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Inverse and Approximation Problem 
for Two-Dimensional Fractal Sets 

Roberto Rinaldo, Member, IEEE, and Avideh Zakhor, Member, IEEE 

Abstract-The geometry of fractals is rich enough that they 
have extensively been used to model natural phenomena and im- 
ages. Iterated function systems (IFS) theory provides a convenient 
way to describe and classify deterministic fractals in the form of 
a recursive definition. As a result, it is conceivable to develop 
image representation schemes based on the IFS parameters that 
correspond to a given fractal image. In this paper, we consider 
two distinct problems: an inverse problem and an approximation 
problem. The inverse problem involves finding the IFS parame- 
ters of a signal that is exactly generated via an IFS. We make use 
of the wavelet transform and of the image moments to solve the 
inverse problem. The approximation problem involves finding a 
fractal IFS-generated image whose moments match, either exactly 
or in a mean squared error sense, a range of moments of the 
original image. The approximating measures are generated by 
an IFS model of a special form and provide a general basis 
for the approximation of arbitrary images. Experimental results 
verifying our approach will be presented. 

I. INTRODUCTION 
RACTAL geometry has been shown to provide statistical F and deterministic models for a large class of images 

that represent natural objects and scenery. As a result, fractal 
modeling has been applied to diverse problems such as texture 
segmentation, image compression, and the rendering of natural 
scenery in computer graphics. From a visual point of view, 
fractal images share the common property that they exhibit a 
great deal of self similarity across different scales. Thus, if we 
were to look at a fractal object through a magnifying lens, we 
would see the same structures at different resolutions. From a 
mathematical point of view, the main characteristic of fractal 
objects is that a small number of parameters is sufficient for 
their representation [I]. 

In this paper, we are concerned with compact represen- 
tation of fractal images or self similar images via iterated 
function systems (IFS). In particular, we consider two distinct 
problems: 1) the inverse problem to find the IFS parameters 
of a signal that is exactly generated via an IFS and 2) the 
approximation problem to model arbitrary self similar signals 
with the IFS parameters. Although the latter problem is of 
more practical importance, as we will see in this paper, the 
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solution of the inverse problem is instrumental in our approach 
to the approximation problem. 

Our basic approach to the solution of these problems is 
based on the moment method. For the inverse problem, the 
image moments depend on the IFS parameters and are used in 
a procedure that allows us to retrieve them. On the other hand, 
the goal of the approximation procedure is to find a fractal 
model that generates an image whose moments match a finite 
number of moments of the original image or are close to them 
in a mean squared sense. A set of constraints must be satisfied 
by the original image for the exact matching procedure to be 
successful. The approximating measures are generated by an 
IFS model of a special form and provide a general basis for 
the approximation of arbitrary images. 

Another tool that is used for the solution of the inverse prob- 
lem is the wavelet transform. One of the major applications 
of the wavelet transform is multiresolution signal analysis, 
and it is conceivable that it can be used to determine the 
parameters of a fractal object. Indeed, it has been shown 
that the redundancy of a fractal signal with respect to scale 
variation is mirrored by its wavelet decomposition in that 
the wavelet transform at a finer scale is obtainable from the 
wavelet transform at coarser scales [ 5 ] .  In this paper, we 
exploit this fact to determine the defining parameters of a 
fractal signal from the decay of the wavelet coefficients among 
scales and from the moments of the measure associated with 
the image. 

The outline of the paper is as follows. In Section 11, we 
review IFS theory. Section I11 describes the use of the wavelet 
transform and the moment method in solving the inverse 
problem. Section IV includes experimental results of the 
technique of Section Ill for IFS-generated images. Section V 
presents the approximation procedure for arbitrary images, and 
in Section VI, we present approximation examples. Section 
VI1 is the conclusion. 

11. A REVIEW OF ITERATED FUNCTION SYSTEMS 

In this section, we introduce basic results regarding the 
use of IFS for the generation of fractal images. As we will 
see, IFS with probabilities can be used to generate gray-tone 
images, whose support is a fractal object. Specifically, the 
image renders the “invariant measure” associated with the IFS. 

Given a complete metric space (X, d) ,  where d denotes 
a metric in X, we can define the metric space (IH(X), h) ,  
where X(X) is the space of compact subsets of X, and the 
distance h between two sets A and B is the Hausdorff distance, 
which is characterized in terms of the metric d. Under these 
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conditions, it can be shown that the metric space X(X) is 
complete according to the Hausdorff metric [l]. 

contraction mapping on X(X) with respect to the Hausdorff 

Furthermore, it is possible to show [ l ]  that for any continuous 
function f ,  we have 

IFS theory defines a fractal to be the fixed point of a N 

( 5 )  
metric. Specifically, the map is defined as i=l 

N 

w ( B )  U W i ( B )  (1) 
i=l 

where { w l ,  . . . , W N }  are contraction maps wi : X + X, and 
B is a set. {X, w1,. . . , W N }  is called a hyperbolic IFS, or IFS 
for short. The maps w1,. . . , W N  can be chosen to be affine 
transformations on X = R2 defined by a matrix Qi and a 
displacement vector di : 

IFS representation is quite powerful in that successive 
application of the map (1) to any subset B of X = R2 
converges to a unique subset of X called the attractor of the 
IFS system [l]. More precisely, we have 

A = lim w""(B) 
n-+m 

where A is the attractor, and won denotes n iterations of the 
map w. Thus, wo0(B)  = B and w"(~+ ' ) (B)  = w ( w o n ( B ) ) .  
Since the attractor is the fixed point of the transformation, it 
is invariant under the transformation itself, and therefore, it 
is equal to the union of N copies of itself transformed by 
w1,. . . , W N .  This invariance leads to the notion that a fractal 
object is equal to a magnified copy of one of its parts or, 
in other words, to the notion of self similarity and, more 
precisely, self affinity if the maps are affine transformations. 

A more general definition of IFS is that of IFS with 
probabilities. In this context, the gray-tone fractal image is 
modeled as a probability measure over its region of support, 
and the fractal object is defined as the fixed point of a 
contractive mapping' on the space of the probability measures 
P(X) on a compact space X [I]. Specifically, if a set of 
probabilities p l ,  . . . , p ~ ,  0 < p i  < 1, xi pi  = 1 is associated 
with the transformations w1,. . . , W N ,  then the contractive 
mapping is defined by the Markov operator M given by 

MP(n--1) ( B )  = P(n)  ( B )  
N 

Equation (5) is a direct consequence of the invariance of the 
measure p as shown in (4) and the definition of the Markov 
operator defined in ( 3 ) .  

The above concepts can be interpreted in the following way. 
The digital image of the fractal renders the invariant measure, 
and the normalized value of each pixel B corresponds to the 
probability of the Bore1 subset B of R2. The invariant measure 
is obtained by applying the Markov operator (3) iteratively, 
starting from any given measure, i.e. from any arbitrary gray- 
tone image. The definition of the Markov operator in (3) says 
that the measure of a set B corresponding to a pixel in the 
image p(n )  is approximately equal to the scaled sum of the 
measures of the pixels in p ( n - l )  whose centers are mapped 
onto B by the transformations wi; the scaling factor for the 
measure of a particular pixel in p ( n - l )  is the probability 
associated with the transformation that maps it onto B. Thus, 
the new measure p(n)  is obtained by applying transformations 
wi ,  i = 1,. . . , N ,  to the coordinates of each pixel in 
and adding up the scaled measures associated with each pixel 

An alternative dynamical argument can be used to define 
the invariant measure associated with the Markov operator 
(3). In this case, the fractal object is modeled as the invariant 
distribution of a Markov process with transition probability [2] 

in P ( n ) .  

where 
1 i f z E B  
0 otherwise. Sx(B) = 

In the "chaos game," [l] the measure is rendered by plotting 
the sequence {zn}, where IC,+~ is obtained by applying 
to IC, one of the N transformations w1, .. . , W N  chosen 
with probability p i .  An ergodic theorem [2] assures that the 
resulting trajectory is dense in the attractor, and the frequency 
of visit of a region is proportional to its probability, according 
to the invariant measure defined by (4). 

where P ( ~ ) ( B )  is the probability of the set B at iteration n, and 
Mjqn-l) is the Markov operator that maps p(n-l)  to ~ ( ~ 1 .  
If {X, w1, . . . , W N }  is a hyperbolic IFS, then it is possible to 
show that there is a unique, attractive stationary probability 
distribution with support equal to the attractor of the IFS. This 
means that successive application of the Markov operator M 
to an arbitrary initial distribution v converges in distribution 
to the measure p: 

M p =  n-+w lim M""(v)  = p .  (4) 

' with respect to the Hutchinson metric. 

111. PROCEDURE FOR THE INVERSE PROBLEM 

In this section, we describe a way of recovering IFS param- 
eters of a class of fractal signals whose IFS transformations 
are of the form: 

with probabilities pi,  z = 1, . . . , N .  We refer to this procedure 
as an inverse problem because the signal is assumed to be 
exactly generated by an IFS. As we will see, in Section V we 
consider the upproximarion of arbitrary images with an IFS 
model. Thus, the inherent difference between the inverse and 
the approximation problem is that the former assumes that the 



804 

Isocontour of the wavelet at scale 

Isocontour of the wavelet at scale a/A 

Fig. 1. Sierpinsky triangle and isocontours of the analyzing wavelet. 

signal is exactly generated by an IFS, whereas the latter does 
not. 

An example of a fractal signal generated with an IFS of 
the form (6), which is referred to as the Sierpinsky triangle 
[l], is shown in Fig. 1. The three transformations wi for 
the Sierpinsky triangle are defined by A, = A, = 1/2, 
pi = p = 1/3 and d l ,  = 0, dal = 0; d l ,  = 1/2, d2, = 0; 
d l ,  = 0,  d2, = 1/2. As seen, there is a great deal of self 
similarity in the image of Fig. 1 across various scales. 

Our approach to the inverse problem solution is to determine 
the scaling parameters A, and A, using the wavelet transform 
as described in Section 111-A and then to use the moment 
method to find the displacement vectors and probabilities, as 
explained in Section 111-B. 

A. Determination of the Scaling Parameters 
Using the Wavelet Transform 

We consider the problem of recovering the parameters A, 
and A, of the IFS (6) from the wavelet transform of the image 
p. We first study the case A, = A, = X in Section 111-A-1. 
Then, we move to the case A, # A, in Section 111-A-2. 

I) Case A, = A, = A: The wavelet transform of the invari- 
ant measure p associated with the attractor of the IFS in (6) 
is’defined as [6] 

(7) 

where g = ( ~ , y ) ~ ,  b = ( b 1 , b ~ ) ~  is the point in the attractor 
where the wavelet is centered, and a denotes the scale. As 
a becomes smaller, the wavelet “shrinks” and zooms on the 
details of the fractal measure. Suppose now that X is not known 
and pi = p ,  V i  If one analyzes the fractal object with a 
wavelet centered at a point ( b l ,  b 2 )  and changes the scale of 
the analyzing wavelet from a to Xu, one obtains a value of the 
wavelet transform scaled by p [6]. This is because when the 
analyzing wavelet is shrunken by A, the portion of the fractal 
under the wavelet is similar to the portion under the wavelet 
before the wavelet was shrunken, except that its measure has 
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been scaled by p .  For the Sierpinsky triangle and a circularly 
symmetric wavelet, this is shown pictorially in Fig. 1. 

Mathematically, this can be shown using the properties of 
the fractal object and of the analyzing wavelet. Specifically, 
from relation (5 ) ,  we obtain 

Since wi(g) = (Ax + dit, Ay + d2,)*, (8) can be rewritten as 

) d p  %+( i=l a / x  ’ a/X 

2 - ( b i  - d i % ) / X  Y - (b2 - & , ) / A  

N 

= C p a w ( a / X , w i 1 ( b ) ) .  (9) 
i=l 

We can choose the point b to be the lower left-most point in 
the support of the measure and translate the coordinate system 
such that b becomes the origin. 

Definition (6) yields the identity 

- y - b = Q;(c - b) + Qib + di - b. (10) 

In the new coordinate system, y’ = y - b and g‘ = g - b. 
Therefore, the IFS transformations become 

- -  

where 

Si = &a = [k d’=Qab+da-b  

as it is seen immediately from (10). Since (0, 0) is the 
lower left-most point in the support of the measure in the 
new coordinate system, there must be one transformation 

(g) that leaves the origin invariant, i.e., w:o (0,O) = (0,O). 
Moreover, the transformations will have displacement vectors 
die = [0, 0IT and 4; = [ d i , ,  d;,lT, where d i ,  > 0 or d i ,  > 0 
for j # io in the new coordinate system. 

As a consequence, if the wavelet decays at infinity, only the 
term corresponding to io contributes to the sum in (9) when the 
scale a is sufficiently small. This is because all the other terms 
are obtained by centering the wavelet outside the attractor and 
therefore have a negligible contribution to the overall sum 
when the scale tends to 0. Under these conditions, we have 

w ( ~ , o )  ~ z o ~ ( a / ~ , w , ~ ( ~ ) )  = paoW(a/X,O).  (11) 

Relation (1 1) shows that the magnitude of the wavelet trans- 
form is multiplied by l/pzo every time we divide the scale 
by A. This implies that the logarithm of the magnitude of the 
wavelet transform scales along the line 

(12) 
In Pzo lnIW(lna,O)I N - l n a + c  

and that for measures with nontrivial geometries, there are 
oscillations with period a = 1/X  around the regressiw line. 
The reason for periodicity is that relation (12) is e x p  for 
any two values of a that are X apart in logarithmic scale 
but approximate for any other values in between. Thus, the 

In X 

Q 
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parameter A in (6) can be found by estimating the period 
of the difference between In IW(lnu,Q)l and the least square 
regression line relating In IW(ln a, Q) I to In a. 

2) Case A, # A,: A similar reasoning can be applied for 
the case A, # A, in (6). We consider the two-scale wavelet 
transform 

1)  Displacement Vectors and Probabilities: Substituting 
f ( x ,  y) = xhyk in (5) ,  we show that the moments of the 
fractal measure, which are defined by 

Ph,k = J JX'Y'~P 

are related to the moments Vh,k 

W(al7a2;bl,b2) = ) dP. N 

v h , k  = ~ P i d ~ , d $ ~ 7  
i=l From (5) ,  we get 

of the atomic measure v 
N 

dv = C p i f i ( x  - dit)fi(y - d2,)dxd~,  
i=l 

) i=l (;:7 ;: N 

W ( a l , a z ; b )  = c p i w  - -;w;'(b) . 

Applying the same reasoning as above, and choosing b to be 
the lower left-most point in the support of the image and a 
new coordinate system such that b via the relationship (0, 0), we get 

A T(lna1,lnaZ). To see this, we have from (5) 

satisfies 
= e p i  J (& (k)Arxmd?Tm 

r( lnal , lna2)  = r(lna1 - lnA,,lna;? - InA,). i=l m=O 

As a consequence, the Fourier transform R( f, , f,) of r( In a1 , 
lnaz) lies on the lines 

n l  E 2 .  
f In A, n1 
- lnA,f,+- 

The two parameters A, and A, can be therefore recovered by 
inspection of the Fourier transform R(f,, f,) of the residue. 

B. Moment Method 

By taking the terms corresponding to (m, n) = (0,O) and 
(m, n) = (h, IC) out of the summation and considering that 
p o , ~  = VO,O = 1, we obtain (14). 

Relation (14) shows that if an estimate of the moments Ph,k 
is computed from the digital image of the fractal object, then 

problem of finding dit, d2,, and N can then be reduced to 
the problem of determining the unknown degree and system 
function of a 2-D discrete linear system characterized by a 
given 2-D impulse response array [ 181. Indeed, taking the 2 
transform of I/h,k in (13), we have 

The general solution of the inverse problem requires the 

the number N of the transformations; this is a problem that 
is considered partially in [8]. In this section, we propose a 
computational procedure for this problem based in part on the 
reasoning used in [9]-[ 113 for the 1-D case. Our approach is 
based on the fact that once A, and A, are known, it is possible 

determination of the displacement parameters dlt and d2, and V h , k  can be using (14). Once "h,k is known* the 

to calculate from the image moments another set of moments c o o 3  

of an atomic measure2 that are related to the displacement 
vectors and probabilities of the IFS that can therefore be 

Z { V h , k }  "h,lcZlhZTk 
h=O k=O 

1 1 
1 - ZT'dl, 1 - Z; 

N computed from these moments using Pad6 approximation, as 
shown in Section 111-B-1. In Section 111-B-2, we discuss a way 
of finding the number of transformations. 

= c p i  
i=l 

Y 

*By an atomic measure, we mean a measure corresponding to a discrete 
probability mass function. 
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Letting k = 0 and h = 0 in (15), we obtain 

where B(z,', 2;') = Bl(z,')Bz(zF'). We use Pad6 approx- 
imation to obtain the coefficients of the polynomials in the 
denominators of (16) and (17) via solving a linear system of 
equations [ 181. Consider the N-degree polynomial B1(z l  ') 
of (16) 

B1(zc1) a 1 + biz,' + ...  + b N Z I N  
N 

= bo = 1. 
2=0 

Indeed, (16) constraints the convolution between the N point 
sequence b, and the infinitely long sequence uh,O to be 0 for 
the points h = N ,  . . . , 2 N  - 1. This is because by definition, 
Al(zL1) is a polynomial of degree N - 1. Thus, the b z ' s  can 
be found by solving the linear system of equations 

(b ,  * V h , o ) ( k )  = 0,  k = N , .  . . , 2 N  - 1, 

v0,o v1,o . . . v ~ - i , o  b N  -vN,O 
v1,o u2,o . . . .  . . I;;] 1 [ - " + 1 j  

V N - l , O  w , o  .. . v2 N - 2 ,O -U2 N - 1 , O  1 :  (18) 

where * denotes convolution. Once b,'s are known, the roots of 
the polynomials Bl(zT1) and B2(zF1) are used to find the dis- 
placement parameters d l %  and dz,, respectively. The nonzero 
coefficients of A(,zT',zF') in (15) are found by convolving 
the 2-D array V h , k  with the identified 2-D denominator of 
(15), namely, B(zT1,  zF1) A B1(~1~)B2(~2'). Finally, from 
known dlt and dz,, partial fraction expansion on A ( z l 1 ,  zF1)/ 
B ( z l ' ,  zF1) is used to determine the set of probabilities p,. 

po- 
tential difficulty in the above procedure is that the number of 
transformations N is not known in advance. Note that while 4 
is different from & for i # j ,  it is possible to have d l %  = d l ,  
(or equivalently d2, = dz,) for i # j. Therefore, the degree of 
the denominator polynomial B1 (z;') in (16) (or equivalently 
Bz(zF1) in (17)) is not necessarily equal to the number N of 
the transformations of the IFS. Rather, it corresponds to the 
number of distinct d18 (or equivalently dz,). 

Since the degrees N I  and N2 of the polynomials Bl(z,') 
and Bz(z,') are not known in advance, we consider a 
sequence of linear systems of equations of the kind in (18) 
corresponding to various polynomial degrees. Specifically, the 
assumed degree is incremented from one system to the next 
until the resulting Toeplitz system matrix becomes singular 
[12]. To see this, consider the case of a generic 1-D atomic 
measure U with N-point support and moments 

U, = / x ' d u .  

2)  Determining the Number of Transformations: One 

Compute the Wavelet Transform of the image 

1 

1 
1 Take the FFT of the residue to find A, and A, 1 

1 
1 Compute uh.k from A,, A, and the moments ph.k of the image I 

1 
[Determine the number N I  of distinct dl ,  I 

1 
I Determine the number Nz of distinct dz,  I 

1 
From known d l ,  and dZ, compute pi,, with partial fractal expansion of (15) 

1 
A,, A,, p, , ) ,d l , ,d2 ,  are the parameters of the reconstructed IFS 

. NI M-1 

M = M t l  

(b) 

Fig. 2. (a) Flowchart for the inverse problem procedure; (b) determining N I .  

If we consider any polynomial g(z) = ~ i = o g i x i  M of degree 
M < N ,  the expectation with respect to the measure U of 
g2(z) given by 

is a strictly positive number. This is because the expectation 
of a quantity that is always positive is also positive, and g(z) 
has at most M roots, whereas the measure is supported on 
N > M points. This implies that the sequence of moments 
{vi} ,  i = 0 , .  . . , 2 M  is positive definite, i.e. 

I 
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Fig. 3. Snowflake: (a) Original; (b) reconstructed. 

or, equivalently, that the matrix 

is positive definite and has determinant greater than zero for 
M < N [17]. For M = N on the other hand, we can construct 
a polynomial g(z) whose roots are in the same locations of 
the points of the support of the measure v, resulting in (19) 
to become zero and the corresponding matrix (20) to become 
positive semidefinite and singular. 

Since the matrix in (20) is of the same same kind as the 
one in the left-hand side of (18) because v h , ~  and V O , ~  are 
themselves the moments of a 1-D atomic measure, as seen 
from (1 3), our proposed procedure of incrementing the degree 
in (1  8) until it becomes singular will result in the determination 
of N I  (or equivalently N2). Specifically, as we argued above, 
the system in (18) is nonsingular for all M < Nl and becomes 
singular as soon as M = N I .  

Once N I  and N2 are determined, displacement parameters 
and probabilities are determined using the technique described 
in Section 111-B-1. Note that although d l h  and dak are known 
for h = 1,. . . , N I  and IC = 1,. . . , N2, there is still ambiguity 
as to how they pair up. To resolve this, we find the residuals 
with respect to all possible pairs of d l ,  and d 2 k :  in doing so, 
only the nonzero residuals correspond to p i .  The number of 
nonzero probabilities is equal to the number of transformations 
N of the IFS. 

A flow-chart summarizing the procedure for the inverse 
problem is shown in Fig. 2. 

Iv. RESULTS FOR THE INVERSE PROBLEM 

The procedure outlined above has been applied to the 
reconstruction of many IFS images obtained using the model 
of (6). The analyzing wavelet is the "Mexican hat" [6] 

As an illustration of the results, we consider the case of the 
Snowflake with nonequal probabilities. The Snowflake in Fig. 
3(a) is obtained from an IFS with five affine transformations 
whose parameters are shown in Table I(a). While the images 
in Fig. 3(a) and (b) are rendered in this paper using the "chaos 
game," the actual inverse problem was solved on images 
generated via the Markov operator defined in Section 11. 

The displacement parameters and probabilities, along with 
the estimated ones, are listed in Table l(a). As seen, the 
first five rows in Table l(a) show the true and estimated 
displacement vectors and probabilities. The last four rows in 
Table l(a) correspond to pairs of dlz and d2, that are not in the 
IFS under consideration. Thus, the corresponding probabilities 
are almost zero as expected. Fig. 4(a) plots the log-magnitude 
of the wavelet transform versus the log of the scale. As seen, 
periodicity is clearly noticeable in the residual, whose FFT is 
shown in Fig. 4(b). An estimate of the period gives X = 0.330, 
whereas the correct value is X = 1/3. Fig. 3(b) shows the 
reconstructed Snowflake. As seen, the reconstructed image 
looks indistinguishable from the original. 

Fig. 5 shows the Sierpinsky triangle with probabilities, 
together with the reconstructed image. The IFS parameters and 
the estimated ones are in close agreement and are included in 
[22]. The log magnitude of the wavelet transform versus the 
log of the scale and the FFT of the residual are similar in 
nature to that of the Snowflake and are also included in [22]. 
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TABLE I 
IFS PARAMETERS FOR THE SNOWFLAKE (a) ORIGINAL AND EXACT RECONSTRUCTION; (b) (3, 3) ORDER APPROXIMATION 

True dl .  True d9> Est. dl .  Est. d9. True D; Est. D; 
113 0.0 0.332 0.000 0.15 0.150 
0.0 113 0.000 0.332 0.15 0.150 
113 113 0.332 0.332 0.40 0.399 
113 213 0.332 0.666 0.15 0.150 
213 1/3 0.666 0.332 0.15 0.150 

0.000 0.000 0 1E-5 
0.000 0.666 0 6E-6 
0.666 0.000 0 6E-6 
0.666 0.666 0 1E-5 

X = 113, Est. X = 0.330 

dii dzi pi 
0.375 0.375 0.403 
0.375 0.034 0.147 
0.375 0.716 0.147 
0.034 0.375 0.147 
0.034 0.034 0.002 
0.034 0.716 0.002 
0.716 0.375 0.147 

0.716 0.716 0.002 
A, = X, = 0.25 

0.716 0.034 0.002 

h a  

(4 

Fig. 4. Snowflake: (a) wavelet transform versus scale (log); (b) FIT of the residual. 

We consider now the more general case of the overlapping 
IFS corresponding to the Fractal Butterfly of Fig. 6. In 
an overlapping IFS, the copies obtained by applying each 
transformation to the support of the attracting measure have 
nonzero superposition [l], [9]. Fig. 6 shows the original image 
and the reconstructed one after using the inverse procedure 
described above. The log-magnitude plot of the wavelet trans- 
form versus the log of the scale is similar to that of the 
Snowflake and is included in [22]. Moments p h , k  and the 
wavelet transform were calculated from a 512 x 512 image 
obtained with the so called “chaos game” [l]. 

V. APPROXIMATION PROCEDURES 
The procedure that was outlined in Section I11 is valid if the 

image was exactly generated with an IFS of type (6); this class 
of IFS is referred to as an homogeneous 2-D IFS because of the 
constant scaling factors A, and A,. In that case, the properties 
of the fractal measure enabled us to use the wavelet transform 

to determine the scaling parameters of the IFS and solve the 
inverse problem exactly. In this section, we show that we can 
construct a homogeneous 2-D IFS whose invariant measure 
can be used in principle to approximate any given image, even 
though it is not generated via an IFS model. Since an arbitrary 
image does not possess in general any scale invariance, we 
cannot use the wavelet transform to determine the scaling pa- 
rameters in our approximation procedures. The approximation 
is such that the 2-D moments f ih,k of the IFS measure match 
the moments p h , k  of the given image for a certain range R 
of indexes (h ,  IC). When successful, the suggested procedure 
always results in a valid IFS of the form (6). 

Section V-A will present the approximation procedure with 
exact moment matching without any concern about the con- 
straints that must be satisfied to make it valid. Validity issues 
will be analyzed in Section V-B. Another approximation 
scheme based on nonlinear optimization of the mean squared 
difference between the image moments and the IFS measure 
moments is considered in Section V-C. 
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"I. 

Fig. 5. Sierpinsky triangle with probabilities: (a) Original; (b) reconstructed. 

Fig. 6. Fractal Butterfly: (a) Original; (b) reconstructed. 

A. Approximation with Exact Moment Matching 

In this section, we will present the procedure to find an 
IFS measure whose moments f ih ,k  exactly match a set of 
given moments p h , k  calculated from an arbitrary image. Using 
a procedure similar to the one outlined in Section 111, we 
find a set of numbers Vh,k  from which we calculate the 
parameters of the IFS system. Contrary to the case of the 
inverse problem, where the original image is exactly generated 
via an IFS and the wavelet transform can be used to find 
the scaling parameters, in approximating arbitrary non-IFS- 
generated images, there is freedom in the choice of the scaling 
parameters A, and A, even when we fix the number of 

transformations of the IFS. Therefore, the approximation is 
not uniquely determined. 

Our approach to this problem is as follows. First, we show 
in this section that for any scaling parameters A, and A,, the 
displacement vectors and probabilities can be computed. In 
Section V-B, we show constraints on A, and A, such that 
the resulting probabilities are positive, and the displacement 
parameters are real numbers. 

Let us assume that a finite number of moments p h , k  of our 
target measure p are available. Without loss of generality, the 
support of the measure p will be considered in the following 
to be included in the square [0, 1) x [0, 1). If p is in the form 
of a digitized image, the moments p h , k ,  which are defined by 

7 
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Fig. 7. Region R for a Ni = 3, NZ = 3 IFS approximation. 

the integral 

ph,k = 1 x h y k d p ,  
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The procedure to find the parameters pi,j and dl , ,  d2, is now 
similar to the one outlined in Section I11 for the exact inverse 
problem and is based on 2-D Pad6 approximation. Specifically, 
from (23), we have 

where deg Bl(z1)  = N1 and deg A l ( z 1 )  = N I  - 1. If 
A1(z;')/B1(zC1) is computed as the [NI  - 1/N1] Pad6 
approximation [18] of the sequence {Uh,O}, i.e. 

can be readily computed since the measure p has a density 
that is piecewise constant over each pixel of the image. 

Our goal is to find, when possible, an IFS measure ji whose 
moments bh,k are equal to those of p in a region R of indexes 
(h, IC). The size of the region R depends on the number of 
transformations that we choose for the approximating IFS; if 
the IFS of type (6) has N I  different displacement parameters 
dit, i = 1,  . . . , N I ,  and N2 different displacement parameters 
dz,  , j = 1, . . . , N z ,  then the IFS will consist of N1N2 
transformations, where each corresponds to a pair ( d l % ,  d2,) 

i = l ,  . . . ,  NI; j = 1 ,  ..., N2 

and probability pi,j. We will denote by ( N I ,  N2) the order 
of the approximation. The region R for a N I  = 3, N2 = 3 
approximation is shown in Fig. 7. The particular shape of 
region R is due to the class of IFS (22) that we consider, as 
we will show below in the description of the approximation 
procedure. 

Given a finite set of moments ph,k, we can generate, for any 
arbitrary fixed value of A, and A,, a sequence Yh,k of numbers 
using relation (14). We then search for a 2-D atomic measure 

Ni Nz 

dD = X ~ i , j S ( x  - d i t ) 6 ( y  - d z 3 ) d x d y  
i=l j=1 

whose moments 

i=l j=1  

match Uh,k in R, i.e., Uh,k = fih,k for (h,IC) E R. We have 
from (23) 

then we can set fih,O = Uh,O for h = 0 , 1 , .  . . ,2N1 - 1. 
The Pad6 approximation A1(z;')/B1(zF1) is readily com- 
puted by solving a linear system of equations and computing 
convolution, as shown in Section I11 [18]. 

In a similar way, we can find polynomials 
A2 (zF1) /B2 (2; ') such that 

U0,k = fiO,k, = 0, 1 , .  . . , 2N2 - 1. 

We note that because of relation (25), the displacement pa- 
rameters d1%, i = l , .  . . , Nl can be found as the roots of the 
polynomial B1(zT1). Similarly, d2,, j = 1 , .  . . , N2 are the 
roots of the polynomial B2(zF1). 

Once Bl(z;l)  and B2(zq1)  are computed, the coefficients 
of A(zTl,z; ')  in (24) are found by computing the 2-D 
convolution of Vh,k with the separable sequence ~ ( z ; ' ,  z;') 
2 B 1 ( z , l ) B 2 ( z 3 :  

( U i , j  * *(b))(h,  I C ) ,  h = 0 , .  . . ,NI - 1; IC = 0 , .  . . , N2 - 1. 
(28) 

Finally, probability pi , j  is determined by finding the residual 
of (24) with respect to the pair of roots dl* and d2,. 

The above procedure guarantees that the 2-D rational func- 
tion 

has inverse Z-transform coefficients 
N i  Nz 

fih,k = ~ ~ p i , j d ~ t d ~ ,  Vh,k (29) 
i=l j=1 

(h,IC) E R = (0 5 h 5 N1 - l , o  5 IC 5 N2 - 1 )  
U { h  = 0,Nz 5 k 5 2N2 - 1) 
U {NI 5 h 5 2N1 - 1, IC = 0). 

The region R in (29) is explained by considering that the 1- 
D Pad6 approximation of (26) guarantees the equivalence of 
moments for 0 5 h 5 2N1 - 1, the 1-D Pad6 approximation 

T l  
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Fig. 8. (2 ,  2) order approximation of the Snowflake. 

of (27) guarantees the equivalence of moments for 0 5 k 5 
2N2 - 1, and the 2-D convolution of (28) guarantees the 
equivalence for 0 < h 5 NI  - 1,0  < k 5 N2 - 1. This 
explains the shape of the matching region in Fig. 7. The IFS of 
type (6) corresponding to the parameters p i , j ,  d l z ,  d2, and the 
chosen A,, A, will have moments b h , k  that can be calculated 
from Ch,k by inverting relation (14), namely 

b0,o = 1;  

r 1 

Relations (30) and (14) show that there is a one-to-one 
correspondence between f ih,k and Ch,k for ( h , k )  E R. The 
fact f ih& = vh,k for ( h , k )  E R therefore guarantees that the 
attracting measure f i  of the IFS thus determined has the desired 
original moments j ih ,k  = Ph,k  for ( h , k )  E R. 

B. Validity of the Approximation 

The construction above is consistent only if the resulting 
IFS is a valid one. By a valid IFS, we mean one where 
probabilities pi,j are positive and displacement parameters dl t  
and d2, are real numbers. The choice of the parameters A, 
and A, provides the required degree of freedom to search 
for a valid approximation. In this section, we will present 
the procedure we adopt to obtain a valid approximating IFS, 
and the constraints the IFS parameters must obey. In Section 
V-B- 1, we discuss conditions under which the displacement 
parameters result to be real, and in Section V-B-2, we discuss 
conditions under which the probabilities are positive. 

1) Realness of Displacement Parameters: The theoretical 
framework that we consider is the so-called “problem of 
moments” [12]. In particular, we reproduce here the following 
lemma from [12] and [9]: 

Lemma 1: Given a set of numbers { P O ,  PI,. . . , ~ z L - I } ,  
consider the Hankel-Hadamard determinants A?), j = 0,  1 , 2  
of the (n  + 1)  x ( n  + 1 )  real symmetric matrices H g )  with 
entries 

H . ’ ( h ,  k )  = pj+h+k (31) 
j = O , I ,  ( h , k ) , h = O  , . . . ,  n; k = O  , . . . ,  n 

and 

Hi2’(h ,  k) = ph+k - ph+k+l, (hi IC), (32) 
h=O , . . .  ,n;  k = O  , . . . ,  n. 

If the inequalities 

A?)>O,  j = O , 1 , 2 ;  n = O , 1 ,  . . . ,  L - 1  (33) 

are satisfied, then there exists an L-point atomic measure 

L 

d v  = Cp,6(~ - d n )  

with support in [O, 13 having {po, P I ] . .  . , p 2 ~ - l }  as moments. 
Moreover, the locations d, and weights pn can be determined 
from the [ L  - 1 / L ]  Pad6 approximant 

n=l 

L 

[L - l / L ] ( z - l )  = n=l 1 - d,z-l 
2L-1 

= p , f n  + O(z -2L)  
n=O 

where the weights p,’s are guaranteed to be nonnegative, and 
d,’s are guaranteed to be real numbers. Conversely, the set of 
moments { P O ,  p l ,  . . . , p2L-1) of any positive measure verifies 
(33). 

If we do not require that the support of the measure is [0, 
11, then condition (33) can be relaxed to 

A ? ) > O ,  n = 0 , 1 ,  . . .  , L - l .  (34) 

This still guarantees that the dn’s are real numbers but not 
necessarily between 0 and 1. 

The previous lemma suggests that if we choose the scaling 
parameters A, and A, in our approximating procedure such 
that conditions in (33) are satisfied for the sequences { V h , o } ,  

obtained from the moments ph,k via (14), then the computed 
displacement parameters d l %  and d23 will be indeed real 
numbers. One way to satisfy (33) is to consider the case 
where A, = A, = 0. Under these conditions, we have from 

are obtained from the 1-D marginal distributions of the 2-D 
measure fi  and are therefore the moments of a I-D measure. 
As a consequence, they satisfy the conditions of (33). Since 
the constraints (33) are continuous in A, and A,, there exists 

h = 0, .  . . , 2 N l  - 1 and { v O , k } ,  k = 0, .  . . ,2N2 - 1 

(14) vh,O = Ph,O and v O , k  = P 0 , k .  Sequences Ph,O and p 0 , k  
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Fig. 9. (3, 3) order approximation of the Snowflake: (a) A, = A, = 0.25; (b) A, = A, = 0.33. 

a range I ,  = [0, AZmax] for A, and a range I ,  = [0, A,,,,,,] for 
A, such that v h , ~  and VO,k satisfy (33). 

We can summarize the above discussion in the following 
theorem: 

Theorem 1: Given the moments { , u h , k }  of the original 
measure p, it is possible to find an interval Iz = [O,A,,,,] 
of values of A, and I ,  = [O,AYmax] for A, such that the 
moments {vh,k} calculated from { p h , k }  via (14) will result 
in real numbers dl, and d2, when using the approximation 
procedure of Section V-A. 

Values of A, or A, obtained in the above theorem is one 
way to satisfy conditions (33) but certainly not the only way. In 
general, the situation is more complex in that there exists more 
than one interval of values of A, (or A,) such that conditions 
(33) are satisfied for the corresponding sequence Vh,O (or V 0 , k ) .  

This observation is quite important; even if we attempt to 
approximate an image that has been obtained exactly with 
an IFS of the form (6) and even if we use a number of 
transformations that exceeds the one used in generating the 
original image, we may fail to recover the IFS exactly if we 
confine the search of the parameter A, (or A,) to the interval 

Besides the intervals I ,  and I ,  of Theorem 1, there will be 
other intervals of values of A, (or A,) in which conditions 
(33) are satisfied. Let us denote by U, (or U,) the union 
of such intervals. A general way of determining U, (or U,) 
is to check the smallest eigenvalue of the matrices H$:-l 
for the sequence vh,o (or H$:-~ for the sequence V 0 , k )  as a 
function of A, (or A,). The regions in which such eigenvalue 
is greater than 0 correspond to a positive definite so 
that conditions in (33) are satisfied [17]. 

2 )  Positivity of Probabilities; Thus far, we have dealt with 
choosing A, and A, so that the displacement parameters are 

I ,  (or 1,). 

real and in the range [0, l l .  Another constraint that needs to be 
satisfied to assure the validity of our approximation procedure 
is the positivity of the p i , j .  Note that Lemma 1 does not 
guarantee the positivity of probabilities p i j  because it only 
deals with 1-D atomic approximations. As for the positivity of 
the probabilities p i , j .  we have the following result. 

Theorem 2: The 2-D homogeneous IFS approximation pro- 
cedure of order (NI, N2) will result in positive probabilities 
if and only if there exist A, E U, and A, E U, such that the 
polynomials 

h = l ,  . . . ,  NI; k = l ,  . . . ,  N2 

satisfy 

(35) 
Proot The polynomial t h , k ; X , , X ,  ( x ,  y) is the unique 

polynomial of degree NI - 1 in z and N2 - 1 in y satisfying 

1 i = h , j = k  
t h , k ; X , , X y  (dl% d2,) = c 0 otherwise 

Given a not-necessarily positive atomic measure 17 with 
weights3 p h , k  at the mass points (dlh,dzk) and moments 

3We reserve the name probabilities for positive weights p h , k .  

I 1  
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10” 

Fig. IO. 
approximation. 

Smallest eigenvalue of H g ) , j  = 0 ,1 ,2  versus A, for a (3, 3) 

where E[.] denotes the expectation operator with respect to the 
measure 6. This is because the polynomial th ,k ;X , ,X ,  ( I C ,  y) is 
zero at all the mass points of the measure except at the one 
with weight p h , k .  Therefore, p h , k  2 0, for h = 1, . . . , NI ; k = 
1, . . . , N2 if and only if there are A, and A, such that (35) is 
satisfied. 0 

Thus, to ensure positivity of the probabilities, we must 
ensure that A, and A, are chosen so that (35) is satisfied. 

From Theorems 1 and 2 and the results of Section V-A, 
the complete approximation procedure with an IFS of order 
( N I ,  Nz) can be outlined as follows: 

5 )  Otherwise, choose a different value of A, in U, and A, 

Note that the approximation procedure is not unique. In 
particular, any value of A, and A, in the allowable ranges U, 
and U, that results in positive probabilities provides a solution 
of the exact matching moment procedure. We will see the 
implications of this in the experimental results of Section VI. 

in U,, and continue from step 2. 

C. Approximation with Overdetermined Moment Matching 

In the last section, we showed a procedure to determine an 
IFS whose attractive measure has exactly the same moments 
of the original given image in the range R. In this section, we 
consider a procedure aimed at finding an IFS measure whose 
moments approximate the given ones in a mean squared sense. 

Equation (30) shows that the moments b h , k  of the IFS 
approximating measure are a nonlinear function of the param- 
eters P = {A , ,Ay ;pz , j ,d l%,d23,  i = 1,. . . , N I ,  j = 1,. . . , 
N2 }. It is therefore conceivable to find the approximating 
IFS by calculating the parameters that minimize the objective 
function 

0, = x ( i % , k  - bh ,k>’  (36) 
h,k 

over a certain region of indexes R. In [16], the same method 
is applied to the more complex case of a general matrix Qi in 
(2). As we will see in Section VI, the main difference between 
our approach and that of [ 161 is that we can use the parameters 
obtained in the exact moment matching as described in Section 
V-A as the initial conditions in the nonlinear approximation 
problem. 

In our minimization procedure, the parameters must satisfy 
a set of constraints that make the resulting IFS a valid one, 
namely, the parameters A, and A, must be positive numbers 
less than 1 to make the IFS transformations contractive, p i , j  

must be a set of positive probabilities, and dit, dz3 must be 
in [0, 13 to have a resulting fractal measure with compact 
support. The approximation problem therefore becomes a 
linearly constrained nonlinear optimization problem and can 

Determine ranges U, and U, such that the sequence 
{ v h , o j  computed from ,uh,k via (14) satisfies 

be solved using a reduced-gradient optimization algorithm, 
which is available in a number of numerical packages [21]. 
To increase the speed of convergence and the accuracy of 

A g ) > O ,  j = O , 1 , 2 ,  m=O , . . . ,  N I - 1  the reduced-gradient algorithm, the gradient of the objective 
function (36) with respect to the parameters need to be 
computed. The gradients of (36) can be computed recursively and the sequence {VO,k}  satisfies 

A?)>O,  j = O , 1 , 2 ,  n=O , . . . ,  N2-1. using (30), as shown in [22]. 
The discussion of the previous section suggests formulation 

Choose a value of A, in U, ,& A, in U,, 
dlz and dZ3 using l - ~  Pa& approximation of the se- 
quences { V h , O } ,  h = 0, .  . . , 2 ~ 1  - 1, and { V o , k ) ,  IC = 

Build the polynomials th ,k ;A , ,X ,  ( I C ,  y) of Theorem 2 for 

of the problem in an alternative, much simpler way. Instead 
of minimizing (36), it is possible to consider the objective 
function 

0 , .  . . ,2N2 - 1. 

0, = ( V h , k ( A z ,  A y )  - x p i , j d ? , d ; 3  ) z  (37) 
h,k i,i h = 1,. . . , N I ,  k = 1,. . . , N2, and check conditions in 

(35). 
If the conditions are met for the chosen A, and A, or if 
the direct check of the probabilities indicates that they 
are all positive, then the approximation procedure is 
successful. 

where V h , k ( A , ,  A,) are computed from the moments P h , k  of 
the image via (14). The simple expression of the gradient for 
(37) is shown in [22]. In the ideal optimal case where the image 
is generated by IFS parameters as in (6), if we find parameters 
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(4 

Fig. 1 1 .  Fractal Stroke: (a) Original; (b) (6, 7) approximation. 

Fig. 12. Fractal Stroke: (a) (4, 4) approximation; (b) (5, 5)  approximation. 

A,, Ay;p;,j, d l z ,  for i = 1,. . . , N 1 , j  = 1,. . . , Nz such 
that the objective function (37) is exactly zero, we would 
have Ch,k = v h , k .  To ensure the one-to-one correspondence 
between ,uh,k and l / h , k ,  R must be chosen such that there is 
an invertible relation between Ph,k  and V h , k .  As we will see in 
Section VI, a good choice is the triangular region of indexes 
{ (h ,  k ) : h  + k < L }  for some integer L. Note that for a fixed 
region of indices (h ,  k )  in which the nonlinear functions (36) 
and (37) are minimized, we can choose a different number of 
transformations for the IFS. Intuitively speaking, for a fixed 
region R, the smaller the number of transformations, the more 

"overdetermined" the problem becomes. We will see effects of 
this in the approximation examples. 

VI. EXAMPLES OF THE APPROXIMATION PROCEDURE 

In this section, we present examples of the approximation 
procedure outlined in the previous section. We only consider a 
finite number of moments of the original image and compute 
a valid IFS of type (6) with the same moments. In Section VI- 
A, we consider the approximation of IFS generated images, 
whereas in Section VI-B, we consider the approximation of 
real images. 
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A. Approximation of IFS-Generated Images 

Although our primary motivation in deriving the results in 
Section V has been to approximate arbitraly images, they 
can also be used in lower order approximations of IFS- 
generated images with a large number of transformations. In 
this section, we apply the technique described in Section V to 
the approximation of IFS-generated images. 

We begin with the application of the approximation proce- 
dure to the Snowflake of Fig. 3(a). As explained in Section 
IV, the Snowflake is obtained with five transformations, with 
three different displacement parameters both in the z direction 
and the y direction. Using the scheme of Section V, we would 
need a (3, 3) order approximation to recover the parameters 
exactly where five transformations out of nine would have 
zero probability. 

Fig. 8 shows a (2, 2) order approximation of the Snowflake. 
Due to the symmetry of the measure, its moments satisfy 
Ph,k = pk,h.  We arbitrarily chose the values A, = A, = 
0.739 = A,, in the admissible range U, = U, = [0,0.739] 
as the scaling parameters. The IFS parameters of the approx- 
imation are included in [22]. The IFS approximation matches 
eight moments of the original image, corresponding to the 
region R relative to a (2, 2) order approximation as defined 
in Section V. As seen, the appearance of the approximating 
image is quite different from the original one. A discussion of 
the properties of lower order moments can be found in [15]. 
In particular, it is noted there that the first- and second-order 
moments define an equivalent ellipse-like approximation of 
the original image. 

Fig. 9(a) shows a (3, 3) order approximation of the 
Snowflake. The corresponding IFS is shown in Table I(b). 
Note that except for the scaling parameters, the displacement 
parameters and probabilities are closely related to the true 
values listed in Table I(a). Fig. 10 shows the smallest 
eigenvalue of the matrices Hf) , j  = 0 ,1 ,2  as a function 
of A,. The corresponding matrices and eigenvalues for the y 
direction are exactly equal to those for the z direction due to 
the symmetry of the moment sequence noted above. As seen, 
there is only one interval U, = U, = [O, A,,,], A,,, = 0.333 
in which all of the three matrices are positive definite. We 
arbitrarily choose A, = A, = 0.25 in U, = U, = [0,0.333]. 

The (3, 3) order approximation recovers the Snowflake 
parameters exactly if we choose A, = A, = A,, = 0.333 as 
expected. The reconstructed image is in Fig. 9(b). Thus, for a 
(3, 3) approximation, any value of A, and A, in the allowable 
range leads to an IFS measure that matches the moments of 
the original image in R; the value A, = A, = A,, = 0.333 
results in the original snowflake, whereas A, = A, = 0.25 
results in a similar looking image. 

Fig. 11 (a) shows the Fractal Stroke that is computed with 25 
transformations as listed in Table II(a). There are six different 
displacement parameters dit and seven different displacement 
parameters d2,: A, = 0.54 and A, = 0.41. In the approxi- 
mation scheme of the previous section, this corresponds to 42 
transformations, only 25 of which have nonzero probabilities. 
Fig. 12 shows a (4, 4) and a (5, 5) approximation of the 
Fractal Stroke with A, = 0.57, A, = 0.29. The values of 

”5 10.00 a/@ 
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Fig. 13. 
approximation; (b) expansion of the square in (a). 

(a) Smallest eigenvalue of H p ) ,  j = 0 , 1 , 2  versus A, for a (6,  7) 

A, and A, were chosen in the allowable range following the 
arbitrary criterion of maximizing the sum A, + A, in order to 
have an IFS that is less contractive. In each case, we find that 
there is only one interval of A, and A, satisfying conditions 
(33). The remaining IFS parameters of the approximations 
are included in [22]. Some of the probabilities for the (5, 
5 )  approximation are zero to numerical precision, and the 
corresponding transformations can be eliminated from the 
IFS. As seen, the approximations become more similar to the 
original image as the number of transformations increases; in 
particular, the ( 5 , 5 )  approximation seems to retain all the basic 
features of the original image. 

In contrast to the (4, 4) and (5,  5) approximations, in the 
case of the (6, 7) approximation, the sets U, and U, are 

TT 
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TABLE I1 
IFS PARAMETERS OF THE FRACTAL STROKE: (a) ORIGINAL; (b) (6, 7) ORDER APPROXIMATION 

WITH 0, OPTIMIZATION; (c )  (6, 7) ORDER APPROXIMATION WITH 0, OFTIMIZATION 

dii 
0.010 
0.010 
0.010 
0.010 
0.010 
0.180 
0.180 
0.180 
0.180 
0.310 
0.100 
0.180 
0.010 
0.200 
0.310 
0.310 
0.200 
0.200 
0.180 
0.310 
0.460 
0.460 
0.100 
0.100 

d2i Pi 
0.010 0.112 
0.100 0.020 
0.250 0.040 
0.400 0.060 
0.590 0.020 
0.010 0.030 
0.100 0.030 
0.250 0.050 
0.590 0.020 
0.400 0.050 
0.500 0.034 
0.400 0.025 
0.500 0.040 
0.590 
0.300 
0.500 
0.500 
0.100 
0.500 
0.590 
0.590 
0.100 
0.100 
0.590 

0.040 
0.030 
0.030 
0.025 
0.025 
0.030 
0.038 
0.045 
0.045 
0.038 
0.025 

0.200 0.300 0.098 
A, = 0.54, A, = 0.41 

actually the union of two disjoint intervals. Fig. 13(a) shows 
the smallest eigenvalue of Hf), j = 0,1 ,2  for the sequence 
v h , ~  as a function of A,. Fig. 13(b) shows a detail of Fig. 13(a) 
around the true value of the scaling parameter A, = 0.54. 
As expected, the matrices become positive definite again after 
being nonpositive definite. A similar behavior holds for the 
eigenvalue corresponding to the matrices of the sequence V O , ~  ; 
the matrices become positive definite in an interval around 
A, = 0.41. 

By maximizing the value A, + A, in the range of A, E 
U,, A, E U, that give positive probabilities, we obtain, to 
numerical precision, the correct values A, = 0.54 and A, = 
0.41 and get the approximation of Fig. 11. The approximation 
recovers the original IFS exactly within numerical precision. 
Fig. 14 shows approximations obtained using the nonlinear 
optimization methods of Section V-C. In both cases, the initial 
conditions where A, = A, = 0.5, and the displacement 
parameters in the z and y directions were initially set to 
be equally spaced in the interval [0,1], i.e., d l %  = (i - 
I)/Nl,Z = 1,. . . , N1 (or equivalently dl, = ( j  - 1)/N2,j = 
1, . . . , N2) for NI displacement parameters dlt (or equiva- 
lently N2 displacement parameters d2, ). Probabilities were 
initially set to the same value 1/NlN2 for each transformation. 
In particular, Fig. 14(a) shows a (6, 7) approximation obtained 

Pi 
0.146 
0.079 
0.074 
0.103 
0.105 
0.081 
0.149 
0.100 
0.159 
0.003 

= 0.464 

dii 
0.011 
0.011 
0.011 
0.011 
0.147 
0.147 
0.147 
0.147 
0.292 
0.292 
0.292 
0.292 
0.482 

d2i 
0.000 
0.138 
0.326 
0.507 
0.000 
0.138 
0.326 
0.507 
0.138 
0.326 
0.507 
0.606 
0.000 

Pi 
0.100 
0.048 
0.037 
0.066 
0.050 
0.076 
0.091 
0.138 
0.099 
0.070 
0.114 
0.018 
0.022 

0.482 0.326 0.025 
0.482 0.507 0.025 
0.482 0.606 0.021 

A, = 0.494, A, = 0.449 

by minimizing (36) on the region of indexes { (h ,  I C ) ,  h + 
IC < IO}. The IFS corresponding to a local minimum of the 
objective function has only ten transformations with nonzero 
probability and is shown in Table II(b). Fig. 14(b) shows a (6, 
7) approximation obtained by minimizing (37) over the same 
region of indices as before. There are only 16 transformations 
with nonzero probability, as shown in Table II(c). The two 
images retain the basic features of the original one, but some 
striping effect in Fig. 14(a) and square-blocked artifacts in Fig. 
14(b) are clearly visible, as a result of the obtained values 
for the displacement parameters and scaling factors in the 
two cases. The approximation of Fig. 14(b) required a much 
smaller computation time than that of Fig. 14(a) due to the 
simpler computation of the gradient vector in the nonlinear 
optimization procedure. 

B. Approximation of Real Images 

We have also applied our approximation procedure to real 
texture images. Fig. 15(a) shows a 256 x 256 digitized texture 
from the book [19]. Fig. 15(b) shows a (8, 3) approximation 
of the “Cheesecloth” of Figure 15a using the scheme of 
section V.A. For this case, we relax the conditions required 
to determine the intervals U, and U, by checking that only 
the matrices corresponding to j = 0 in Lemma 1 are posi- 

dli d2i 

0.000 0.000 
0.000 0.306 
0.000 0.117 
0.000 0.503 
0.110 0.306 
0.110 0.117 
0.110 0.503 
0.288 0.117 
0.288 0.503 
0.506 0.000 

A, = 0.695, A, 

I 71 
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Fig. 14. Fractal Stroke: (a) (6, 7) approximation (0, minimization); (b) (6,  

tive definite. As noted, this guarantees that the displacement 
parameters are real numbers but not necessarily in the range 
[0, I]. The IFS for the (8, 3) approximation is in table 3a. As 
seen, the negative displacement parameters have very small 
magnitude, as expected because of the [0, 1) x [0, 1) support 
of the original image. We note that we represent the image with 
less than 37 parameters in total, corresponding to the set of 
probabilities, displacement parameters and A,, A, of the IFS. 

The approximating image matches well the general ap- 
pearance of the original one. Note, in particular, the cor- 
respondence between dark regions in the original and ap- 
proximated image. However, the correspondence between the 
exact position and the shape of the vertical features in the 
two images is only approximate. The values of A, and A, 
were chosen in the allowable ranges U, = [0,0.19] and 
U, = [0,0.508] to minimize the presence of artifacts. In 
particular, horizontal stripes are visible for certain values of 
A,. Starting from the pair of values that maximize A, + A,, 
some trial and error was necessary to determine the final 
values. Note that our chosen value A, = 0.33 and the 
values of the three displacement parameters in the y direction, 
i.e., dzl = 0.330,dz2 = -0.004,d2, = 0.664, prevent 
horizontal stripes because the image replicas produced by 
the IFS transformations barely touch each other. Intuitively 
speaking, for A, > 0.33, the replicas would have been 
overlapping each other, and for A, < 0.33, there would have 
been gaps between the replicas, thus resulting in horizontal 
stripes in both cases. Increasing the number of transformations 
did not improve the approximation. Blank regions and white 
stripes began to appear in the approximation. A discussion of 
this effect is delayed to the conclusion in Section VII. 

Fig. 15(c) is obtained with an IFS whose parameters are 
computed by optimizing (36) over the region R corresponding 
to indexes { (h ,L) :h  + IC < lo}. Initial conditions were 

7) approximation (0, minimization). 

A, = A, = 0.5 with equally spaced displacement parameters 
in [0, 11 and equal probability for each transformation. The 
image corresponds to an IFS with eight dl%’s  and three d2? ’s. 
Only 12 out of the 24 possible transformations have nonzero 
probabilities, and only six d l % ’ s  appear in the IFS shown in 
Table III(b). In this case, there is a correspondence between 
dark regions in the original and approximating image. The 
approximating image appears smoother than the one in Fig. 
15(b) obtained with the exact matching procedure. 

Fig. 16(a) shows the 256 x 256 digitized image “Water” 
from [19]. Fig. 16(b) shows a (3, 3 )  approximation of the 
image obtained with the procedure of Section V-A. The final 
values of A, and A, were obtained after some trial and error 
to minimize vertical and horizontal stripes. Only six of the 
transformations result to have nonzero probability. Fig. 16(c) 
shows a (3, 8) approximation based on the minimization of 
(36) on the region of indexes { (h ,  k ) : h  + IC < lo}. Only eight 
transformations have nonzero probability, and only three of 
the eight displacement parameters d23 play a role in the IFS. 
Initial conditions were set to the values obtained for the (3, 3) 
approximation of Fig. 16(b); additional transformations for the 
(3, 8) approximation were initially assigned zero probabilities. 

Horizontal stripes are clearly seen in the approximations of 
Fig. 16(b) and (c) that are not present in the original image in 
Fig. 16(a). The image “Water” is almost a uniform luminance 
gradient from black to white in the vertical direction and is not 
inherently “self-similar.” The approximating images retain the 
main feature of the original image, i.e., the vertical variation 
from a dark to a light region. However, horizontal stripes 
are present due to the characteristics of the IFS formalism, 
in which the resulting image is made up with overlapping 
scaled copies of the whole image. In particular, replicas of the 
dark region at the bottom of the image must be visible in the 
(x, y) position corresponding to the displacement parameters. 
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(a) (b) (C) 

Fig. 15. “Cheesecloth”: (a) Original; (b) (8, 3) approximation; (c) (6, 3) approximation with 0, minimization. 

TABLE 111 
IFS FOR THE (8, 3) APPROXIMATION OF THE CHEESECLOTH WITH (a) EXACT MOMENT MATCHING, (b) 

OVERDETERMINED MOMENT MATCHING VIA 0, OPTIMIZATION AND, (c) ( 5 ,  2) ORDER APPROXIMATION OF “RAFFIA” 

dli d2i Pi 
0.532 0.330 0.058 

dli d ~ i  Pi 
0.006 0.000 0.133 

0.532 
0.532 
0.199 
0.199 
0.199 
0.108 
0.108 
0.108 
-0.003 
-0.003 
-0.003 
0.367 
0.367 
0.367 
0.687 
0.687 
0.687 
0.815 
0.815 

-0.004 
0.664 
0.330 

0.664 
0.330 

0.664 
0.330 
-0.004 
0.664 
0.330 

0.664 
0.330 

0.664 
0.330 

-0.004 

-0.004 

-0.004 

-0.004 

-0.004 

0.058 
0.061 
0.055 
0.052 
0.055 
0.022 
0.021 
0.021 
0.044 
0.039 
0.040 
0.071 
0.068 
0.066 
0.057 
0.051 
0.051 
0.038 
0.031 

0.815 0.664 0.040 
A, = 0.19, A, = 0.33 

0.006 0.364 0.009 
0.006 0.499 0.145 
0.000 0.000 0.105 
0.000 0.499 0.090 
0.357 0.000 0.049 
0.357 0.499 0.038 
0.460 0.000 0.204 
0.460 0.499 0.037 
0.461 0.499 0.041 
0.467 0.364 0.011 
0.467 0.499 0.137 
A, = 0.538, A, = 0.5 

For example, in Fig. 16(b), a horizontal line is present in 
correspondence to the displacement parameter dal = 0.495. 
The effect is particularly evident because of the form (6) of 
the IFS we consider, which tends to result in approximating 
images with a square-blocked appearance. This is indicative of 
the fact that our proposed approximation scheme is appropriate 
only for a specific class of images that inherently possess a 
certain degree of “self-similarity’’ and that the result of the 
approximation can be poor for other images. 

4, d ~ ,  Pi 
0.324 0.499 0.119 
0.324 0.000 0.143 
0.155 0.499 0.068 
0.155 0.000 0.062 
0.000 0.499 0.085 
0.000 0.000 0.116 
0.554 0.499 0.131 
0.554 0.000 0.100 
0.776 0.499 0.085 
0.776 0.000 0.091 
A, = 0.227, A, = 0.5 

Fig. 17(a) shows the image “Raffia” from [19]. Fig. 17(b) 
shows a ( 5 , 2 )  approximation of the image. The approximation 
is obtained by combining the exact matching and optimization 
procedures. In particular, the approximation is obtained by 
minimizing (36) on the region of indexes {(h, k) :h+k < 12}, 
starting from initial conditions given by the exact matching 
procedure for the same approximation order. The values of A, 
and A, in the exact matching procedure were chosen in the 
admissible region in such a way as to minimize the presence 
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(a) (b) (C) 

Fig. 16. “Water”: (a) Original; (b) (3, 3) approximation; ( c )  (3, 8) approximation with 0, minimization. 

(a) 

Fig. 17. (a) “Raffia”; (b) (5, 2) approximation of  “Raffia.” 

of stripes. The IFS of the approximation is in Table III(c). 
As seen, the approximation retains the features of the original 
image only approximately; some square-blocked artifacts are 
clearly noticeable. 

VII. CONCLUSION 
We considered the problem of determining the IFS parame- 

ters for a class of 2-D fractal signals by applying the wavelet 
transform and the moment method. The method is applicable 
to images that are generated by 2-D homogeneous IFS and 
exploits the self-similarity of fractal objects along different 
scales. 

The extension of our method to the case of a general IFS 
is not immediate. This is due to the fact that there is no 
simple recursive expression for moments in the general case 
[ 161. In addition, the application of the wavelet transform 
method to the case of different matrices Qi in (2), even if 
the diagonal structure is maintained, would not permit us to 
determine all of the different scaling parameters but only those 

corresponding to transformations wi whose fixed points are 
easily determined; see the discussion in Section 111-A-l . 

An approximation procedure has also been suggested for 
the case of arbitrary images not necessarily generated by IFS 
parameters; the original image is known via its moments, and 
the reconstruction process aims at matching those moments. In 
principle, the power of the moment approach is significant be- 
cause of the one-to-one correspondence between 2-D compact 
support measures and the sequence of their moments [12]. 
This implies that measures with the same infinite sequence 
of 2-D moments coincide. From a practical standpoint, the 
coincidence of a finite set of moments does not guarantee 
in general that the two images look alike; see, for instance, 
[ 151. In particular, the appearance of the approximating image 
can be different from that of the original image, even if the 
number of matched moments is significant, since the moments 
only give average information on the original image. This 
implies that the resulting IFS image can look different from 
the original one. 
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Indeed, following the method of Section V, we could find 
a 2-D atomic measure fi whose moments match the moments 
p h , k  of the original image p directly instead of V h , k .  The 
“geometrical” appearance of the original nonatomic measure 
p and of the approximating atomic measure would be very 
different. As a matter of fact, when we increase the number 
of transformations of the IFS, we empirically find that the 
allowable range of values of A, and A, becomes smaller, and 
typically closer to zero, as suggested by Theorem 1. As a 
consequence, the resulting highly contractive IFS will have 
an invariant measure that becomes increasingly similar to an 
atomic one, and its visual appearance can be very different 
from the original image. In addition, numerical instability 
arises as we increase the number of transformations for the 
IFS, as noted in [ l l ]  and [lo] for the 1-D case. The potential 
usefulness of the approximation approach of Section V derives 
from the fact that we actually approximate images with fractal 
measures. As evidenced by Figs. 15-17, the greater richness 
of the fractal representation should provide a powerful tool for 
the approximation of fractal-like images. 

Future work involves the extension of our results to more 
general classes of IFS and the applicability of IFS techniques 
to the approximation of various regions within a real image. 
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