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Ghost Cancellation Algorithms for MRI Images 
AVIDEH ZAKHOR 

Abstract-Reconstructed MRI images must ideally be real and pos- 
itive, since they correspond to density distributions of objects, which 
by definition are  real, positive quantities. In practice however, most 
reconstructed images become complex due to a shift in data from the 
nominal origin in k space. In some situations such as  constant readout 
gradient, these phase shifts do not affect the magnitude of the recon- 
structed images, and can therefore be easily determined and elimi- 
nated. However, when the readout gradient is sinusoidal and the fre- 
quency plane is scanned with data reversal on alternate lines, time 
delays between the start of data acquisition and the start of the readout 
pulse become different for even and odd lines, and result in a ghost 
separated by half the image size. In this paper, we describe ghost can- 
cellation algorithms for restoration of MRI images in medical appli- 
cations. Our  approach is to model the effect of the time delays and the 
asymmetry of the sinusoidal readout gradient for even and odd lines 
by two phase functions relating the actual object density to even and 
odd parts of the observed image. We then exploit a priori information 
about the phase functions in order to estimate the true object density. 
Examples of application of this ghost cancellation approach to liver 
and heart images will be presented. 

I. INTRODUCTION 
NDER IDEAL conditions, reconstructed MRI im- U ages must be positive and real. This is because sam- 

ples of the observed MRI signal in time correspond to the 
Fourier transform of the object density distribution, which 
by definition, is a real, positive quantity. In practice how- 
ever, the shift in data from nominal origin in k space :e- 
sults in complex images even with the most basic scan- 
ning patterns in the Fourier domain such as row by row 
or column by column scanning. For instance, if the read- 
out gradient is constant and the signal is sampled uni- 
formly in time, delay in time data translates into a linear 
phase shift in the reconstructed image. These phase shifts 
can then be easily determined and eliminated since they 
do not effect the magnitude of the reconstructed image. 

In recent years, an area of development in echo-planar 
MRI imaging has been the sampling of Fourier space 
along trajectories other than the parallel strips [ 11, [ 2 ] .  
This can be explained by considering that the signal read 
out at time t corresponds to a sample of the Fourier trans- 
form of the object density distribution at spatial frequency 
coordinates: 
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k,  = I' G,(t' ) dt' 
2T 0 

where y is the gyromagnetic ratio, and G, and G,. are gra- 
dients along x and y directions, respectively. The flexi- 
bility provided by above equations imply that different 
gradient waveforms correspond to different sampling pat- 
terns in the Fourier domain. Examples of such patterns 
include spiral and square spiral scans [2 ] .  

Experimental results have shown that for scanning pat- 
terns with data reversal on alternate k,' lines, time delays 
between the start of data acquisition and the start of the 
readout pulse are different for even and odd lines. The 
effect of this on the image manifests itself as a ghost sep- 
arated by half the image size along the y direction. An 
example of a scanning pattern resulting in ghosts in y di- 
rection is shown in Fig. l(a). As seen, thex gradient, G,, 
is a positive constant on even horizontal scan lines and 
negative constant on the odd ones. Under these condi- 
tions, if the MRI signal is sampled uniformly in time, the 
ghost image can be entirely removed by a first-order phase 
difference between odd and even lines [3]. However, when 
the readout gradient, G, is sinusoidal, with the positive 
half of the sinusoid corresponding to even lines and the 
negative half corresponding to odd lines, the difference 
between even and odd line delays, together with asym- 
metry of the sinusoidal gradient result in ghosted images 
which cannot be corrected with a first order phase func- 
tion. In this paper, we describe ghost correction algo- 
rithms for restoration of MRI images resulting from such 
gradient waveforms. Specifically, we consider a scanning 
pattern shown in Fig. l(b) in which the sinusoidal gra- 
dients are applied along the x direction and constant gra- 
dients along the y direction. Optimal sampling and filter- 
ing of the signal resulting from these gradients are 
discussed in a separate paper [4]. 

Our approach is to model the imperfections such as si- 
nusoidal asymmetry and time delay differences between 
even and odd lines by multiplying even and odd parts of 
the MRI image by two separate phase functions 6 ( n l ,  n 2 )  
and O ( n , ,  n 2 ) .  Specifically, if x ( n , ,  n 2 )  denotes the true 
density distribution of the object under consideration, and 
Y (  n , ,  n 2 )  denotes the observed ghosted image, then sym- 
metric and antisymmetric parts of the observed image, 

'The same argument can be made about k , .  
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(a) (b) 
Fig. I .  k trajectory for constant positive G,. and data reversal on alternate 

k ,  lines with a) constant positive G, on even lines and constant negative 
G, on odd lines; b) sinusoidal G, with the positive half on even lines and 
negative half on odd lines. 

r e v e n  ( n I ,  122 and Yodd ( n I , n2 ), can be modeled as: 

N 
0 5 n2 < - 

2 
0 I n l  < N, ( 3 )  

. , j O ( n i . m + N / 2 )  

N 
0 5 n2 < - 

2 
0 I n 1  < N, (4) 

where N is the number of echoes and N, is the number of 
samples in each echo. Having modeled the ghosted im- 
age, our objective can then be stated as estimation of the 
true object density distribution x ( n l ,  n,), from the ob- 
served ghosted image Y ( n l ,  n 2 ) .  To this end, we exploit 
a priori information about the shape of 8 and 4 ,  together 
with a particular subset of pixels in the observed ghosted 
image in order to estimate 8 and 4 which are ultimately 
used in (3) and (4) to estimate the true object density. 

The outline of the remaining part of this paper is as 
follows: We begin with the look up table approach to 
ghost correction in Section 11. As we will see, although 
this approach does not result in complete ghost cancella- 
tion, it provides insight for derivation of the ghost can- 
cellation algorithm of Section 111. Section IV includes ex- 
amples, and finally, Section V includes summary and 
conclusions. 

functions 4 ( n l  , n,) and 8 ( n l ,  n,) and use it in (3) and (4) 
to correct for ghosts. Specifically, from (3) and (4), it is 
clear that if the phase functions +( n, ,  n 2 )  and 8 ( n l ,  12,) 

are known for all values of n,  and n2, then x( n l ,  n2)  and 
x(n17  n, + N / 2 )  can be determined from Y e v e n ( n l ,  n2)  
and ( n 1  , n2 ) by solving a 2 x 2 linear system of equa- 
tions. In practice, the difference between + ( n l ,  n , )  and 
8 ( n I ,  n2 ) can be determined experimentally by placing a 
test object in the upper and lower half of the field of view 
(FOV) and measuring the phase difference between even 
and odd parts of the resulting images. When the object is 
in the upper half of the FOV, by definition we have: 

Substituting this into (3) and (4), we get: 

y e v e n ( n l ,  n 2 )  = x ( n , ,  n2)e jQ(nl .n2)  

N 
O < n , < N ,  0 5 n 2 < -  2 

N 
O 5 n 1 < N ,  0 5 n 2 < -  2 ’  

The phase difference between Ye,,, ( n ,  n,  ) and Yodd ( n l  , 
n2)  can be used to obtain 

N 
0 5 n2 < - 

2 0 I n l  < N, (7) 

Similarly, by placing the object in the lower half of the 
FOV, we have: 

N 
0 5 n2 < - 

2 x ( n l ,  n 2 )  = 0 0 5 nl  < N, 

( 8 )  

N 
0 1 n , < N ,  O s n 2 < -  2 

(9) 

( y )  n i . n z + N / , )  
11. “LOOK UP” TABLE APPROACH TO GHOST 

REMOVAL Y d d ( n l ,  n,) = -x n l ,  n2 + - e’’( 
In this section, we describe the look-up table approach 

to ghost removal. The basic idea behind this approach is N 
O s n , < N ,  O s n 2 < -  

2 to experimentally determine the difference between phase 
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The phase difference between Yeven(nl, n 2 )  and Y o d d ( f l l ,  

n 2 )  can be used to obtain 
111. AUTOMATIC GHOST CORRECTION (AGC) 

ALGORITHM 

in (3) and (4), we get: 

Thus, experimental values of A ( n i ,  n 2 )  and A ( n i ,  n2 + 
N / 2 )  can be used to determine A ( n l ,  n 2 )  and B ( n l ,  n2) 
by solving the linear system of equations in (13). Once A 
and B are determined, their magnitudes can be used to 
f indx(n l ,  n 2 )  a n d x ( n l ,  n2 + N / 2 ) ,  respectively. 

We have found experimentally, that there are two major 
drawbacks with the above approach. The first drawback 
has to do with the fact that the phase difference function 
depends on physical parameters for the MRI experiment. 
Some of these parameters include strength of x ,  y ,  and z 
gradients, static magnetic field, or RF. Therefore, to be 
able to apply this method successfully, we need to have a 
different look up table for different experimental set ups. 
The second drawback has to do with the fact that phase 
difference function, A ( n l ,  n 2 ) ,  is somewhat object depen- 
dent. More specifically, although the general shape of 
A ( n i  , n 2 )  does not vary drastically from one object to the 
next, the change is large enough to introduce considerable 
ghosting. The third drawback of the above approach has 
to do with the fact that obtaining the phase difference 
function A ( n , ,  n 2 )  of a test object for all values of n l  and 
nz is a nontrivial task from an experimental point of view. 
This has to do with factors such as susceptibility effects. 

In short, we have found the performance of above 
scheme to be inadequate for most medical images. How- 
ever, as we will see, the approximate shape of the phase 
difference function obtained via the above strategy pro- 
vides useful insight for development of the ghost correc- 
tion algorithm of the next section. 

In deriving the AGC algorithm, we take advantage of 
the approximate shape of the phase difference function, 
which as we saw in the previous section, can be obtained 
experimentally for test objects. Experiments indicate that 
variation of the function A ( n l ,  n 2 )  is considerably smaller 
along 12, than n1 direction. In fact for fixed ai, variation 
along 12, is symmetric about n2 = N / 2 ,  and A ( n l  , n2 ) can 
be closely approximated by a piecewise linear function of 
the form: 

A(n1, n2) 

N 
O 5 n 2 5 ;  

From a physics point of view, (14) can be justified by 
considering the two main reasons behind the ghost for- 
mation process. One is misadjustment of the center of k 
space, which for the constant gradient case can be cor- 
rected by first order phase correction as long as all echoes 
have the same origin offset. The other is different amounts 
of magnet inhomogeneity phase errors between echoes 
which is qualitatively parabolic before shimming, and un- 
predictable afterwards. Thus, polynomial approximation 
of the phase difference function as shown in (14) is rea- 
sonable. 

The AGC algorithm takes advantage of this approxi- 
mation by estimating o l (n l )  and P ( n i )  for each column 
of the data, i.e., n l  = 0, . - , N,< - 1. Specifically, the 
algorithm consists of the following steps: 

1) Take 2 - D  inverse Fourier transform of the time data 
to obtain the ghosted image Y(nl,  n 2 ) .  

2) Determine signal energy for each column of the data 
by computing 

N -  I 

E ( n , )  = I Y(n1, n2)I2. (15) 
n 2 = 0  

3) Discard columns whose signal energy level is below 
a fixed threshold, snr. 

4) Let S denote the set of indices of the columns whose 
signal energy level is larger than the threshold snr. Esti- 
mate CY ( n l  ) and 0 ( n l  ) for all ni E S. The estimation pro- 
cedure will be discussed at length later. 

5 )  Use CY (n ,  ) and 0 ( n i  ) in (14) to find A ( n , ,  n 2 )  for 
0 5 n2 < N .  

6 )  Use A ( n l ,  n 2 )  in (13) to find A ( n l ,  n 2 )  and B ( n l ,  
n 2 )  for 0 I n2 < N .  From (11) and ( 1 2 ) ,  the true object 
density distribution at ( n l ,  12,) and ( n i ,  11, + N / 2 )  are 
found by taking magnitudes of A (  n l ,  n,) and B (  n l ,  n,), 
respectively. 
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We will now describe the forth step of the algorithm in 
more detail. 

A. Parametric Estimation of the Phase Difference 
Function 

Recall from Section I1 that the phase difference function 
A ( n l ,  n 2 ) ,  can be found experimentally by placing a test 
object in the lower or upper half of the FOV. Specifically, 
the ghost of a test object at location ( n l ,  n 2 )  with 0 I n2 
< N / 2  appears at ( n l ,  n2 + N / 2 ) ,  and vice versa. Thus, 
the location of the ghost of a pixel at ( n  I ,  n2 ) is ( n , ,  ( n2 
+ N / 2 )  mod N ) .  

In general, if an object only fills out half of the FOV, 
its ghost does not overlap with itself in the reconstructed 
image. Under these conditions, the phase different func- 
tion associated with the object and the particular experi- 
mental set up can be determined empirically for regions 
of the reconstructed image which correspond to the object 
rather than its ghost.’ On the other hand, when an object 
fills out more than half of the FOV, its phase difference 
function can only be determined for pixels whose ghosts 
are not superimposed on pixels corresponding to other 
parts of the object. 

We can exploit this information about A ( n l  , n2 ) to find 
the parameters a and /3 as defined by (14). We define pix- 
els which correspond to bright parts of the object’ (rather 
than low energy part of the object or empty space in the 
FOV), and whose ghost locations correspond to either 
empty space in the FOV or parts of the object with very 
little or no energy, to be “ghosting pixels.” Specifically, 
if the pixel at location ( n l ,  n 2 )  is a ghosting one, then by 
definition, 

1) It corresponds to a high energy point in the object. 
Therefore: 

(x(n1, n,)I >> 0. 

2 )  The pixel at location [ n l ,  ( n2 + N / 2 )  mod N ] cor- 
responds to a low energy part of an object or empty space 
in the FOV. That is 

The forth step of the AGC algorithm, derives the pa- 
rameters associated with the nlth column in two steps. 
Specifically, it first finds the value of the phase difference 
function for all the “ghosting pixels” of the column, and 
then solves an overdetermined linear system of equations 
to find linear least square estimates of CY ( n  I ) and P ( n  I ). 
At this point, the key question which remains to be an- 
swered is the way ghosting pixels are detected, or “rec- 

‘Note that two special cases of this were discussed in Section 11. These 
cases correspond to the object being in the lower or upper half of the FOV. 

’Bright parts of an object are defined to be parts of the object whose 
image has large values of intensity. Similarly, the image of low energy 

ognized.” Our approach has been to use two criteria for 
classifying pixels as ghosting ones. The first criterion is 
a direct consequence of (13).  It takes advantage of the fact 
that the magnitude of the even and parts of a ghosting 
pixel at location ( n l ,  n 2 )  are identical. Specifically, if 
Y ( n l ,  n 2 )  is a ghosting pixel, from (13) we get: 

I Ye\en(n l ,  4) I = I K l d d ( n , >  n2)  I 
= IA(n1, n2)l = x(n1, ~ 2 ) .  (16) 

Thus, if the ratio between the magnitude of even and odd 
parts of the pixel at location ( n l ,  n2 ) are equal or some- 
what close to each other, then Y (  n l ,  n 2 )  can be classified 
as a ghosting pixel. In the actual implementation of the 
AGC algorithm, if the ratio between the magnitudes of 
even and odd parts of a pixel are in the range [ 1 /eoratio, 
eoratio], then the pixel is classified as a ghosting one, 
where eoratio stands for “even or odd ratio.” It is im- 
portant to note that under this criterion, the conditions for 
Y ( n l ,  n 2 )  and Y ( n l ,  n2 + N / 2 )  to qualify as ghosting 
pixels are identical. Thus, if (16) is exactly or approxi- 
mately satisfied, then there is an ambiguity as to which 
pixel is the ghosting As we will see, the second 
criteria for ghosting pixel detection will resolve this am- 
biguity. 

The second criteria for detecting ghosting pixels takes 
advantage of its definition. To describe this condition, let 
us rewrite ( 3 )  and (4) in the following way: 

1 
~ ( ~ 1 7  n>)  E - 2 [ Y e v e n ( n l ,  n2)  + ~icid(n,, n 2 ) ]  

2 
+ 

‘Note that by definition. Y ( t i l ,  and Y ( f z I .  ( t i ,  + N / 2 )  mod N )  -. 
parts of an object have small values of intensity. cannot both be ghosting pixels 
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As we expect, if 

or equivalently 

the observed image, Y (  n , ,  n , ) ,  becomes ghost free and is 
identical to the true object density function x ( 1 2  ,, n2 ). Re- 
call that if the pixel at location ( a , ,  n ? )  is a ghosting one, 
then by definition, the magnitude of x ( n l ,  n z )  must be 
large (i.e., not at the noise level) and the magnitude of 
x(n,, n2 + N / 2 )  must be very small (i.e., at the noise 
level). From (17) and (18) we conclude that if the differ- 
ence between 8 ( n  ,, n2 ) and $ ( n ,, n2 ) is small ( or equiv- 
alently l A ( n , , n 2 ) I  issmall) ,  t henaghos t ingp ixe la t (n , ,  
n 2 )  results in a large value of the following ratio: 

Specifically as I A ( n l  , n, ) I changes from 0 to T ,  the above 
ratio changes from 00 to 0. We have found experimen- 
tally, that I A ( n l ,  nr ) I is smaller for columns closer to the 
center of the magnet ( i . e . ,  around n ,  = N , / 2 ) .  This im- 
plies that, the ratio of (19) becomes larger as the index of 
the column under investigation beomes closer to N , / 2 .  
Thus, the second criterion for detecting ghosting pixels of 
the n,th column consists of 

1) Computing the quantity shown in (19) for each pixel. 
2 )  Comparing this ratio to a fixed threshold associated 

with that column. 
Clearly, this threshold is column dependent and becomes 
larger as the indices of the columns become closer to 
N , / 2 .  In the AGC algorithm, we have chosen the thresh- 
old for the n,th column: 

to be a parameter denoted by the variable “thresh- 
old,” for n l  = N , / 2 ,  i .e. ,  the column corresponding to 
the center of the magnet. 

to decrease linearly with n ,  for I n I  - N , / 2  I < 15’, 
i.e., for columns in the neighborhood of the center of the 
magnet. 

to be constant for 1 n ,  - N , / 2  I > 15, i .e. ,  for col- 
umns far away from the center of the magnet. 

To summarize, the first ghost dctection criterion checks 
the ratio between the magnitudes of even and odd parts of 
the pixel at location ( n , ,  n? ) .  If this ratio is close to one, 
then either Y ( n l ,  n 2 )  or Y ( n l ,  ( n 2  + N / 2 )  mod N )  are 
classified as ghosting pixels. To resolve this ambiguity 

‘Clearly. 15 can be replaced by another input parameter for greater flex- 
ibility. 

and to improve the detection procedure, we use a second 
criterion which computes the ratio shown in (19). For col- 
umns close to the center of the magnet, large values of 
this ratio imply a ghosting pixel at location ( n , ,  n 2 ) .  
However, for columns further away from the center, the 
second criterion becomes more or less inconclusive, and 
we must find other ways to overcome the ambiguity prob- 
lem of the first criterion. Our approach has been to use 
the a priori knowledge about the approximate shape of 
the phase difference function in order to resolve this am- 
biguity. Detailed experimental procedures for obtaining 
phase difference function was described in Section 11. 
Note that unlike the “look up” table approach of Section 
I1 exact values of the phase difference function are not 
needed; In fact, the algorithm only needs to know as much 
about A ( n , ,  n2 ) as to make binary decisions. 

From the description of the AGC algorithm, it is clear 
that the ghosting pixel detection part is rather heuristic. 
To decrease the sensitivity of the algorithm to this part, 
and to improve the estimation of the phase difference 
function, we have taken few measures. 

B. Improving Estimation Robustness 

From classical results in estimation theory, we know 
that the error in estimating parameters of A ( n  I ,  n 2 ) ,  i.e., 
CY and 0, is reduced as the number of observations is in- 
creased [7]. In our case, the observations are the empiri- 
cal value of the phase difference function for the ghosting 
pixels. Experimental results seem to indicate that for col- 
umns whose number of observations (or equivalently the 
number of ghosting pixels) is small, the error in estimat- 
ing 0 in (14) becomes rather large. This error manifests 
itself as large magnitude for 0, resulting in unrealistic val- 
ues of the phase difference function. Since experimental 
results indicate that the magnitude of is small for most 
columns, our strategy to overcome this problem has been 
to set /3 = 0 for columns whose number of ghosting pixels 
is less than a fixed integer. To make the estimation part 
of the algorithm more robust, we also set 0 = 0 when the 
magnitude of its estimated value exceeds a certain thresh- 
old. In effect, this corresponds to modifying the model for 
the phase difference function from a first order one to a 
zeroth order one. Model modification is a standard prac- 
tice in regression analysis and is commonly used in em- 
pirical model building [5]. 

The second measure we have taken to improve the ro- 
bustness of the algorithm has been to discard ghosting 
pixels whose least-square residue is too large. This is also 
a standard practice in regression analysis, and is routinely 
used to remove the effect of “bad” data, also called 

< N / 2  and j ( , I 1 -  I ) ,  j : ’ -  I ) ,  . . . , j/,‘,’w;:) 2 N / 2  denote 
the indices of the ghosting pixels of the n,th column, tak- 
ing into account (14), the linear least-squares estimation 
of CY and 0 consists of solving the following overdeter- 

. ( I 1  I ) 
“rogue” observations [5]. If i \ ’ lp1) ,  i y l - ’ ) ,  . . . 9 lupper 
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(b) 
Fig. 2 .  (a) Unprocessed ghosted heart image; (b) Processed, ghost-free 

heart image obtained by the AGC algorithm with the following param- 
eters: snr = 5, eorutio = 1.5, threshold = 100, mse = 3 .  

(b) 

Fig. 3 .  (a) Unprocessed ghosted heart image; (b) Processed, ghost-free 
heart image obtained by the AGC algorithm with the following param- 
eters: snr = 5 ,  eorutio = 1.5, threshold = 100, m e  = 2 .  

mined 1 

(20) 

If â ( n I ) and P (12, ) denote the solution of the above linear 
least-squares problem, the residue of the ghosting pixels 
at ( n , ,  i i n - ' ) )  and ( n l , j j n - ' ) )  are defined to be: 

res ( n , ,  ij"-") = A ( n l ,  i j n - l )  1 
- ( & ( n l )  + B ( n , ) i { " - l ) )  

res ( n 1 , j j n - ' ) )  = A ( n I , j i n - ' ) )  

- (ii!(nl) + P ( ~ , ) N  - b ( n , ) j j " - ' ) )  

(21 ) 
and the mean square error at n ,  is defined to be 

mean squared error ( n  I ) 
1 

upper + lower 
- - - 

To reduce the likelihood of false alarm (i.e., declaring 
nonghosting pixels as ghosting ones), our strategy has 
been to discard pixels for which the ratio between their 
residue and the mean squared error exceeds a fixed thresh- 
old. We denote this threshold by the variable "mse." 

IV. EXAMPLES OF THE AGC ALGORITHM 
In this section, we show a few examples of the AGC 

algorithm. For each example, the ghosted image, the pro- 
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(b) (b) 

Fig. 4. (a) Unprocessed ghosted heart image; (b) Processed, ghost-free 
heart image obtained by the AGC algorithm with the following param- 
eters: snr = 5 ,  eoratio = 1.5 ,  rhreshold = 100, mse = 2.  

Fig. 5 .  (a) Unprocessed ghosted body image; (b) Processed ghost-free body 
image obtained by the AGC algorithm with the following parameters: 
snr = 5 ,  eoratio = 1.5. threshold = 100, mse = 2.  

cessed ghost-free image, and the parameters used with the 
algorithm is specified. It is important to emphasize that 
none of the parameters used in the algorithm need to be 
measured experimentally. As described in the previous 
section, the essence of the algorithm is to convert a ghost 
cancellation problem into a parameter estimation one. In 
effect, the only observed quantity is the degraded, ghosted 
image, and the parameters which need to be estimated for 
the nlth column, i.e., a ( n , )  and , 8 ( n l )  are determined 
only on the basis of the observed ghosted image. 

Similar to most image restoration applications, quanti- 
fying the performance of the proposed algorithm is not an 
easy task [7]. Nor is it easy to quantify the artifact gen- 
erated by the algorithm. Therefore, we must rely on qual- 
itative, subjective comparison of the degraded and pro- 
cessed image by human observers to illustrate the 
performance of the algorithm. 

Figs. 2, 3, 4 ,  and 5 show ghosted and processed heart 
and liver images obtained via the ghost cancellation al- 
gorithm. The parameters used for each image is shown in 
its caption. Clearly, in all the examples the algorithm is 
capable of removing the ghost successfully. In Fig. 2(a), 
the main ghost is to the upper left of the image and there 
is a small amount of ghost to the lower right. As seen, 
there is a great deal of correlation between the ghosts and 

the ghosting pixels, in the sense that they are half the im- 
age size away from each other. The ghost in Fig. 3(a) is 
to the upper right of the image, and its intensity is larger 
than those of other examples presented here. The ghosts 
in Fig. 4(a) are on the upper and lower right, and upper 
left of the image. As seen, although the algorithm cancels 
most of the ghosts, it also introduces some artifacts in the 
lower left part of the image. Finally, Fig. 5 shows a body 
image, in which the outer contour of the body is causing 
a ghost in the upper part of the image. 

As seen, the variation among the input parameters of 
the various examples is not large. For instance parameters 
snr, threshold, and eoratio are identical for all the ex- 
amples, and mse is either 2 or 3. To examine the effect of 
each parameter, we perturb the input parameters for the 
heart image shown in Fig. 3(a). Fig. 6 shows processed 
versions of Fig. 3(a) for different values of the parameters 
mse with the remaining parameters fixed at snr = 5 ,  ea- 
ratio = 1.5, and threshold = 100. As seen in Fig. 6(a), 
for mse = 0.1, the ghost essentially remains uncorrected. 
This is because too many of the candidate ghosting pixels 
are discarded in the estimation procedure. On the other 
hand, the image corresponding to mse = 4 shown in Fig. 
6(b) is relatively ghost free, but suffers from artifacts 
around the upper left side. This can be attributed to the 
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fact that large values of mse result in “bad” data or 
“rogue” observations to be included in the estimation 
process. 

Fig. 7 shows processed versions of Fig. 3(a) for eorutio 
= 1 ,  2. 4 with snr, threshold. and nise fixed at 5 ,  100, 
and 2, respectively. As seen, for eoratio = 1 ,  the ghost 
essentially remains uncorrected because the eoratio con- 
ditions for detection of ghosting pixels becomes ineffec- 
tive. In this case, the necessary condition for a pixel to 
be detected as a ghosting one is that the magnitude of 
Ye,,,( n l ,  n z )  becomes exactly identical to magnitude of 
Yc,dd(t71, n ? ) .  Since this is a stringent condition, few pix- 
els are likely to be classified as ghosting ones. For eorutio 
= 2 and 4 on the other hand, the processed images look 
almost identical to the one shown in Fig. 3(b). Thus, the 
processed image is fairly robust with respect to rorutio as 
long as it is not chosen too close to 1 .  

Fig. 8 shows the processed versions of Fig. 3(a) for 
threshold = 1, 10, and 1000. As seen, the processed im- 
ages are almost indistinguishable from one another and 
from Fig. 3(b). Thus, the algorithm does not seem to be 
too sensitive to the variable threshold as long as it is 
greater than or equal to 1 .  

Finally, we examine the efiect of setting p = 0 which 
was discussed in the beginning of section 111-B as a model 
modification measure. Fig. 9 shows the processed version 

( C )  

Fig. 7 .  Proces5ed version of Fig. 3(a)  with the same parameter5 a \  Fig. 
3(b),  except for (a )  cwrciriv = ‘ I .  (b) eorcirio = 2: ( e )  rorczfio = 3 .  

of Fig. 3(a) with the same parameters as that of Fig. 3(b) 
except that p is not set to zero when the number of ghost- 
ing pixels is small, or the estimated value of 0 is outside 
its expected range. As seen, even though the ghosts are 
removed. there is a great deal of artifacts in the image. 
This has to do  with the fact that the upriori information 
about range of /3 has not been utilized, and that small 
number of observations, i .e . ,  ghosting pixels. result in 
noisy estimates of p. 
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Fig. 9. Processed version of Fig. 3(a) with the same parameters as Fig. 
3(b), except that 0 is not set to zero under the conditions described in 
the first part of Section 111, B .  

Ghosting is a result of the difference between even and 
odd line delays, asymmetry of the sinusoidal gradients, 
and magnet inhomogeneity. 

We modeled these imperfections by multiplying even 
and odd parts of the image by two phase functions, esti- 
mated the phase difference function, and solved a 2 X 2 
linear system of equations to determine the true object 
density. In Section 11, we investigated the plausibility of 
using the phase difference function of test objects for ghost 
correction of real medical objects. We found that object 
dependency of the phase difference function makes this 
an inadequate approach in most practical situations. How- 
ever, approximate shape of the phase difference function 
obtained via this strategy was exploited to derive the ghost 
cancellation algorithm of Section 111. This algorithm gen- 
erates the ghost free version of a ghosted image by first 
detecting “ghosting pixels” and then using their intensi- 
ties to estimate the phase difference function. As it was 
seen in Section IV, the algorithm results in excellent ghost 
cancellation for a variety of heart and liver images. Future 
work in this area involves applying the AGC algorithm of 
this paper to other scanning patterns such as square spi- 
rals. 
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V.  SUMMARY AND CONCLUSIONS 
In this paper, we described ghost correction algorithms 
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