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Neural Net-Based Continuous Phase 
Modulation Receivers 

Gustavo de Veciana, Student Member, IEEE, and Avideh Zakhior, Member, IEEE 

Abstract- Continuous phase modulation (CPM) schemes are 
generally used in peak-power limited transmission systems such 
as digital satellite communications. Their major drawback, how- 
ever, is a prohibitively complex receiver structure, particularly 
in modulation schemes with high packing densities. In this paper 
we propose feed-forward neural nets (NN) as receivers for partial 
response CPM systems. Our approach is to replace the entire 
receiver structure, excluding timing recovery, with a neural 
net unit whose inputs are time samples of the incoming base- 
band signals, and whose outputs are the decoded symbols. We 
present simulation results for coherent and incoherent NN based 
receivers, and compare their performance with the optimum 
maximum-likelihood (ML) receiver. A performance analysis of 
NN-based receivers at large SNR is presented. 

I. INTRODUCTION 
ONSTANT envelope continuous phase modulation 

C P M l  schemes are extremely important in peak power 
limited communication applications such as satellite trans- 
mission systems. These schemes are generally characterized 
by high packing densities and prohibitively complex receiver 
structures [l], [2]. For instance, while their packing density 
increases with partial response, or the overlap of the frequency 
pulses L,  and the alphabet size M ,  their optimal ML receivers 
require a bank of matched filters whose size grows as 
M L .  This bank of filters is followed by a Viterbi decoder 
which draws heavily on computational resources. Specifically, 
while reducing the modulation index h improves bandwidth 
efficiency, the number of states in the Viterbi decoder increases 
with the denominator of h. 

Applications of neural networks in communication systems 
have been proposed in a variety of contexts such as ML 
sequence detection, and decoding error correction codes [3], 
[4]. In this paper, we develop neural network based receiver 
structures for constant envelope CPM systems. Our motivation 
is to reduce the complexity of implementation by casting 
the demodulation task into the more general framework of a 
neural network classification task. In so doing, we replace the 
matched filter banks and the Viterbi decoder of the optimal 
receiver with a feed-forward net trained to demodulate the 
incoming baseband signal. Although the performance of this 
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receiver is suboptimal: it is our hope that its implementation 
for more complex modulation schemes, which exploit the reg- 
ularity of neural network architectures will become practical 
as VLSI analog and/or digital neural network chips become 
workable commodities. 

The organization of the remaining part of this paper is as 
follows. In Section I1 we review optimal receivers for CPM 
schemes. Section I11 introduces the "-based receiver and 
describes simulation results of its performance. Section IV 
contains analytical results on noise propagation in multilayer 
feed-forward neural networks at large SNR, and their ap- 
plication to our particular problem. Section V has a brief 
discussion of NN classifiers' complexity and performance. 
Finally, Section VI includes conclusions and directions for 
future research. 

11. OPTIMAL CPM RECEIVERS 

In this section we briefly review the optimal maximum- 
likelihood CPM receiver [ 5 ] .  Consider a phase modulated 
signal 

s ( t ,  ii) = - cos(w,t + #(t, a) + &) J'," 
where 

35 

4(t ,  ii) = 27rh 1 a,q(t - ZT). 
2=0 

a is the data stream wil h a, E { &l. * 3,  . . . f M - l}, for even 
values of the alphabet size, M ;  q ( t )  is the phase pulse with 
a corresponding frequency pulse lasting L symbol intervals, 
h is the modulation index, E is the energy per symbol, 
q50 is the phase offset and wc is the carrier frequency. For 
coherent demodulation schemes it is assumed that has been 
recovered; thus without loss of generality $o is set to zero. 

When the modulation index h is rational, as h = $, a CPM 
signal can be described by a finite-state Markov process, whose 
state a; a given symbol interval is specified by the correlative 
state vector U, = ( ~ ~ - 1 ,  un-2.. . . u n - ~ + l )  determined by the 
last L - 1 letters and the phase state 8, = [nh C"-!m a.] 
mod 2n. The phase state encapsulates the phase history prior 
to the last L letters for the nth symbol a,. There are MLP1 

(P- 1P.rr correlative states and p phase states, 0, = 0, . . . . , - 
P '  

and therefore p M L - l  states in the entire state space. 
In the ML receiver the incoming signal is multiplied by 

cos(w,t) and sin(w,t) and low-pass filtered in order to gen- 
erate the in-phase and quadrature components. As shown in 
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Fig. 1. Conventional optimum receiver. 

Fig. 1, these components are then fed into 2 . M L  matched 
filters which effectively calculate the correlation between the 
received signal and all possible transmitted signals over one 
interval given the present phase state [6]. Linear combinations 
of the sampled outputs of the matched filters are used by the 
Viterbi algorithm to decode the transmitted symbols. 

Incoherent demodulation is a significantly harder problem 
than coherent demodulation. The signal can no longer be 
characterized by a finite set of states, resulting in a cum- 
bersome theoretical formulation that requires the calculation 
of expectation integrals with respect to the unknown signal 
phase [5].  The suboptimal incoherent receivers used in practice 
impose restrictions on the alphabet size, modulation index, 
and the partial response overlap [5]. In order to fully exploit 
the bandwidth efficiency of CPM schemes, one cannot remain 
within these constraints. 

In the next section we present a class of receivers which 
could be used for both coherent and incoherent demodulation 
with arbitrary phase pulse, modulation index and alphabet size. 
Their performance is then compared with the optimal ML 
receiver. 

111. NEURAL NETWORK RECEIVERS 

In order to motivate the use of neural networks we first 
discuss some related issues in CPM demodulation. This is 
followed by a more detailed introduction in Section 111-B. 
Simulations are presented in Section 111-C. 

A .  Why Neural Networks? 

We propose to demodulate the incoming signal on the basis 
of samples from a moving time window about the symbol 
interval of interest. This choice is analogous to sliding-block 
schemes recently proposed as a parallelizable algorithm for 
Viterbi decoding 171. Such algorithms exploit the well known 
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Fig. 2. Probability of error versus SNR for minimum Euclidean distance. 

idea of finite truncation depth in calculating the distance met- 
rics for the Viterbi algorithm. The viability of these methods 
for decoding convolutional codes was studied by Heller and 
Jacobs [SI. In their study they show that survivor paths are 
likely to merge 4 to 5 constraint lengths' into the trellis 
regardless of the initial state. Thus if one allows time for the 
survivor paths to merge (or synchronize) and then allows for 
an acceptable truncation depth before making decisions, one 
can obtain close to optimal performance [7].  

The above obviates the idea of demodulating on the basis of 
a finite number of past and future symbol intervals. Moreover, 
sliding block decoders can be implemented by a brute force 
approach such as table lookup [9]. However table lookup 
quickly becomes impractical as the constraint length increases, 
due to the memory requirements. 

For CPM the constraint length is analogous to the parameter 
L or partial response in the system. Accordingly, phase trellis 
paths should merge before some appropriate number of symbol 
intervals proportional to L. As above we consider a finite 
window of past and future intervals about the one which is 
to be demodulated and find the path of minimum Euclidean 
distance. Once again, since there are only a finite number 
of possible paths, it suffices to calculate the vector (path) 
with minimum distance from the incoming signal to determine 
the transmitted symbol. Fig. 2 shows the performance of 
such an approach versus that of Viterbi demodulation with a 
truncation depth of 11 intervals [5 ] .  As seen, the performance 
is almost as good as Viterbi for low SNR and improves as 
the number of samples per interval are increased. Although 
the results are good, this approach is not feasible due to the 
complexity of evaluating the minimum distance. For instance 
the case of 2 samples per interval requires approximately 
12 000 multiplies per decoded symbol. 

The motivation for using neural networks, lies in their 
ability to approximate functions. Both analytical and ex- 
perimental results have been reported verifying the ability 

The amount of memory in the convolutional coder. 
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of multilayer feed-forward neural networks to learn, and 
approximate arbitrarily complex nonlinear functions, [lo], 
[ 111. Funahashi reports a theoretical result, demonstrating the 
generality of two-layer feed-forward network approximation 
for continuous functions, using Sigmoid nonlinearities [ 121. 
Lapedes and Farber present an intuitive geometrical approach 
to explaining NN operation in performing interpolation or 
extrapolation [ 131. These two functions can alternatively be 
used for signal processing or symbol processing applications. 
For our application the desired function is the demodulation 
map, bypassing an explicit calculation of Euclidean distances 
and metric comparisons. Clearly the neural net implementation 
will be approximate. We conjecture, however, that the NN’s 
“internal representation” will make use of the special structure 
of a modulated signal to render the demodulation map effec- 
tively [14]. The remainder of this section is dedicated to an 
investigation of this idea with respect to the problem of CPM 
demodulation, and some simulations. 

B. Neural Network-Based Receiver 

A feed-forward neural network has one or more layers of 
identical nonlinear units, which are densely interconnected 
from one layer to the next by variable weight links [lS]. 
An example of a two layer network is shown in Fig. 3. The 
input layer branches scaled versions of the inputs to the first 
nonlinear layer, commonly called a hidden layer. Hidden nodes 
are those whose outputs are not directly available. In this 
example there is only one hidden layer feeding into the output 
nodes. The nonlinear hidden and output nodes compute the 
composition of a Sigmoid with the weighted sum of outputs 
from the previous layer: 

where x; denotes the ith input, wj; denotes the weights from 
the ith input node to the j th  hidden node, T denotes the 
“temperature” controlling the sharpness of the nonlinearity 
(see Fig. 4) and c?, and oJ denote the bias and output of the 
j t h  hidden node, respectively. 

The continuous phase demodulation problem is an inher- 
ently well defined albeit complex one, and therefore provides 
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Fig. 4. Sigmoids for different temperatures. 

a natural context for investigating the robustness of neural net 
classifiers. In applying neural networks to CPM demodulation 
a number of issues need to be addressed. These include the 
following. 

1) Choice of the inputs and output of the network. 
2) Network architecture, e.g., the number of layers, the 

number of nodes per layer, the nonlinearity function used 
at each node, and the connectivity between the layers. 

3) Generation of the training set. 
4) Training procedure. 
5) Performance characterization. 
In what follows we discuss each of these issues separately. 
1) Representation: The input vector consists of the sam- 

pled baseband signal windowed about the symbol interval 
to be demodulated. The observation window spans several 
intervals centered about the interval of interest. Since CPM 
signals with partial response L spread the information as- 
sociated with a given symbol over L intervals, we select 
an observation window of minimum length 0 = 2L - 1. 
Thus, for the n,th symbol interval, the signal is sampled 
over [ (n  - - 1)T]. Strictly speaking, one 
sample per interval per quadrature component suffices to 
completely specify a unique phase path to within a phase offset 
&. However, we found that increasing the number of samples 
per interval S improves the network’s performance. Thus, the 
input is an I = 2 x 0 x S dimensional vector, consisting of 
samples from both the in-phase and quadrature components of 
the received baseband signal over an observation window of 
length 0 intervals. 

The output corresponds to a binary representation of the M 
symbols in the alphabet. The number of output nodes is thus 
at least log, M .  Each output node is followed by a hardlimiter 
which clips the output signal to either 0 or 1. For a given input 
vector, the output corresponds to the symbol associated with 
the interval about which the observation window is centered. 

2) Network Architecture: The above inputJoutput selection 
determines the number of input and output nodes, but leaves 

) T. ( n  + 
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the number of hidden nodes unspecified. Much effort has gone 
into quantifying the number of hidden nodes needed for a 
given problem [16], [17]. However the results are limited and 
do not take potentially noisy inputs into account. 

3) Generating the Training Set: An element in the training 
set, denoted by ( X ,  Y ) ,  consists of an input vector X and the 
desired output Y ,  with components x, and yi, respectively. 
For coherent demodulation there is a finite set of phase 
states resulting in a finite number of possible noiseless signals 
within a given observation window. The training set is formed 
by systematically generating all these signals, and sampling 
them S times per interval. The size of the complete set is 
pML-l x MO where the first term corresponds to the number 
of possible initial states depending on On and the correlative 
state vector, and the second term corresponds to the total 
number of possible transmitted symbol sequences over 0 
intervals. 

The number of exemplars ( X ,  Y )  for incoherent demodula- 
tion is no longer finite, and one must arbitrarily decide the size 
of the training set. In this case the input vectors are samples 
of curves in the hyperdimensional space RI, corresponding to 
each possible sequence of transmitted symbols, and parame- 
trized by the unknown phase $o. There are M L P 1  x MO such 
curves to be distinguished by the network, and we choose s = 
5, 10, 20 evenly spaced samples from each curve, so the size 
of the training set is s x ML-’ x MO 

4) Training: Error-backpropagation was used to train the 
networks [14]. This is an iterative gradient descent algorithm 
which minimizes the error between the actual and desired 
outputs, by adjusting the network’s weights. For each sample 
in the training set two steps are executed. 

1) Compute the error between the actual output due to the 
existing weights and the desired output associated with 
the input vector in the training set. 

2) Backpropagate the error signal from the output layer 
towards the input layer in order to update the weights. 

The samples are arranged in random order to avoid bias- 
ing the network for any particular vector.2 The convergence 
criterion for the training process is 

1 
MSE = - C (di  - yZ)’ < 0.0l2 

N i  

where the summation is over the exemplars in the training 
set, and di and yi are the desired and the actual output for 
the ith exemplar. The convergence of this procedure is not 
guaranteed, although some adjustments can be made in order 
to improve convergence. Two parameters generally referred 
to as the learning rate and momentum, control the extent to 
which the weights change from one iteration to the next. For 
the simulations presented in this paper the momentum and 
learning rate are, respectively, 0.5 and 1. 

5) Performance Evaluation: Our proposed NN-based re- 
ceiver operates on samples of the incoming signal in a 
sequential manner. It decodes the current symbol, shifts the 
input samples, and decodes the next symbol. The receiver’s 
performance however, is measured by the probability of 

21t is not clear what an optimal ordering would be 
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Fig. 5. Prototype of neural net receiver. 

TABLE I 
SUMMARY OF DIFFERENT ARCHITECTURES EXAMINED FOR COHERENT CASE 

~~ 

number of inputs trainging set size O S H  

5 1 20 
5 2 10 
5 2 20 
5 2 30 
7 1 20 
7 2 10 
7 2 20 
7 2 30 
9 1 20 
9 2 10 
9 2 20 
9 2 30 

10 
20 
20 
20 
14 
28 
28 
28 
18 
36 
36 
36 

640 
640 
640 
640 

2560 
2560 
2560 
2560 

10240 
10240 
10240 
10240 

error P,, for a large collection of noisy input vectors at a 
given signal-to-noise ratio (SNR). The channel is simulated 
by adding identically distributed independent Gaussian noise 
samples to the input samples. The bandwidth of the receivers 
front-end low-pass filter is assumed to be the -20 dB 
bandwidth of the CPM signal. 

C. Simulations 

A general purpose neural net simulator3 was used to perform 
tests on different topologies and modulation schemes. We 
denote a scheme with a raised cosine frequency pulse by LRC 
where L is the partial response length or memory of the signal 
[5]. Tests were conducted for coherent and incoherent binary 
3RC with modulation index h = 0.8. The probability of error 
was estimated by simulating the receiver until 100 errors were 
observed, for various SNR. Some further considerations on 
estimating P, can be found in the appendix. 

Fig. 5 shows the prototype of the 
networks that were considered. The variable parameters are 
the number of intervals in the observation window 0 = 5, 
7, 9, the number of samples per interval S = 1, 2, and the 
number of hidden nodes H = 10, 20, 30. Table I shows the 
relative sizes of the input and the training sets for different 
choices of these parameters. 

1) Coherent Binary 3RC: 

Rochester Connectionist Simulator. 
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Fig. 6.  Effect of increasing sampling, H = 20. 

The sequence of plots in Fig. 6 shows P, versus SNR 
for three sets of networks with different observation window 
length and sampling rate, but a fixed number of hidden nodes. 
From these plots it is clear that improved performance can 
be obtained with S = 2. Note, however, that increasing 0 
from 5 to 7 to 9 while keeping H = 20, does not necessarily 
improve performance; this will be discussed more thoroughly 
in Section IV. 

For the plots in Fig. 7 the number of hidden nodes H is 
increased for different observation intervals 0, while S = 2. 
As seen, increasing the number of hidden nodes improves 
the receiver's performance. However, the incremental im- 
provement decreses as the number of hidden nodes becomes 
too large. A good rule of thumb for achieving the best 
performance for a fixed number of inputs is to have ap- 
proximately as many hidden nodes as input nodes. In so far 
as the classification of the training set vectors is concerned, 
many of the hidden nodes are redundant. Indeed, we found 
that removing hidden nodes with weak links to the output, 
did not hinder the network's ability to classify the training 

symbols, or improving the training scheme. 
2) Incoherent Binary 3RC: The incoherent NN receiver is 

attractive because it integrates the demodulation and phase 
recovery modules into one. As explained in Section 111-A, the 
training set for incoherent demodulation is always incomplete 
since there are infinitely many exemplars. 

Fig. 9, shows the performance of an incoherent NN receiver 
for binary 3RC. As expected the receiver's performance is 
improved by increasing the number of training vectors ( p )  
corresponding to different possible initial phases $0, from 5 
to 10 to 20. In addition, as in the coherent case, an increase 
in the observation interval and the number of hidden nodes 
improves the receiver's performance. Finally, note that the 
input vectors used to test the incoherent receiver have a truly 
random initial phase 40, which will not necessarily coincide 
with those in the training set. 

IV. PERFORMANCE ANALYSIS 
set. However these nodes do have an impact when noise is 
introduced. 

In this section we present an approximate performance 
analysis for a multilayer feed-forward neural net classifier at 

Fig. 8 shows the superposition of the best performance 
curves corresponding to each plot in Fig. 7, together with that 
of the simulated optimal receiver with a truncation depth of 
NT = 11 [5 ] .  While increasing 0 and H results in a significant 
improvement at high SNR, the NN receiver performance is still 
z.5 dB worse than the optimal at P, = low3. Possible ways to 
reduce this performance gap include increasing the sampling 
rate to exploit noise correlation, feedback of previous decoded 

high SNR and apply the results to our NN based receiver. 
1 )  Characterization: Consider the prototype two-layer feed- 

forward net shown in Fig. 5. For a given input vector in the 
training set we define the nominal value mj of a node to 
be the linear combination of noise free inputs going into that 
node. If independent Gaussian noise ni of variance 0; is added 
component-wise to the inputs xi, the output of the j th  hidden 
node can be expressed as 
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sufficiently small (2) can be linearized about the node's 
nominal value to obtain, 

I 
0, = a(m,) + i~(m, )  x wJZnl (3)  

a = 1  

where b(.)  denotes the derivative of the Sigmoid (Fig. 10). 
Consider the propagation of the noise component n, from the 
ith input node to the output. As seen in (3) n, is scaled by 
Fr(m,)wJz upon reaching the j th  hidden node, whence it is 
scaled by a, before reaching the output. By summing over 
all hidden nodes we obtain the total contribution of nz to the 
output signal, 

H 

Cci(m,)a,ur,, x 72%. 

,=1 

This corresponds to a noise variance of 
Fig. 8. Comparison of best performance plots 

I I 

2 = 1  

where U ( . )  denotes the Sigmoid nonlinearity. For na Finally, by summing over all input nodes we obtain the noise 
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Fig. 11. Probability of error. 

Fig. 10. Linearizing at nominal value 

variance reaching the output or threshold unit for the vector X 

I ( H  

If the noise variance is assumed to be small, the output 
signal will have a Gaussian distribution with the variance in 
(4). This can then be used to obtain the probability of error of 
the NN classifier. Later we shall see that this is not entirely 
justified. The ratio between the output and the input noise 
variance for a given vector X is defined to be its noise factor, 

Furthermore, by averaging Pex over the entire training set, 
we obtain the P, for the classifier, 

where M is the total number of vectors X' in the training set. 
Given the shape of the nonlinearity, one might define 

two possible states for each node: linear and saturated. A 
rough definition of these might be surmised from Fig. 4 
where the Sigmoid nonlinearity in (1) is plotted for different 
temperatures. For any input vector X in the training set, we 
define a set Ldy which contains the hidden nodes operating in 
the linear region. By approximating the slope of each linear 
node by &, i.e., the slope of the Sigmoid at 0, and assuming 
saturated nodes do not contribute to the output noise, we obtain 
the following expression for the noise reaching the threshold 
unit: 

For each input vector X the nominal value of the threshold 
unit, mT,, and the estimated noise variance N f-yo;, can be 

vector, 3EC.Y 

used to obtain the probability of incorrectly classifying that = (A ) 2  { ~ ~ w i ~ ~ 2 ~ i .  (6) 

Although (6) is very approximate, it does provide insight by 
decoupling the factors affecting the performance. These factors 
are: the product of weights, the temperature and the number 
of saturated nodes, and from (5) the nominal value of the 
threshold unit. Through this characterization we can establish 

Pex z Q (  I m T x '  ) 
where Q ( . )  is the complimentary distribution function of the 
standard Gaussian (Fig. 11). 

d m z  
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Fig. 12. Input versus output variance for a NN receiver 

2m =1 
Fig. 13. Predicted and experimental noise factors. 

a priori which classifier will have better performance at high 
SNR. 

2) Results: Our experimental results bear out some of the 
above relationships. First, we examine the validity of lineariz- 
ing the network for large SNR. Fig. 12 shows the relationship 
between the input and output noise variance for four vectors 
in the training set of a given classifier. The data has been 
plotted on linear and log-log scales to make the "linear" region 
stand out. As seen, typically the linearity assumption holds if 
the input noise variance does not exceed 0; E 0.025, which 
corresponds to an SNR of 13 dB in the simulations presented 
in Section 111-B. 

Secondly, we confirm that the expression obtained for 
the noise factor, (4), actually corresponds to the ratio of 
output/input noise variance for a classifier operating in the 
linear region. For each vector in the training set of the 
network with S = 2, 0 = 5 ,  H = 10, we calculated 
the theoretical noise factor NfAy ,  and estimated the output 
variance through simulation for two levels of input noise, 
SNR = 13 db, and 20 dB. The ordered results are shown in 
Fig. 13, which contrasts the experimental and predicted results 
for the entire training set. As expected, for even larger SNR the 

results match up closely. We note however that there is a large 
variation in the noise factors for vectors within a given training 
set, e.g., from 1 to 300. Indeed some of the vectors have 
particularly undesirable characteristics, in the sense that they 
would allow noise to propagate to the output and ultimately 
result in errors dominating the classifier's performance. 

Finally, we calculate the P, using (5) .  Table 11 shows both 
the experimental and theoretical P, for coherent receivers 
at SNR = 13 dB. There are large numerical discrepancies 
between the predicted and experimental P, although the quali- 
tative behavior of the classifiers is preserved. Indeed the results 
confirm some of the trends suggested in Section 111-B. 

1) Increasing the number of hidden nodes results in better 
performance, but as the number of nodes becomes 
comparable to the number of input nodes, the improve- 
ment saturates. For example, a large improvement in 
performance results for 0 = 7 as H increases from 10, 
while for N = 20 and 30 the P, is comparable. The 
same pattern holds for 0 = 5 and 9. 

2) An increase of the observation window for a fixed 
large number of hidden nodes improves performance. 
For example compare lines 5, 8, and 11 or 4, 7, and 
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10 in the table. Note however that when predicted 0.00 

TABLE I1 Y X l d  

EXPERIMENTAL AND THEORETICAL P, ’s FOR COHERENT RECEIVERS 

3.00 

2.00 

1.00 

line P, x 10‘ @ 13 dB P, x l o 4  @ 13 dB 
number S 0 H experimental predicted 

1 1 5 20 19.06 6.54 
1 7 20 59.72 5.35 
1 9 20 159.74 44.34 

4 2 5 10 85.27 5.44 
2 5 20 8.84 2.68 
2 5 30 6.61 0.50 

7 2 7 10 209.34 68.65 
2 7 20 3.99 0.64 
2 7 30 4.16 0.80 

10 2 9 10 60.88 5.34 
2 9 20 5.09 0.03 
2 9 30 < 1  0.49 

_ -  .~ - - 
I I 1 I I l x  

Output-distribution 
I I I I 3- 

unreliable; compare lines 6, 9, and 12. 
3) Increasing sampling improves performance if there are a Fig. 14. Density of noise reaching the output node. 

sufficient number of hidden nodes. Compare lines 1 and 
5 or 2 and 8 in the table. 

As seen in Table 11, our estimates for P, are somewhat 

Densities-Mean=l 
P M  

20.00 

optimistic. A closer look at the actual distribution of the 
signal reaching the output node reveals that it is not truly 
Gaussian, i.e., it is skewed, with a heavier tail than expected 

examples of such noise distributions. The probability density 
of a random variable generated by passing Gaussian noise 
through a Sigmoid nonlinearity can be derived as shown in 
the Appendix B. Fig. 15 shows such distributions for noise 
of mean 1 and a range of standard deviations from 0.1 to 
1.8. Clearly, such a random variable resembles a Gaussian 

radically different behavior as the noise variance is increased, 
or if the node is almost saturated. The probability distribution 
of the output noise is actually a weighted convolution of such 

nonlinearity. 

analysis are in order. Equation (6) shows that improved 

pointing away from the saturation region. Fig. 14, shows two 15.00 

10.00 

for small variances (i.e., the large SNR case), but can have a 5.00 

distributions and inherits the skewing due to the saturating 0.00 

0.00 0.20 0.40 0.60 0.80 

3) Discussion: A few comments about the above noise Fig. 15. Density of Gaussian noise passed through a Sigmoid 

performance might be expected from a net whose hidden 
nodes are likely to be saturated, whose nonlinearities are very 
smooth (e.g., large T ) ,  and whose weights reduce the sums 

However one should be cautious in interpreting this statement. ~ I ~~ \ 2  

and therefore results in weights for which hidden nodes are 
unlikely to be saturated. 

mance of neural net classifiers. For example one could add 
zJELx Q J W J 2  while still properly classifying the training set.4 we can suggest Other ways Of improving the noise perfor- 

Indeed, the number of linear nodes, the- temperature, and the the term { E;”=, d-(mj)ajwJa } -  to the cost function 
weights are highly interrelated quantities resulting from or 
affecting the training algorithm. For instance an increase in 
the temperature, for the same training algorithm, does not 
necessarily improve the network’s performance. In fact, we 
found experimentally that while increasing T from 1 to 2 
results in a marginal increase of performance, further increases 
from 2 to 3 actually degrade the performance significantly 
(see Fig. 16). This may be explained heuristically by noting 
that convergence is slower when training at high temperatures 

4Note that the terms in this summation are both positive and negative 

minimized by t ie  training algorithk, in order to explicitly 
reduce noise propagation. Similar modifications have been 
proposed by Chauvin as means to obtain optimal use of hidden 
nodes [18]. However, our proposed modification, cannot be 
easily integrated into the backpropagation scheme. Indeed the 
noise characteristic of a network is a global property, in the 
sense that the effective amount of noise propagating through 
a given link depends directly on all of the weights in the 
network and the nominal state of each node [see (4)]. Since 
backpropagation relies on layer by layer updates, more direct 
optimization methods would be required. 
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Fig , 16. Training at different temperatures: coherent 3RC network 0 = 3, 
H = 20, S = 2 .  

Pe Effec t-of-training-with-noise 

nosy 

i 

""f 
3 t  

Fig. 17. Training at noise: coherent 3RC network 0 = 9. H = 30. S = 2 .  

Another intuitively pleasing way to improve the network's 
performance is to train with noise. Blanz and Gish [19] have 
indicated that neural net classifiers are impervious to training 
sets containing outliers5 This suggests that training with noise 
would still result in a viable network for vector classification 
while potentially improving network performance in noise. 
We tentatively verified this by using the following training 
scheme: first, we trained without noise until the network met 
the stopping criteria in Section 111-b, then we trained with 
vectors having an SNR = 13 dB. The second phase lasted 
10 passes through the entire training set, or approximately 
100 000 iterations. As evidenced in Fig. 17 our best network's 
performance was improved by 1.5 db at P, = lop3. We did 
not pursue this further even though, one can envisage many 
different training schemes which vary the temperatures as well 
as the noise level. Research on NN applications in nonlinear 
filtering for signal detection in non-Gaussian noise or image 
processing also exhibit the potential of training with noise 
[20], [21]. In particular it would be of interest to explore 
the possibility of using adaptive non-linearities, such as feed- 
forward networks, which could accommodate time varying 
channel or noise characteristics. 

We have suggested several approaches to improve and 
possibly optimize the performance of NN classifiers in noise. 
Further study is required to determine which of these will 
pay off, and to what extent such approaches can improve the 
performance of our receiver. 

V. COMPLEXITY COMPARISON 

This section is devoted to comparing arithmetic complexity 
of conventional receivers to that of NN based receivers. This is 
particularly important since, as mentioned earlier, we can gain 
from using the NN paradigm if hardware requirements can 
be significantly reduced while performance is still reasonable. 

'Training vectors whose distance is very large from the centroid of its class, 
when compared to the eigenvalues of the covariance matrix of that class. 

Other methods of obtaining such a tradeoff also exist. In 
particular, reduced complexity Viterbi decoders have been pro- 
posed as a viable means to decrease demodulation complexity 
[6]. We begin with an overview of recent studies comparing 
NN classifiers with other statistical and classical classification 
methods. 

A number of criteria can be used to compare trainable 
classifiers. These include implementation cost in terms of area 
and power, arithmetic and memory requirements, performance, 
training time, speed of decoding, and even training program 
complexity in terms of lines of code. In addition, it is important 
to examine classification tasks with different characteristics, 
such as the complexity of decision surfaces, presence of 
outliers in the training set and so forth. In their study of eight 
different types of classifiers, Lee and Lippmann noted that 
with rare exceptions similar error rates were obtained for the 
four applications considered [22]. They found however, that 
there was a wide variation in the required training period. For 
instance, on a serial computer, a k-nearest neighbor classifier 
trains 2-3 orders of magnitude faster than a multilayer feed- 
forward network. They also noted that NN classifiers made 
moderate usage of memory while classifying vectors quickly. 
Blanz and Gish's study also addresses the implementation cost 
of several classifiers in digital LSI. On the basis of their results, 
they conjectured that problems with large numbers of sample 
vectors and or categories can be more efficiently addressed 
by way of connectionist classifiers [19]. Blanz and Gish 
tested the susceptibility of classifiers to outliers in the training 
data set, and found that neural networks were particularly 
robust, although they point out that this is in part due to 
the iterative adaptation scheme. As mentioned in Section IV, 
this suggests that one could potentially train with noise and 
still get acceptable if not improved performance. Both studies 
indicate that there are many tradeoffs to be taken into account 
in selecting a classifier; this requires a careful study of the 
allowed hardware, restrictions on the training set, testing and 
adaptation time. 
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Other interesting results on the complexity of finite precision 
NN classifiers have been reported by Dembo, Siu, and Kailath 
[23]. After making some rather general assumptions, they 
show that perceptrons6 require only 0 ( n  log n )  bits of storage 
for parameters while a table lookup classifier requires 0 (n2) .  
Haussler and Baum, tackle issues of complexity, sufficient 
training sample size and performance, in a somewhat more 
abstract setting; they establish a lower bound for the number 
of samples versus network size that is required for a NN 
to correctly classify examples drawn randomly from a given 
distribution [24], [25]. 

Due to the variety of possible complexity criteria available, 
the task of comparing our NN based receiver with conventional 
methods is nontrivial. We shall first restrict ourselves to a 
simplistic comparison of arithmetic complexity. A network 
with I inputs units, H hidden units and 0 output units 
requires H x ( I  + 0) multiplies and additions per symbol 
interval. In a digital implementation, the Sigmoid would be 
evaluated by way of a table lookup, and H + 0 lookups would 
be required per symbol interval. An analog implementation 
of the nonlinearity, is also conceivable, although this may 
degrade the precision of the nonlinearity. It is not clear at this 
point what level of accuracy is required in NN architectures 
[26], [19], [27]. Thus, our best performing NN with 1 = 
36. H = 3 0 , 0  = 1, requires about 1110 adds and multiplies, 
in addition to 31 Sigmoid evaluations per demodulated symbol. 

For comparison, consider conventional CPM demodulation. 
The arithmetic complexity is proportional to the number 
of trellis states, p . ML-'.  One can exploit the symmetry 
of the in phase and quadrature components to reduce the 
required number of matched filters to 2 . M L ,  or 16 filters for 
binary 3RC. Suppose we use filters with 10 taps each,' then 
160 multiplies and adds are required [SI. An additional over- 
head of 40 x 2 multiplies, 40 x 3 adds, and 80 trigonometric 
evaluations to be implemented by table lookup over the 5 
possible phase states are required to form the inputs to the 
Viterbi processor (see Fig. 1) [SI. Viterbi decoders use efficient 
recursive algorithms to calculate the path metrics, however, 
they require large amounts of memory to keep track of the 
actual paths which will be used to ultimately make symbol 
decisions. At each stage, an add-compare-select function for 
each phase state is required, that is 40 adds and 40 compares. 
An additional, 20 compares are required to decode the symbol. 
An approximate total would give 320 adds, 220 multiplies, 
and 60 compares, in addition to 80 coarse trigonometric table 
lookups per stage. When compared to the figures obtained for 
the NN classifier, we conclude that NN numerical complexity 
approximately exceeds that of a conventional implementation 
by a factor of 3. 

Finally, note that a digital implementation of a NN decoder 
would require the storage of 1110 weights in ROM versus 
the 160 filter coefficients needed in a conventional receiver. 
However, NN require virtually no RAM while a conventional 
receiver would need at least 220 RAM locations, to keep track 

'These are the simplest form of feed-forward networks, i.e., no hidden 

'We are assuming a reasonable sampling, of course this needs to be 
layers. 

optimized. 

of trellis paths. This is but a crude comparison of memory 
requirements, since the accuracy used to represent weights, 
filter coefficients and path metrics, has been disregarded, but 
it shows a tradeoff between ROM and RAM. This tradeoff 
is important, since RAM can take up 50% of the area of a 
custom chip of Viterbi decoding [28]. 

In spite of the above discussion, the NN architecture still 
has some advantages. The first is the regular and parallelizable 
nature of NN, which one might easily map to homogeneous 
architectures, such as systolic arrays, which are particularly 
suitable for VLSI implementations. Indeed the Viterbi algo- 
rithm is an inherently serial algorithm in that previous decoded 
symbols are required to decode the present and future ones. 
Parallel implementations of the Viterbi algorithm based on 
block partitioning of the data require synchronization periods, 
in which the initial state of the trellis path is estimated, 
before decoding can begin [7]. This is a fact the main reason 
for overlapping the partitioned blocks. The abovementioned 
synchronization period can potentially limit the extent to which 
the algorithm can be parallelized. The NN implementation 
studied has no feedback, thus by using more than one network 
in parallel, we can make the demodulation rate arbitrarily large. 
A second advantage lies in the speed of demodulation. Clearly, 
NN receivers would be faster since they require only a forward 
pass, while conventional decoders usually backtrack in order 
to obtain demodulated symbols. A third potential advantage, 
is to provide a form of nonlinear equalization by allowing 
online NN weight adaptation to the noise characteristics of 
the channel [20]. A fourth advantage, might arise from a 
favorable scaling of the cost of a NN receiver to an increase 
in the complexity of the modulation scheme. Indeed, it has 
been noted that as the problem size increase, i.e., number of 
features or classes, the NN architecture has an implementation 
cost advantage over other statistical and polynomial classifiers 
[19]. This point is more compelling when one notes that 
conventional methods scale as M L ,  in both arithmetic and 
memory requirements. 

Actually, from an implementation point of view, one could 
hardly expect a general purpose classifier such as a neural 
network, to compete with special purpose hardware, which 
exploits the particular structure of a problem. The implemen- 
tation of Viterbi decoders in VLSI, is a subject of current 
research. Several impressive chips have been produced for 
decoding convolutional codes at very high data rates [28]. 
Research on NN architectures is still in its infancy. Important 
issues still need to be addressed such as how to maximally 
exploit the regularity of NN architectures, how to implement 
the required connection density, and how to provide some fault 
tolerance. 

VI. SUMMARY AND CONCLUSIONS 

We developed a class of neural net-based receivers for CPM 
schemes. From a functional point of view, these receivers 
are equivalent to the bank of matched filters and the Viterbi 
decoder found in conventional optimal ML receivers. Prelim- 
inary simulations, show that for binary 3RC with h = 0.8 the 
performance is within 3.5 dB of the optimal ML receivers at 
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P, = We expect this margin to be partially reduced 
by optimizing both the architecture and training procedure. 
A comparison of arithmetic complexity for conventional and 
NN binary 3RC receivers shows that a traditional approach 
is still superior. However, in the light of the comparisons 
done by Blanz and Gish we believe these receivers will 
scale advantageously as the complexity of the CPM scheme 
increases [19]. The burden of training such networks will 
certainly decrease as new algorithms are reported to be orders 
of magnitude faster than back-propagation [29]. Finally if 
effective parallel architectures are developed for adaptation, 
a receiver could do online training, to accommodate specific 
channel characteristics. 

An approach for analyzing the noise performance of mul- 
tilayered feed-forward NN classifiers at large SNR has been 
proposed. We found that for large SNR, the ratio between the 
output and input noise variance can be analytically predicted 
and depends on the number of saturated nodes, the product of 
the input an output weights, and the temperature parameter 
of the nonlinearity. Our predictions of P, only match the 
experimental data qualitatively, allowing us to find a priori 
which networks will have a better performance. Further work 
is needed to exploit these findings in developing effective 
training algorithms. 

This particular application of the neural nets shows their 
capability beyond conventional associative memories where a 
fixed number of exemplars are learned. As demonstrated by the 
incoherent receiver, by training the net to classify a subset of 
the possible input/output pairs, one obtains a network capable 
of demodulating the entire signal space. In this sense, the net 
has captured that structure of the sampled received signal as 
well as the demodulation function. 

Further work is required to study both the complexity 
and performance of the proposed NN approach for a more 
varied range of CPM schemes, under more realistic noise 
conditions. In particular, the possibility of adaptation to time- 
varying channels, and the use of preprocessing would be 
interesting. It may also be possible to extend the proposed 
analysis method using a more complex model based on the 
noise characterization derived in appendix. 

APPENDIX A 

ERROR ESTIMATOR 
ACCURACY OF THE PROBABILITY OF 

In our experiments the probability of error of our classifier 
was estimated by simulating the receiver on a random se- 
quence of inputs until 100 errors occurred. However, in light 
of the results of Section IV one might question whether this 
procedure is appropriate. Namely, we found that some of the 
vectors in the training set rarely result in errors while others 
have a relatively high probability of error. The discussion that 
follows addresses this issue in order to establish whether the 
experimental figures we obtained are valid. 

First, we consider a sing]: input vector X and the estimator 
of its probability of error Pex based on E Q ~  the number of 
errors that occurred during Q X  trials, Pex = 2. Assuming 
that the true probability of error is Pex we find that the 

~ 

. 
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estimator PeX has a binomial distribution with mean Pex, 
and variance Pex(l  - P,,)/&x. It is thus unbiased and 
consistent. 

By requiring that the standard deviation of the estimator be 
h t h  of the mean (i.e., an error of about 10%) we obtain, 

100 
Q x z a - .  

Pex 
Thus, for each vector in the training set we require Qx trails 
where Q X  depends on the actual probability of error of that 
vector. 

The P, of the classifier for the entire set of all possible 
input vectors is estimated by the average Pex of all vectors. 
This guarantees that the overall standard deviation of the esti- 
mated probability of error is h t h  of its mean. However, this 
procedure requires lengthy simulations to obtain independent 
estimates of PeX for each vector belonging to the training set. 
Moreover some of the vectors rarely result in errors, so they 
need to be simulated extensively to find accurate predictions. 

In order to check that our original approach was valid, and 
that the discrepancies in the theoretical and predicted prob- 
abilities of error were not the result of our testing procedure 
we conducted some limited simulations to check our estimates 
for P, in the more systematic manner we have described. We 
found that our original figures were quite reliable. 

APPENDIX B 
PDF OF GAUSSIAN NOISE 

PASSED THROUGH A SIGMOID 

The Sigmoid function is written as 

1 
1 + e-" 

y = f(.) = ~ 

can be inverted to obtain 

If we let 5 be Gaussian variable with mean m, and variance 
fl, 

we can write the cumulative distribution function for the output 
variable y as 

f - ' ( Y )  

P ( y )  = Pr{Y 5 y}  = 1 p(z)  dx 
--DL 

Finally differentiating P(y)  we obtain the density of the output 
variable, 

The probability density will be markedly different, as the input 
mean and variance are varied (see Fig. 15). 
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