6, 8, 12, and 16 iterations of model based OPC without predictions and 2 iterations of

model based OPC with predictions for design A. EPE is in nm. (a) 2 and 4 iterations of model based OPC without predictions and

2 iterations with predictions; (b) 6 and 8 iterations of model based OPC without predictions and 2 iterations with predictions;

(c) 12 and 16 iterations of model based OPC without predictions and 2 iterations with predictions.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have presented a method to predict OPC fragment movement from layout patterns

using linear regression models. We use sub-sampled pixels on concentric squares of the low pass filtered

layout pattern as input features, and create separate models for normal edge, concave corner, and convex

corner fragments. We have shown that the proposed scheme canachieve RMSPE of 2.78 nm when the

model is trained on one design and tested on a different design, and more than 63% of the absolute

December 2, 2007 DRAFT



16

TABLE VI

Variance and standard deviation for the various EPE distributions with and without predictions on design A.

variance std. dev

pred - 2 4.34 2.08

no pred - 2 18.95 4.35

no pred - 4 10.49 3.24

no pred - 6 7.06 2.66

no pred - 8 5.47 2.34

no pred - 12 5.03 2.24

no pred - 14 4.65 2.16

no pred - 16 4.28 2.07

TABLE VII

Variance and standard deviation for the various EPE distributions with and without predictions on design B.

variance std. dev.

pred - 2 6.81 2.61

no pred - 2 20.72 4.55

no pred - 4 11.70 3.42

no pred - 6 8.19 2.86

no pred - 8 6.53 2.56

no pred - 12 5.94 2.44

no pred - 4 5.49 2.34

no pred - 16 5.24 2.29

predictions errors for normal edge and convex corner fragments are less than 2 nm. In addition, using

the predicted fragment movements presented in this paper asthe intitial condition for the iterations of

Model based OPC, it is possible to reduce the number of iterations in model based OPC from 6 to 2 to

obtain the same EPE distribution, and from 16 to 2 to obtain EPE distribution with approximately same

variance. The reduction in the number of iterations translates into more than 32% reduction in the run

time.

This paper has been primarily focused on reducing the overallcomputational time of model based

OPC. There are other open issues in OPC which have not been addressed by the paper. For instance, it is

well known that certain mask patterns such as ”jogs” cause convergence problems in most model based

OPC algorithms. Clearly, the work presented here is not readily applicable to the convergence problem.
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Fig. 12. The EPE distributions for 2, 4, 6, 8, 12, and 16 iterations of model based OPC without predictions and 2 iterations of

model based OPC with predictions for design B. EPE is in nm. (a) 2 and 4 iterations of model based OPC without predictions and

2 iterations with predictions; (b) 6 and 8 iterations of model based OPC without predictions and 2 iterations with predictions;

(c) 12 and 16 iterations of model based OPC without predictions and 2 iterations with predictions.

In the future, we plan to investigate more complex, general,distribution models, such as Gaussian

Mixture model [21]. As shown in Section 3, more accurate predictions are obtained by creating a

separate regression model for each type of fragment. However, it is considerbly more difficult to separate

the fragments within each fragment type in order to create separate regression models for improved

predictions. This separation can potentially be learned from the data by using Gaussian mixture models.

Furthermore, all of the results presented in this paper have been for logic designs. In the future, we

plan to investigate whether the same models can be applied tomemory and mixed designs, and whether
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the 32% reduction in OPC run time holds true across many designs.
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