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Abstract-We derive the lower bound on the condition number of 

reconstruction of two classes of sequences from their Fourier trans- 
form magnitude (FTM). The lower bound for one class is shown to be 
1, and for another class to be 1/2iVQ’’, where Q is the dimensionality 
of the sequence and N is the number of nonzero elements in each di- 
mension. Stability of reconstruction from FTM and space domain phase 
is discussed. It is found that randomizing the space domain phase im- 
proves reconstruction robustness. Experimental results are presented 
to verify theoretical predictions. 
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V. CONCLUSION 

The root structure of median roots is analyzed by applying three 
different appending strategies. In this correspondence, we have 
shown that these three appending strategies have a significant effect 
on the root structure and the cardinality of root set. 

We also showed that the appended root signals of the median 
filter under the circular strategy either consist of constant neigh- 
borhoods only or consist of nonconstant neighborhoods only. It is 
impossible to have a median root under the circular strategy con- 
sisting of some constant neighborhoods and some nonconstant 
neighborhoods. 

I. INTRODUCTION 

Multidimensional (M-D) signal reconstruction from Fourier 
transform magnitude (FTM) has been an active area of research for 
a number of years [1]-[SI. Although uniqueness of reconstruction 
has been shown from a theoretical point of view [ 5 ] ,  there seems 
to be no practical, stable algorithms resulting in satisfactory recon- 
struction of a broad class of signals. Specifically, iterative algo- 
rithms suffer from stagnation [ 7 ] ,  [ 8 ] ,  and closed form solutions 
seem to work well only with small images [9] .  

In this correspondence, we consider the stability of the problem 
of reconstruction from FTM. Specifically, we derive conditions 
under which various classes of M-I) signals can be reconstructed 
in a stable or unstable fashion. Our stability results are algorithm 
independent in the sense that we are primarily concerned with 
problem stability rather than algorithm stability. The outline of the 
remainder part of this correspondence is as follows. Section I1 
briefly reviews the concept of condition number of a problem and 
its algorithms from a numerical analysis point of view. Section 111 
includes this correspondence’s main result on conditions of stabil- 
ity, and Section IV states the conclusions. 
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in data lead to small relative changes in the solution. A measure of 
stability of the problem S at point x’ is its condition number which 
is defined to be [lo] 

The above expression is essentially the ratio between relative 
change in solution and relative change in data. A problem is said 
to be well conditioned at point x‘ , if its condition number is small, 
i.e., of the order of 1. Likewise, it is said to be ill conditioned if 
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its condition number is large, e.g., greater than lo2. An example 
of a well-conditioned problem is taking the square root at a point 
x E [0, a], whose condition number is given by 

r r r  

N - I  N - l  N - I  

C C * * . C x 2 ( n , ,  n2, * . , nQ) 
n p = O  ni = O  n2=0 

ldx + 6x - dx///dxl 
K(S,  x) = lim sup 

f - 0  llaxll=t 16x1 / 1x1 
Approximating = & + d/dx(&)  6x, the above condi- 
tion number can be shown to be 1/2.  An example of a problem 
which can be ill conditioned at some data points is that of finding 
roots of a polynomial, specially if has multiple roots. For example, 
the polynomial x 2  - 2x + 1 has double roots at 1. However, if its 
last coefficient is perturbed by t o x 2  - 2.x + 0.9999, then its 
roots move by to 0.99 and 1.01. Thus, the condition number 
of finding the roots of the above polynomial is lower bounded by 

The notion of stability of an algorithm is quite distinct from that 
of a problem. An algorithm is said to be stable at a specific data 
point if the sensitivity of its numerical answer to the data is no 
greater than that of the original mathematical problem. A well- 
conditioned problem might have stable or unstable algorithms. For 
instance, solving a linear system of equations could be unstable if 
Gaussian elimination without pivoting is used, even though pivot- 
ing can greatly improve its stability. Similarly, determining the 
smallest root x2 of the quadratic polynomial x 2  + 2bx + c with b 
< 0 and c given to t digits with I C ]  /b2 < lo-' is unstable if x2 is 
computed via 

1 0 - ~ / 1 0 - ~  = loo. 

~2 = -b - G. 
On the other hand, if the larger root xl  is computed by xl = - b  + 
J G ,  and the smaller root is computed via x2 = c /xI ,  then x2 
can be shown to be determined in a stable fashion [ll]. While a 
well-conditioned problem might have a stable or unstable algo- 
rithm, an ill-conditioned problem cannot have a stable algorithm. 
For instance, solving linear least squares problems for an ill-con- 
ditioned matrix is ill conditioned, regardless of the algorithm ap- 
plied to it.  

In the remainder of this correspondence, we address the stability 
of the problem of reconstruction from FTM. Our approach is dif- 
ferent from some of the statistical approaches in the literature in 
which estimation theory is used to derive a Cramer-Rao bound on 
the mean-squared error of the estimate of the object from measure- 
ments of the intensity of its Fourier transform [15]. Instead, we 
derive lower bounds on the condition number of the reconstruction 
problem for various signal classes. 

111. STABILITY OF RECONSTRUCTION FROM FTM 

In this section, we analyze stability properties of the problem of 
reconstruction from FTM. Specifically, we will show that the lower 
bound on the condition number of the reconstruction problem is 
highly signal dependent. To avoid notational complexity, we pn- 
marily deal with stability issues of the one dimensional (1-D) case, 
even though the solution in 1-D has been shown not to be unique. 
The analysis can be extended to two and higher dimensions in a 
straightforward fashion. 

Consider an N point, real, positive, one-dimensional sequence 
x ( n )  with its Fourier tresform denoted by X ( w ) .  If P is an integer 
greater than one, and M denotes the PN-dimensional vector con- 
sisting of PN equispaced samples of I X ( w ) I 2 ,  then the problem of 
reconstruction from samples of FTM can be conside_red as a non- 
linear map between a PN-dimension$ data vector M and a N-di- 
mensional solution vector x', i.e., S: M --t x' where solution vector 
x' consists of the elements of the sequence x ( n ) .  Our goal can then 

be stated as finding the condition number of the above problem for 
different ciasses of sequences. To accomplish this, we perturb the 
data by 6M, find the perturbation to the solution Sx', and form the 
ratio: 

(1) 

Clearly, perturbations of 2 along different directions result in dif- 
ferent values for the above expression. Condition_number of the 
problem however, is the particular perturbation SM* which maxi- 
mizes the above ratio. Finding this perturbation involves con- 
strained nonlinear optimization, and in general is not an easy task. 
Our approach, however, is to find a lower bound for the condition 
number by finding one particular perturbation. 

Ibx' II / II x' II 
I1 6 2  II / I I  2 II . 

Consider the perturbation sequence 

E n = O  i 0 n + O  
(2) 6x(n) = 

and its corresponding perturbed sequence x' (n)  = x (nl  + Sx (n). 
If X ' ( w )  denotes the Fourier transform of x ' ( n ) ,  and M'  denotes 
the perturbed FTM vector whose elements are uniformly spaced 
samples offJ X '  (2) 1 2 ,  t e n  the resulting perturbation in FTM is 
given by 6M = M '  - M .  We now use the perturbation of (2) to 
derive a lower bound for different classes of sequences. 

A .  Spatially Extended Sequences 

We begin with the following theorem. 
Theorem I: Consider a positive, real N point sequence x ( n )  

' 

which satisfies the following condition: 

- - 
M ;  P N -  I 

Mi 
k = O  

where MO stands for the DC component of the FTM vector 2. The 
approximate lower bound for the condition number of the problem 
of reconstruction from PN samples of FTM of the one-dimensional 
sequence x (n)  is: - 

2 )  > (4) 

(7) 
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TABLE I 
PREDICTED AND ACTUAL VALUES FOR THE LOWER BOUND ON THE CONDITION NUMBER 

Size Approx. Th. Experiment Approx. Th. 
Image . N x N  N / 2  Equation (1) Inequality (5) 

Cameraman 
Cameraman 
Cameraman 
Cameraman 
Vegas 
Vegas 
Vegas 
Vegas 
Boat 
Boat 
Boat 
Boat 
Brow 
Brow 
Brow 
Cam er am an 

with delta 

32 x 32 
64 X 64 

128 x 128 
256 X 256 

32 X 32 
64 x 64 

128 X 128 
256 x 256 

32 x 32 
64 x 64 

128 x 128 
256 x 256 

32 X 32 
64 x 64 

128 X 128 

32 x 32 

16 
32 
64 

128 

16 
32 
64 

128 

16 
32 
64 

128 

16 
32 
64 

NIA 

13.6 
27.2 

, 54.3 
108.6 

12.0 
24.1 
48.3 

106.2 

12.36 
24.8 
49.7 
99.5 

11.9 
23.8 
48.2 

0.5 

14.9 
29.8 
59.7 
119 

13.5 
26.9 
53.9 

114.9 

14.05 
28.2 
56.5 

113.3 

14.4 
28.8 
58 

0.8 

then the approximate lower bounds for one, two, and Q dimen- 
sional sequences grow as f i / 2 ,  N / 2 ,  and N Q / ’ / 2 ,  respectively. 

Proof: Consider the perturbation shown in ( 2 ) .  For small val- 
ues of E ,  we can approximate the kth element of the FTM pertur- 
bation vector in the following way: 

N -  I 

6M, = 2 E  c x(n) cos 
,I = 0 

Combining the above equation with (3), we conclude that 
N = l  

c x ( n )  
I! = 0 

N - 1  2 ’  
Ilm* 
II GI12 (,2 

II x’112 = JG I I =  I 

Using above equation and taking into account that 

the lower bound on the condition number of the reconstruction 
problem can be written as 

N -  I 

x(n) 
K(S;  I) > n = o  (9) IN- I 

Using the approximate moment assumptions of (6) and (7),  the ap- 
proximate lower bound becomes 

J N  
E [ K ( S ,  x’)] > - 

2 

We can extend this argument to higher dimensions and conclude 
thar the expected value of the condition number of two-dimensional 
and Q-dimensional signals is lower bounded by N / 2  and N Q / ’ / 2 ,  

The above theorem provides an approximate rather than an exact 
lower bound on the condition number of FTM reconstruction prob- 
lem. This is because conditions (3), (6), and (7) only impose ap- 

respectively. 0 

proximate rather than exact reconstructions on the signals under 
consideration. Indeed if the approximate signs in assumptions (3), 
(6), and (7) are replaced by equalities, the approximate lower bound 
provided by Theorem 1 also becomes exact. 

We now investigate a subclass of signals that satisfy conditions 
of the above theorem. Since we are primarily interested in FTM 
reconstruction for images, we restrict our discussion to two-dimen- 
sional signals. The assumption associated with (3) can be justified 
by noting that for a broad class of signals, the numerator (denom- 
inator) of the left side of (3) can be approximated with the numer- 
ator (denominator) of the right side of the equation. Specifically, 
the denominator approximation requires the norm of the FTM vec- 
tor of the signal under consideration to be dominated by its DC 
component, and the numerator approximation requires the norm of 
the FTM vector of the even part of the signal under consideration 
to be dominated by its DC component. Therefore, roughly speak- 
ing, assumption (3) holds, among other classes of images, for a 
class of images in which most of the energy in the Fourier domain 
is concentrated around DC, or more generally low frequency terms. 
We refer to this class of signals as “DC dominant.” 

Our second comment has to do with assumptions (6) and (7). 
Specifically, if the first moment of the sequence x ( n )  is exactly 
equal to A ,  then its second moment is greater than or equal to A’, 
with equality if and only if x ( n )  = A for all 1 I n 5 N .  Thus, 
strictly speaking, assumptions (6) and (7) can only be exactly true 
for the class of constant signals, and therefore the bound shown in 
(10) is only exactly true for constant signals. However, the bound 
in (10) is approximately true for sequences which approximately 
satisfy (6) and (7), that is for sequences whose elements are more 
or less uniformly distributed. We refer to these sequences as “ex- 
tended” rather than “peaky” images in which the majority of pix- 
els have small (large) intensity values and only a few are bright 
(dark). In fact, the more uniformly distributed a signal looks in the 
space domain, the more accurately it satisfies assumptions (6) and 
(7). 

Note that DC dominant signals are not the only ones satisfying 
(3). In fact, a peaky signal of the form x (0) = 1 and x(n) = 0 for 
all n # 0 also satisfies (3), even though the denominator (numer- 
ator) of the left-hand and right-hand sides of (3) are not approxi- 
mately equal to the denominator (numerator) of the right hand side. 



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 41, NO 2, FEBRUARY 1993 973 

Fig. 1. Original (a) 256 X 256 cameraman; (b) 256 X 256 vegas; (c) 256 X 256 boat; (d) 128 X 128 brow. 

Thus, the lower bound of ( 5 )  applies to this signal. However, since 
the si nal does not satisfy the moment assumptions of Theorem 1, 
the J N / 2  lower bound of (10) does not apply to it. We will com- 
ment on this issue again at the end of Section 111-A. 

Table I shows the predicted and actual values of the lower bound 
on the condition number of the reconstruction problem for the 
“cameraman,” “vegas,” “boat,” and “brow” images whose 
originals are shown in Fig. 1. All the pictures are 256 X 256 except 
for the “brow” which is 128 X 128. Each set of images in Table 
I consists of four different resolutions ranging from 32 X 32 to 256 
x 256.  Subsampling is used to obtain lower resolution images from 

higher resolution ones. The third column of the table shows the 
approximate theoretical lower bound of Theorem 1, i.e., N / 2  for 
two-dimensional images of size N X N .  The fourth column of the 
table shows the experimental lower bounds obtained by using the 
perturbation sequence shown in (2), computing the perturbation in 
FTM vector norm, and forming the ratio shown in (1). The exper- 
imental results are robust with respect to the value of E in ( 2 ) .  The 
particular value we chose for Table I is E = 0.01. As seen, the 
experimental lower bound of the fourth column is in excellent 
agreement with the approximate theoretical bounds in the third col- 
umn, indicating that the images under considerations satisfy the 
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assumptions of Theorem 1 .  Furthermore, as expected, the theoret- 
ical and experimental lower bounds on condition numbers double 
as the size of the images under consideration doubles. 

The last column of Table I shows the right-hand side of in- 
equality (5), which is solely based on assumption (3) and therefore 
does not require the validity of the moment assumptions shown in 
(6) and (7). As seen, the values in the last column are very close 
to the experimental lower bound, indicating the validity of as- 
sumption (3) for the images considered in the table. Finally. for 
each row in Table I, the entries of the experimental column is closer 
to those of the last column than to the entries of the third column. 
This can be attributed to the fact that the entries on the last column 
only require assumption (3), while those of the third column re- 
quire additional assumptions (6) and (7). 

The last row of Table I shows the properties of a “peaky” signal 
obtained by adding a delta function of a large amplitude to location 
(0 ,O)  of the 32 X 32 cameraman signal in the first row of the table. 
The amplitude of the delta function is 3 X lo5 ,  while the remaining 
elements of the sequence are between 0 and 255. Since this results 
in a peaky signal, it does not satisfy the moment assumptions of 
Theorem 1 ,  and hence N / 2  is not a valid lower bound for it. Fur- 
thermore, neither the norm of its FTM vector nor the FTM vector 
of its even part al’e dominated by its DC component, and hence it 
is not a “DC dominated” signal. Specifically, in the assumption 
of (3) in Theorem 1 ,  the denominator of the left-hand side is 650 
times larger than the denominator of the right-hand side, and the 
numerator of the left-hand side is 1600 times larger than the nu- 
merator of the right-hand side.’ Nevertheless, assumption (3) is 
approximately (within a factor of 2.5) satisfied for this signal and 
hence the bound in (5) is a valid lower bound for its condition 
number. This bound is shown in the last column of Table I to be 
0.8. The experimental lower bound obtained via ( 1 )  is shown in 
the fourth column of Table I to be 0.5. Thus, the experimental 
lower bound is quite close to the theoretical one in (5). In Theorem 
2 of the next section, we find another lower bound for this signal, 
which unlike (5) is independent of the elements of the signal itself. 

A. Frequency Extended Sequences 

In the previous section, we derived a lower bound on the con- 
dition numQer of signals for which the norm-of the FTM vector of 
a signal 11 Mil,  and its even component 11 6M 11, are dominated by 
their DC component. In this section, we are interested in signals 
for which the elements of the FTM vector contribute more or less 
uniformly to its norm. We can show the following theorem. 

Theorem 2: Consider a real-,, completed valued N point se- 
quence x ( n )  with FTM vector M satisfying the following moment 
properties: 

The lower bound for the condition number of the problem of re- 
construction from PN samples of the FTM of x (n) is 1 .  For two- 

‘For comparison purposes, for the 32 X 32 cameraman without the delta 
function, the denominator (numerator) of the left-hand side of (3) is twice 
the denominator (numerator) of its right-hand side. 

dimensional N X N sequences, or more generally, Q-dimensional 
signals, the lower bound is also 1 .  

Proof: The assumption of (12) implies that 

If the particular perturbation we consider is the one shown in (2), 
then the assumption shown in (13) together with (8) imply 

Using Parseval’s relation together with ( 1  1) we get 

11 211 -- A. 

Combining the above three equations, and taking into account that 
11 62 11, -- E ,  we conclude that 

K ( S ;  2 )  > 1 .  

The derivation for two and higher dimensions is identical. 0 
Note that satisfying Theorem 2’s conditions does not guarantee 

that the reconstruction problem is well conditioned. Rather, it im- 
plies that the lower bound on the condition number of the problem 
is one, and therefore there is some hope for stable reconstruction. 
After all, even if the lower bound on the condition number is one, 
the actual condition number could be very large and the problem 
could still be quite ill conditioned. Therefore, only when the lower 
bound on the condition number is very large, as in Theorem 1 ,  can 
we claim ill conditionedness of the problem. However, if the lower 
bound is low, the problem could be either well or ill conditioned. 

Theorem 2 is dual of Theorem 1 in a sense that conditions shown 
in (6) and (7) of Theorem 1 are space domain counterparts of the 
frequency domain conditions of (11) and (12) of Theorem 2.  
Roughly speaking, signals for which the distribution of the ele- 
ments of the FTM vector is more or less uniform can be shown to 
satisfy conditions (11) and (12) of Theorem 2 .  This is in sharp 
contrast with signals associated with Theorem 1 in which the main 
contribution to the norm of the magnitude vector is from a few 
elements only. 

A subclass of signals satisfying (11) and (12) of Theorem 2 is 
“peaky” images. An application in which peaky images occur fre- 
quently is optical astronomy. Examples of successful reconstruc- 
tion from FTM for such images have been reported in the literature 
[ 1 1 .  Another way to obtain peaky images would be to add the func- 
tion A@, - m l ,  n, - m,) to a spatially extended sequence whose 
elements are considerably smaller than A. For instance, we have 
found that adding a large amplitude impulse to the (0, 0)th element 
of the cameraman picture shown in Fig. 2(a) flattens the FTM and 
results in successful recovery from FTM. As will be shown later, 
without adding this delta function, complete recovery of camera- 
man from it FTM is not possible.’ 

A similar application in which the FTM is deliberately flattened 
is acoustical, microwave, or optical Fourier transform holography 
with a reference wave [ 121. This involves adding a reference wave 
such as a plane wave ejbX to the light wave g (x, y) due to the Four- 
ier transform of the object p (U, U), squaring the absolute value of 
the sum to get h (x, y), and producing a film transparency with an 
amplitude transmittance proportional to h (x, y), which is positive 
and real. Optical and numerical reconstruction of the object p ( u ,  
U) have been successfully demonstrated [ 121. 

Another well-known technique in optical holography to flatten 
FTM is to multiply each pixel of a two-dimensional signal by a 

‘Once again, we are not claiming that flattening FTM improves the con- 
dition number of the problem. All we are stating is that the lower bound 
on the condition number becomes small as FTM as flattened. 
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Fig. 2 .  (a) Original 3 2  x 32 cameraman, (b) reconstruction from FTM and known random phase; (c) reconstruction from FTM 
only; (d) reconstruction from and one bit of space. 

random phase factor before computing its Fourier transform. In the 
absence of the random phase, the magnitude of the DC and low 
frequency components become much larger than those of higher 
frequencies, thus posing a severe problem in recording the Fourier 
transform on film [12]. Another application in which random phase 
improves the robustness of a reconstruction problem is in [14] where 
it is shown that the band-limited extrapolation problem in the fre- 
quency domain is considerably more robust when the signal under 
consideration has random space domain phase. 

Theorem 2 can be used to explain the stability of FTM recon- 
struction of spatially extended signals with known random space 
domain phase. While the FTM of spatially extended signals, such 
as the cameraman, satisfy the conditions of Theorem 1 ,  the FTM 
of their corresponding signal resulting from random phase assign- 
ment satisfies the conditions of Theorem 2. Thus, the addition of 
random phase in space domain improves the lower bound on the 
condition number of the problem of FTM reconstruction. For in- 
stance, the computed lower bounds on the condition number of the 
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Fig. 3. Reconstruction error as a function of iteration number for recon- 
struction from FTM alone, FTM with one bit of phase, and FTM with 
known random phase. 

problem of reconstruction of the 32 X 32 and 64 X 64 cameraman, 
and 32 X 32 brow image from the FTM of their corresponding 
sequences, after random phase has been added to each pixel, are 
0.09986, 1.0091, and 1.001 1, respectively. These numbers are ob- 
tained by using the perturbation sequence shown in (2) and forming 
the ratio shown in (1). The corresponding lower bounds without 
the random phase component are shown in the third column of Ta- 
ble I,  and are 13.6, 27.2 and 11.9, respectively. 

The small lower bound on condition number in the case of known 
random phase images directly translates into practical reconstruc- 
tion of these sequences using iterative algorithms such as the 
Gerchberg-Saxton [4]. Specifically, an example of the reconstruc- 
tion of 32 X 32 cameraman shown in Fig. 2(a), from the 64 X 64 
samples of the FTM of its corresponding sequence after a known 
random phase has been added to each pixel, is shown in Fig. 2(b). 
The known random phase for each pixel is uniformly distributed in 
(0, 27r). As seen, the quality of reconstruction is indistinguishable 

the 32 x 32 cameraman shown in Fig. 2(a), while the phase for 
each pixel is a uniformly distributed random variable in the range 
( -0 ,  +e) .  Different curves in Fig. 3 correspond to various values 
of 0.  Clearly, an increase in the variance of the space domain phase 
results in a decrease in MSE and faster convergence. Furthermore, 
the speed of convergence for reconstruction from one bit of space 
is in between that of zero phase, and randomly distributed phase in 
(0, 2a).  

IV. SUMMARY AND CONCLUSIONS 

We derived the lower bound on the condition number of the 
problem of reconstruction for two classes of signals. The lower 
bound for spatially extended N X N images in which the norm of 
the FTM vector is dominated by DC and low frequency compo- 
nents, was shown to grow with N .  The lower bound for images in 
which the low and high frequency elements of the FTM vector con- 
tribute more or less equally to its norm, is 1. 

We discussed the problem of reconstruction from FTM and 
known phase in space domain. Since the introduction of sufficiently 
random space domain phase results in “flattened” FTM distribu- 
tion, the lower bound on the condition number of the reconstruction 
problem with respect to the FTM vector again becomes one. This 
is in agreement with our experimental results indicating that ran- 
domizing the phase in space domain improves the convergence rate 
of the Gerchberg-Saxton algorithm. 

We end this correspondence with a note of caution on the inter- 
pretation of the presented results. It is important to emphasize that 
all the results in here dealt with lower bounds on condition numbers 
rather than the actual condition number. This implies that, even 
though Theorem 2 indicates lower bound of 1 for certain classes of 
sequences, the reconstruction problem is not necessarily well posed 
for all the sequences in these classes. For example, it is well known 
that the region of support of the sequences under consideration is 
of importance in reconstruction of two-dimensional sequences [ 11. 
Therefore, all that we can claim here is that there is some hope for 
successful recovery under certain conditions. 
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Direct Frequency-Domain Deconvolution when the 
Signals Have No Spectral Inverse 

Damjan Zazula and Ludvik Gyergyek 

Abstract-We describe a new method of frequency-domain decon- 
volution when the kernel has no spectral inverse. Discrete frequency 
interpolation is used to avoid zero-valued frequency samples. The al- 
gorithm does not suffer from the spectral singularities of the original 
kernel, its complexity is proportional to the fast Fourier transform, 
and a comparative noise study showed improved performance relative 
to the direct frequency-domain method. 

I. INTRODUCTION 

When we are interested in the characteristics of a system, it is 
very natural to observe the system operation referring to its output 
signal. Then, the characteristic behavior is generally explained 
either by the impulse response in an input-output model or by the 
internal state changes in a state-space model. Nevertheless, to es- 
tablish the backward connection from the system output to its char- 
acteristics or input signals, we face the inverse problem that is to 
be solved by a kind of deconvolution. 

Many different approaches to deconvolution have been intro- 
duced. Some of them attempt to avoid instability of frequency-do- 
main deconvolution; some, however, obtain the deconvolution re- 
sult given the system output signal, but not its impulse response 
nor the input signal. The former acquires the answer in time-do- 
main algorithms using smoothing filters [ 11 or interative gradient 
methods [2]. The latter is important especially when dealing with 
hardly controllable systems, e.g. ,  in observing natural and biomed- 
ical phenomena [3]. Another approach, used mainly in speech and 
seismic signal processing, is homomorphic deconvolution [4]. 

All these approaches are computationally more complex than 
simple direct deconvolution in the frequency domain, realized by 
the fast Fourier transform (FFT). Unfortunately, frequency-do- 
main deconvolution is not feasible when the kernel has no spectral 
inverse. Some successful, though computationally very complex 
algorithms (proportional to N4) have been developed in the time 
domain [5]. 
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In this correspondence, we define a frequency-domain method 
using interpolated frequency samples that does not suffer from the 
spectral singularities. We present a computer algorithm based on 
the FFT to implement the method, and we study the influence of 
noise added to the signals. 

11. DISCRETE FOURIER TRANSFORM OF REAL SAMPLED 
SIGNALS 

In all discrete signal processing applications where the processed 
signal period must be relatively long with respect to the sampling 
interval, the number of samples is rather high. The z transform of 
the sampled signal is a high-degree polynomial in z which has in- 
teger coefficients, with the maximum value restricted to the range 
of quantization levels of the A/D converter used. Such polynomials 
can have roots only in certain regions of the z plane [6], so the 
distribution of zeros on the unit circle is not arbitrary. Consider a 
polynomialp ( z )  in z of order N with random coefficients. Let M(cp,,  
p2) be the number of zeros of p ( z )  having angles between pi and 
c p 2 .  It is shown in [7] that, with probability 1, 

This result indicates that, as N becomes large, the zeros of p(z) 
tend to become evenly distributed in angle. Thus the spacing of the 
zeros tends to 2a /N ,  which is the spacing of the frequency samples 
computed by an N-point DFT. If one then samplesp(z) with a DFT 
of length 2N (interpolation), it is unlikely that adjacent even- and 
odd-numbered Fourier coefficients will equal 0 at the same time 
because their angular spacing is x / N ,  while the zeros tend to be 
2?r/N apart. 

111. AN ALGORITHM FOR FREQUENCY-DOMAIN DECONVOLUTION 

The previous discussion suggests that if a signal’s N-point DFT 
has zeros, then interpolated spectral samples would differ from zero. 
Therefore, using the sequence of the interpolated samples as a de- 
convolution kernel, the singularities would be eliminated. 

Consider an arbitrary discrete system with unit-sample response 
h ( n )  and output signal y ( n ) ,  n = 0,  . . . , N - 1. Denote their 
DFT’s H ( k )  and Y ( k ) ,  k = 0 ,  * * 1 , N - 1. Let the sequences 
H i  (k)  and Y ,  ( k ) ,  k = 0 ,  . . . , 2N - 1, be the 2N-point DFT’s of 
the 2N-point signals hl (n)  and yi (n ) ,  n = 0,  - - * , 2N = 1, where 

y (n) ;  n = 0,  . . . , N -  1 

0 n = N ; . . , 2 N - l  
Y I @ )  = 

Next, note that 

N -  1 

H1(2Z + 1) = h l ( n )  . W;,$!’+I) 
n = O  

N -  I 

= c h(n) * W;N * W$ 
n = O  
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