
following  elegant  result: 

H ( M ,  R )  = H ( M ,  M + 1 - R ) .  

For instance, in  Table 1 of  the above letter’  we have H(6,2) = 
H(6,5) = 1.9729. 
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A Note  on  the Sampling of Zero Crossings of 
Two-Dimensional Signals 
AVIDEH  ZAKHOR AND DAVID IZRAELEVITZ 

Curtis  et a/. applied a theorem  due  to Bezout to  show  that 
almost  all  continuous, periodic, band-limited  two-dimensional sig- 
nals  can be  reconstructed  from at most 4(N7 + N2)’ zero-crossing 
samples where N7 and N2 is the  number o f  Fourier coefficients in 
the signal. In this  letter we prove a new version o f  Bezout’s theo- 
rem  and  apply  i t  to the above problem  to  provide a more  lenient 
sampling  requirement  of  at  most 8N,N2 zero-crossing samples. 

INTRODUCTION 

A considerable  amount  of research in  the  field  of  communica- 
tion  theory has been  devoted to  the  problem  of  reconstruction  of 
signals from  their  zero crossings [I]-[3]. Recently, Curtis et a/. [I] 
applied Bezout’s theorem  to  the  problem  of  reconstructing a real, 
band-limited,  continuous-time  periodic  two-dimensional signal 
h(x,  y)  from a finite  number  of its  zero crossings. Specifically if 
F(nl, n,), the Fourier series coefficients  of  the signal,  have a 
rectangular  region  of  support  given  by 

-Nl 6 Q N, 

- N, 6 n2 6 N, 

then almost  all h ( x ,  y)  can be  uniquely  determined  from at most 
4(N1 + N2), samples of its zero  crossings. We  will  show  that 
because of  the geometry  of  the  problem at most  8N1N2  zero 
crossings are required and in  the process we  develop a tighter 
version  of  an  important  theorem  in algebraic  geometry, Bezout‘s 
theorem. 

A TIGHTER  VERSION OF BEZOUT’S THEOREM 

Bezout’s theorem i s  concerned with  determining  the  number  of 
common zeros of   two bivariate polynomials  and can be stated in  
the  following manner: 

Theorem I [5]: I f   two  bivariate  polynomials o f  degree r and s 
given  by 

r r - i  

f ( x ,  Y )  = C a(i,j)X’Y/ 
i -0 j = O  

s 5 - i  

g(x,  Y )  = b ( i , j ) x ’ y j  

have no common  factor  of degree  greater than zero, then  there 
exists at most rs common zeros. 

i - 0  j - 0  

A band-limited,  continuous-time  periodic signal h ( x ,  y)  with 
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periods TI and T, in  x  and  y  can be represented in terms of a 
polynomial  h’(w,z)  in  the variables w = e’(2?ix/T,) and z = 
e m ~ / ~ 2 )  

h ( x ,  y)  = WN1ZN2h’(W,Z) 

ZN, 2N2 

h ’ ( w , z )  = F(n, - N,,n2 - N,)w”~z”~. (1) 
n,  -0 n2 -0 

Therefore  using Bezout’s theorem, if  h’(w,z) is irreducible,  then 
h’(w,  z )  (or equivalentlyh(x,  y)) can be  uniquely  determined  from 
4(N1 + N,)2 zeros of  h’(w, z )  (or h(x, y)). This is because the 
degree  of  h’(w, z )  i n   wand  z is 2(N1 + N,) and Bezout’s theorem 
deals with  total degree  rather than degree in  each variable. In other 
words, it i s  concerned  with  polynomials  whose  coefficients have 
triangular  support as shown  in Fig. 1. O n  the  other hand, one is 
usually  interested in  images with square or  rectangular support in  
the  Fourier  domain where  many  of  the  coefficients  corresponding 
t o  a triangular  support are  zero as shown  in Fig. 2. 

“7 4 

I 

2 ’  * ‘ 

I . . .  
0- o I 2 3 4 n 2  

Fig. 1. Triangular support of a polynomial of degree 4. 

I 

Fig. 2. Square support of a polynomial of maximum  degree 2 in 
x and  maximum degree 2 in y .  

For the case when  the  polynomials  under  consideration have 
rectangular  support, we are able to  lower the bound on the 
number  of  common  finite zeros from  the  bound set by Bezout’s 
theorem. Specifically, if f  and g are given  by 

N, NY 

f ( x ,   y )  = a( i , j )x ’y j  (2) 
i -0 j = O  

the  upper  bound  on  the number of common  finite zeros set by 
Bezout’s theorem i s  (N, + NY) ( M ,  + M y ) .  Our  objective is t o  
establish a tighter  upper  bound  on  the  number  of  common  finite 
zeros of f and g. 

Before  proceeding,  we  need to review several  results concerning 
the  resultant  of  polynomials  in one or two variables.  The resultant 
Rpq of two polynomials p and q in a  single  variable x 

p ( x )  = a, + a++ a2x2 + . . .  ++xN 
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9 ( ~ )  = 4 + b l x +   4 x 2  + +bMXM 

is defined [6] as the  determinant  of  the ( M  + N )  X ( M  + N )  
matrix 
- - 

dg  d l  . . ' . a, O O . . O  
0 a, d l  . . . a,-1 a, 0 ' . 0 . .  . . .  . .  . . .  . . . .  . . . . .  . 
0 0 .  . a o  . . . . .  a, 
4 b 1 * * '  bm 0 0 . . . .  0 
0 4 b q * . b m - 1 4  0 . O . . O  
. . . . .  . .  . . .  . . . .  . . . . .  . 
O O . . '  

L . 4 .  . . . .  bm - 
A  basic  property  of  resultants is stated in the  following  theorem [6]. 

Theorem 2: When  the  polynomials  p and 9 have numerical 
coefficients,  a necessary and sufficient  condition that they shall 
have a  finite  or  infinite  common  root is that Rpq = 0. 

Consider now  two relatively  prime  bivariate  polynomials f ( x ,  y )  
and g ( x ,  y )  expressed as polynomials in x with coefficients which 
are polynomials i n  y 

f ( X , Y )  - a o ( Y )  + d l ( Y ) X +  a 2 ( y ) x 2  + ... + a N x ( Y ) x N x  (4)  

g ( x , v )  = 4 ( Y )  + b l ( Y ) X +   b 2 ( r ) x 2  + . . .  + b M , ( Y ) X ' "  (5) 

where each ai( y )  is of  degree at most Ny and each 4 ( y )  i s  of 
degree at most M y .  We can define  the  resultant  of f and g with 
respect to  x as the  determinant  of  the (N, + M,) X (N, + M,) 
matrix M( y), with  polynomial entries 

r 

a o ( Y )  d l ( Y >  . 
0 a o ( Y )  a l ( Y >  ' 

0 0 . % ( Y )  

4(Y) b l ( Y )  ' ' b M x ( Y )  

0 4(Y) b l ( Y )  ' ' bMx-3(Y) 

0 0 - 
This  resultant is a  function  of  the  remaining variable y and is 
denoted by R f g (  y). Expanding  the  determinant  of  the above  matrix, 
and  taking  into account  that each ai( y )  and b(  y )  is of  degree at 
most N,,and M y ,  respectively,  we  can  conclude  that Rf8(y) is  a 
polynomial  of degree NxMy + M,  N, or less. Moreover,  It  can be 
shown [SI, that  if f ( x ,  y )  and g(x ,  y )  are relatively  prime then 
Rfg(y) is not  identically zero. Thus the  zero sets of f and g have at 
most NxMy + M,N, values of y in  common. 

As our  argument stands, we have not yet  placed  any  tight limit 
on  the  number  of intersections  of f and g since  for each y there 
could  be a large  number  of xi, such  that for each j 

f ( x j ,  K) g(x, ,  K) = 0. (7)  

In order to  specify  the  number  of xi for each E, we  need  to  study 
the  behavior  of Rfg(  y )  i n  the  vicinity  of each K. 

Theorem 3: If at each yo there are k values of x ,  xi such that 

f ( x i , y o ) = g ( x i , y o ) ,  j = I ; . .  , k  

then  the  resultant  of f andg  with respect to  x, Rfg(  y),  has a zero of 
multiplicity k at yo. 

The above  theorem  implies  that f and g as defined in (4) and ( 5 )  
have at most NxM,,+ M,N intersections.  Furthermore, h(x ,  y )  of 
(1) can now  be  unlquely  Jetermined  using BN N samples of its 
zero  crossings  instead  of  the  usual 4(N1 + N2 j2  8s  obtained via 
Bezout's  theorem. 

In order to  prove  Theorem 3 we  need  to  review some results on 
matrix polynomial theory. 

Theorem 4 (Smith Form [4]-[6]): Let A ( x )  be an n X n poly  
nomial  matrix of rank r .  We can find  unimodular matrices 
{ P(x ) ,   Q(x ) } ,  such that 

5 ( x )  = P ( x ) A ( x ) Q ( x )  

and 
1) B(x )  is diagonal; 
2 )  the first r diagonal elements of B are monic  polynomials 

3 )  the  remamng dragonal elements, if any, are zero; 
4) p i ( x ) d i v i d e s p i + , ( x )   f o r i - 1 , 2 ; . . , r - l .  

Pl(X), P2(">t. . * , P A X ) ;  

The unimodular polynomial  matrices  of  the above theorem are 
defined  to have  nonzero  constant  determinant  independent  of x.  
Therefore, we get 

r 

I ~ ( X ) I  = n P i ( X ) .  (8 )  
i-I 

Also, from part 4) of  Theorem 4 we can  conclude  that  if p , (x )  = 0 
then p k ( x )  = 0 for k > i .  From  the  above  theorem, we can derive 
the  following  theorem: 

Theorem 5: Let A( ; )  be  a  polynomial matrix of  full normal 
rank. If A ( x o )  has  rank deficiency of k then, IA(x) l ,  the  determi- 
nant  of  A(x), has a  zero of  multiplicity k at xo. 

Normal rank in the  above theorem is defined  in [4]. A polynomial 
matrix A ( x )  of  full  normal  rank is one  whose  determinant is not 
identically  zero  for all  values of x .  

Proof: Using  Theorem 4 we  can find B(x), the  Smith  normal 
form  of A(x ) .  Since P(x )  and Q(x )  are unimodular, B(x)  is  of  full 
normal  rank.  Furthermore,  the rank of B ( x )  and A(x )  at  each value 

of x ,  including x,, is equal.  Therefore B(xO) has rank  deficiency of 
k and  from (8) and  part 4) of  Theorem 4 I B ( x ) (  has a zero of 
multiplicity k at x,. Since the  determinant of A(x )  i s  within a 
constant  factor of that of B(x) ,   A(x)  also  has a zero of multiplicity 
k at x,. 

Using  Theorem 5 ,  we can now go on  to  show  Theorem 3. 
Proof of Theorem 3: Suppose that  for yo there are k common 

finite zeros x .  j = 1,2;. ., k between f and g. Then  the  matrix 
M( h) defined'by (6) must have k linearly  independent  null vectors 
given  by 

[ I  xj ./? . . . .NX+MX]T 

for j = 1,2;. ., k .  Although M ( y )  is of  full  normal  rank (since f 
and g have no common factors), M(yo) has rank  deficiency  of k ,  
and its determinant R f  (yo) has a zero  of multiplicity k at yo. This 
completes  the  proof  ofTheorem 3. 

From  Theorem 3 we can  derive  the  central  result  of  this  corre- 
spondence. 

Theorem 6: If two bivariate polynomials of degree N, and M, 
in x and N, and M y  in y given by (2) and (3) have no common 
factor of degree greater than zero,  then there exists at most 
N, My + M, Ny  common  finite zeros. 

Proof: Since the  resultant  of f and g with respect to x is a 
polynomial  of degree NxMy + M,Ny, using  Theorem 3 we can 
associate  each finite  common zero of f and g with  a  root of 
Rfg( y ) .  Since Rfg( y )  has at most NxMy + MxNy roots, the  theo- 
rem i s  woven. 
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CONCLUSION 
We  found  an  upper  bound N,M, + M,N, for the  number of 

common  finite zeros of two relatively  prime  polynomials given  by 
(4) and (5). This  bound is much  tighter  than (N,  + N Y )  ( M ,  + hl , )  
which is obtained via Bezout's theorem. For example, If the  coeffi- 
cients of a polynomial have region  of support of N X N, then  it can 
be uniquely  determined  using 2N2 samples of  its  finite zero 
crasings as opposed to 4N2. 
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On  the Realization  of Two's Complement 
Overflow Limit Cycle  Free  State-Space 
Digital Filters 
VI MAL SINGH 

A frequency-domain  criterion for the  overf/ow  stability  of a class 
of  state-space  digital  filters is presented. The result i s  derived using 
a Lyapunov  technique  and  the associated M K Y  machinery, Some 
consequences o f  the  present  derivation are  discussed. 

I .  INTRODUCTION 

Barnes and Fam [ I ]  presented a "minimum  norm"  criterion for 
the absence of overflow  oscillations  in a class of state-space digital 
filters. Mills,  Mullis,  and Roberts [2] presented a generalized  verslon 
of the criterion  of [I], Specifically, if there exists a positive diagonal 
matrix D such  that D - A'DA is positive  definite,  then  overflow 
oscillations  are avoided. Kawamata  and Higuchi [ 3 ]  have carried 
out a Lyapunov analysis to derive a crlterion  which is analogous to 
the criterion  of [ 2 ] .  More  recently,  Bolton [ 4 ]  has  discussed realiza- 
tion, using  Lyapunov  method,  of a two's  complement  overflow 
h i t  cycle  free  digital  filter structure (of order two). 

The purpose  of  this  letter is to  point  out,  employing a  Lyapunov 
technique  and  the associated M K Y  machinery, a frequency-domain 
Criterion for  the  overflow  stability  of  the  above-referred state-space 
digital filters. Some consequences of  the present derivation are 
discussed i n  Section IV. 

11. FREQUENCY-DOMAIN CRITERION 
The state-variable  filter  under  consideration is of  the  form  [I]-[4] 

where x ( r )  is an  n-vector state, A is the n X n coefficient matrix, 
and f (  y(r)) i s  an  n-vector  nonlinear  function, namely, 

i.r.,  the  n-vector  y(r) stands for  the n-vector Ax(r).  It is assumrd 
that 

det ( z l  - A) # 0, for all JzI >, 1 (3) 

and that 

( A ,  I ) :  completely  controllable; 
( A ,   A ) :  completely  observable (4 

where I is the n X n identity  matrix. 
Assume a nonlinearity  of  the  form 

((0) = 0, I ( (  y , ( r ) ) l  < ly , ( r ) l ,  i =  1 ,2 , , . . , n .  ( 5 )  

The  characteristic  given in  (5) includes,  among others, an important 
arithmetic,  namely,  two's  complement [1]-[4]. 

A criterion  for  the  overflow  stability  of  the above-described filter 
is given  in  the  following theorem, 

Theorem:  (A sufficient  condition for the absence of  overflow 
oscillations.) For the zero solution  of  the  circuit described  by 
(1)-(5) to be  asymptotically stable in  the large, it i s  sufficient that 
there exists a positive diagonal  matrix C such that the following is 
satisfied: 

C + C A ( r / - A ) - ' + [ C A ( r / - A ) - ' ] * Z 0 ,  forall  Iz1=1 

( 6 )  

where " * "  denotes  the  conjugate transpose and " 2 " signifirs that 
the  matrlx is positive  semidefinite. 

1 1 1 .  DERIVATION OF THE STABILITY CRITERION 
Consider  a  quadratic  Lyapunov  function 

v (x ( r ) )  - x'(r)Px(r) ( 7 )  

where P =  P' is positive  definite and T denotes the transpose. 
Application  of (7) and  (la) results in 

h v ( x ( r ) )  = v ( x ( r +  1)) - v ( x ( r ) )  

= f T ( y ( r ) ) P f ( y ( r ) )  - x T ( r ) P x ( r ) .  ( 8 )  

[ f ( y ( r ) )  + y ( r ) l T C [ f ( y ( r ) )  - Y ( f ) I  ( 9 )  

Adding  to  and  subtracting  from (8) the  quantity 

where C is a positive diagonal  matrix,  yields 

A v ( x ( r ) )  = -xT(r ) [P-   A 'CA]x(r )  - f T ( y ( r ) ) [ C -   P ] f ( y ( r )  

+ [ f ( y ( r ) )  + Y ( r ) l W o ~ ( r ) )  - \ , ( r ) I  (10) 

f ( y ( r ) )  = Y(r) - i ( y ( r ) )  (11 1 
where  (Ib) has been  utilized.  With  the  substitutlon 

and  employing  (Ib), (IO) can be expressed as 

Av(x ( r ) )  = -x ' ( r ) [P-  A'PA]x(r) - xT(r)[A'P-  ATC]T(y(r)). 

-? ' (y( r ) ) [PA - CA]x( r )  

- ? ' ( y ( r ) ) [ C -   P I j ( Y ( r ) )  

+ [ f ( y ( r > )  + y ( r ) l ' C [ f ( y ( r ) )  - y ( r ) l .  (12) 

P - A'PA = Q Q ~  (13a) 

PA - CA - RQT (13b) 

c -  P =  R R ~  0 3 c )  

where Q and R are  real n X n matrices. Then (12)  takes the  form 
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