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Edge-Based 3-D Camera Motion Estimation 
with Application to Video Coding 

A. Zakhor, Member, IEEE, and F. Lari 

Abstract-The evolution of an image sequence obtained by a 
real camera from a real scene can be conceptually separated 
into two parts: 1) motion of the camera and 2) motion of the 
objects in a scene. Most existing motion estimation algorithms 
use the block matching algorithm (BMA) to model both the 
camera motion and local motion due to the objects. In doing so, 
successive frames are divided into small blocks and the movement 
of each block is approximately modeled by a translation, thus 
resulting in one motion vector per block. In this paper, we 
propose two classes of algorithms for modeling camera motion 
in video sequences captured by a camera. The first class can 
be applied in situations where there is no camera translation 
and the motion of camera can be adequately modeled by zoom, 
pan, and rotation parameters. The second class is more general 
in that it can be applied to situations where the camera is 
undergoing a translational motion, as well as a rotation and 
zoom and pan. This class uses seven parameters to describe the 
motion of the camera and requires the depth map to be known 
at the receiver. The salient feature of both of our algorithms 
is that the camera motion is estimated using binary matching 
of the edges in successive frames. In doing so, we show that 
unlike local motion estimation, edge matching can be sufficient 
in estimating camera motion parameters. Finally, we compare 
the rate distortion characteristics of our algorithms with that 
of the BMA and show that we can achieve similar performance 
characteristics as BMA, with reduced computational complexity. 

I. INTRODUCTION 

OTION COMPENSATION (MC) plays an important M role in image compression applications such as video 
conferencing, video telephony, medical imaging, and CD- 
ROM storage. The basic idea is to take advantage of temporal 
redundancies between adjacent frames in an image sequence to 
reduce the information transmission rate. This is accomplished 
by estimating the displacement between frames of picture 
elements, which may be either uniformly sized blocks or 
individual pixels. 

Ideally, the apparent motion in most moving sequences 
taken with a real camera can be attributed to either camera 
motion or the movement of the objects in a scene. The 
movement due to the camera is generally referred to as global 
motion, whereas the movement of the objects is called local 
motion. There are a number of advantages in separating these 
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two classes of motion in MC algorithms. First, if there is 
no local movement in the scene and only the camera is 
moving, the dynamics of the resulting video sequence can 
be adequately modeled by only estimating camera motion 
parameters. Second, in more realistic situations where there 
is both local and global motion present in the video sequence, 
a great deal of redundancy between successive frames can 
be removed by estimating the parameters related to camera 
motion. This is because the number of degrees of freedom of 
camera movement is small compared to the complex motion 
of the objects in typical scenes. Specifically, camera motion 
parameters can be effectively used to predict the stationary 
parts of the scene, thus saving the bandwidth needed to 
otherwise transmit motion vectors for them. 

Most existing video coding techniques such as CCITT’s 
Recommendation H.261, also referred to as p x 64, and the 
MPEG standards only use local motion estimation to form 
a prediction of the current frame [l]. Even though global 
motion estimation is not officially part of these two standards, 
several authors have exploited camera motion estimation in the 
context of video sequence coding. For example, Adolph and 
Buschmann [2] propose a coder for television video signals 
at 1.15 Mbps, where global MC is carried out before local 
one. In doing so, they assume the global motion to consist of 
only zoom and pan, and estimate it using a frame-matching 
algorithm. Their experimental results indicate that for the 
given rate of 1.15 Mbps, the quantization step size for coding 
error frames can be reduced by a factor of three if global 
MC is exploited, and that the quality of the coded scenes is 
considerably improved if global MC is applied. 

In addition to [2], Baker [3] has shown that a two-stage 
global/local motion compensation approach improves motion 
prediction and reduces the amount of motion side information. 
Keesman [4], Hoetter [5],  and Wu and Kittler [6] also show 
the advantages of global motion estimation schemes. Hoetter 
models zoom and pan, while Keesman, Wu, and Kittler 
model rotation as well as zoom and pan parameters. The 
techniques used for estimating the global motion parameters 
vary considerably. For instance [4]-[6] use pel recursive 
algorithms, while [2], [3] use luminance block matching. 

From the above survey, it is clear that most of the existing 
global MC techniques used for video compression applications 
only consider zoom, pan, and possibly rotation as global 
motion parameters. Thus, an important parameter that is miss- 
ing from these approaches is camera translation. This is not 
surprising, since there are some intrinsic difficulties involved 
with using camera translation parameters in generating motion 

1057-7149/93$03.00 0 1993 IEEE 



482 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 2, NO. 4, OCTOBER 1993 

compensated frames. As we will see in Section 11, this has 
to do with the fact that unlike other global parameters such 
as zoom, pan, and rotation, translation parameters require the 
depth map of the pixels in a scene before they can be used to 
derive the motion compensated frames. 

In this paper, we will consider a seven parameter camera 
model, including rotation and translation for global motion 
compensation of video sequences. In doing so, we will exploit 
the results on the problem of “structure and motion” recovery 
in the Computer Vision (CV) literature [7]-[lo], and “camera 
calibration” in the photogrammetry [ 111-[ 131. These problems 
appear in diverse applications such as autonomous navigation, 
stereo reconstruction, robot vision, object recognition, scene 
analysis, and cartography [ l l ] ,  [14], [15]. The most basic 
formulation of “structure and motion” problem in CV consists 
of recovering translation and rotation parameters and structure 
of an object in three-dimensional (3-D) space. This problem 
is in fact equivalent to the problem of recovering the rotation 
and camera translation parameters of a camera, and the 3- 
D depth map of a stationary scene from its video sequence. 
Indeed, this is the motivation behind applying results on 
“structure from motion” to global camera parameter estima- 
tion. 

The basic approach to structure from motion in CV liter- 
ature consists of three steps [lo]: extracting feature points, 
establishing correspondence by matching the features, and 
finally computing the structure and motion parameters based 
on the feature matches. Our basic approach to global motion 
estimation in this paper is similar to this. Since the number of 
matched features in our applications is large enough, we need 
not be concerned about uniqueness issues typically considered 
in CV applications [8]. Another inherent advantage of the large 
number of matches is that we can use simple linear algorithms, 
rather than iterative, or more complex nonlinear optimization 
techniques [8]-[lo]. 

The two major steps in most existing global motion estima- 
tion algorithms, including ours are 1) estimating local motion 
vectors and 2) using the motion vectors in linear least-squares 
estimation of global parameters. One of our goals in this 
paper is to demonstrate that edge matching can be successfully 
used in step (a) of most global motion estimation algorithms. 
Specifically, we will show that edges alone are sufficient to 
determine the seven parameters in rotation/translation model 
as well as the parameters in the zoom/pan model. This can 
have important practical consequences since it implies that 
for camera motion estimation, the eight-bit luminance infor- 
mation in video sequences can be collapsed to one-bit edge 
information without loss of performance. 

Edge matching is a subclass of token tracking algorithms 
used formotion estimation. More generally, in token tracking 
schemes, distinctive image features are detected and their 
correspondences tracked from frame to frame in a sequence. 
The features, such as corners, blobs, and straight lines, are 
assumed to arise from distinctive scene features. There are 
a number of motivations behind the use of edges as tokens 
for matching: First, it has been argued that the human visual 
system computes motion by temporal filtering of edge signal 
[16]. Second, it has been suggested that one of the advantages 

of using edges over raw irradiance schemes is that they are 
tied more closely to physical features [17]. 

In spite of these motivations, it has been found that the loca- 
tions of edges by themselves are not sufficient for local motion 
estimation [MI. As a result, a number of other attributes such 
as orientation, strength, and curvature are used in conjunction 
with the location of edges in order to overcome the aperture 
ambiguity problem [19]-[21]. 

In this paper, we will demonstrate that unlike local mo- 
tion estimation, global estimation can be accomplished by 
matching the location of edges in consecutive frames of a 
video sequence. In doing so, we compare the performance 
of our edge-based global motion estimation techniques with 
the well known block matching algorithm (BMA), which is 
extensively used in today’s video compression standards. Note 
that BMA can also be considered a subclass of token tracking 
and matching algorithms. Specifically, the particular token 
which is matched in BMA is the intensity of raw images. 

Compared to intensity matching, the major payoff in us- 
ing edge-matching techniques is the simplicity involved in 
using one-bit edge information rather than eight-bit intensity 
information: this simplicity can potentially have implications 
on both hardware and software implementation of global 
motion-estimation techniques. In addition, since edges are 
more closely tied to physical features in a scene than individual 
pixel intensities, they are likely to be useful in other parts of 
typical video compression systems. Examples of these would 
be edge-based vector quantization, edge-based local MC, local 
MC in conjunction with global MC, segmented video coding, 
model-based coding, etc. [36]. 

To summarize, our goal in this paper is twofold: First, we 
will show that the seven-parameter camera model consisting 
of rotation and translation is applicable and useful in video 
compression applications. Second, we show that unlike local 
motion estimation, edges matching can be used to replace 
intensity-based block matching for global motion estimation. 
The outline of the paper is as follows: In Section 11, we 
describe the global motion models used by our proposed 
algorithms presented in Sections 111-A and 111-B. In Section 
IV, simulations are used to examine the performance of 
our global motion estimation algorithms in the context of 
video compression. Section V compares the computational 
complexity of our algorithms with traditional intensity-based 
BMA algorithms, and Section VI includes conclusion. 

11. GLOBAL MOTION MODELS 

In this section, we describe the specific model parameters for 
our global motion estimation algorithms. In general, camera 
movement can be decomposed into the following categories: 

Change of the camera focal length: zoom. 
Rotation around an axis normal to the camera axis: pan. 
Rotation around the camera axis. 
Translation along the camera axis. 
Translation in the plane normal to the camera axis. 

Each of the above affects the temporal appearance of the 
resulting video sequence in a specific way. In this section, 
we describe the analytic relationship between the above pa- 
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Fig. 1. Projection of the point (z, y, 2 )  in 3-D space onto (S, Y )  in the 
camera image plane. 

rameters and pixel intensities of resulting video sequences of 
stationary scenes. These relationships can be exploited in video 
compression applications to predict future frames based on 
current frames and camera motion parameters. 

As we will see in this section, the first three parame- 
ters-i.e., zoom, pan, and rotation-by themselves are enough 
to determine the apparent intensity change in a video sequence. 
On the other hand, for translation along, or in the plane normal 
to the camera axis, the translation parameters by themselves 
are not sufficient, and the depth map of the scene under 
consideration is also needed to estimate the changes in a video 
sequence. To distinguish between these two cases, we consider 
two classes of models: the first class, discussed in Section II- 
A, includes zoom, pan, and rotation, while the second class, 
discussed in Section 11-B, considers translation and rotation. 

A. Zoom, Pan, and Rotation Model 

A video camera uses central projection to map the 3-D space 
onto the image plane at the focal point [ 2 2 ] .  Using the notation 
in Fig. 1, the object space coordinates ( x ,  y, z )  of a point in 
the 3-D space and the image plane coordinates, ( X ,  Y ) ,  of its 
image are related by the perspective transformation 

We now describe mathematical models for zoom and pan. A 
zoom is achange in the camera focal length. If X I ,  Y1 denote 
the image plane coordinates of a point (2,  y ,  z)before zoom, 
and X?.  Y? the image olane coordinates of the same ooint 

after zoom, it is easily shown thai 

where F1 and F2 are the focal lengths before and after the 
zoom. We define c1 = F2/Fl to be the zoom parameter. A 
pan is a rotation of the camera around an axis parallel to the 
image plane. As shown in [3], if the rotation is small enough, 
the entire frame is displaced uniformly by the same vector: 

(;:) = (;:) + (::) 
where t,, t ,  are the rotation angles around the x and y axes 
respectively. In arriving at the above equations, we implicitly 
assume that the rotation angles t ,  and t ,  are small so that 
cos@,) M =  1, cos(t,) M 1, sin(t,) M t ,  and sin@,) E t ,  
[ 5 ] .  Furthermore, we assume the rotation to be small enough 
so that x1,2tx << z and y1,2ty << z [5]. This implies that 
for a given rotation angle and field of view, the approximation 
becomes increasingly more valid for points with larger depth, 

In addition to rotation around an axis parallel to the image 
plane,we also consider rotation around the camera axis, i.e., 
z axis in Fig. 1. A rotation of t ,  around the camera axis can 
be described by 

z .  

(c:) = ( -s int ,  cost2 cost, si""-> (Xl) E (l, :) (;;) 
(4) 

where the above approximation assumes that the rotation angle 
t ,  is small. 

Combining zoom, pan, and rotation models described above, 
we arrive at the following model [22] :  

(2) = ( ::2 st ) (;;) + (s:) 
where c1, c2, c3 and c4 are given by 

Thus, assuming there is no translation, the four parameters 
ci completely describe all the motion in a video sequence 
of a stationary scene resulting from camera zoom, pan, and 
rotation. 

B. Rotation and Translation Model 

In this section, we will consider a seven-parameter model 
consisting of camera rotation and translation for global motion 
estimation. Before dealing with camera motion, consider the 
problem of recovering the motion parameters of a 3-D rigid 
bodv from the video seauence caotured bv a stationarv camera. 
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This problem is extensively discussed in the CV literature 
[7]-[lo]. It has been shown that any 3-D rigid body motion is 
equivalent to a rotation by an angle 0 around an axis through 
the origin with directional cosines n1,n2,n3 followed by a 
translation (Ax, Ay, Az), 

where R is a 3 x 3 rotation matrix, shown as (7) at the top 
of !he page. 

T is the translation vector defined by 

and (21, y1, z1) and (x2,y2, 22) correspond to the coordinates 
of a point on the object before and after motion respectively 
[22]. It has been shown that once the elements of R are com- 
puted, n1, n2,n3,19 can be found using a technique described 
in [SI. 

Our problem is slightly different from the above formulation 
in that the scene is assumed to be stationary while the 
camera is translating and rotating in the 3-D space. Thus, 
we must interpret the variables in the above formulation 
slightly differently. Specifically, we change the coordinate 
system so that the center of the camera is at origin, and 
therefore stationary at all times. Under these circumstances, 
the coordinates of the points in the 3-D scene will appear to be 
moving with respect to the camera. Under these conditions, (6) 
still holds, except for a change in the definition of the variables: 
the coordinates of a fixed point in 3-D space with respect to 
the camera is denoted by (x l , y1 ,~1)  before motion, and by 
(22, y 2 , ~ 2 )  after motion, and its projection in the image plane 
moves from (XI, Y1) before motion to (X2, Y2) after motion. 
In this new interpretation, the rotation matrix R and translation 
vector T will correspond to the rotation and translation of the 
camera rather than the rigid body in the scene. 

Based on (6), the seven parameters 121,122, n3,O Ax, Ay, AZ 
are sufficient for recovering (22,512, ~ 2 )  from (XI,  y1, ZI).  

However, in our video application, the ultimate goal is to 
recover, estimate, or predict the image plane coordinates in 
frame n + 1 from those in frame n. Specifically, our modeling 
goal is to relate (XI, Y1) to (X2, Y2) in terms of camera 
motion parameters. This way, once the camera motion is 
estimated from the image sequence, it can be effectively used 
for predictive coding. 

Since the image and 3-D space coordinates are related 
to each other through (2), using (6), we can relate image 
coordinates before and after motion. Using the third line of 

(6) to compute the ratio 2, using (2) to express xl ,x2,yl,  

and y2 in the first two equations of (6) in terms of XI,  Y1, X2 

and Y2, and assuming for simplicity F = 1, we obtain [SI 

(9) 
(T4X1 + T5yl + r 6 ) ~ 1  + AY 
(T7x1 + rsY1 + rg)zi + Az '  

Y2 = 

Thus, camera rotation and translation results in a relation- 
ship between image points (XI, Y1) and (X2, Y2) which is not 
only dependent on their coordinates, but also on the depth z1 of 
the point in 3-D space whose projection in the image plane is 
at coordinates (XI, Y1). Note that if there is no translation, i.e., 
Ax = Ay = 0, then from (8) and (9), (X2,Y2) can be easily 
related to (XI, Y1) without requiring any depth information. 
Thus, it is the translation, but not the rotation that requires the 
depth information. 

111. ALGORITHM DESCRIPTION 

In this section, we will propose algorithms for each of the 
camera models discussed in Section 11. Specifically, Section 
111-A describes a global motion estimation and compensation 
algorithm based on zoom, pan, and rotation, and Section III- 
B deals with a seven-parameter global motion estimation and 
compensation algorithm for camera translation and rotation. 
As will be seen, there is a great deal of similarity between the 
two algorithms. 

A. Zoom, Pan, and Rotation Algorithm 

In this section, we describe our edge-based algorithm for 
finding zoom, pan, and rotation parameters of the camera. A5 
mentioned earlier, there are a number of existing zoom and 
pan detection algorithms [2], [3], [23], most of which consist 
of two steps: 1) estimate local motion vector for each block; 
2) use the location of blocks in the current frame and their 
corresponding motion compensated location in the next frame 
in (5) in order to find the linear least-squares estimate of zoom 
and pan parameters [3]. Since zoom and pan are smoothly 
varying processes, in many practical situations it is sufficient 
to use the motion vectors between every few frames in finding 
the least-squares estimate of zoom and pan parameters. In 
addition, since displacement vectors between every few frames 
are likely to be larger than between consecutive frames, pel 
recursive algorithms [5], [6] are not suitable; block matching 
algorithms can be used, but since their search area has to be 
large, they are computation intensive. 

In this section, we propose an edge-based approach to global 
motion estimation of zoom, pan, and rotation parameters to be 
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used in predictive coding of video. One motivation behind our 
algorithm is to reduce the computational intensity of existing 
luminance-based estimation algorithms. This will be discussed 
in more detail in Section V. The flowchart of our approach is 
shown in Fig. 2. If A and B denote the two frames between 
which zoom and pan parameters are to be estimated, then the 
steps of our algorithms can be described in the following way: 

Find the edges in frames A and B: We have chosen an 
edge detection algorithm described in Section V-A for its 
speed and precision. As will be seen, our edge-detection 
algorithm consists of smoothing and finding directional 
derivatives [24]-[26]. 
Search for “features” in frame A: We refer to an 8 x 8 
block as a “feature” if it contains more than 8 edge 
pixels. This is done in order to prevent false matches in 
the next step. To avoid aperture ambiguity, blocks with 
strictly vertical and horizontal edges are discarded. Note 
that the minimum distance between the coordinates of 
the location of two features is (8 ,8 ) .  
Search for perfect matches of the frame A features in 
frame B: Two edge features are said to be perfectly 
matched if they are identical in the binary domain. 
To maximize the computation speed, the search area is 
centered around the point the feature would have moved 
to, given the previously detected values of zoom and 
pan. If no previous information is known, the search 
begins around the feature position in frame A. If a 
match is found the coordinates of the feature in frame 
A, ( X + ,  X , A )  and the matched coordinates in frame B, 
( X ~ , B , ~ , B )  are stored for use in the next step. 
Find linear least-squares estimate of c1, c2,  cg and c4 

by fitting the model shown in (5)  to the K pairs of 
coordinates obtained in the previous step. This can 
be accomplished by minimizing the following error 
expression: 

K 

Error =C[(xn,B - c i x n , A  - c2yn,A - c312 
n=l 

+ (Yn ,B  - ClYn,A + CZXn,A - C 4 I 2 ]  (10) 

setting for i = 1 , 2 , 3  to zero,and solving a linear 
system of equations to estimate c1, c2, cg, and c4. 

Remove “outlier” coordinates and repeat the previous 
step until the iterations converge: by outlier coordinates, 
we mean the ones whose residual errors are more than 
one standard deviation away from the average error of 
all the coordinate pairs. We consider the algorithm to 
have converged if the parameter estimates do not change 
substantially from one iteration to the next. For all the 
examples we present in this paper, the above procedure 
converges in 2 to 3 steps. 
Apply the global motion parameters obtained in the 
above step to the interpolated version of frame A in order 
to obtain “motion”-compensated prediction for frame 
B. This is necessary because even though the motion 
vectors used in estimating global motion parameters 
have pixel accuracy, the effective motion vectors for 
each pixel does not necessarily have pixel accuracy. 

I ‘ ” 4 “ ’ ”  
DETECTION 9 

I E f f i E f r U M E  

4x5 

FRAME B 

EDGE FRAME 

I v 
MATCHED CWRDINATES I 

ZOOM AND PAN PARAMETERS 

I 
MOTION COMPENSATED FRAME B 

Fig. 2. Flowchart of the zoom/pan algorithm of Section 111-C1. 

As a result, the displaced pixels according to the global 
parameters do not necessarily coincide with the sampling 
grid. Thus, we are forced to carry out interpolation 
to derive a motion-compensated prediction of future 
frames. We adopt a very simple interpolation scheme in 
which the intensity value of a pixel ( i ,  j )  on the sampling 
grid is given by 

kEA,,  

where Aij is a 2 A x 2 A area centered around ( i ,  j )  pixel, 
A is the spacing on the sampling grid, d k  is the distance 
of the lcth point with intensity 1, from the ( i l j )  pixel. 

Note that the linear least squares approach of step 4 has 
already been reported in the literature [3], [6], [5], [4], [28]. 
Thus the major difference between our approach and existing 
global motion estimation techniques is the edge-based feature 
matching, i.e., steps 1-3. 

B. Rotation and Translation Algorithm 

In this section, we will propose an algorithm for estimating 
rotation and translation parameters of a camera based on the 
model described in Section 11-B. As mentioned earlier, camera 
translation parameter requires the knowledge of the depth map 
in order for it to be effectively used in predictively coding. 
Thus, our proposed algorithm in this section must recover both 
the seven parameters corresponding to translation and rotation 
of the camera and the depth map. 

There are a number of algorithms in the CV literature for 
computing translation and rotation of rigid bodies [7], [8], [lO]. 
The algorithm we propose in this section is heavily based on 
the approach proposed by Tsai and Huang in 1984 [SI. While 
the main objective in [8] is to derive conditions for unique 
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recovery of rigid body objects in scene analysis, our objective 
is to use the camera parameters in predictive video coding. 

Recall from Section 11-B that if the projection of a point P 
in 3-D space onto the image plane is (XI, Y1) before camera 
motion and (X2, Y2) after camera motion, then the relationship 
between these coordinates is given by (8) and (9). Rewriting 
z1 in each of these equations in terms of motion parameters 
and image plane coordinate, we obtain 

where the matrix E is referred to as the “essential matrix” and 
is given by (15) at the top of the page. 

From (14) it is clear that the matrix E can be determined 
only to within a scale factor. Since elements of E are linear in 
Ax, Ay, and Az, this implies that the translation parameters 
can be determined to within a scale factor.This can also be seen 
by noting that z1 in (12) and (13) is linear in the translation 
parameters. This ambiguity is not merely a mathematical 
artifact; rather, it is inherent to the problem at hand, and can 
be physically explained by considering that an object at depth 
dltranslating at 2’1 appears the same to the camera as one at 
depth /3dl translating at PT1. 

To avoid this ambiguity, without loss of generality, we set 
one of the ei to 1. The only potential problem this might cause 
is in situations where the particular ei set to 1, is actually zero. 
However as we will see later, such problems can be easily 
detected numerically, and can therefore be avoided. 

The flowchart of our proposed global MC algorithm is 
shown in Fig. 3. Note that the flowchart implicitly assumes that 
the depth map for the first frame of the scene is available at the 
receiver. In spite of this, the depth map need not necessarily be 
transmitted to the receiver. For instance, if the first two frames 
of each scene are intra-frame coded, the transmitter and the 
receiver could compute the same depth map independently. At 
the end of this section, we will describe a way of determining 
the depth map for the first frame. 

If A and B denote the two frames between which the global 
motion is to be estimated, then the steps of our algorithms 

DETECTION 

EDGE FRAME EDGE FRAME 

PREVIOUS VALUES OF 
ROTATION TRANSLATION 

SEARCH FOR 

I I MATCHED COORDINATES 

I COMPUTATION OF ROTATION 
AND TRANSLATIONAL 

PARAMETERS FROM MATRIX E 1 

Motion Compensated Frame B 

Fig. 3. Flowchart of the rotation/translation algorithm in Section IILC2. 

shown in the flowchart of Fig. 3 can be described in the 
following way: 

1) Detect edges similar to step 1 in Section 111-A. 
2) Detect features similar to step 2 in Section 111-A, except 

that the minimum distance between the location of 
features can be ( 1 , l )  rather than (8 ,8 ) .  This is because, 
even though the window size for detecting features is 
8 x 8, unlike in Section 111-A, we allow them to overlap, 
thus resulting in a larger number of features and reduced 
noise sensitivity. 

3) Match features similar to step 3 in Section 111-A. 
4) Find linear least-squares estimates of ei by fitting the 

model shown in (14) to the K pairs of coordinates ob- 
tained in step 3. This can be accomplished by minimizing 
the following error expression: 

Error = x[(Xi,dG,Ael + X ~ , B Y , , A ~ ~ +  
K 

i=l (16) 
Xi,Ee3 + x,BXi,Ae4 f E,Bx,Ae5+ 
x,Be6 + Xi,Ae7 + x,Ae8 + Q J ) ~ ]  

where ( X ~ , B , ~ , B )  denotes coordinates of a feature in 
frame B which is matched to a feature in frame A with 
coordinates (X~,A,  x , ~ ) .  

As mentioned earlier, in solving the above linear 
least-squares problem, we have to set one of the ei 
to one in order to remove a scaling ambiguity. As an 
example, consider the case where eg  is chosen to be 
one. Considering (15), this choice is only problematic 
when e8 Ayr2 - Axrg = 0, i.e., in either of the 
following two situations: 1) the only non-zero translation 
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is along the z direction, i.e, AZ # 0 and Ax = Ay = 0; 
2)  translation along the x direction is zero and there 
is no camera rotation, i.e., Ax = 0, 0 = 0. We have 
found numerically that in physical situations where the 
choice of ei = 1 is invalid, then the resulting translation 
parameters become unrealistically large, signaling an 
unappropriate choice of ei = 1. Under these conditions, 
one simply switches from one ei to another in order to 
remove the scaling ambiguity. 

Once an appropriate parameter e j  has been set to 
one,we can find the remaining parameters by minimizing 
the error expression in (16), or equivalently by setting e for i = 1, ..9, i # j to zero, and solving a linear 
system of equations. 

5 )  Once the matrix E is computed to within a scale factor, 
we find the seven rotation and translation parameters 
by computing the singular value decomposition (SVD) 
of the 3 x 3 matrix E[8]. If the SVD of E is given 
by E = U C V T ,  then there are two solutions for the 
rotation matrix, R, given by 

(17) 

or 

(18) 

where s = det(U) det(V), and one solution for the 
translation vector, up to a scale factor a, given by 

7) 

where q5i is the ith row of E for i = 1 ,2 ,3 .  Only one of 
the two solutions for R together with the appropriate sign 
for a, will yield positive 2 1  and 2 2 .  Since the object must 
be in front of the camera, and therefore have a positive 
depth, the solution is unique to within a positive scale 
factor. 
Remove the outliers using the following steps: a) recover 
rotation and translation parameters from the e i ;  b) use 
the matches in (12) and (13) to find 21; c) use (8) 
and (9) to compute new values for (X2 ,Yz ) ;  d) find 
the error between these newly computed (X2,Y2)  and 
those that were actually used in the matching process; 
e) remove outliers by discarding matched features which 
have errors of more than one standard deviation. 
Compute the scaling factor a: At this point, an important 
observation needs to be made. While both the depth z1 
and the coefficients Ax, Ay, Az are defined to within a 
common scale factor for any pair of frames, consecutive 
scale factors should be chosen in such a way that they 
result in consistent depths in consecutive frames. This 
implies that there is effectively only one degree of 
freedom for the entire sequence, as far as the scaling 

factor is concerned. Thus, changing the value of this 
degree of freedom, does not affect the relative depth of 
various frames, but only fixes their absolute depth. For 
the sake of argument, we assume that this degree of 
freedom hasbeen fixed to a specific, but arbitrary value, 
so that the absolute depth map of frame n - 1 is given by 
&-I. Also, assume that step 5 has been applied to find 
the translation motion parameters between frames n - 1 
and n up to scaling factor, a,. In addition to motion 
parameters, a by product of step 5, is a, dependent 
depth map for frame n - 1, which we will refer to 
as Z,-l(an). Our approach is to choose a, in such 
a way that Z',-l(a,) becomes as close as possible to 
its absolute depth map .&-I . This is done by solving 
another linear regression problem in which the depth of 
the pixels in 2,-1 are matched to those in Z,-l(a,). 
Thus, we estimate 

1 

i € K  

where the set K consists of the pixels for which depth 
is defined in both and Z,- l (a , ) .  Once a,  has 
been determined, the motion parameters between frames 
n - 1 and n are uniquely determined, and can therefore 
be applied to the absolute depth map of frame n - 1 
in order to compute the absolute depth map of frame n 
through (6). The absolute depth map of frame n can then 
be used to determine subsequent scaling factors such as 
%+l. 

8) Transmit the seven parameters to the receiver so that the 
decoder can update the existing depth map based on the 
new set of rotation and translation camera parameters. 
Clearly, the depth map associated with the uncovered 
points in frame n + 1 cannot be determined based on the 
depth map of frame n and the camera parameters. 

9) Apply the rotation and translation parameters and the 
updated depth map to frame A to obtain a global motion 
compensated prediction for frame B. Equations (8) and 
(9) are used to compute the new coordinates, (X2,Y2), 

of the point in frame B which corresponds to the point 
( X I ,  Y1) in frame A. In other words, the intensity value 
of pixel (X2 ,  Yz) in frame B is assigned the same 
value as that of pixel (X1,Yl )  in frame A,  where 
the coordinates are related through (8) and (9). Since 
this mapping does not guarantee ( X 2 ,  Yz) to fall on 
a rectangular sampling grid, interpolation is necessary. 
Our approach to interpolation is similar to the one 
described in Section 111-A for the zoom, pan, rotation 
algorithm . 

10) Once the motion-compensated version of B is com- 
puted, the error between the actual and compensated 
frame B is quantized and coded for transmission to the 
receiver. We will describe the particular quantization 
and coding scheme we consider in our experimental 
results in Section IV. 
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- 
f(p) original frame at time p f(p) predicted frame at time p 

f(p) predicted frame at time p before applying the error 

d, (p) depthmap computed at time p shifted to time k 

d(p) depthmap at time p with arbitrary scale factor 

R rotation matrix with arbitrary scale factor 

T translation vector with arbitrary scale factor 

- - 
e(p) error at time p 

R rotation matrix 

T translation vector 
- 
- 
- 

Fig. 4. Block diagram of a transmittedreceiver system employing the 3-D 
camera motion estimation algorithm of Section 111-B. 

Having described our basic algorithm, we now explain our 
approach to arriving at a depth map for the first frame. If we 
use the above algorithm to recover the translation and rotation 
parameters between frames 1 and 2, then (12) or (13) can 
be used to arrive at the depth z1 for the pixel ( X l , Y l )  in 
frame 1. Since the depth map is only explicitly calculated for 
the first frame in a given scene, it is important for it to be 
dense; otherwise, the number of predicted pixels in motion 
compensated frames will not be dense, resulting in large error 
frames to be quantized and coded. However since the dense 
depth map need only be calculated once for each scene, this 
is only a one time cost. 

The block diagram of a transmittedreceiver system em- 
ploying the above motion estimation algorithm is shown in 
Fig. 4. 

IV. EXPERIMENTAL RESULTS 
In this section, we will describe experimental results on the 

two algorithms described in Section 111. Specifically, Section 
IV-A includes results on the algorithm of Section 111-A, and 
Section IV-B includes results on the algorithm of Section 111-B. 

A. Zoom and Pan Results 

We have applied the zoom and pan algorithm to three 
720x480 pixel frame sequences. The “HDTV” sequence con- 
sists of 28 luminance frames with synthetic zoom and pan. 
The other two sequences are two pieces of the “Ping-Pong” 
sequence: “Ping-Zoom’’ with 40 frames of pure zoom along 
with random foreground motion, and “Ping-Pan’’ with 80 
frames of pure pan along with random foreground motion. 
The zoom and pan parameters for “HDTV,” “Ping-Pan,” 
and “Ping-Zoom’’ are determined every 3, 10, and 3 frames 

respectively. Typical frames for the HDTV and Ping-Zoom 
and their corresponding edge maps are shown in Figs. 5 and 6. 
Note that edges corresponding to the ping-pong table in Ping- 
Zoom are jagged. This can be attributed to camera motion and 
to the fact that the edge-detection algorithm was applied to a 
frame, rather than to a field. Even though the found edges are 
imperfect, as we will see later, they do not affect the accuracy 
with which we can determine the zoom and pan parameters. 

Figures 7, 8, and 9 show the predictive mean squared 
error (MSE) for globally motion compensated frames obtained 
via traditional luminance-based BMA and our edge-based 
algorithm for the “HDTV,” “Ping-Pan,’’ and “Ping-Zoom’’ se- 
quences respectively. By globally motion compensated frames 
via traditional BMA, we mean frames obtained by applying 
steps 4, 5 ,  and 6 of our algorithms to the motion vectors 
obtained by full search luminance match. The solid curves 
in all the three figures denote the non-compensated frame 
difference (FD) without any zoom or pan compensation. 
As seen, our edge-based algorithm has comparable MSE 
performance to traditional intensity-based BMA. 

A few comments about the above results are in order: First, 
the sudden luminance change between frames 9 and 10 or 
the “HDTV” sequence does not affect the performance of our 
edge-based technique, while the luminance method yields a 
large number of false matches resulting in substantially lower 
MSE performance. Second, we have found that iterations do 
improve the performance of our edge-based techniques.’ 

Visual results shown in Fig. 10 fully confirm our results 
based on MSE plots. This figure shows the FD of intensity- 
based BMA, our edge-BMA-based technique, and the non- 
compensated FD for one frame of the Ping-Zoom sequence. 
As seen, the edge-based zoom-and-pan compensation results 
in approximately the same FD as conventional intensity-based 
BMA. Furthermore, the stationary objects such as the picture 
on the wall, and the ping-pong table result in small FD, while 
the region corresponding to the player results in larger FD 
due to the player movement in addition to camera zoom. 
Similar results have been obtained for the Ping-Pan and HDTV 
sequence. 

B. Rotation and Translation Results 

We have applied our algorithm of Section 111-B to the first 40 
frames of the “Flowers” sequence, which seem to only exhibit 
translational movement along the 2 direction. The dimensions 
of each frame is 486 x 720. This sequence exhibits a great 
deal of depth variation, featuring a tree close to the camera, 
a row of houses further away, and flowers in between. The 
first frame for this sequence and its corresponding edges are 
shown in Fig. 11, and its depth map is shown in Fig. 12. To 
visualize the depth map, we have heavily quantized it. As seen, 
the depth associated with the tree is smaller than that of the 
houses; in addition, the depth associated with the flowers is in 
between that of the houses and the tree. Finally, the sky has 
the largest depth as it is to be expected. 

Experiments show that this is also the case for traditional intensity-based 
BMA-based zoom-and-pan algorithms. 
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(b) 

Fig. 5. (a) A typical frame of the “HDTV” sequence. (b) Edges of the image shown in (a). 

We compare the compression capability of our algorithm 
with that of an intensity-based BMA with local motion com- 
pensation for each block. In our algorithm, the quantities to 
be quantized and coded for transmission are the rotation and 
translation parameters and the error frames. The corresponding 
quantities for a BMA-based algorithm, with forward prediction 
only, is the motion vectors and the error frames. The error 
frames in both cases are quantized and coded in a fashion 
similar to MPEG [29]. Specifically, we apply DCT to 8 x 8 
blocks of error frames, discard coefficients below a certain 

threshold, quantize with a uniform quantizer, and variable- 
length-code the quantized coefficients in conjunction with 
the location of discarded coefficients. The motion vectors in 
the local motion estimation technique are also treated in a 
similar way to MPEG. Specifically, the motion vectors are first 
computed for each 16 x 16 block, and then differentially coded 
with variable length coder described in MPEG documents [29]. 

In applying our rotation/translation algorithm of Section III- 
B to the flower sequence, the algorithm successfully finds 
all the rotation and translation parameters, except for Ax 
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(b) 
Fig. 6. (a) A typical frame of the “Ping-Zoom” sequence. (b) Edges of the image shown in (a). 

to be zero.* The motion-compensated residual error based 
on rotation/translation algorithm is found to have almost the 
same energy as that of local motion estimation based on 
BMA. Figures 13 and 14 show the resulting bit rates in 
bits per pixel, and distortion in intensity per pixel for 1) the 
edge-based rotation, translation scheme of Section 111-B; 2) 
intensity-based BMA with local MC; 3) edge-based zoom, 

pan, rotation technique of Section 111-A. As seen, the bit 
rate of the three schemes is almost identical. The distortion 
for the rotation/translation model is similar to that of BMA, 
while that of the zoom/pan/rotation model is slightly higher 
particularly for earlier frames. The visual impression of the 
reconstructed frames at the receiver seem to be more or less 
the same for all three techniques. It is interesting to note that 
even though the zoom/pan/rotation model is inappropriate for 

to those of the BMA-based algorithm and rotation/translation 

Since the number of rotation and translation parameters needed per frame 
is only seven, we can assume that these parameters are quantized arbitrarily this sequence, its rate/distortion characteristics is 
finely in our experimental results. 
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Fig. 7. Zoom/pan compensated FD for the “ H D T V  sequence: (a) Fig. 9. Zoom/pan compensated FD for the “Ping-Zoom” sequence: (a) 
Non-compensated FD. (b) Global motion compensated FD with luminance Non-compensated FD. (b) Global motion compensated FD with luminance 
matching. (c) Global motion compensated FD with edge matching. matching. (c) Global motion compensated FD with edge matching. 

pingpan sequence rithm. A similar trend was observed at other bit rates for these 
three algorithms. 

Finally, we have found experimentally that the performance 
of the model-based algorithms of Section I11 remains the 
same if the edge matching part is replaced with traditional 
intensity matching. This is encouraging since it confirms our 
hypothesis that unlike local motion estimation, for global 
motion estimation, binary edge matching is sufficient and that 
8 bit luminance information can be replaced with one bit edge 
information. 

a .......................... 
_____.--------- b I C  

V. COMPUTATIONAL COMPLEXITY 

18000 200 00 220 L& 00 Frame# 

Fig. 8. Zoom/pan compensated FD for the “Ping-Pan” sequence: (a) 
Non-compensated FD. (b) Global motion compensated FD with luminance 
matching. (c) Global motion compensated FD with edge matching. 

wodel. This is true even when we remove the rotation part of 
I e zoom/pan/rotation algorithm and apply only a zoom/pan 

model. This can be partially explained by considering that the 
computed pan parameter along the 2 direction is around 3 
for most frames, which is approximately the average motion 
experienced by the most pixels in the scene, such as the pixels 
associated with houses. 

Another observation to be made is that the peak bit rate 
exhibited by BMA-based algorithm and the rotation/translation 
algorithm around frame 31 is absent in the zoom/pan algo- 

In this section, we compare the computational complexity of 
our techniques based on edges to that of intensity-based BMA 
for both fixed and floating point arithmetic. In doing so, we 
only compare the complexity of our algorithm to that of full 
search BMA, rather than hierarchical algorithms such as three- 
step, logarithmic, or conjugate gradient algorithms. There are 
two reasons behind this: First, in contrast with the hierarchical 
motion algorithms [30], [31], a major portion of our edge- 
based approach does not require intermediate decisions and 
therefore does not require programmable hardware, and can 
potentially be implemented with highly parallel architectures. 
Specifically, as we will see, the major part of edge detection 
consists of convolution, which can be mapped into regular 
structures [32], while in hierarchical techniques the number 
of intermediate decisions per block is proportional to the 
logarithm of the dimension of the search area. The second 
disadvantage of hierarchical algorithms in intensity-based local 
motion estimation algorithms is their inherent inaccuracy. 

The outline of this section is as follows: in Section V- 
A, we describe the particular edge-detection algorithm we 
used for the experimental results of the previous section and 
review its computational complexity. In Section V-B, we 



492 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 2, NO. 4, OCTOBER 1993 

(b) 
Fig. 10. “Ping-Zoom” sequence: comparison of edge BMA-based global motion compensated frame difference to (a) non-compensated frame difference; 

(b) luminance BMA-based global motion compensated frame difference. Edge-based method is the top half for both (a) and (b). 

discuss the computational complexity of linear regression part A. Edge Detection 
of our algorithms and argue that the cost of regression can 
be neglected in comparison with edge detection for most 
practical purposes. In Sections V-C and.eV-13, we compare 
the computational complexity ofiour algorithms to that of 
full search intensity-based BMA for floating and fixed point 
arithmetic respec*ciy. 

is worthwhile to mention that the edge-detection 
algorithm for our experimental results in Section Iv uses fixed 
point arithmetic. 

The edge detection algorithm we have used in Section Iv 
is described in detail in [24]-[26]. In this section, we will 
briefly review the algorithm so that we can characterize its 

The edge-detection algorithm consists of two parts: smooth- 
ing, and taking directional derivatives. For smoothing pur- 
poses, we convolve our images with one-dimensional Gaus- 
sians along both z and y directions. By separating the two- 

Finally, 

c- 
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(b) 

Fig. 1 1 .  (a) A typical frame of the “Flowers” sequence. (b) Edges of the image shown in (a). 

dimensional convolution kernel into a pair of one-dimensional 
ones, we can save on the computations. The impulse response 
of the particular Gaussian filter we use has 8 taps and is of 
the form 

To detect edges, we need to locate the maxima of the gra- 
dient or zeros of the second directional derivative along 

the gradient [24]-[26]. In doing so, we use a normalized 
symmetric exponential one-dimensional filter implemented 
in the image processing software package KHOROS [33]. 
Specifically, the first and second directional derivatives of 
the low pass version of 1(n,, nY) obtained by convolution 
of l (nz ,  n,) with exponentially symmetric filter f(n,, ny) is 
given by[24]-[27] 

LCnz,ny) = 1(nz,ny) * f1(n,) * f 2 ( n y )  * [ fdnz)  - fl(%)l 
(21) 
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Fig. 12. Depth map of a typical frame of the “Flowers” sequence. 

where * stands for convolution, and f l  and f 2  are defined as 

f(n,,n,) is defined as 

f (%, .Y) = f(n,)f*(ny) 

f(4 = f1(n) * f2(.). 

where 

Since f l  and f 2  are infinite impulse response (IIR) filters, they 
can be implemented in a recursive fashion via a first-order 
difference equation: 

1 1  (n, ny ) =qn,, ny ) * fl (n,) 
=I1(nz - 1, ny) + ao[I (nz ,  n,) 

- Il(nz - Lny) ]  (27) 

Based on the above, we can conclude that to find I, and 
I,, ,we need to perform four convoAutions. Specifically, we 
need two convolutions to compute I(n, ,ny) I(n,,ny) * 
fl(ny) * f2(ny), one convolution to form f(n,, nY) * f 2 ( n , ) ,  

and one convolution to form f(n,,ny) * f2(ny). Once these 
four convolutions are done, we need one addition3 to compute 
I,(nz, ny) and two additions and a multiplication by 2 to 
compute I,,(n,, ny). Note that multiplication by 2 in fixed 
point arithmetic can be done at no almost no cost. Using (27) 
and (28), each convolution needs one multiplication and two 
additions. However, by choosing a0 = i, the multiplications 
in fixed point computation can be done with shifting, and 
therefore their costs can be neglected. 

Putting all of these together, we conclude that computing 
I, (n, , nY) and I,, (n, , nY) requires 5 multiplies and 11 adds 
per pixel for floating point implementation and 11 adds per 
pixel for fixed point arithmetic. Similar statments can be made 
for Iy(n,,ny) and Iyy(n,,ny). We summarize the operation 
count per pixel in Table I. 

Once the gradient vector and the second derivative in the 
gradient direction for every point in the image is computed. 
the actual edge points are found by a series of thresholding 
operations [24]-[26]. The values of first and second hysteresis 
thresholds we have used for our various experiments are as 
follows: Ping-Pan (1, lo), Ping-Zoom, HDTV, and flowers 
(114). 

We consider the complexity of a subtraction to be the same as an addition. 
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matrix A is given by TABLE I 
OPERATION COUNT FOR THE EDGE-DETECTION ALGORITHM 

Task Multiply 
rniint 

Add count 

8 Tap 1-D filtering along x 8 S 

8 Tap 1-D filtering along y 8 8 
IIR filtering for I,, and I,: 

Fixed point 11 
Floating point 5 11 

Fixed point 11 
Floating point 5 11 

IIR filtering for I,, and I,: 

In Sections V-C and V-D, we will use Table I to compare 
the operation count of our algorithm with traditional intensity- 
based techniques. 

B. Linear Regression 

In this section, we argue that the computational complexity 
associated with linear regression can be neglected in com- 
parison with edge detection. In doing so, we are primarily 
concerned with the complexity of computing the matrices 
involved in the linear regression, rather than that of solving the 
linear system of equations. The computation associated with 
solving linear systems of equation can be justifiably ignored 
because 1) the matrices under consideration are either 3 x 3 
or 4 x 4 and therefore their solution can be computed in a 
closed form; 2) unlike computing the matrices themselves, the 
cost associated with solving these systems is independent of 
the number of matched features; 3) on average, we solve only 
two systems per frame to remove outliers. 

We begin with the zoom/pan/rotation algorithm of Section 
111-A, and then move on to the translation/rotation algorithm 
of Section 111-B. 

Zoom, Pan, and Rotation Algorithm For this algorithm, we 
solve a linear least-squares problem shown in (5 )  in order to 
determine ci for i = I, 2,3 ,4 .  Minimizing the error expression 
in (10) requires setting its derivatives with respect to ci 
equal to zero, or equivalently solving the following system 
of equations: 

- 
AZ= d (29) 

where c' denotes the motion parameters, i i s  given by 

r K  1 

I C X 2 "  I 

A S  

K K K 

i = l  i = l  i = l  

K K 

Y l i  - X l i  0 K 
i = l  i = l  

and K denotes tce number of matched features. To form matrix 
A and vector d, there are 6 multiplications (mults) and 7 
additions (adds) per feature match. In addition, the removal 
of outliers in step 5 of the algorithm, involves 1) applying the 
model shown in (5 )  which requires 4 mults and 4 adds per 
match; 2) computing two standard deviations which requires a 
total of 2 mults 2nd 6 adds per match; 3) recomputing matrix 
A and vector d shown above which requires 6 mults and 
7 adds per match. Thus, there are 13 operations per match 
for finding the parameters, and 29 operations per match for 
each iteration of removing the outliers. Assuming that our 
algorithm converges in two steps, i.e., the outliers are only 
removed once, there are a total of 29 + 13 = 42operations per 
match. The average number of matches found for the three 
sequences considered in Section IV-A is one per 3500 pixels! 
Putting all of these together, we get a total of .01 operations 
per pixel for the linear regression. This is negligible compared 
to the operations per pixels needed for computing the edge, 
regardless of whether fixed or floating point arithmetic is used. 

Finally, if a global motion estimation algorithm uses 
intensity-based BMA, the number of "matches" used in linear 
regression is by definition one per 64 for 8 x 8 blocks. This 
results in 0.65 operations per pixel, which can be neglected 
for most practical purposes. 

Rotation and Translation Algorithm Similar arguments can 
be applied to the rotation/translation algorithm of Section III- 
B. In that algorithm, the linear regression is carried out to 
minimize the error function of (16). For convenience, assume 
that the particular ei chosen to be one is eg. Minimizing 
the error expression in (16) requires setting its derivative 
with respect to c; equal to zero, or equivalently solving the 
following system of equations: 

where e' denotes the vector containing the ei parameters, ui is 
an 8 dimensional vector given by 

K 

w' = [PY, Pr, 7 ,  .tP, i.6, .t, P,  PI (31) 
n=l 

4As an example, of all the features in a 720 x 480 Ping-Zoom frame, 
only 93 matches were found; the corresponding numbers for the Ping-Pan 
and HDTV sequences are 113 and 81 respectively. 

r--- - 
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and Q is an 8 x 8 matrix given by 

P2Y2 PY2P 
PY2P P2Y2 
PY2 Pr2 

P2Y? PY?P 

PY? Pr? 
P2Y PYP 
PYP P2Y 

n= 

PY2 
Pr2 
Y2 
?PY 
?PY 
i.7 

Pr 
PY 

P2Y? 
PY?P 
?PY 
?2P2 
?2PP 
?2 P 
?P2 
?PP 

PY?P PY? 
P2Y? Pr? 
?PY ?Y 

?2PP ?2P 
?2P2 ? 2 P  
? 2 P  ?2 

? P P  ?P 
?P2 ?P 

P2Y PYP 
PYP P2r 
PY PY 

?P2 ?PP 
?PP ?P2 
?P ?P 
P2 PP 
PP P2 

with p Xln,p YI,,~ = X2n,+ = Y2,. Since Q 
is a symmetric matrix, 40 mults and 44 adds are needed 
in computing it for each match, resulting in a total of 84 
operations per match. In addition, computing G requires 12 
operations per match. In removing the outliers, we also need to 
re-compute matrix Q and vector G. Before doing so however, 
we need to compute the following: 1) find the singular value 
decomposition of the E matrix which takes 18 operations; 
2) use the singular vectors in (17) and (18) to compute 
the rotation parameters; this step requires 45 operation for 
(17) and 45 operations for (18); 3) use the ei parameters in 
(19) to compute the translation parameters; this step requires 
24 operations; 4) use the computed rotation and translation 
parameters in either (12) or (13) to compute z l ;  this step takes 
13 operations per feature match; 5) use (8) and (9) to compute 
(Xz,Y2) coordinates for each match; this step requires 20 
operations per match; 6) compute the standard deviation of the 
error using 8 operations; 7) re-compute matrix Q and vector 
G above using 96 operations per match. 

Since steps l), 2), and 3) are independent of the number 
of matched features, their contribution to the complexity 
of outlier removal can be ignored. Thus, the total number 
of operations per match needed for outlier removal is 136. 
Assuming the algorithm converges in two steps, i.e., we only 
remove the outliers once, there is a total of 232 operations 
per match. Furthermore, assuming there is approximately one 
match every 350 pixels, the number of operations per pixel 
becomes 0.66. This is again negligible compared to that needed 
for edge detection, regardless of whether fixed or floating point 
arithmetic is used. 

Finally, if a global motion estimation algorithm uses 
intensity-based BMA, the number of “matches” in linear 
regression is by definition one per 64 for 8 x 8 blocks. This 
results in = 3.6 operations per pixel, which can be 
neglected for most practical purposes. 

C. Floating Point Implementation 

In this section, we compare the computational complexity 
of traditional full search BMA and that of our edge-based 
technique for floating point implementation. For simplicity, 
we assume that the time/complexity required to match edges 
is negligible compared to the time/complexity required to find 
them. Furthermore, we assume that the amount of time needed 
for a floating point addition is roughly equal to that of a 
multiplication, and we will refer to either of those floating 
point operations as a flop. 

Under these conditions, based on Table I, we conclude 
that the number of operations per pixel for our edge-based 

technique is 64. Similarly, the number of flops for full search 
BMA is 2sA since there are 2 s ~  additions. SA in the 
above expressions stands for search area used for finding the 
matching vector. We now compare computational complexity 
of our algorithms in Sections Ill-A and 111-B. 

Based on the above reasoning, we conclude that for global 
motion estimation algorithms based on the zoom/pan/rotation 
model of Section 11-A, the edge-based algorithm results in 
lower computational complexity than full search intensity 
matching techniques, provided the search area is larger than 
4 x 4. A similar statement can be made about global motion 
estimation based on rotation/translation model. 

Since in most camera systems, the zoom and pan parameters 
vary slowly, it is enough to compute the parameters every P 
frames or so. As a result, we must use a fairly large search area. 
For instance in our experimental results in Section IV-A, we 
subsample the frames by as much as 10 before computing the 
zoom and pan parameters, and as a result the search area for 
the Ping-Pan and Ping-Zoom sequences in Section IV-A was 
chosen to be 41 x 41. For this particular value of search area, 
the floating point implementation of the full search version 
of our algorithm requires 53 times fewer operations than full 
search BMA. 

For the rotation/translation algorithm, the search area used 
forluminance matching was 17 x 17 resulting in a saving factor 
of 17. 

D. Fixed Point Implementation 

Unlike floating point implementation, the cost of multipli- 
cation in fixed point implementation is higher than that of 
addition. In general, several factors need to be taken into 
account when comparing the costs associated with various 
algorithms. These factors include speed, chip area, and power 
and can usually be traded off with each other depending 
on the architecture used. For example, parallel processing 
architectures allow one to trade off chip area (or hardware 
complexity) with speed. Thus, comparing costs associated with 
various algorithms is not an easy task. 

In spite of these, it is possible to choose simple ways of 
defining complexity. Specifically, in comparing eight-bit fixed 
point implementations, we assume that 1) cost of an eight-bit- 
by-eight-bit multiplication is 4.5 times that of eight-bit addition 
[34], and 2) the cost of an eight-bit addition is 16 times that of 
one-bit matchings [34]. The word cost in the previous sentence 
reflects either time or the hardware required to do a certain 
operation. 

We now compare fixed point implementation of our edge- 
based algorithm with that of intensity-based full search BMA. 
The complexity of a full search block matching algorithm per 
pixel in units of cost of one-bit matching is s ~ ( 2  x 16). This 
is because full search matching requires 2 adds, and the price 
of an eight-bit add is 16 times that of one-bit matching with 
a logic gate. Thus, the cost associated with full search block 
matching is proportional to 3 2 s ~ .  

The complexity of an edge-based full search matching algo- 
rithmis proportional to (16 x 4.5 x 16) for the multiplications 
needed for edge detection, 38 x 16 for the additions needed 
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for edge detection and SA for one-bit matching. Thus, the cost bllllpueir IO Flowers Sequence Bit Rate 

associated with edge-based full search matching algorithm is I 
1760 + SA. 750 W- 

Comparing the above two techniques, we can conclude that 
for both global motion estimation based on zoom/pan/rotation 
and rotation/translation, as long as the search area is larger 
than 8 x 8, the cost associated with edge-based matching is 
smaller than that of intensity-based full search matching. For 
example, for search area with the size of 41 x 41 used in the 
examples of Section IV-A, the intensity-based matching is 13 
times more expensive than edge-based matching. 
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VI. DISCUSSION 

We have used the results on recovery of 3-D rigid body 
motion to develop a new algorithm for global motion estima- 
tion. Based on this approach, global parameters consisting of 
camera translation and rotation are first estimated from a video 
sequence, and then used in conjunction with the depth map of 
a scene to form the MC prediction for future frames. Our 
approach is different from existing global motion estimation 
techniques in that camera translation, as well as rotation is 
modeled. The performance of our approach is comparable to 
intensity-based local MC, at least in situations where the scene 
only consists of camera motion, such as in the flower sequence. 

A salient feature in our algorithm is the use of edges in 
estimating camera parameters. There are several motivations 
behind edge-based global motion estimation: First, the avail- 
ability of VLSI edge detection chips and convolution chips 
[32], [35] make the possibility of using edges in motion 
estimation quite realistic and potentially rewarding. Second, 
since a number of edge-based video coding schemes have 
been recently proposed [36], the additional use of edges for 
motion estimation is lucrative, particularly since it results in 
lower computational complexity as compared to traditional 
intensity-based techniques. 

During the course of this paper, we have compared the 
complexity and performance of our edge-based global MC 
algorithms to two different classes of MC algorithms: 1) full 
search intensity-based BMA, with local MC; 2)  full search 
intensity-based BMA with global MC. As far as performance 
goes, we have found that if the only motion in the sequence is 
due to the camera, then our edge-based technique does as well 
as 1). An example of this is shown in the flower sequence 
curves in Figs. 13 and 14, where the only variation in the 
video is due to camera translation. On the other hand, if there 
is additional object movement in the scene such as in Ping- 
Zoom and Ping-Pan, then our edge-based technique does as 
well as any global MC technique such as 2). An example of 
this is shown in the plot of Fig. 8 for camera pan and Fig. 9 
for camera zoom. As for complexity, we showed in Section 
V that our edge-based global MC algorithms are less complex 
than both 1) and 2) for both floating point and fixed point 
implementations. 

An important point to keep in mind is that the degree to 
which global MC algorithms work is highly dependent on the 
relative motion of camera compared to the objects in the scene. 
Applying any global model estimation technique, including 
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Fig. 13. Bit rate for flowers sequence: (a) Local motion estimation with 
intensity-based BMA with quantization step of the residue set to 1.6. (b) 
Edge-based global motion estimation based on rotation/translation model with 
quantization step of the residue set to 1.8. (c) Edge-based global motion 
estimation based on zoom/pan/rotation model with quantization step parameter 
of the residue set to 2.0. 
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Fig. 14. Mse for flowers sequence: (a) Local motion estimation with 
intensity-based BMA with quantization step of the residue set to 1.6. (b) 
Edge-based global motion estimation based on rotation/translation model with 
quantization step of the residue set to 1.8. (c) Edge-based global motion 
estimation based on zoom/pan/rotation model with quantization step parameter 
of the residue set to 2.0. 

ours, to a sequence that does not correspond to any camera 
motion at all will be unsatisfactory. In fact, this is true for 
all model-based techniques in image processing. An area for 
future research is the sensitivity of our proposed algorithms to 
various factors such as local motion, error in matching edges, 
and the values of camera parameters. For instance, our zoom 
determination algorithm is likely to encounter difficulties as 
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the zoom parameter becomes large. Along the same lines, it is 
well known that computing the translation parameter becomes 
ill conditioned as the motion becomes small [8]. However, this 
is of little consequence in the context of video coding since it 
results in an E matrix with a large condition number which can 
be easily detected. One possible strategy to deal with such a 
situation with little or no loss in coding performance is to avoid 
motion compensation as long as the translation parameters are 
too small. 

The work presented in this paper can be potentially applied 
in many practical situations with video sequences resulting 
from stationary scenes and moving cameras. One application 
of such a scenario might be 3-D video data bases in which 
3-D stationary objects are captured on a video sequence by a 
camera moving around them [37]. In this situation, camera 
motion estimation techniques can not only be useful for 
efficient representation of the video sequence, but also for 3-D 
interpolation of the views not directly captured by the video 
camera. Other interesting application might include 3-D scene 
representation and reconstruction, and transmission. 
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