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Abstract

Lossless Compression Algorithm for Hierarchical IC Layout

by

Allan Gu

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Avideh Zakhor, Chair

An important step in today’s Integrated Circuit (IC) manufacturing is optical proximity

correction (OPC). While OPC increases the fidelity of pattern transfer to the wafer, it also

significantly increases IC layout file size. This has the undesirable side effect of increasing

storage, processing, and I.O. times for subsequent steps of mask preparation. To allevi-

ate the growing volume of layout data, a new layout data format, Open Artwork System

Interchange Standard (OASIS), was introduced in 2001 by SEMI’s Data Path Task Force.

Even though OASIS results in a more efficient representation than the previous industry

standard format GDSII, there is still room for improvement by applying data compression

techniques. In this paper, we propose two such techniques for compressing layout data,

including OPC layout, while remaining complaint with existing industry standard formats

such as OASIS and GDSII. Such compliance ensures that the resulting compressed files

can be viewed, edited, and manipulated by industry standard CAD viewing and editing

tools without the need for a decoder. Our approach is to eliminate redundancies in the

representation of the geometrical data by finding repeating groups of geometries between

multiple cells and within a cell. We refer to the former as “inter-cell sub-cell detection (In-

terSCD)” and latter as “intra-cell sub-cell detection (IntraSCD)”. We show both problems

to be NP hard, and propose two sets of heuristics to solve them. For OPC layout data, we
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also propose a fast compression method based on IntraSCD which utilizes the hierarchical

information in the pre-OPC layout data. We show that the IntraSCD approach can also be

effective in reconstructing hierarchy from flattened layout data. We demonstrate the results

of our proposed algorithms on actual IC layouts for 90nm, 130nm, and 180nm feature size

circuit designs.

Professor Avideh Zakhor
Thesis Committee Chair
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Chapter 1

Introduction

As the semiconductor industry moves toward denser designs with smaller feature sizes,

pattern transfer from reticles to wafers, referred to as lithography, becomes more challeng-

ing. To correctly fabricate these circuits using current lithographic machines, resolution

enhancement techniques (RET) such as optical proximity correction (OPC), phase shift

masking, scattering bars, and tiling are routinely performed on the layout data [1]. Denser

circuit designs and increased usage of RET have resulted in significant data volume ex-

plosion. Specifically, The International Technology Roadmap for Semiconductors indicates

that a single layer of uncompressed fractured layout will exceed 400 Gigabytes in 2007 [2],

and GDSII layout file sizes are likely to grow to many gigabytes [3]. In particular, OPC is a

major contributor to the expansion of layout data volume. OPC often destroys hierarchical

structures in layout designs, and adds vertices to polygons causing over 10X increase in file

size.

There exist compression algorithms to reduce the mask data size in the rasterized domain

for direct write lithography system [4], [5]. There are also algorithms which can be adapted

to compress hierarchical IC layout data. Specifically, Chen et al. [6] have investigated

algorithms to compress dummy fills in IC layouts which exhibit high degree of spatial

regularity. Veltman and Ashida [7] propose a compression technique for E-Beam writers

1



by finding a set of polygons with identical repetitions that can be referenced as a single

geometrical library.

In this thesis, we propose two compression techniques to reduce the layout data size

by finding repeating groups of polygons in the layout. Our techniques are designed in

such a way that the resulting compressed layouts remain compliant with standard industry

formats such as GDSII and OASIS, and can therefore be read by industry standard CAD

viewing and editing tools without a decoder. In Section 2, we describe the problem of

finding repeating groups of geometries between multiple cells and within a cell. We refer to

these problems as inter-cell sub-cell detection (InterSCD) and intra-cell sub-cell detection

(IntraSCD) respectively. In Section 3, we present a set of greedy algorithms to solve these

two problems. In Section 3.4, we extend the IntraSCD algorithm to exploit the hierarchical

information in the pre-OPC layout in order to compress the post-OPC layout; in doing

so, we achieve a factor of five speed up with little or no loss in compression efficiency as

compared to the IntraSCD method in Section 3.2. Section 4 discusses experimental results

on actual IC layout data. Finally, conclusions and future research directions are included

in Section 5.
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Chapter 2

Sub-cell Detection Problem

IC layouts have a well defined hierarchical structure, and layout interchange formats

such as OASIS and GDSII provide syntax to describe the hierarchy efficiently. However,

the hierarchical structure is partially destroyed during the OPC process. Despite this, it is

possible to reconstruct some hierarchy by finding groups of polygons that undergo the same

proximity correction. Empirical observation of post-OPC data reveals repeating groups of

polygons both across multiple cells and within a cell. As shown later, we exploit both of

these redundancies in reducing the file size of the semi-hierarchical post-OPC layout data.

We begin by defining terminologies used throughout the paper. We define rectangle,

trapezoid, polygon, and placement as geometries. A placement is a reference to another cell

in the layout. A cell is a collection of geometries in a two dimensional plane, and a sub-cell

is a subset of the geometries that are within a cell. A rigid transformation is associated with

each placement. Two geometries are the same if they are of the same geometrical shape;

in the case of placement, they need to reference the same cell, and have the same type of

transformation. The compression ratio (CR) is the ratio of the size of the OASIS layout

file to the size of its compressed version.
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Figure 2.1. Repeating group of polygons across multiple cells.

2.1 Inter-cell Sub-cell Detection

In the InterSCD problem, we wish to find a group of geometries that appear in two or

more cells. In OASIS, geometries are defined each time they occur in a cell. For instance,

if a group of 4 geometries occur in N different cells, then they result in 4N definitions

when only 4 definitions would suffice. By detecting this group of 4 geometries, it is possible

to create one cell from them which can then be referenced by each of the N cells with a

placement operator. Figure 2.1 shows an example of four cells and a group of 4 polygons

that occur in each of the four cells. Rather than defining the 4 polygons separately in each

cell, we create a placement in each of the cells that references a new cell containing the 4

polygons. In this case, it is sufficient to define the 4 polygons once rather than 4 times. In

Figure 2.1, the placement in cells A, B, and D are translated version of the sub-cell, and

the placement in cell C is a rotated and translated version of the sub-cell. We now formally

define the InterSCD problem:

Inter-cell Sub-cell Detection Problem: Given m cells, {C1, C2, ..., Cm}, find the

sub-cell which maximizes |SCr| ∗ r for m ≥ r ≥ 2.

A sub-cell SC is defined to occur in a cell C if there exists a transformation L that maps
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every geometry in SC to some geometry in C. |SCr| denotes the number of geometries in

the sub-cell, and r is the number of cells that SCr occurs in. This problem is NP hard since

it is a special case of the largest common point set (LCP) problem [8] with r = m, each

geometry mapped to a point, and each cell mapped to a point set. In the LCP problem,

for a collection of d-dimensional point sets SS = {S1, S2, ..., Sm}, the objective is to find

a maximal set U that is congruent to some subset of Si for i = {1, 2, ..., m}. A set U is

congruent to a set V if there exists a transformation that takes U into V .

2.2 Intra-cell Sub-cell Detection

In the IntraSCD problem, we wish to find groups of geometries that occur at multiple

locations within a cell. The OASIS format provides different operators for representing

repetitive geometries [3]. In this paper, we assume that all repetitive geometries are rep-

resented with the “TYPE 10” repetition operator. With the “TYPE 10” operator, repre-

senting N instances of a geometry requires one geometry definition and N two dimensional

coordinates. Compression is achieved by finding sub-cells which occur multiple times within

the cell. For instance, 4 polygons occurring N times in a cell would require 4 definitions

and 4N coordinates to represent. Grouping the 4 polygons together into one cell would

only require N rather than 4N coordinates. Figure 2.2 shows a cell with 30 polygons and a

group of 4 polygons that occur four times in the cell. Rather than using 16 coordinates to

represent the 16 polygons, only 4 coordinates are used to create 4 placements in the cell that

reference the sub-cell. In Figure 2.2, the first, second, and fourth placements are translated

versions of the sub-cell, and the third placement is a rotated and translated version of the

sub-cell. We now formally define the IntraSCD problem:

Intra-cell Sub-cell Detection Problem: Given a cell, C, find the sub-cell SCr which

maximizes |SCr| ∗ r for 2 ≤ r ≤ m, subject to the constraint that the maximum Euclidean

distance between any two geometries in SCr is less than or equal to dist.

The maximum Euclidean distance between two geometries is constrained because most
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Figure 2.2. Repeating group of polygons within a cell.

circuit designs are created by connecting smaller functional circuit units together, and the

smaller circuits are limited in size. A sub-cell SC occurring in r locations implies that

there exist r transformations, T1, T2, ..., Tr such that Ti(SC) maps uniquely to a group of

geometries in C. m denotes the frequency of the most repeated geometry in C. As shown

in the appendix, IntraSCD is an NP hard problem.
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Chapter 3

Sub-cell Detection Algorithms

InterSCD and IntraSCD are both NP hard problems, and cannot be solved optimally

within a reasonable amount of time for large layouts. In this Section, we describe two greedy

algorithms to solve them. Our proposed approach to the InterSCD problem currently

detects groups of geometries that are translation invariant. Future research will address

rotation and reflection invariant cases.

3.1 Inter-cell Sub-cell Detection Algorithm

Before detecting a common sub-cell among a large collection of cells, the cells are pre-

processed using hierarchical clustering algorithm to group similar cells together. This results

in computational efficiency because cells that do not share any geometries with other cells are

quickly eliminated from further consideration. Hierarchical clustering begins by assigning

each of the N cells in the layout to a separate cluster. Then the two clusters that are

most similar according to a distance metric are merged together into a single cluster. The

clustering algorithm re-computes the distance between the new cluster and the remaining

clusters, and again merges the two most similar clusters. This is repeated until all of the

clusters have been merged into a single cluster. The distance between two clusters is defined

as:
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d(Clusteri, Clusterj) =

Ni
∑

m=1

Nj
∑

n=1

d(Ci
m, Cj

n)

Ni ∗Nj

(3.1)

where

d(Ci
m, Cj

n) =
m− w

m
, (3.2)

and

w = |common shape(Ci
m, Cj

n)| (3.3)

m = min(|Ci
m|, |C

j
n|) (3.4)

Ni and Nj denote the number of cells in the ith and jth cluster respectively, and d(Ci
m, Cj

n)

is the distance between the mth cell in cluster i and nth cell in cluster j. common shape

is a function that determines the number of geometries that cells Ci, Cj have in common

irrespective of their locations. The distance between two clusters is the average of the

distances from any cell in one cluster to any other cell in the other cluster. Once hierarchical

clustering is completed, a collection of clusters are generated by cutting the hierarchical tree

at a certain height in such a way that each cluster contains cells that most likely share a

common group of geometries. We have empirically determined to cut the tree at the height

in which the distance between two clusters exceeds 0.35. Figure 3.1 shows an example of

a hierarchical cluster tree created after the clustering process. As seen, cutting the tree at

distance 0.35 results in 3 clusters, namely {C1, C2, C5} , {C3, C6}, and {C4}.

Having obtained a collection of clusters through the above hierarchical clustering and

cutting procedure, for each cluster the algorithm looks for a sub-cell which maximizes

|SCr| ∗ r, where r is the number of cells the sub-cell occurs in for that cluster, and |SCr|

is the number of geometries that the sub-cell contains. Figure 3.2 shows the flowchart for
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Figure 3.1. Hierarchical clustering example.

our proposed InterSCD algorithm. The basic idea behind the algorithm is to recursively

update the candidate sub-cell SC∗ which maximizes the benefit function |SCr| ∗ r at each

iteration as it goes through all the cells in the cluster one at a time. In the first stage, the

algorithm starts by choosing and removing two cells, Ci and Cj , from the cluster that are

closest in terms of the distance metric in Equation(3.2). It then exhaustively searches for

the largest sub-cell, SC(1), that is common to both cells under translation in a manner to

be described shortly. SC(1) is set as the initial sub-cell if its number of geometries exceeds

some threshold. Otherwise, another pair of cells whose distance is the next closest is chosen.

Having found the largest sub-cell, SC(1), between Ci and Cj in the first stage, the

algorithm sets SC∗ ← SC(1), and numC ← 2 where in general numC denotes the number

of cells which contain SC∗ as a sub-cell. It then moves on to the next stage as it finds more

cells in the cluster that contain overlapping geometries with SC∗. Specifically, at stage 2,

the algorithm re-computes the distance between SC∗ and the remainder of the cells in the

cluster according to Equation(3.2). The cell that is closest to SC∗, i.e. C(2), is chosen from

the cluster; then, exhaustive search is applied to find the largest sub-cell, SC(2), between

SC∗ and C(2). At this point, we need to decide whether to update SC∗ with SC(2) as the

possible candidate to be considered in future stages. Our approach is to update SC ← SC(2)

if |SC(2)| ∗ (numC + 1) > |SC∗| ∗ numC. The reason for having numC + 1 in the left side

of the inequality is that at this point SC(2) is known to have appeared in 3 cells while SC∗

has appeared in only 2 cells. If SC ← SC(2), then numC ← numC + 1. The algorithm

9



Figure 3.2. Flowchart of the InterSCD algorithm.
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then proceeds onto stage 3, and follows the same steps taken in stage 2. This process is

repeated until all the cells in the cluster have been visited.

From the above description, it is clear that a major component of the described algo-

rithm has to do with finding the largest group of overlapping geometries between 2 given

cells, Ci and Cj . Our approach for the above problem is to perform an exhaustive search as

follows: for every geometry G that occurs in both Ci and Cj , the algorithm finds a transla-

tion mapping, Γ, that takes G in Ci to Cj . This mapping is applied to all of the geometries

in Ci, and the number of geometries that Γ(Ci) and Cj have in common is determined.

The group with the most number of common geometries is selected as the largest group of

overlapping geometries.

Figure 3.3 shows an example of how the above approach works. After the hierarchical

clustering step, cells A, B, C, and D are assumed to be grouped together in a cluster. Cells A

and B are the closest with 6 geometries in common. The exhaustive search finds the largest

group of geometries, SC(1), that occurs in cells A and B, and sets SC∗ ← SC(1). Cell C

and SC∗ are the closest, and SC(2) is the largest group of geometries between cell C and

SC∗. Because SC(2) has 4 geometries occurring in three cells, while SC has 4 geometries

occurring in two cells, the algorithm updates SC∗ as SC∗ ← SC(2). Finally SC(3) is the

sub-cell found in the third stage. SC(3) has 3 geometries occurring in all four cells as

compared to SC(2) which has 4 geometries occurring in 3 cells; since |SC(3)| ∗ 4 = 12 is not

greater than |SC∗| ∗ 3 = 12, we do not update SC∗. Hence, the final solution as computed

by the proposed InterSCD algorithm is SC∗ ← SC(2).

3.2 Intra-cell Sub-cell Detection Algorithm

For IntraSCD, we have developed a greedy algorithm that grows the solution sub-cell

at each iteration. The basic idea behind our proposed iterative algorithm is to select an

initial geometry as an initial sub-cell, and to add more polygons to the sub-cell until there

is no additional benefit in adding more polygons. Once this happens, we replace all the
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(a)

(b) (c) (d)

Figure 3.3. Inter-cell sub-cell detection example. (a) Cell cluster; (b) sub-cell between cells
A and B; (c) sub-cell between SC(1) and cell C; (d) sub-cell between SC(2) and cell D.

geometries in the cell corresponding to the newly found sub-cell with a reference to the

sub-cell, and repeat the above process for the remaining geometries in the cell.

Figure 3.4 shows the flow diagram of our proposed IntraSCD algorithm. The algo-

rithm begins by ranking all the geometries according to the number of repetitions of each

geometry in the cell. Here, we are primarily concerned with repetitions under translation.

In Section 3.3, we will extend this algorithm for rotations and reflections. The geometry,

Gmax, with the most number of repetitions is selected, and set to SC(0) if its number of

repetitions is greater than some threshold. Let Gmax
k denote the kth instance of the geom-

etry in the cell; then for each instance Gmax
k , all possible combinations of 2 or 3 geometries

are created using Gmax
k and its closest neighbors that are within a certain distance from

it. In doing so, the number of neighbors is limited to 200 so as to limit complexity. There

are
(

200
2

)

= 19, 900 combinations of 2 geometries that can be paired with Gmax
k to form a

group of 3 geometries. If there are 2000 instances of Gmax, then there are over 39 million

candidate groups to consider. Hence, even modest number of instances of Gmax results in

large number of candidate groups requiring significant amount of computation to select the

best group.

To alleviate this, we have devised a pruning method to eliminate candidates that result in
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few instances after adding 1 geometry to SC(0). Specifically, assume the maximum number

of instances for a candidate group with 1 added geometry is N ; then there is no need to

add a second geometry to any of these candidates with M instances if M < 2N
3 . This is

because at each iteration, the goal is to choose the candidate sub-cell which maximizes the

benefit; therefore, even in the best case scenario whereby the number of occurrences for a

candidate group with 1 added geometry remains at M after the addition of a 2nd geometry,

the total score for this candidate group is still less than 2N . In general, assume SC(i)

has l geometries, and the maximum number of instances for a candidate group composed

of SC(i) and one other geometry is N ; then, there is no need to add a second geometry

to any candidate groups composed of SC(i) and another geometry having M instances if

M < l+1
l+2N .

At the end of the first iteration, the best candidate group consisting of 1 or 2 added

geometries to SC(0) is selected as follows: SC(1) ← arg max
SC

(1)
j

|SC
(1)
j | ∗ numInst

(1)
j , where

SC
(1)
j is the jth candidate created during the 1st iteration; the algorithm checks to see

whether |SC(1)|∗numInst(1) ≥ |SC(0)|∗numInst(0). If it is, then more geometries that are

within a certain distance of the bounding box of SC(1) are added to SC(1) by repeating the

above process. If not, the iteration stops, the newly found sub-cell replaces the repeating

group of geometries in the cell, and the process repeats by selecting another geometry in

the cell as an initial sub-cell.

In general, let SC(i) denote the solution sub-cell at the ith iteration, and SC
(i)
j be be

the jth candidate sub-cell created during the ith iteration. We set

SC(i) ← arg max
SC

(i)
j

|SC
(i)
j | ∗ numInst

(i)
j .

where |SC
(i)
j | is the number of geometries in the jth candidate sub-cell generated at iteration

i, and numInst
(i)
j is the number of instances of SC

(i)
j in the cell. After selecting the best

candidate generated during iteration i, i.e. SC(i), we continue adding more geometries to

the SC(i) if the following condition is satisfied,

13



Figure 3.4. Flowchart of the IntraSCD algorithm.
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|SC(i)| ∗ numInst(i) > |SC(i−1)| ∗ numInst(i−1).

. If the condition is not satisfied, then the iterative step of adding more polygons to SC(i−1)

ends, and placements referencing SC(i−1) are created at the locations where SC(i−1) occurs

in the cell. The above process is repeated until all of the geometries in the cell have

been visited to determine whether they can form repeating groups of geometries with their

neighbors.

Figure 3.5 shows an example of the IntraSCD process for a cell with 31 different

geometries. Initially in Figure 3.5(a), the polygon with 5 instances is selected and set

to SC(0). Then all possible combinations of 2 and 3 geometries are formed with SC(0) and

its neighbors. Figure 3.5(b) shows the group of three polygons that results in the highest

score among all the combinations after the 1st iteration. Since |SC(0)| ∗ numInst(0) <

|SC(1)| ∗ numInst(1), the algorithm continues. At the end of the 2nd iteration, another

polygon is added to SC(1) resulting in a group of 4 polygons as shown in the top sub-cell

in Figure 3.5(c) called SC(2). Figure 3.5(c) also shows two other groups of geometries

considered in the second iteration. However, these groups only occur once in the cell and

are not selected. SC(2) with 4 geometries appearing on the top of Figure 3.5(c) is se-

lected because it is the one that maximizes our metric, namely |SC| ∗ numInst. The

algorithm continues since (|SC(2)| ∗ numInst(2) = 16) > (|SC(1)| ∗ numInst(1) = 12). In

the third iteration, the algorithm attempts to add more geometries to SC(2). However,

(|SC(3)| ∗ numInst(3) = 7) < (|SC(2)| ∗ numInst(2) = 16), and so the iterative step of

adding polygons to SC(2) stops. The final solution is SC(2) as shown in Figure 3.5(d);

all the geometries corresponding to SC(2) are removed from the cell, and placements that

reference SC(2) are added to the original cell as shown in Figure 3.5(d). We continue

by selecting the geometry with the most repetition in the cell and setting it as an ini-

tial sub-cell. However, at this point either the remaining geometries do not have enough

repetitions, or the sub-cell created after their first iteration does not satisfy the condition

|SC(1)| ∗ numInst(1) > |SC(0)| ∗ numInst(0).
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(a) (b)

(c) (d)

Figure 3.5. Intra-cell sub-cell detection example. (a) 0th iteration; (b) 1st iteration; (c) 2nd

iteration; (d) final result.
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3.3 Extension of IntraSCD to Rotation and Reflection

The IntraSCD algorithm described above only considers geometries that are the same

under translation. However, circuit designs contain rotated and/or reflected geometries,

and as such, the above algorithm is unable to take advantage of those to further reduce

the file size. We now extend the IntraSCD algorithm in Section 3.2 in order to take into

account rotations and reflections. We refer to IntraSCD with extensions to rotation and

reflection as IntraSCD+Ext.

Recall that in the algorithm of Section 3.2, the geometry with the most number of

repetitions under translation is selected as an initial sub-cell. Geometries are added to

the sub-cell at each iteration until there is no gain in the score by adding more polygons.

To extend the algorithm to rotations and reflections, the geometry, Gmax, with the most

number of repetitions under translation, rotation, and reflection is selected as the initial

sub-cell SC(0). Because of the Manhattan nature of layouts, we only focus on multiples of

90 degree rotations.

During the 1st iteration, for each instance, Gmax
i , we find a transformation such that

Ti(G
max
i ) = Gmax, where Gmax is a given geometry with an arbitrarily chosen orienta-

tion. Let Group
(max)
i denote the set of geometries that are within a certain distance of

Gmax
i ; then the algorithm applies the transformation, Ti, to Group

(max)
i , forms all possible

candidate groups of 2 or 3 geometries containing Ti(G
max
i ) and its transformed neighbors

Ti(Group
(max)
i ), and selects the group, SC(1), with the highest score using the exact same

steps described in the IntraSCD algorithm in Section 3.2.

Having found SC(1), the algorithm proceeds in the same way as the IntraSCD algorithm.

Specifically, during the kth iteration, the algorithm selects geometries in the cell that are

within a certain distance to the bounding box of each instance of SC(k−1) denoted by

SC(k−1),l. In addition, SC(k−1),l contains an instance of Gmax namely Gmax
m , with an

associated transformation Tm. The transformation, Tm, is applied to neighboring geometries

of SC(k−1),l, and candidate groups are created using each instance of SC(k−1) and its

17



transformed neighboring geometries. The candidate group with the highest score is selected

as described in the IntraSCD algorithm. Specifically,

SC(k) ← arg max
SC

(k)
j

|SC
(k)
j | ∗ numInst

(k)
j

where SC
(k)
j is the jth candidate group generated at iteration k, and numInst

(k)
j is the

number of instances of SC
(k)
j in the cell. We continue the iteration by adding more polygons

if |SC(k)| ∗ numInst(k) > |SC(k−1)| ∗ numInst(k−1). If the above condition is not satisfied,

then a new cell that contains the geometries of SC(k−1) is created, and placements with the

proper transformation referencing the sub-cell are created at the locations where SC(k−1)

occurs in the cell. The iteration steps described above are repeated until all of the geometries

in the cell have been examined.

Figure 3.6 shows an example of how IntraSCD+Ext algorithm works. In Figure 3.6(a),

the polygon with the most number of instances under translation, rotation, and reflection

is selected and set as SC(0). Figure 3.6(b) shows the group of three polygons that results

in the highest score among all the combinations after the 1st iteration. Since |SC(0)| ∗

numInst(0) < |SC(1)| ∗ numInst(1), the iteration continues in order to add more polygons

to SC(1). At the end of the 2nd iteration, we add another polygon to SC(1) resulting in

a group of 4 polygons as shown in the top sub-cell in Figure 3.6(c) which we call SC(2).

Since |SC(1)| ∗ numInst(1) = 12 < |SC(2)| ∗ numInst(2) = 16, we continue the iteration.

Finally, in Figure 3.6(d), we see that the group SC(3) occurs only once in the cell, and

|SC(3)| ∗numInst(3) = 5 is less than |SC(2)| ∗numInst(2) = 16; therefore, the iteration step

stops, and SC(2) is chosen as the solution. The algorithm continues by selecting another

geometry with the most repetition in the cell and setting it as an initial sub-cell. However,

at this point either the remaining geometries do not have enough repetitions, or the sub-

cell created after their first iteration does not satisfy the condition |SC(1)| ∗ numInst(1) >

|SC(0)| ∗ numInst(0).
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(a) (b)

(c) (d)

Figure 3.6. IntraSCD example with rotation and reflection. Repeating geometries are in
gray. (a) 0th iteration; (b) 1st iteration; (c) 2nd iteration; (d) 3rd iteration.

3.4 IntraSCD Exploiting Pre-OPC Hierarchy (IntraSCD +

EHier)

The greedy IntraSCD algorithm can be computationally expensive on dense layouts.

Since part of the data expansion during OPC is due to the destruction of the design hi-

erarchy, it might be possible to exploit the original pre-OPC hierarchy to reconstruct the

hierarchy after OPC. As we will show shortly, in doing so, we can also speed up IntraSCD

by up to a factor of 6 with little or no loss in compression efficiency.

Close examination of the post-OPC data reveals that much of the original cell hierarchy

is destroyed during the OPC process, but some of the geometries from different instances

of a cell undergo the same proximity correction. It is possible to find the geometries in

the post-OPC layout that correspond to a particular cell instance in the original pre-OPC

layout. This way, rather than having to add one or two geometries at a time within the
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(a) Pre-OPC (b) Post-OPC (c) Groups of geome-

tries

Figure 3.7. An example of how to use the pre-OPC hierarchy information to find the geome-
tries belonging to the same cell instance in the post-OPC layout.

IntraSCD algorithm, we can find all of the geometries that belong to the same group in one

step. However, due to proximity effects, not all corrections are identical for each instance

of a cell; hence, we need additional processing steps in order to find the repeating group of

geometries.

We begin by collecting the N groups of geometries in the post-OPC layout,

G1, G2, ..., GN , that belong to the N instances of the same cell in the pre-OPC layout.

This can be done by intersecting the bounding box of each cell instance in the pre-OPC lay-

out with the geometries in the post-OPC layout. Since OPC only makes local modifications

to the polygons, the geometries that intersect with the bounding box correspond to the

geometries of each instances of the same cell in the pre-OPC layout. Figure 3.7(a) shows

a portion of the pre-OPC layout, and Figure 3.7(b) shows the corresponding post-OPC

layout. In the figure, intersecting the bounding box of the cell ’CELLA’ in the pre-OPC

layout, denoted with the dotted outline, with the post-OPC layout results in 4 groups of

geometries, G1, G2, G3, G4 as shown in Figure 3.7(c).

Designers create complex logic circuits by connecting smaller, simpler functional circuit

units such as “AND” gates together. These smaller circuits, when placed on a layout, may

be transformed geometrically to satisfy some constraints placed by designers. For instance,

suppose C in Figure 3.8(a) represents a small circuit unit, and C1, C2 are two placements
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(a) (b) (c)

Figure 3.8. (a) Example of smaller circuit, C, and its instances C1, C2 in a pre-OPC layout;
(b) the corresponding post-OPC layout with the bounding box of C1 and C2 superimposed;
(c) by applying the inverse transformations to G1 and G2, the two groups of geometries are
mapped to the same location and orientation.

that references C in a pre-OPC layout; the corresponding post-OPC layout is shown in

Figure 3.8(b). Figure 3.8(b) also shows the two group of geometries G1 and G2 that can

be obtained by intersecting the post-OPC geometries with the bounding box of C1 and C2

in the pre-OPC layout. As seen, C1 is a translated version of C, and C2 is a translated

and 90◦ rotated version of C. These transformations are readily available in the pre-OPC

layout data, and therefore, corresponding inverse transformations can be applied to G1 and

G2. In doing so, we map all of the geometries in G1 and G2 to the same location and

orientation as shown in Figure 3.8(c).

After obtaining the N groups of geometries in the post-OPC data, G1, G2, ..., GN , cor-

responding to the N instances of the same cell in the pre-OPC data, C1, C2, ..., CN , we

search for a group of repeating geometries between G1, G2, ..., GN . This problem of finding

a repeating group of geometries between G1, G2, ..., GN can be solved with the InterSCD

algorithm described in Section 3.1. However, the hierarchical clustering step can be omit-

ted since G1, G2, ..., GN are known to share common geometries as they correspond to the

same cell instance in the pre-OPC layout. Additionally, since the transformations that were

applied to C to create C1, C2, ..., CN in the pre-OPC data are known, corresponding inverse

transformations can be applied to G1, G2, ..., GN so that the geometries in G1, G2, ..., GN

are mapped to the same location and orientation. In doing so, the exhaustive search per-
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(a) (b) (c)

Figure 3.9. (a) Example of a cell P; (b) 4 placements of P with 2 of them overlapping in
pre-OPC layout; (c) the corresponding post-OPC layout; the geometries corresponding to
the overlap region in the pre-OPC layout are highlighted in gray.

formed by the InterSCD algorithm to find the largest group of repeating geometries between

two cells can be omitted. Rather, a simple “AND” operation is required to find the largest

group of repeating geometries between two cells.

Special attention must be paid to handle overlaps between placements. If two placements

overlap in the pre-OPC layout, then their bounding boxes must be restricted to the portion

which do not overlap rather than the full bounding box of the cell that they reference. This

is because a Boolean “OR” operation is typically performed by the OPC software on the

overlapping regions, and therefore, the geometries in these regions are not likely be part of

a repeating group of geometries. Figure 3.9(a) shows an example of a cell P, Figure 3.9(b)

shows an example of four placements of cell P with two of the them overlapping in the

pre-OPC layout, and Figure 3.9(c) shows the corresponding post-OPC layout. As seen

in Figure 3.9(c), the geometries in the overlapping region, highlighted in gray, have been

“ORed”, and are therefore completely different from the other geometries in the post-OPC

layout corresponding to other instances of cell P.

A top down, bottom up approach is used to handle multiple levels of hierarchy where

children cells may contain other children cells. This is needed in order to find repeating

groups of geometries corresponding to children cells within other children cells. Figure 3.10
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Figure 3.10. An example of a layout with multiple levels of hierarchy; cell C is a child cell
of top-cell and cell D is a child cell of cell C.

shows an example of a layout with multiple levels of hierarchies where cell C is a child cell

of the top-cell, and cell D is a child cell of cell C. By merely intersecting the bounding box

of each instance of cell C in the post-OPC layout, the repeating geometries corresponding

to cell D would go undetected. To address this, we propose the following: Begin with the

largest cell, C, and gather all of the geometries in the post-OPC layout that correspond to

each instance of C in the pre-OPC layout. Then the inverse transformation is applied to

each group of geometries to obtain N groups of geometries in the same orientation. If C

contains children cells, then we gather all of the geometries in the post-OPC corresponding

to instances of each child cell in the pre-OPC layout. This is applied recursively until the

there are no more children cells. Once the geometries corresponding to the cell at the

lowest level of the hierarchy have been reconstructed, the cell on the next higher level of

the hierarchy is reconstructed and so on. This process continues until the cell at the top

level of the hierarchy is reconstructed.

So far, we have described ways of exploiting the pre-OPC hierarchy information in order

to find repeating groups of geometries corresponding to cell instances in the pre-OPC layout.

However, there may also exist repeating groups of geometries in the post-OPC layout that

do not belong to some cell in the pre-OPC layout. Therefore, to ensure highest compression

ratios, we apply the IntraSCD algorithm to find any remaining repeating groups of polygons

in the post-OPC layout.
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Chapter 4

Results

We have applied the above InterSCD and IntraSCD algorithms to actual industrial post-

OPC layouts. The first data set consists of the Poly and Active layers for a 3.5mm × 3.5mm

chip with 180nm feature size. For this set, OPC has been carried out by the layout owner

with industry standard OPC software. The second data set consists of the Poly, Metal 1,

and Metal 2 layers from 8mm × 8mm and 4.3mm × 4.3mm chips with 130nm feature size.

The third data set consists of the Poly, and Active layers from 1.4mm × 1.4mm and 1.8mm

× 1.8mm chips with 90nm feature size. We run OPC software from a major vendor on the

second and third data sets with standard OPC recipes. The original post-OPC data and

the compressed post-OPC data are encoded in the OASIS format.

4.1 InterSCD Results

For the first data set, we have found the InterSCD algorithm to work well, and the

IntraSCD algorithm not to result in noticeable gain. We believe this is due to the way the

data is processed by the OPC software. Furthermore, we notice that many of the post-OPC

cells from the first layout data set are much smaller than those from the second and third

data sets. Therefore, IntraSCD, which detects similar groups of polygons within a cell, can

not result in significant gain on the first layout data set containing small cells. Table 4.1
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Post-OPC InterSCD CR

Size Size
Poly (L1) 6,391,097 2,793,277 2.2880

Active (L1) 3,496,377 1,777,757 1.9667

Table 4.1. Compression results with InterSCD algorithm. File sizes are in bytes.

Post-OPC IntraSCD IntraSCD+Ext CR CR Ratio of IntraSCD
Size Size Size IntraSCD IntraSCD+Ext to IntraSCD+Ext

Poly (L2a) 2,413,460 977,294 886,445 2.470 2.723 1.102
Poly (L2b) 1,036,664 576,491 554,949 1.798 1.894 1.053
Poly (L3a) 9,189,288 4,905,897 4,661,388 1.873 1.971 1.052
Poly (L3b) 34,515,762 18,960,928 17,924,204 1.820 1.926 1.058

Metal 1 (L2a) 2,490,423 1,791,495 1,731,540 1.390 1.438 1.035
Metal 1 (L2b) 1,194,192 1,060,746 1,034,056 1.126 1.155 1.026
Metal 2 (L2a) 1,444,367 1,143,360 1,136,757 1.263 1.271 1.006
Metal 2 (L2b) 947,981 775,561 768,770 1.222 1.233 1.009
Active (L3a) 9,666,584 6,899,025 6,514,057 1.401 1.484 1.059
Active (L3b) 35,945,586 23,209,262 22,118,134 1.549 1.625 1.049

Table 4.2. Compression result with IntraSCD and IntraSCD+Ext algorithm. The file sizes
are in bytes.

shows the inter-cell sub-cell compressed file sizes in bytes encoded in OASIS format for

post-OPC data set 1. As shown, the average compression ratio is around 2 for both layers.

4.2 IntraSCD Results

For the second and third data sets, the IntraSCD algorithm works well, while the In-

terSCD algorithm results in little gain. The fifth column of Table 4.2 shows the results of

applying the IntraSCD algorithm on the second and third layout data sets. The compres-

sion ratios range from 1.80 to 2.46 for the Poly layer, and 1.40 to 1.55 for the Active layer.

However, the compression ratios for the Metal layers are rather low i.e. in the range of 1.12

to 1.39. This can be explained by noting that the Metal layers contain many polygons with

only a few instances.

Comparing the fifth and sixth columns of Table 4.2, we see that for all the layouts

IntraSCD+Ext achieves higher compression ratio than translation only IntraSCD. From

the 7th column of Table 4.2, the compressed Poly and Active layouts using the IntraSCD

algorithm are 5 to 10 percent larger than the ones with IntraSCD+Ext. The corresponding
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gains for Metal 1 and Metal 2 are on average 3 and 1 percent respectively. The rotation and

reflection gains for Metal 2 are smaller than those of Poly and Active because Metal 2 is

created using routing software, and as such, has fewer geometries that are invariant under

rotation and reflection; on the other hand, Poly and Active layers are typically created by

placing reflected, rotated versions of standard cells.

4.3 IntraSCD Applied on Flattened Layout

It is also possible to run IntraSCD algorithm to reconstruct the hierarchy for flattened

layouts. We carry out this process for pre-OPC data since we can compare the reconstructed

hierarchy with the original hierarchy to determine the performance of the IntraSCD algo-

rithm.

There are two ways to flatten a layout; one is to push every geometry from the hierar-

chical layout to the top level of the hierarchy which we call flattened layout (FL). Another

is to push the geometry to the top level and perform a Boolean “OR” operation to remove

any overlaps between geometries; we refer to this as flattened layout with “OR” (FLWOR).

For the purpose of this discussion, we define FL data as not having gone through a “OR”

operation. Industry standard CAD tools offer both alternatives as a way to flatten layout

data. In general, we would expect the FLWOR not only to result in smaller file size than

FL, but also to have fewer repeating geometries than FL as the “OR” operation removes

some of the repetitions in the flattened layout.

Table 4.3 shows file sizes of the pre-OPC hierarchical layout, FLWOR, and the IntraSCD

compressed FLWOR in bytes. As shown in the Table, IntraSCD manages to do a reasonable

job of reconstructing the hierarchy by significantly reducing the size of the FLWOR even

though the “OR” operation destroys repetitions. However, as it is to be expected, IntraSCD

cannot result in file sizes that are as small as the original hierarchical ones. Specifically,

the compressed file sizes using IntraSCD are 1.31 and 2.11 times larger than the size of the

pre-OPC hierarchical layout for the Poly and Active layers of layout 3b respectively, and
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Pre-OPC FLWOR Ratio of IntraSCD Ratio of FLWOR Ratio of IntraSCD
Hier. Size Size FLWOR to Hier. Size to IntraSCD to Hier.

Poly (L3a) 244,479 1,745,624 7.140 542,736 3.216 2.220
Poly (L3b) 897,578 4,085,736 4.552 1,176,777 3.472 1.311

Active (L3a) 267,104 1,345,587 5.038 859,160 1.565 3.217
Active (L3b) 1,255,861 3,702,918 2.949 2,654,989 1.395 2.114

Table 4.3. Comparison of pre-OPC hierarchical layouts with compressed FLWOR layouts
using IntraSCD algorithm. File sizes are in bytes.

(a) (b) (c)

Figure 4.1. (a) 6 geometries with 4 overlapping ones; (b) group of 3 geometries that repeat
twice in (a); (c)result of performing Boolean “OR” on (a).

2.22 and 3.22 times larger for the Poly and Active layers of layout 3a respectively. The

IntraSCD algorithm performs worse on the Active than Poly layers of both layouts 3a, and

3b. The main reason is that the Active layer consists of many overlapping geometries, and

once a Boolean “OR” operation is performed, many groups of repeating geometries are

removed.

To show the effects of the “OR” operation on repeating geometries, consider Figure 4.1.

Figure 4.1(a) shows an example of two overlapping groups of geometries without the “OR”

operation, and Figure 4.1(b) shows the group of repeating geometries consisting of 3 poly-

gons within Figure 4.1(a). However, performing a Boolean “OR” operation on Figure 4.1(a)

as shown in Figure 4.1(c), does not results in a group of 3 geometries that repeats twice;

rather it results in one geometry that repeats only twice.
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Pre-OPC FL Ratio of IntraSCD Ratio of Ratio of Ratio of
Hier. Size FL to Size FL to IntraSCD IntraSCD FLWOR
Size Hier. IntraSCD to Hier. to IntraSCD FL

Poly (L3a) 244,479 2,449,539 10.019 525,530 4.651 2.150 1.033
Poly (L3b) 897,578 4,085,736 4.552 1,176,777 3.472 1.311 1.000

Active (L3a) 267,104 2,401,676 8.992 463,675 5.181 1.736 1.852
Active (L3b) 1,255,861 4,131,499 3.290 1,862,786 2.217 1.483 1.425

Table 4.4. Comparison of pre-OPC hierarchical layouts with compressed flattened without
“OR” layouts using IntraSCD algorithm. File sizes are in bytes.

Table 4.4 shows the file sizes of pre-OPC hierarchical layouts, FL, and the compressed

FL layouts in bytes. Comparing the fifth columns of Tables 4.3 and 4.4, we see that applying

IntraSCD to FL results in smaller file sizes than to FLWOR. This implies that compressed

IntraSCD file sizes are closer to the original hierarchical file sizes if IntraSCD is applied

to FL, rather than to FLWOR. This is also shown in the last column of Table 4.4 which

shows that, the ratio of IntraSCD FLWOR to hierarchical is larger than the IntraSCD FL to

hierarchical. The gain is more pronounced for the Active than the Poly layers as Active has

many more overlapping geometries. The small 3.3% improvement in compression ratio of the

Poly layer of layout 3a and no improvement of the Poly layer of layout 3b can be attributed

to the fact that layout 3a contains memory cells with overlapping Poly geometries, while

the Poly layer of layout 3b has no overlapping geometries. As explained earlier, performing

a Boolean “OR” removes some of the repeating groups of geometries that the IntraSCD

algorithm exploits to reduce the file size.

4.4 IntraSCD+Ext on Flattened Layout

We apply the IntraSCD+Ext on the pre-OPC FL as shown in Table 4.5. By considering

groups of geometries that are the same under translation, rotation, and reflection, the

file size can be further reduced as compared to translation only. As seen in column 5 of

Table 4.5, for FL data, IntraSCD+Ext decreases the file size by 6 to 37 percent as compared

to IntraSCD. In addition, the gain over IntraSCD is higher for layout 3a than layout 3b. This

is in part due to the fact that layout 3a contains memory, and memory blocks are assembled

by placing translated, rotated and reflected memory bit-cells together. As such, there are
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Ratio of Ratio of Ratio of Ratio of IntraSCD
FL to Hier. IntraSCD+Ext to FL IntraSCD+Ext to Hier to IntraSCD+Ext

POLY (L3a) 10.019 0.156 1.565 1.374
POLY (L3b) 4.552 0.259 1.179 1.112

ACTIVE (L3a) 8.992 0.165 1.486 1.168
ACTIVE (L3b) 3.290 0.423 1.392 1.065

Table 4.5. Comparison of IntraSCD+Ext to IntraSCD on the pre-OPC FL data.

Layout IntraSCD CR EHier + EHier+IntraSCD Speed
IntraSCD CR Run Time in Minutes Increase

Poly (L3a) 1.8731 1.7860 7.5 1.35
Poly (L3b) 1.8204 1.7787 8.5 6.08

Active (L3a) 1.4012 1.3745 8.5 5.89
Active (L3b) 1.5488 1.4674 12 4.89

Table 4.6. Compression ratio and run time of IntraSCD+EHier compared to IntraSCD.

many more groups of geometries that are invariant under rotation, and reflection in layout

3a than in layout 3b. Overall, both IntraSCD and IntraSCD+Ext perform better on layout

3b than 3a. Layout 3a contains memory blocks that are very compact and hierarchical,

and our algorithm is unable to rediscover all the repetitions that are present in the original,

compact, hierarchical layout data.

4.5 Exploiting pre-OPC Hierarchy Results

Table 4.6 compares the compression ratio and run time of IntraSCD and In-

traSCD+EHier described in Section 3.4. As seen in the fifth column of Table 4.6, exploiting

pre-OPC hierarchy can reduce the run time by a factor of 1.35 to 6.08 with small or no

loss in compression efficiency as compared to the IntraSCD algorithm. The longest runtime

for IntraSCD among all the layouts is 58 minutes for the post-OPC Active layer of layout

3b. Exploiting the pre-OPC hierarchy reduces the runtime by a factor of 5. Comparing

the second and third columns of Table 4.6, in the worst case we observe less than a 5.5%

decrease in compression ratio.
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Chapter 5

Conclusion and Future Works

We have presented a class of lossless compression algorithms for post OPC IC layout

data. In addition to being lossless, the compressed layout data remains fully format com-

pliant, which means that the compressed data can be read by industry standard CAD

viewing/editing tools without the need for a decoder. Our proposed algorithms find redun-

dancies in terms of repeating geometries within a cell and between cells. We have shown

that our approach achieves reasonable compression ratio on the Poly and Active layers.

Furthermore, we have developed a method to exploit the pre-OPC hierarchy information

in order to speed up the process of finding common groups of geometries within a cell. In

doing so, we have demonstrated an average of 5 times increase in speed while suffering a

small or no loss in compression efficiency.

In the future, we plan to run our algorithms on more extensive sets of data. We also

need to gain a better understanding of why the performance on the Metal layers is not as

high as the Poly and Active layers, and determine techniques to improve the compression

ratio for the Metal layers. Future work also involves extension of the InterSCD algorithm

to rotations and reflections.
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Chapter 6

Appendix

In this appendix, we show that the IntraSCD problem is NP-hard by reducing the known

NP hard 1-dimensional largest common point set problem (LCP) to the IntraSCD problem.

Given a collection of point sets SS = {S1, S2, ..., Sn}, with each point set containing

points on the real number line, construct a cell , Css, containing |S1|+ |S2|... + |Sn| geome-

tries.

Define:

distance(Si) = max(Si)−min(Si) Sdmax = arg max
Sj

{distance(Sj)}.

dmin = min
Sj

{distance(Sj)}

For each point, Pji, in the point set Si, define a corresponding square in Css, with

bottom left coordinate of the square at (L(pji), 0), where L(·) is a function that maps Pji

to some value in ℜ, and set dist to dmin. To make the notation simpler, each square in Css

is considered as a 1-dimensional point with value L(pji), and Css as a 1-dimensional point

set.

A new point set Css is created by initially setting it to Sdmax. Then each point set from

SS is added one at a time to Css. Let

D = distance(Css) P = max(Css) L(Pji) = Pji + P + D + 1 + distance(Si).
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For every point Pji ∈ Si, a new point, L(Pji), is created in Css. Once all of the points

from Si have been added to Css, D and P are recomputed, and another point set Si+1 is

added to Css. This is repeated until all of the point sets have been added. At the end of the

process, there is a new point set Css =
{

P ss
1,1, P

ss
2,1, ..., P

ss
m,2, P

ss
m+1,2, ..., P

ss
n,n

}

, where P ss
i,j is

the ith point in Css that is mapped from the point set Sj . Clearly this construction process

can be done in polynomial time. The construction of Css guarantees any solution to the

intraSCD problem can not come from points that are mapped from two different point sets

Si, Sj , i.e, T (P ss
i,m), T (P ss

j,n) /∈ Css
sub, because the distance between two points P ss

i,m, P ss
j,n is

greater than dist.

If SSsub is a solution to the LCP problem and SSsub contains K points, then it is also

a solution to the intraSCD problem. By construction, a point set that repeats n times in

Css can not contain points mapped from two different point sets Si and Sj , and therefore

can not have point set with more than K points that repeats n times. If there exists such

a set, then SSsub would not have been a solution to the LCP problem. Suppose Css
sub is a

solution to the intraSCD problem with Css
sub having K points. Since Css

sub occurs n times in

Css, and Css
sub can not contain points mapped from two different point sets in SSsub, there

must exist some mapping that takes Css
sub to each of point sets, Si, in SS.

For example, suppose we have 3 point sets,

S1 = {2, 6, 9, 12} S2 = {3, 5, 7} S3 = {12, 13, 16}.

Then Css = {21, 61, 91, 121, 302, 322, 342, 753, 763, 793}, where the subscript denotes the

point set from the point came, and dist = 4. Notice any subsets of Css which are mapped

from two different point sets have a distance greater than 4. In this example, {2, 6}, is a

solution to the LCP and the intraSCD problem.
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