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A New Class of B/W Halftoning Algorithms 
Avideh Zakhor, Member, IEEEE, Steve Lin, and Farokh Eskafi 

Abstruct- We present a new class of dithering algorithms 
for black and white (b/w) images. The basic idea behind our 
technique is to divide the image into small blocks and minimize 
the distortion between the original continuous-tone image and 
its low-pass-filtered halftone. This corresponds to a quadratic 
programming problem with linear constraints which is solved 
via standard optimization techniques. Examples of b/w halftone 
images using our technique are compared to halftones obtained 
via existing dithering algorithms. 

I. INTRODUCTION 

IGITAL halftoning schemes are important to rendition of D continuous-tone images on binary output devices such as 
displays, workstations, and laser printers. While the pixels in a 
continuous-tone image take on a continuum of gray levels all 
the way from black to white, those of binary images are either 
black or white. If the binary pixels are spaced closely enough, 
the low-pass filtering of the human visual system results in an 
illusion of a continuous-tone image. Thus, digital halftoning 
is a prime example of multidimensional signal representation 
in which the amplitude resolution of the signal is traded off 
with its spatial resolution. Other examples of such tradeoffs 
are shown in [l], [2]. 

Existing digital halftoning algorithms include globally fixed 
level thresholding, locally adaptive thresholding, orthographic 
tone scale creation, clustered or dispersed ordered dithering, 
white noise dithering, and error diffusion [4], [5]. The metrics 
used to compare these algorithms are low and high frequency 
rendition, processing artifacts, and processing complexity. 
Ordered dither, which is among the most popular of the above 
halftoning techniques, consists of thresholding samples of the 
continuous-tone image with a periodic screen, or dither matrix. 
The optimization of dither matrices has been studied by a 
number of authors [5]-[7]. The goal in such optimizations 
is to choose the number and order of the thresholds in the 
dither matrix in such a way that the resulting dot profile for 
DC inputs minimizes the amount of distortion energy falling 
into the viewer’s passband. To this end, the low-order Fourier 
coefficients due to thresholding DC inputs are minimized. A 
major drawback of this technique, for square screen functions 
on a rectangularly sampled lattice, is that the fundamental 
spectral components shift back and forth among the low- 
order horizontal and vertical coefficients [6]. Specifically, the 
lowest-order coefficients alternate between zero and nonzero 
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values for adjacent gray level values, resulting in undesirable 
contour artifacts. Rao et al. propose a way of overcoming this 
problem by changing the orientation and periodicity of the 
screen function and the sampling lattice [6], [7]. 

In this paper, we develop another class of digital halfton- 
ing algorithms based on binary optimization techniques. Our 
approach is similar to that of [9], [8] in that it is a least- 
squares model based technique. Its main difference from [8] 
and [9] however is that it divides a large optimization problem 
into a series of smaller ones. The outline of the paper is 
as follows: Section I1 includes our basic algorithm for b/w 
halftoning based on space domain optimization. Examples of 
this algorithm are included in Section 11-B. A variation of 
our basic algorithm known as the “neighboring” algorithm is 
included in Section 11-C. Section I11 includes an algorithm 
based on frequency domain optimization. Section IV includes 
comparison with existing halftoning techniques. Section V 
includes a brief discussion of computational complexity, and 
finally Section VI includes conclusions. 

11. SPACE DOMAIN OPTIMIZATION 

We describe our basic algorithm in Section 11-A, present 
examples of halftone images resulting from our algorithm in 
Section 11-B, and describe the neighboring algorithm in Section 
11-c. 

A. The Algorithm 

The most straightforward formulation of the digital halfton- 
ing problem can be stated in the following way: Find a binary 
image such that the distortion between the continuous-tone 
picture and its perceived bilevel image is minimized [2]. Since 
the human eye can be modeled as a low-pass filter [lo], an 
acceptable distortion function to minimize is the mean squared 
error (MSE) between the continuous-tone image and the low- 
pass version of its halftone. Specifically, if c(z,y) denotes 
a continuous-tone, continuous-space image and f (2, y) is a 
bilevel continuous-space signal, and h(z ,  y) is the low-pass 
filter model for the human visual characteristics, then the above 
mentioned MSE can be expressed as 

M S E  = ID[f * h - cI2dzdy ( 1) 

where D denotes the domain of interest, and * denotes 
convolution. The bilevel continuous space signal f (2, y) is 
assumed to be piecewise constant and is given by the following 
expression: 

M-1 M-1 

f (z, y) = b(n1, nz)rect(z  - 7 2 1 4  Y - n2A) ( 2 )  
n1=0nz=O 
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where M x M is the number of the pixels of the halftone 
signal, A denotes the pixel width, b(n1, n2) denotes the binary 
variable corresponding to the (121, n2)th halftone pixel, and the 
function rect(x, y) is a rectangular pulse defined by 

The above optimization problem corresponds to a quadratic 
programming one with M 2  variables, and in principle can 
be solved via a variety of binary optimization techniques. 
However, for typical images used in practice, the number of 
variables becomes too large for the computations to remain 
tractable [2 ] .  On the other hand, since h ( z 1  y) corresponds to 
the impulse response of a low-pass filter with a finite region 
of support, we can divide the problem into a large number 
of smaller-sized problems. This is because the low-pass- 
filtered version of f at a particular location (XI, y/) primarily 
depends on values of f in the immediate neighborhood of 
( 5 1 ,  yl). Specifically, if h is a low-pass filter with bandwidth 
of W cycles per centimeter, then its impulse response will be 
approximately 2/W centimeters wide. Therefore minimization 
of MSE shown in (1) over a small area depends on values 
of c and f at locations which are at most 2/W centimeters 
away from that area. Thus, breaking up the continuous-tone 
image into small blocks and solving the optimum for each 
block based on its immediate neighborhood will result in near 
optimal halftone images. 

We further assume that in optimizing the N2 binary pixels 
of an N x N halftone block, the contributions of the pixels 
surrounding the N x N block can be discarded altogether. 
This is clearly an approximation and we will remove it later 
in Section 11-C. Specifically, in Section 11-C, we introduce a 
variation of our algorithm, called the “neighboring” technique 
which takes the neighboring pixels of an N x N block into 
account while optimizing the N2 binary pixel variables inside 
the block. 

Based on the above discussion, we divide the continuous- 
tone, continuous-space image into small areas of size N A  x 
N A  and optimize the N x N halftone pixels of the block 
centered at location (20, yo), as shown in Fig. 1, by minimizing 

x o + N A / 2  y o + N A / 2  

MSE(xo,yo) 1 1 [ f N  *h-cI2dxdy (4) 
x o - N A / 2  y o - N A l 2  

where f N ( X ,  y) is defined to be 

N - 1  N - I  

f N ( x , Y )  = b(nl,n2)rect(x-nlA,y-n2A) ( 5 )  
n,=onz=o 

The MSE criterion of (4) can be rewritten as [3] 

MSE(X0,YO) 
x o + N A / 2  yo+N&/:!  

/ =/ [( f N  * h)2  - 2 C (  f N  * h)  + c2]dzdy 
x o - N A l 2  y o - N A / S  

(6) 

Defining g,(z, y) to be the response of the optical system to 
the rectangular signal rect(x, y) of (3), the convolution f N  * h 

fA+ 

Fig. 1. Pictorial representation of N 2  pixels centered around (ao, yo) in 
an area of N A  x NA. 

can be written as 

where 

gT(x -iA, y -jA)g, (x -  l a ,  y -mA)dxdy 
D(xo ,YO) 

(9) 
s Gijlm = 

and D(zo,yo) is an area of size N A  x N A  centered around 
(xo ,y /~ )  as shown in Fig. 1. 

Optimization of MSE(,, ,yo) is a quadratic programming 
(QP) problem with N2 variables and, as such, can be solved 
via a number of binary optimization techniques such as brute 
force exhaustive search, or the well known branch-and-bound 
(BB) algorithm. The particular choice of the algorithm is 
highly dependent on the size of the optimization problem. 



ZAKHOR er al.: B/W HALFTONING ALGORITHMS 5111 

Fig. 2. Original 512 x 512 continuous-tone Lena image (a) 

B. Experimental Results 

We have found numerically that for small values of N ,  the 
best choice of optimization algorithm is exhaustive search, 
while for large values, the branch-and-bound algorithm is more 
computation efficient. In using the BB algorithm, we have 
the option of directly applying it to the QP problem at hand, 
or converting it to an equivalent linear programming (LP) 
problem with more unknown variables and linear constraints. 
In our specific problem, it can be shown that the QP problem 
with N variables can be converted into a LP problem with 

variables and N 2 ( N 2  - 1) linear constraints [ l l ] ,  

To keep the computation tractable, we have chosen N = 4, 
together with exhaustive search algorithm for all the experi- 
mental results in this paper. In doing so, we have found that 
for N = 4, the exhaustive search results in faster computation 
speed as compared to the branch-and-bound algorithm. The 
particular continuous-tone image we have chosen for our ex- 
periments is the 512 x 512 Lena shown in Fig. 2. The halftone 

1121. 

,L\ 
(U) version of Lena using the low-pass triangular filter of the form 

Fig. 3. Space domain optimization using the triangular filter of (11) with 
H t r i ( W z , W y )  = &JJz)fi(Wy) ( 1 4  (a) A= 1. (b) A = 1.1. 

where 

with A = 1 and WO = 15 cycles per centimeter is 
shown in Fig. 3(a). Note that w,wz,  and wy in (12) and 
(13) are all in units of cycle per centimeter, and as a 
result the bandwidth of H(w, ,w~)  in the two dimensional 
frequency domain is 30 cycles per centimeter in both x and 
y directions. Assuming viewing distance of one meter, this is 
in approximate agreement with the bandwidth of the human 
eye’s modulation transfer function (MTF) as a function of 
angular frequency in units of cycles per degree [lo], [13]. 
The images in this paper were designed for viewing distance 
of approximately one meter and resolution of 150 dots per 

inch. The particular printer we use is Apple laser writer with 
capability of printing up to 300 dotsfinch. 

As seen in Fig. 3(a), there are large white areas in the 
forehead, hat, and shoulder indicating that the DC value of 
the original continuous-tone image has not been preserved. 
Inserting (13) into (4), it might seem that minimizing the 
MSE(,, ,yo) in (4) results in matching the DC values of f~ * h 
to the DC value of the original continuous space signal c ( x ,  y) .  
In fact, this intuition is only approximately correct because in 
general minimizing s e2 ( x ) d x  does not necessarily result in 
forcing the DC value of e(.) i.e., s e ( x ) d x  to be zero. Since 
our optimization problem involves minimizing the integral of 
( f ~  * h - c ) ~  rather than the integral of ( f ~  * h - c) ,  we are not 
explicitly forcing the DC value of f~ * h to match that of c. 
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scale have no black dots. 
While minimizing MSE(,,,y,) in (4) does not assure DC 

preservation, changing A in (13) will affect the brightness 
of the final halftone image. Inspection of (4) indicates that 
increasing A will lower f N ,  and b ( n 1 , n z )  and therefore will 
make the image darker. Thus, to remove the white areas in 
the shoulder and forehead, we would have to increase A. As 
an example setting A = 1.1 in (13) results in the halftone 
image shown in Fig. 3(b). As seen, the white shoulder areas 
in Fig. 3(a) have disappeared in Fig. 3(b). The DC gray bar 
of the filter in (13) with A = 1.1 is shown in Fig. 4(b). As 
we expect, comparing the gray bar for A = 1.1 with that of 
A = 1, we find the former to be darker than the latter. 

An alternative way to ensure that the DC value in each 
4 x 4 block is preserved is to enforce it in the optimization 
processes as a constraint. This has the added advantage of 
speeding up the optimization process since it reduces the size 
of the search space. An example of adding DC constraint to 
the image of Fig. 3(b) is shown in Fig. 5. As seen, imposing 
the DC constraint reduces the contouring artifact in Fig. 3(b). 

While the frequency response in (12) was primarily chosen 
for its simplicity and analytical tractability, we have found 
experimentally that it performs just as well as other filters that 
are known to model the characteristics of the human eye [lo]. 
Optimal choice of the filter used in the optimization process 
remains an interesting topic for future work. 

C. The Neighboring Algorithm 
As it was mentioned earlier, one way to justify the breakup 

of the optimization problem into a large number of smaller 
N x N optimization problems is to assume that the contribution 
of the pixels surrounding the N x N block can be discarded 
altogether. Clearly as N becomes large, the approximation to 
the large optimization problem becomes more valid. Of course, 
the major drawback of choosing a large value for N is that 
the size of the optimization problem becomes so large that it 
might be intractable. 

Fig. 5. Space domain optimization using the triangular filter of (11) and (12) 
with DC constraints for A = 1.1. 

One way to circumvent the computational complexity of 
choosing a large value of N is to take into account the 
effect of the surrounding region of an N x N block while 
optimizing its N 2  binary halftone variables. This way the 
optimization is carried out over a larger area than N A  x N A  
at the same time as keeping the number of variables to N 2 .  
We will refer to this variation of our basic algorithm as the 
“neighboring” algorithm. The neighboring algorithm uses the 
already halftoned neighboring pixels in optimizing the current 
N x N block. Thus, if the optimization is carried out from 
left to right and top to bottom, then optimization of a typical 
N x N block, needs the halftone pattern of the block to its 
left, the block above it, and the block above and to the left of 
it. This way, the number of binary variables is still N 2 ,  but the 
domain of interest is four times larger as before. Specifically, 
the quantity to be minimized is of the form 

z o + N A / 2  yo+NA/2 

MSE(,,,,,) = J J [ f 3 N  * h - cI2dxdy 
~ o - 3 N A / 2  y , -3NA/2  

(14) 
where f 3 N ( X , y )  is defined to be 

N - 1  N - 1  

n1=0 n2=0 
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Fig. 6. Space domain optimization using the “neighboring” technique and the filter of (11) and (12) with A = 1 (a) square 
optimization blocks and (b) rhombus optimization blocks. 

and Rijl is defined as - 1  - 1  

+ b k n o w n ( n l , % )  
n l = - N  n z = - N  

. rect(z - n 1 A ,  y - n2A). (15) R;jf = 1 2 g r ( z  - iA,  Y -jA)gfized(z, Y ) ~ X ~ Y  (19) 
D’(Z0,YO) 

In the above equation, b k n o w n ( n 1 ,  n2) denotes the known 

and D/(zo,yo) is an area of size 2 N A  x 2 N A  as defined 
by the integration limits of (14). Note that the terms Q and 

values of the halftone patterns, above, left, and above/left of 
the block under consideration. We will refer to optimization 
Of (4) as and that Of (14) as neighboring Optimization’ Q/ in the expression for MSE~,o,yo) are simply constants 

and independent of b, and therefore they do not need to be to the approach in Section ll-A, we can write the 
convolution of f 3 N  with h as computed for the actual optimization process. 
( f 3 N  * h)(zi 

N - 1  N-1 

=E ~bun~nown(nl,nZ)gr(z-nlAl y-n2A)+gf ized(z ,  y) 
n1 =O n z = O  

(16) 

An example of the neighboring optimization algorithm is 
shown in Fig. 6(a). The filter used in Fig. 6(a) is the triangular 
filter with A = 1. Comparing Fig. 6(a) to the images obtained 
using our basic algorithm in Fig. 3, we conclude that the 
neighboring algorithm results in less contouring artifact that 

where gfized(x, y) denotes the contribution due to the known 
binary pixels bknown to the convolution f 3 ~  * h. Combining 
(16) and (14), we get 

N - 1  N-1 N - 1  N-1 

~ s ~ ( ~ o , v o )  = c Gijlmb(4jM4m) 
i=o j = o  1=0 m=O 

N-1 N-1 

+ R i j b ( i l j )  + Q+ 
i=o j=o  

N - 1  N - 1  

+Qf+ Rij lb( i , j )  
i=o j x o  

(17) 
where Gijlml Rij and Q are defined in (9), (lo), and (11) of 
Section 11-A, except that the integration region is now changed 
from D ( Z O , ~ / O )  to Df(z0,yo). &I is defined as 

the basic algorithm. To improve the cheesecloth appearance 
of Fig 6(a), we can rotate the optimization blocks of the 
neighboring algorithm by 45 degrees so that each block is 
a rhombus rather than square. The motivation behind doing 
so is to make the periodic artifacts appear at 45 degrees, 
and therefore less noticeable to the human eye. As seen, the 
resulting image, shown in Fig. 6(b), exhibits less horizontal 
and vertical artifacts than Fig. 6(a). 

111. FREQUENCY DOMAIN OPTIMIZATION 

In this section, we develop another variation of the halfton- 
ing algorithm of the previous section. Specifically, we use 
a frequency, rather than space domain distortion measure to 
arrive at the binary optimum solution. In Section 111-A we 
describe our proposed algorithm, and in Section 111-B we 
show examples of halftone images obtained via the proposed 
algorithm. 
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A. The Algorithm 

A distortion measure which is both tractable from an analyt- 
ical point of view and is in reasonable agreement with human 
visual characteristics is the frequency weighted squared error 
(FWSE) criterion [2]. If C ( k 1 , k z )  and B(k1,ka) denote the 
discrete Fourier transform (DFT) of a continuous-tone image 
and its halftone version, then the frequency weighted MSE 
between the two can be written as 

F W S E  = l H ( h ,  ~2)I21C(~1, k2)  - B(kl, b)l2 (20) 
ki $2 

where H ( k 1 ,  k2) is the weighting function obtained from 
psychophysical experiments. While the above criterion is 
closely related to the one in (l), its main advantage lies in its 
superior image quality, and relative ease of implementation. 
For instance, the frequency domain optimization does not 
require numerical integrations of the form in (9). Therefore, 
unlike the space domain optimization, the function H (51, k2) 

need not be separable, and can be chosen to be circularly 
symmetric without a tremendous increase in the computation 
time. 

It can be shown that if the weighting function in (20) 
is identically one, then optimization of (20) corresponds to 
fixed binary thresholding. The particular weighting function, 
H(k1,  k2) we have chosen corresponds to the first-order low- 
contrast MTF obtained from psychophysical experiments [ 131: { ~:(0.192 + 0.114.fk1,k2) 
H ( k l ,  k 2 )  = .exp(-(0.114.f~,,~2)1.’) if fkl,k2 > f m a z  

fkl ,k2 is the radial spatial frequency in cyclesldegree and f m a I  

is the frequency at which the exponential peaks. To implement 
(21) it is necessary to express radial frequencies in terms of 
the discrete horizontal and vertical frequencies of the discrete 
Fourier transform. 

If A denotes the dot pitch of a sampled image and Q 
the number of horizontal or vertical frequencies, then the 
horizontal and vertical discrete frequencies are given by the 
following relations [13]: 

otherwise. 
(21) 

These are converted to radial frequencies and scaled for a 
particular viewing distance, dis, into cyclesldegree. 

Jm. (23) 7r 
fki,kz = 

180 arcsin (h) 
Finally, to account for the anisotropy of the human visual 
system, the frequencies in (23) are normalized [13]. 

where S(dkl,k2) is given below. 

with w as a symmetry constant and 

Equations (20)-(25) can be used to minimize the visually 
perceived distortion between an image and its halftone. 

Having described the choice of weighting function, we now 
focus on the computational aspects of optimization. Similar 
to the previous section, we can reduce the computational 
intensity of the problem by dividing it into a number of 
smaller problems. Specifically, if we divide the continuous- 
tone, continuous-space image into small areas of size N A  x 
N A ,  then optimization of the N x N halftone pixels of the 
block centered at location ( 2 0 ,  yo), as shown in Fig. 1, involves 
minimization of 

P N - 1  

kirk2=0 

. l q m , y O ) @ l ’  k2)  - q z 0 , y 0 ) ( ~ 1 , ~ 2 ) 1 2  

(27) 

where C(zo,yo)(kl,  k2) is the DFT of P N  x P N  samples 
of the continuous-tone signal centered around (20, yo), and 
B(zo,yo)(k~,k2) is the DFT of P N  x P N  samples of the 
bilevel piecewise constant halftone signal, f N ( 2 ,  g), in the 
region [ZO - 2, xo + y] x [yo - y, yo + F]. Thus, each 
of the N 2  binary pixels of the halftone signal are sampled 
at P x P locations. This results in a quadratic programming 
problem with N 2  variables which we solve via exhaustive 
search. We will refer to P as the oversampling ratio, and is 
used to avoid aliasing. 

As well as oversampling, we can also pad each of the 
P N  x P N  samples of the contone and halftone images with 
zeros before taking their DFT. There are two reasons behind 
this. First, padding may be necessary in order for the FWSE 
criterion in (27) to correspond to a linear, rather than circular, 
convolution of the weighting filter h with the difference image 
c - b. Second, and more importantly, without padding, there 
may be too few samples of the MTF function in the frequency 
domain to permit an accurate representation of it. Padding 
increases the number of degrees of freedom in the DFT domain 
to shape the noise spectrum without introducing excessing 
complexity in the optimization. 

N A  

B. Experimental Results 
This section compares the results of the new halftoning 

algorithm with those of existing algorithms. The block size 
N was chosen to be 4. The halftone pictures in this section 
were optimized for a minimum viewing distance, dis, of 0.61 
meters, and dot pitch of 0.0847 millimeters, corresponding to 
300 dots per inch. In order to show the details of the halftone. 
images more clearly, the examples shown in the paper were 
enlarged and printed at 150 dots per inch. Oversampling ratios, 
P = 1 and 2, were used as well as Ox and 1 x zero padding. 

We have found experimentally that 0 x zero padding for both 
P = 1 and P = 2 results in a distinct medium-high frequency 
noise which tends to obscure detail and gives the image an 
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Fig. 7. Frequency domain optimization with P = 1 and 2x zero padding. 

overall “dirty” appearance. Fig. 7 shows the effect of 2x zero 
padding with P = 1. The medium-high frequency noise of 
Ox zero padding has all but disappeared and there is only 
a hint of high-frequency noise that is only just perceivable. 
A slight contouring effect is also visible on the shoulder. We 
have found that increasing the oversampling factor P from one 
to two in the image of Fig. 7 does not affect its appearance 
significantly. 

C. The Neighboring Algorithm 

As alluded to at the end of Section 111-A and confirmed 
in Section 111-B, zero padding has a significant effect on the 
overall appearance of the halftone. But rather than pad each 
sampled block with zeros before taking their DFT, we can 
apply the neighboring algorithm described in Section 11-C, 
namely by using the previously halftoned blocks as padding for 
the current N x N block. To optimize the N x  N halftone pixels 
of the block centered at location (zo,yo), we must minimize 
the following metric: 

2 P N - 1  

F W S E ( z , , y , )  = IH(h, k2)I2 
k l , k z = O  

. l q z o , Y o ) ( h ~  k2)  - q z o , Y o ) ( h >  k2)I2 

(28) 

where C(zo (IC1 , k 2 )  and B(zo ,yo) (IC1 , k2) are the DFT’s of 
2 P N  x 2 P N  samples of the continuous-tone and halftone 
signals in the region [zo - y, 20 + y] x [yo - e 2 , Y O +  

Using the parameters chosen in Section III-&i.e., block 
size 4, viewing distance 0.61 m, and dot pitch 0.0847 mm-we 
find that the resulting halftone exhibits many fewer artifacts. 
In particular, there is little or no evidence of contouring. 
Unfortunately, the resulting halftone also exhibits a series of 
horizontal streaks in the region just above her head. Close 
examination of original image revealed the streaking region to 

3NA T I .  

Fig. 8. Frequency domain optimization with P = 1 and neighboring 
algorithm. 

be mostly uniform, indicating a lack of high frequencies. To 
handle this situation, we adjust the MTF by making it more 
low-pass. This can be done by increasing the viewing distance 
parameter. We found that increasing the viewing distance by 
25% eliminated the streaking, without excessive blurring. The 
resulting halftone is shown in Fig. 8. The quality of the 
halftone image in Fig. 8 is superior to space domain optimiza- 
tion halftones in that it does not suffer from the cheesecloth 
texture typically seen in space domain optimization halftones. 

IV. COMPARISON WITH EXISTING TECHNIQUES 

For comparison purposes, the clustered dot dither, dispersed 
dither, and error diffusion halftoned version of Lena are shown 
in Figs. 9(a), 9(b), and 9(c), respectively. The threshold matrix 
for the clustered dot dither of Fig. 9(a) has 18 levels and is 
given by [14]: 

11 14 
1 2 6  2 7 

18 15 3 1 4 16 
1 0 8  5 9 

13 17 

The threshold matrix for dispersed dither of Fig. 9(b) has 16 
elements and given by [5 ] :  

2 16 3 13 2 
10 6 11 7 10 
4 14 1 15 4 
12 8 9 5 12 
2 16 3 13 2 

Jarvis filter with 12 coefficients was used for the error diffusion 
halftone image of Fig. 9(c) [15]. We have found that with 
our particular printer, Jarvis filter results in minimum printer 
artifacts as compared to Floyd and Stienberg and Stucki’s 
filters [SI. While extensive subjective testing is outside the 
scope of this paper and therefore has not been performed, it 
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(c) 
Fig. 9. (a) Clustered dither halftoning. (b) Dispersed dither halftoning. (c) Error diffusion halftoning using Jarvis filter. 

is the opinion of the authors that the images obtained via our A. Non-Neighboring Space Domain Optimization 
proposed algorithms such as the one shown in Figs. 5, 6, and 
8 have less contouring effects than the dispersed dither image, 
have less periodic artifact and are sharper than clustered dither, 
and have fewer snake like artifacts than the error diffusion 
picture. Among Figs. 5, 6(a), 6(b), and 8, the former two have 
a cheesecloth type horizontal/vertical artifact that the latter 
one is free of. 

We now discuss the computation complexity of the space 
domain optimization algorithm of Section 11. The computation 
cost can be divided into two parts: a) computing the coef- 
ficients Gijlm and Rij for i ,  j ,  I, m = 0, . . . , N - 1 via the 
integrals shown in (9) and (10); b) carrying out the summation 
in (8) for all possible combinations of the unknown binary 
array b ( z , j ) ;  since the array has N 2  unknown binary variables, 
the number of combinations of b ( i , j )  are 2 N 2 .  To begin with, 
since the computation of Gijlm is a one-time cost and signal- 
independent, it can be ignored in the run-time computational V. COMPUTATIONAL COMPLEXITY 

Athough we have not optimized the computational speed of 
to say a few 

complexity'. On the Other hand R i j  are signal-dependent: 

In spite of this, note that computing GiJlm would tremendously simplify Our proposed it is 
words about the arithmetic count of our proposed algorithms. if gr is separable. 
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to compute the double integral in (lo), we exploit the fact 
that the continuous time signal c(x,y) is piecewise constant 
over each pixel; Thus, the double integral can be replaced 
by a summation with N 2  terms, where each term requires 2 
multiplications; this way, the number of multiplications for 
each ( i , j )  is 2N2 and the number of additions is N 2  - 1. 
Since i and j can each range from 0 to N - 1, there are a total 
of N 2  values of ( i , j )  for which Rij needs to be computed. 
Therefore, computing all the values of Rij requires 2N4 adds 
and N 2 ( N 2  - 1) multiplies. 

To compute MSE(,,,,,) as shown in (8) for each 
combination of binary pixels of b, we need N 4  adds for the first 
summation in (8) and N 2  adds for the second summation in 
(8). Since there are 2N2 combinations of b, once Rij and Gi+, 
are known, the number of adds for computing MSE(,,,,,) is 
2N2 ( N 4 +  N 2 ) .  Including the cost for computing Rij, the total 
computational cost per N x  N block is 2N2 ( N 4 + N 2 ) + 2 N 4  M 
2 N Z  N 4  adds and N 2 ( N 2  - 1) M N 4  multiplies. Note that once 
the DC constraint is imposed, the number of combinations 
of binar variables that need to be searched drops from 2 N Z  
to p ! ( N 2 - p ) !  ( N  )! where p is the number of pixels that are pre- 
determined to be white or black based on the DC constraint. 
Under these conditions, for N = 4 and p = 8, the number of 
adds is approximately 3.5 million and the number of multiplies 
is 240. 

B. Neighboring Space Domain Optimization 

A similar argument can be made for the neighboring version 
of the space domain optimization algorithm of Section II- 
C. The computation cost can be divided into two parts: a) 
computing the coefficients Rijf and Rij for i ,  j = 0, . . . , N - 1 
via the integrals shown in (19) and b) carrying out 
the summation in (17) for all possible 2N2 combinations of 
the unknown binary array b u n k n o w n ( i , j ) ;  To compute the 
double integral in (lo), we exploit the fact that the continuous 
time signal c(x,y) is piecewise constant over each pixel; 
Thus, the double integral can be replaced by a summation 
with 4N2 terms, where each term requires 2 multiplications; 
this way, the number of multiplications for each ( i , j )  is 
8 N 2  and the number of additions is 4 N 2  - 1. Since i and 
j can each range from 0 to N - 1, there are a total of 
N 2  values of ( i , j )  for which Rij needs to be computed. 
Therefore, computing all the values of Rij requires 8 N 4  adds 
and 4 N 2 ( N 2  - 1) multiplies, For similar reasons, computing 
N 2  values of R;jt also requires 8 N 4  adds and 4 N 2 ( N 2  - 1) 
multiplies. 

To compute MSE(,,,,,) as shown in equation (17) for 
each combination of binary pixels in bunknown, we need 
N 4  adds for the first summation in (17) and N 2  adds for 
each of the second and third summations in (17). Since 
there are 2 N 2  combinations of bunknown, once Rij, Rijl 

and Gijlm are known, the number of adds for comput- 
ing MSE(,,,,,) is 2 N 2 ( N 4  + 2 N 2 ) .  Including the cost for 
computing Rij, and Rijt, the total computational cost per 
N x N block is 2 N 2 ( N 4  + 2 N 2 )  + 16N4 M 2 N 2 N 4  adds 

’Note that in computing R,, in the neighboring algorithm, the integration 
area in equation (10) should be D/(ro ,  yo) rather than D(z0 ,  yo). 

Y 

and 8 N 2 ( N 2  - 1) M 8N4 mults. Once the DC constraint 
is imposed, the number of combinations of binary variables 
that need to be searched drops from 2 N Z  to p ! ( N Z - p ) !  ( N 2 ) !  where 
p is the number of pixels that are pre-determined to be 
white or black based on the DC constraint. Under these 
conditions, for N = 4, and p = 8 the number of adds is 
approximately 3.7 million and the number of multiplies is 
1920. 

The run time of the neighboring space domain optimization 
halftone image of Fig. 6(a) without imposing DC constraint is 
approximately 6 hours on a DEC 5000 work~tation.~ 

C. Frequency Domain Optimization 

Since the neighboring version of the frequency domain 
optimization results in higher quality halftone images than 
the nonneighboring version, we first discuss the computational 
complexity of the neighboring algorithm. In the frequency 
domain optimization algorithm, we first compute the DC in 
each block in order to determine the number of “on” pixels. 
If for a specific block, there are p pixels on, then the number 
of combinations of the block that need to be considered are 
m. ( N 2 ) !  Based on (28), for the neighboring algorithm with 
P = 1, for each combination of a block, we need to a) compute 
two two-dimensional 2N x 2N FFT’s, one for C(k1 ,k2)  

and one for B ( k 1 , k z )  and b) combine the FFT’s as shown 
in (28) to evaluate the distortion function FWSE(,,,,, 1. 
To calculate the FFT using row-column decomposition of 
an 2N x 2N block requires 2N210g24N2 multiplications 
and 4 N 2  log, 4N2 additions. Once the FFT’s are computed, 
evaluation of the distortion function for P = 1 requires 
an additional 8 N 2  multiplications and 8 N 2  additions. As 
an example, if N = 4 and P = 1 in the neighboring 
algorithm, then we need 512 multiplications and 896 ad- 
ditions for each combination of pixels in a given block. 
Based on the above discussion, if for example p = 8 then 
approximately 7.4 million multiplications and 11.5 million 
additions are required for a given block in the neighboring 
frequency domain algorithm. The run time for the halftone 
picture of Fig.8 on a DEC 5000 workstation is about 12 
hours. 

For the 4 x 4 block non-neighboring algorithm, evaluation of 
the distortion function was optimized by identifying redundant 
and identity multiplications and additions. This resulted in 
only 288 multiplications and 456 additions per FFT and 
evaluation of the distortion function. Therefore, we expect it 
to be approximately twice as fast as the neighboring frequency 
domain optimization algorithm. 

VI. CONCLUSIONS 

We demonstrated the feasibility of applying binary optimiza- 
tion techniques to b/w halftoning. These algorithms minimize 
the distortion between the continuous-tone image and its low- 
pass-filtered halftone either in space or frequency domain. 

3Note that the run time is a different quantity from the CPU time. By run 
time, we mean the total amount of time we had to wait for the algorithm to 
finish provided there is no other computation load on the computer. 
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While the space and frequency domain distortion criteria are 
related, the computational properties of their corresponding 
algorithms are somewhat different. We examined the effect 
of various optimization parameters on the quality of the 
halftoned images. Specifically, we found that imposing DC 
constraint speeds up combinatorial optimization algorithms 
and results in halftone images with equal or higher quality 
than the basic algorithm. We also found that the neighboring 
algorithm reduces the contouring artifact of the basic space 
and frequency domain optimization algorithms. 

Comparing the theoretical and actual computationabwm- 
plexity of the space and freque29 domain optimization, 
we find that the s p a c g h a n i  optimization is considerably 
faster. This e m  be attributed to fewer multiplications required 

-by the space domain optimization. While the computational 
complexity of our proposed techniques is higher than tradi- 
tional schemes such as dispersed dither and error diffusion, 
it seems likely that today’s VLSI technology is capable of 
implementing our algorithm on an integrated circuit. The 
regular structure of the algorithm is particularly helpful in 
such implementations. 

Future research should be directed toward enhancing basic 
distortion model and examination of various optimization 
filters. 

As we mentioned in the introduction, in the last few years 
there has been a number of new results on model based 
halftoning [9], [8]. Specifically Pappas and Neuhoff consider 
the printer model in the halftoning algorithm in [SI, and 
Analoui and Allebach find a near global minimum solution to 
the larger optimization problem iteratively rather than dividing 
it into a number of smaller ones [9]. In doing 20, they 
find that the final solution is highly dependent-on the initial 
binary image used in the i t e r a t k  algorithm; they also develop 
a “look-up”- technique which effectively reduces the CPU 
rime of their global optimization algorithm from about 350 
minutes to about 20 minutes. One interesting direction for 
future research is to see whether the “look-up” approach of 
Analoui and Allebach in [9] can be used directly or indirectly 
in our block-based approach. Anoter possibility is to see 
whether there are intermediate approaches in between global 
optimization technique in [9] and the approach presented in 
this paper. 
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