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Optimal Sampling and Reconstruction of MRI Signals
Resulting from Sinusoidal Gradients

Avideh Zakhor, Member, IEEE, Robert Weisskoff, and Richard Rzedzian

Abstract—Fundamental operations of magnetic resonance
imaging (MRI) can be formulated, for a large number of meth-
ods, as sampling the object distribution in the Fourier spatial-
frequency domain, followed by processing the digitized data to
produce a digital image. In these methods, controllable gra-
dient fields determine the points in the spatial-frequency do-
main which are sampled at any given time during the acquisi-
tion of the free induction delay (FID) signal. Unlike the constant
gradient case in which equally spaced samples of the FID signal
in time correspond to uniform samples in the Fourier domain,
for time-varying gradients, linear sampling in time corre-
sponds to nonlinear sampling in the Fourier domain, and there-
fore straightforward inverse Fourier transformation is not suf-
ficient for obtaining samples of the object distribution. MRI
methods using time-varying gradients, such as sinusoids, are
particularly important from a practical point of view, since they
require considerably shorter data acquisition times. In this pa-
per, we derive the optimum continuous time filter and its var-
ious discrete time implementations for FID signals resulting
from sinusoidal gradients. In doing so we find that the estima-
tion error associated with implementation based on linear tem-
poral sampling, or, equivalently, nonlinear spatial frequency
sampling, is smaller than that of nonlinear temporal sampling.
In addition, we will show that the optimal maximum likelihood
estimator for sinusoidal gradients has higher error variance
than that of constant gradients. We present experimental re-
sults verifying our theoretical predictions.

1. INTRODUCTION

URING the last decade, the technology of magnetic
resonance imaging (MRI) has emerged and received
increased attention. In the medical area, MRI represents
a noninvasive technique for obtaining high-resolution
cross sectional images of the human body. Current med-
ical applications include cancerous tumor detection [1],
brain imaging [2], imaging of diseased tissues [3], and
measurement of blood flow [4]. MRI also holds great po-
tential for the study of biology at the cell level [5]. Other
potential applications of MRI imaging include food sci-
ence and technology, the construction industry, and the
study of fuels [6].
MRI is a particularly exciting technology to the signal
processing community because it presents new challenges
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for the development of systems which perform sophisti-
cated data collection, processing, and display [7}-[9].
MRI is similar to other signal processing inversion prob-
lems in the sense that the design of successful signal pro-
cessing algorithms for data inversion must be based on a
detailed understanding of the underlying signal generated.
However, MRI differs from other signal processing in-
version problems due to the degree of control one has over
the signal being generated [10].

Primary among the factors currently limiting the rate of
growth of MRI in the diagnostic imaging marketplace are
concerns relating to its limited applicability to the study
of organ systems subject to significant involuntary phys-
jological motion, especially of the heart. This problem
can be alleviated by decreasing data acquisition time. By
reducing the total scan time to a small fraction of the car-
diac period, motion artifacts due to all physiological mo-
tions including that of the heart, are reduced.

In an effort to reduce data acquisition time, MRI meth-
ods using time-varying gradients have been developed
[111-[13]. In these methods, gradient fields are modu-
lated during the observation of a free induction delay
(FID) signal to scan the spatial frequency domain and ef-
ficiently collect the data which are necessary for image
reconstruction. Since data acquisition occurs during a sin-
gle FID, imaging occurs in several tens of milliseconds,
thus overcoming problems such as motion artifacts men-
tioned above. Under these conditions, time-varying gra-
dient fields determine the points in the spatial-frequency
domain of the object which are sampled at any given time
during the acquisition of the FID signal. Unlike the con-
stant gradient case in which equally spaced samples of the
FID signal in time correspond to uniform samples in the
Fourier domain, for time-varying gradients, linear sam-
pling in time corresponds to nonlinear sampling in the
Fourier domain, and therefore straightforward inverse
Fourier transformation is not sufficient for obtaining sam-
ples of the object distribution.

In this paper, we derive optimal sampling and recon-
struction schemes for FID signals resulting from sinu-
soidal gradients [14]. Sinusoidal gradients are particularly
important since they require considerably shorter data ac-
quisition times due to their high-speed switching capabil-
ities and ease of implementation. As we will see, our re-
sults can be extended to arbitrary gradients without any
difficulty. The organization of the remaining part of this
paper is as follows: In Section 11 we briefly review the
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relationship between the MRI signal and the gradient
waveforms. In Section III, we derive the optimal contin-
wous time filter and its discrete time implementation for
the constant gradient case. In Section IV, the optimal fil-
ter for the sinusoidal gradients and its various digital im-
plementation of it are proposed. Section V includes ex-
perimental results and Section VI includes conclusions.

II. PROBLEM FORMULATION

Consider an object with extent [0, L] in the x direction
and [0, L] in the y direction. If an exciting RF pulse with
center at time ¢t = 0 is applied to the object, the resulting
MRI signal for 1 > 0 is given by [10]

Ly pLy
s(t) = S SO e P (x, y)

0
- exp [—72n(K (x + K(Oy]dxdy (1)
where T is the spin-spin relaxation time, f(x, y) is the
density distribution, and K (¢} and K,(¢) are the integral of
x and y gradients, G,(r) and G,(1), respectively. That is,

1

K = K2 + v S
0

G(r) dr @

t

K0 = K? + v SO Gy() dr ©)

with v being the gyromagnetic ratio. Since we only ob-
serve the signal from s = Otot = T, and T, >> T, we
can drop the e ~“/™ term from (1) to get [10]

Ly Ly
st = S SO [,y

0
cexp [—j2n(K(Ox + K, (O] dxdy. (4)

The scanning pattern in an MRI experiment can be rep-
resented as a curve in the so called K space. Specifically,
the curve corresponding to values of K.(¢) and K,(?) in the
K, — K, plane, parameterized with respect to time, is re-
ferred to as the K space representation of the scanning
pattern [10]. An example of column-by-column scanning
of the K space is shown in Fig. 1. From (4), it is clear
that time samples of the signal s(#) correspond to samples
of the Fourier transform of the object density function f (x,
). Thus, for a particular time sample t,, the quantity s(fo)
corresponds to two-dimensional Fourier transform of the
object at spatial frequencies (K, (1), K,(%)) in the K space.
Furthermore, the rate at which the K space is scanned is
related to the shape of the functions K,(#) and K\ (1), or
equivalently G(r) and G(). For example, in the constant
gradient case, the velocity at which the K space is scanned
is constant and therefore uniform time samples of s(¢) cor-
respond to uniformly spaced samples in the K space. On
the other hand, if one of the gradients is held constant,
and the other varies sinusoidally, then the scanning ve-
locity is nonlinear, and therefore equal time samples of
s(f) correspond to nonuniform samples in the K space.

>

Fig. 1. Column-by-column scanning in the K space.

In this paper, we are primarily concerned with column-
by-column scanning as shown in Fig. 1. Specifically, we
assume G,(f) to be zero fromt = 0to¢ =T, G,(9) to be
nonzero during the same period, and without loss of gen-
erality set K;O) = 0 in (3). Under these conditions (4) can
be rewritten in the following way:

Ly
s(t) = SO B(y) exp [—j27K(n)y] dy 5)

where
L

B(y) = SO fx, y) exp (—j27KPx) dx. (6)

Thus samples of s(¢) correspond to samples of the Fourier
transform of B(y). In practice, the observed MRI signal
r(?) is contaminated with noise and is given by

r() = s@) + n(). (@]

For the remaining part of this paper, we will assume n(t)
to be a white, Gaussian, zero mean random process with
intensity o2, Our main goal is to find optimal ways of
estimating equally spaced samples of B(y) given by

IL‘ .
B <ﬁ> 0<i<N ®)

from observing the noisy signal (7). In the next section,
this problem is solved for constant y gradient, and in Sec-
tion IV the solution for sinusoidal gradient is derived.

III. CoNsTANT GRADIENT CASE

In this section, we derive the optimal continuous time
filter for the constant gradient case by assuming a piece-
wise constant model for B(y). As we will see, the result-
ing filter is identical to the well-known, conventional
strategy used for processing signals resulting from con-
stant gradients, i.e., inverse Fourier transforming. We use
this model of B(y) in Section IV to derive the optimal
filter for the sinusoidal gradient case.
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A. Optimal Filter

The density function B(y) is commonly approximated
in the following way in the MRI literature [10}:

iL, iL, @ + DL,
B(y) = B <7\/‘> N < .

N
Thus, the staircase approximation to the integral of (5) is
given by

y < &)

N
sty = ’ )

i' iL, _ iL,
o B <W> exp \:~JZWK_\,(1) 7\]—} (10)

For the constant gradient case we have
G =1

0<1<T (11)

Nob i, ALy
s@t) = E B <W> exp <—127m W> (12)

0

so that

where for convenience, we have dropped the scale factor
L,/N. Since increasing the length of the gradient pulse
results in a smaller field of view (FOV) and therefore
smaller L,, the variables T and L, are inversely propor-
tional to each other. We can exploit this to simplify the
algebra by assuming

N
T=—

=L 13)

In effect, we are assuming T to be small enough so that
its corresponding FOV includes the object. Incorporating
this assumption into (12), and taking into account (7), the
observed signal can be written as

LNZ i,
- - Y —j2mitt/T)
rn =n@ + EJO B <N> e . (19
Thus, our problem can be stated as that of observing r(f)
and estimating samples of B(y). This is a problem in clas-
sical estimation theory and its solution has been known
for a long time [15]. Specifically, the orthnormal basis
functions for the Karhunen-Loeve (KL) expansion are
given by

1 .
o, () = —= ™D 0 <m<N (15
T )
and the sufficient statistics are given by
T
T = g r(Ne,,(t) dr 0<m<N. (16)
0

Therefore, the maximum likelihood (ML) estimate of
samples of B(y) is given by
B(0) o
B(L,/N) 11 n
. = — . V)
JT .

B(N — DL,/N)

From (17) it is clear that the estimate for the ith sample
of B(y) is given by

ALY 1T
B <—> == S r(ne!>™ /T dr.
0

N T (18)

The estimator of (17) is unbiased and its error covariance
is given by
2
A ~ g
El(B — B)(B — B)*] = T 1 (19)
where x* denotes the complex conjugate of the transpose
of the vector x.

B. Discrete Time Implementation

In this section, we derive a discrete time implementa-
tion of the optimal continuous time filter of Section III-A,
and show that its MSE performance characteristics are
identical to those of the continuous time filter. The struc-
ture of the implementation we propose in this section is
heavily influenced by various implementations discussed
in the Appendix, which are shown to be either subopti-
mal, or impractical from an implementation viewpoint.

We begin our discussion by assuming s(f) to be band
limited so that passing it through an ideal low-pass filter

of the form
Hf {1
f) = 0

leaves it unchanged. Our proposed estimator is

il 1 PN—1 Tk /PN + A
5(%) = 52 3 (Lm0 e
k=0 Tk/PN—A

2n

Lfl = W

elsewhere

(20)

where 7(f) is the low-pass version of r(¢) using the above
filter, PN is the number of samples of small integrals of
7(1), and A is the integration width for each sample.l The
estimator of (21) can be shown to be unbiased, and its
error covariance is given by

MSE (i)
2 PN—1 PN-1 .
1Y 27tk — ko)
= [ —— > { fuliha Al A4

<2APN> k=0 k=0 xp\J PN
Tki/PN+A Tka/PN+A

: < S Ea(r)i*(y)] dry de>
Tki/PN—A JTka/PN—-4A

- (22)

where 7(f) is the low-pass version of the zero mean, white,
Gaussian noise n(f). Using linear system theory and the-
ory of random processes, we conclude that 7(r) is also
zero mean and its power spectrum of 7() 1s given by

IThe reason behind small integrals of 7(r) as opposed to its instantaneous
samples is discussed at length in the Appendix. Roughly speaking. it has
to do with the fact that variance of instantaneous samples of a white process
is infinite.
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o’ I fl = W,
P j—
f) {O

Taking the inverse Fourier transform of P( f), we can find
the autocorrelation function of 7i(z):

(23)
elsewhere.

W,
Ela@ya*t — 1] = S ol daf
—w.

, sin 2wW,7)
T '

24

Assuming

1 T
S ——

2W. PN

25)
the double summation in (22) can be replaced by a single

summation:

MSE (@)
1 2 PN-1
B <2APN> kgo
Tk/PN+4& pTk/PN+a
. <S S E[ﬁ(Tl)ﬁ*(Tz)] dT] dT2> .
Tk/PN—-A JTk/PN—-A

(26)

Since A(?) is stationary, utilizing (24), the double integral
of (22) can be changed into a single integral:

1 2 PN-1
S ) = (s3y) 2

24 .
. <S 02(2A —T)Md7>.
-24 T

Assuming 1/2W, >> A, we can consider sin
(2xW,7) /7T to be almost constant for ~2A < 7 < 2A.
Thus we get

@n

W,
MSE (i) = o2 L.

PN @8)

This seems to imply that decreasing the bandwidth of the
filter W, results in lower error covariance. However, by
the assumption of (25), W, must be larger than or equal
to PN /2 T. This makes the error covariance shown in (28)
larger than or equal to 0% /T, which is the lowest possible
estimation error achieved by the continuous time optimal
filter of (18). Furthermore, W, must be larger than the
baridwidth of the MRI signal s(#). If the frequency content
of s(r) with constant gradient is only nonzero in the range
[—B., B, then the strategy resulting in least error co-
variance and smallest required sampling rate is to choose
W. = B,, and PN = 2TW,. Under these conditions, the
sampling rate of s(z) is at the Nyquist rate, i.e., 2B and
the error covariance of the estimator is
2

a

MSE (i) = T (29)

IV. SinusoIDAL GRADIENT CASE

In this section, we will derive the optimal filter for the
case where the y gradient is sinusoidal and is of the form:

T . et
G = ) sin <7> 0<t<T 30)

and the observed signal is

NZ_;] iLv" .. t
r@ = n(n) + R B <W> exp {—jﬂ'l [1 — cos (—f>B
(3D

Considering the above equation, a reasonable choice of
the basis functions would be

o) = %,exp {jvrk [1 — CO$ (¥>B 0=<k<N.

(32)

However, unlike the basis functions of the constant gra-
dient case shown in (15), the above set are not orthonor-
mal or othogonal. In fact, their inner product is given by

! (=p"”
SO b @) dt = ——T——Jo(w(m —-n) (33
where J, denotes the zeroth-order Bessel function. Mul-
tiplying both sides of (31) by ¢(?) and integrating from ¢
=0tot =T, we get

r
So r(ny(0) dt T

T
SO r(go(t) dt

T
So r(én-1(0) dt

— - _ -
B(0) So n(1)eo(t) dt
B L ST d
<ﬁ> , M) di
(N - DL, T
B(——N ) , S n(t)y- 1) dt
0
(34

where Q is a Toeplitz matrix with its ijth element given
by

gy = (=D g(xi = ). (35
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Although the random variables 53 n(t)$,,(f) dr are jointly
Gaussian, unlike the constant gradient case, they are not
independent of each other. Specifically, we have

2
Elmn,) = % (=D*"o(xlk = m) - (36)

where n, is defined to be

T
n = SO n(n$(2) dt. (37
Thus, the covariance matrix of the jointly Gaussian ran-
dom variables n; is
2
g
R=—=0. 3
7 ¢ (38)
Having transformed the waveform estimation problem into
a discrete one, the maximum likelihood solution can be
easily found:

~ [ a7
B(0) T go r(Heo(t) dt ]
/L, T
B <N> SO r(f)é,() dt
="'
/(N — l)L‘V ST
LB < N >_ L . r(Ney- () dt_

(39

The above estimator is unbiased and its error covariance
matrix is given by

E[(B — B)(B — B)*]

(©*R'Q)!

a (o
T

2
I -t
= — . 40
T 0 (40)
We have found numerically that the matrix 0! is diag-
onally dominant, and that its diagonal elements for N =
128 are approximately equal to 1.23. Thus, the mean-
squared error in optimal estimation of the ith sample of
B(y) is given by
2
MSE (i) =~ 1.23 "7 1)
Note that the estimation error of the optimal filter for si-
nusoidal gradients is 1.23 times larger than that of con-
stant gradients. In the remaining parts of this section, we
propose various digital implementations of the estimator
of (39).

A. Discrete Time Implementation

Recall that the ‘‘clean’” MRI signal s(z) for the sinu-
soidal gradient case is given by

N-l iL, wt
s(t) = Eo B <W> exp {q‘m’ [1 — cos <7>B 42)

This implies that uniform time samples of s(¢) correspond
to nonuniform samples of the discrete time Fourier trans-
form of the sequence B(iL,/N). On the other hand, PN
nonuniform time samples of s(f) at times # given by

Kty = g {1 — cos <—7r—7t,k>}

kT

= N 43)

correspond to uniform samples of the discrete time Fou-
tier transform of the sequence B(iL, /N ).2 A pictorial rep-
resentation of such a sampling is shown in Fig. 2. There-
fore, the natural question which arises has to do with
relative signal-to-noise ratio (SNR) performance of uni-
form and nonuniform sampling of the observed signal in
the presence of noise n(?). In the next two sections, we
evaluate the error characteristics of these two schemes,
and compare their performance with the optimal contin-
uous time filter of Section IV.

1) Nonlinear Sampling: Similar to Section III-B, we
begin with processing the observed signal r(#) through an
ideal low-pass filter of the form

1 <w
H(f)_{() £

elsewhere.
In doing so, we assume the bandwidth of the filter to be
larger than the highest frequency in s(f). If F(¢) denotes
the output of the above filter due to r(f), then our pro-
posed estimator operates on small time integrals of 7(7)
around time instants 7, given by (43). Specifically, the es-
timator is given by

lL 1 PN-1 th+A
B <ﬁ‘> = SAPN kZO <S #(©) dt> Tk/PN) (45)
= tw—A

Note that the above estimator is similar to the one shown
in (21), except that unlike (21) it uses nonuniform sam-
ples at times f; as opposed to uniform samples at times
TK/PN. The estimator of (45) can be shown to be un-
ciased, and its error covariance is given by

2 PN-1PN—1 . _
MSE (i) = <;> 2 X exp <;2i’(ﬁ—ﬁ>

(44)

2APN/ k=0 k=0 PN
it A fh+ A

’ <S S E[A(r)A*(p)] dr d72>
th—A Ji—A

(46)

2Equation (43) shows an example of the so-called implicit sampling in a
sense that sampling coordinates are determined by the structure of the sig-
nal under consideration [16]. Another example of implicit sampling is level
crossing based representation of signals (17], [18]. In contrast with implicit
sampling, there is explicit sampling, in which the sampling times are pre-
defined and signal independent. Nyquist sampling is an example of such a
scheme.
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» t

0 t T

k

Fig. 2. Pictorial representation of nonlinear sampling described by (43).

where 7i(#) is the low-passed version of n(f). Assuming

— < |y =14y 0<!<PN 47
the double summation in (46) can be replaced with a sin-
gle one. Utilizing the autocorrelation function of 7A(7)
given by (24), and assuming 1/2W >> A, (46) can be

rewritten as

2W
MSE () = ¢> =—

o (48)

Thus, to minimize the error covariance of our estimate,
we must choose W as small as possible. However, for the
above analysis to hold, it must be chosen larger than the
bandwidth of the ‘‘clean’” MRI signal s(z). If B, denotes
the highest frequency component of s(¢) with sinusoidal
gradient, to minimize the error covariance, we must
choose W = B,. From (48) it is clear that to improve the
error covariance, the number of samples must be chosen
as large as possible. However, due to assumption of (47),
with W fixed to B;, PN cannot become too large. Specif-
ically, for PN samples, the minimum spacing between two

neighboring samples is
= 2—T sin™" —1—
T PN

2T

7PN’

Taking into account (47), the largest allowable number of
samples is

[t = t1 (| min

(49)

PNy = L _ 48T (50)
T T
Substituting the above equation into (48) we get
MSE (i) _To (51)
2T

Comparing the above equation with (41), we conclude that
nonlinear estimation results in mean-squared error which
is approximately 28 % larger than that of the optimal con-
tinuous time filter of (39).

2) Linear Sampling: In this section, we will propose
an estimator which uses linear samples of the low-pass
version of the observed signal. Again, we are assuming
that the low-pass filter given by

L fl<w

0 elsewhere

H(f) = { (52)
has a larger bandwidth than the highest frequency in s(z).
From (31) we can find the expression for linear samples
of the low-pass version of the observed signal:

Tm/PN+4
S F(t) dt
Tm/PN— A
Tm/PN + A N-1 L
= S A dt + 24 2 B<—l>
Tm/PN—A k=0 N

wm
. —jmk |1 — — 1. 53
exp { JjT { cos <PN>B 53)
7(¢) and 7i(t) in the above equation are the low-pass ver-
sion of r(f) and n(?), respectively. In addition, we have
assumed A to be small enough so that we can make the
following approximation:

Tm/PN+A -
STm/PN—A exp i—jﬂ'k {1 — cos <?>B dt
= 2A exp {—jwk [1 — cos <%>B 54

Writing (53) in a vector format, we get

- -

a
S 7(t) dt
-a

T/PN+A
S 1) dt

T/PN-A

ST(PN—I)/PN+A

F(t) dt
T(PN-1)/PN~A
— —_ - A -
B(0) S Aa(t) dt
-a
L T/PN+A
B(— S i(t) dt
<N> T/PN-4 )
5 (N — l)L). S\T(PN—I)/PNJrA s di
N L T(PN—-1)/PN—A

(55)

where His a PN X N matrix whose mkth element is given
by
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. Tm
A = 2A exp {—jwk {1 — ¢os <HV>B (56)

Thus, the linear least squares estimator based on linear
samples of 7(¢) is given by

B = (H*H) 'H*r (57)

where r denotes the vector on the left-hand side of (55).
The terms of the above equation can be related to those
of the continuous time optimal filter shown in (39). Spe-
cifically; H*rin (57) corresponds to the discrete time ver-
sion of the vector on the right-hand side of (39) which
denotes the projection of the observed signal r(f) along
various basis functions. Furthermore, the square matrix
H*H in (57) corresponds to discrete time implementation
of the matrix Q in (39).

We now examine the performance characteristics of the
discrete time estimator of (57). Assuming

1 T
2w < PN 58)
and A << 1/2W, we get
Tm/PN+A Ti/PN+4
E {(S\ A(Ty) d71> <S A(ry) dTl)}
Tm/PN—~A Ti/PN—A
W A? m=i
= (59)
0 m # i.

Thus, the autocorrelation of the noise vector in the right-
hand side of (55) is

R = 8Wo2A’l (60)

The estimator of (57) is unbiased, and its error covariance
is given by

E(B - B)(B - B)*]
8WoAXH*H) 'H*[(H*'H) 'H*]*
8Wo A H*H) ™. (61)

The &, k, th element of the N X N matrix Z = H*H can be
found approximately using (33):

PN-1
Zgpy = 4A mZJO exp {—jw {1 - oS <%—"$>} k, — kz)z

= 4A°PN(—D)* =1 (nk, — ky)). (62)

Thus, if the matrix Q is defined by (35), then the error
covariance matrix of the estimator of (57) is given by

f

E[(B - B)(B — B)*] = ¢° %Q“. (63)

Thus, to minimize the error covariance of our estimate,
we must choose W as small as possible. However, for the
above analysis to hold, it must be chosen larger than the
bandwidth of the ‘‘clean’’ MRI signal s(¢). If B, denotes
the highest frequency component of s(7), to minimize the
error cova{iance, we must choose W = B,. From (63) it

is clear that to improve the error covariance, the number
of samples must be chosen as large as possible. However,
due to assumption of (58), with W fixed to B, PN cannot
become too large. Specifically, its largest allowed value
which does not violate assumption of (58) is

(PN)ux = 2WT = 2B,T. (64)

Substituting the above equation into (63) we get
2
EB - BB -BH1="0" (65)

As mentioned earlier, matrix Q_l has been numerically
found to be diagonally dominant, and its diagonal ele-
ments for N = 128 are approximately 1.23. Thus,
2

MSE (i) ~ 1.23 "7 (66)
Therefore, the error covariance of the linearly sampled
estimator of (57) is identical to that of the optimal contin-
uous time filter of (39).

V. EXPERIMENTAL RESULTS

In this section, we present few examples of our pro-
posed estimators for the sinusoidal gradient case. One
current application of the sinusoidal processing is for high
speed ‘‘instant’” imaging [19]. By using a sinusoidal fre-
quency encoding gradient, complete magnetic resonance
images are regularly produced in as little as 30 ms at rates
up to 16 images per second. A comparison of MRI images
produced with these sinusoidal gradients is shown in Fig.
3. These images were produced on General Electric Signa
1.5 Tesla scanner retrofitted with Advanced NMR Sys-
tem’s Instascan equipment.

Fig. 3(a) shows an image derived from nonlinearly
sampled data as described in (45) of Section IV-Al. Fig.
3(b) on the other hand, shows the same head processed
from linearly sampled data using the linear least squares
estimator of (57) in Section IV-A2. From (50) and (64) it
is clear that the number of samples required by linear
sampling is approximately /2 times that of nonlinear
sampling. The two images look similar and artifact free
except for the small, slightly different truncation artifact®
due, most likely, to subtle timing inaccuracies in the sam-
pling.

To quantify the signal-to-noise enhancement (not easily
noticeable on the images of Fig. 3) wé used a simple
phantom, consisting of a 17-cm sphere homogeneously
filled with CU,SO, doped water. For this measurement,
we acquired 16 images, each a 32 ms acquisition, each
image separated by 5 s using the two sampling methods.
We determined the relative error covariance indirectly by
theasuring the average signal-to-noise ratios for the im-
ages sets. While the absolute error covariance depends on
the exact definition of signal to noise (in particular, on the
explicit definition of ‘‘noise’’), in the large SNR limit,

*Gibb’s ringing.
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(b

Fig. 3. Spin echo instant image of human head with (a) nonlinearly (b)
linearly sampled data. In both cases, a 128 X 128 image was formed with
TE = 73 ms, TR = o, and 10-mm slide thickness.

the relative covariance is simply the square of the ratio of
SNR’s for the two methods.

The signal was measured by averaging the magnitude
in the same 2 cm? uniform region on all the images. The
noise, on the other hand, was determined by measuring
the standard deviation in a signal free region, over a much
larger region of interest.* Comparing sets of 16 images

*We measure outside the sphere because the standard deviation within
the object itself is dominated by Gibb’s ringing.

using the two methods, we observed an amplitude signal-
to-noise increase of 13 + 1% for the linearly sampled
images; the error in this measurement is dominated by the
error in the estimate of the noise. Squaring this ratio yields
a 27 + 2% smaller error covariance, in agreement with
predictions of (66) and (51).

VI. CONCLUSIONS

In this paper, we derived the optimal continuous time
filter and its various discrete time implementations for the
reconstruction of MRI images from constant and sinusoi-
dal gradients. Our approach was to formulate the problem
as a linear parameter estimation one, by writing the ob-
served signal as the sum of the noise-free FID signal and
a zero mean, white, Gaussian random process with inten-
sity o2/ T. The noise-free FID signal was modeled to be
a linear combination of the uniform samples of the object
distribution. We began by deriving the optimal ML esti-
mate for the constant gradient case. This ML estimate was
based on the observed continuous waveform, and our dis-
crete implementation of it was based on its uniform sam-
ples. The error variance of the discrete time estimator was
shown to be identical to that of the continuous time one,
namely proportional to ¢*/T.

We then derived the optimal ML estimator based on the
observed continuous waveform, for the sinusoidal gra-
dient case, and showed its error variance to be propor-
tional to 1.23 ¢*/T. Two discrete implementations of the
continuous time ML estimator were proposed. The first
one which involved nonuniform sampling of the FID sig-
nal resulted in an error variance proportional to
(m/2)(0%/T), and the second one which involved uni-
form sampling of the FID signal resulted in the same error
variance as the continuous time ML estimator, provided
the sampling rate was fast enough. This second discrete
time implementation, therefore, corresponds to the opti-
mal sampling and reconstruction scheme for FID signals
resulting from sinusoidal gradients. Experimental results
in support of our theoretical predictions were presented.

Two major conclusions can be drawn from our results.
First, uniform sampling of the FID signal in time results
in the lowest possible error variance for both constant and
time-varying gradients. Second, the optimal ML esti-
mator for sinusoidal gradients has higher error variance
than that of constant gradients. The derivations for the
sinusoidal gradient case can be generalized to arbitrary
time-varying gradients. Future work will be directed to-
wards the tradeoff between smoothness of the encoding
gradients and their associated error characteristics.

APPENDIX
DisCRETE TIME IMPLEMENTATIONS FOR THE CONSTANT
GRADIENT CASE

In this Appendix, we derive various discrete time im-
plementations of the continuous time optimal filter shown
in Section III-A. As we will see, the schemes proposed in
this section are either suboptimal, or result in structures
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which are impractical from an implementations point of
view. Nevertheless, their performance characteristics are
useful in deriving the discrete time implementation of
Section ITI-B which is shown to achieve the MSE perfor-
mance of the optimal analog filter of Section III-A.

A. Implementation Based on Samples of the Observed
Signal

Although the estimator of (17) is optimal, it is a con-
tinuous time filter and therefore we must approximate it
with a discrete time filter. The most straightforward ap-
proximation is an estimator of the form

. N-1

N N k=0 N
The above estimator is unbiased and its error covariance
is given by

. { 5 (L) _ g iL, r}

N) T\N
N-1 N-1
1 kT kT
_ly oy { T\ (kT ]
N2k1—0k2=0E " N " N

( 2wk, — k2)>
texplJ ——N——‘

2
a
=N 5(0).

(67)

MSE (i)

(68)

Therefore, the error covariance of the discrete estimator
of (67) is a delta function which is infinitely large. This
has to do with the fact that the variance of a sample of a
white process is infinite. In the next section we will pro-
pose a way of circumventing this problem.

B. Implementation Based on Small Integrals of the
Observed Signal

One way to overcome the infinite error covariance of
the estimator of the previous section is to use short inte-
grals of the received signal r(s) instead of its samples.
Since most analog-to-digital converters (A/D) have finite
aperture time, in practice, obtaining small integrals of r(?)
is straightforward. Using this technique, we can modify
the discrete estimator of (67) in the following manner:

iLy Nil Tk/N+A
B' _\ = S d JjQ2wik /N)
<N> z < s T z) e (69)

where the integration of the kth sample of r(¢) is carried
out fromt = Tk /N — Atot = Tk /N + A. Strictly speak-
ing, the above estimator is biased since we have

il N—-1 N-1 )
E[B (—’>] = X 2 BN
N k=0 I=0
Tk/N+A
. <S e 12T gy
Tk/N—A
NT <21riA>
= —— Sin .
i T

(70

However, the bias can be easily removed by modifying it
in the following way:

é lLy _ iT N-l
N o [27iA\ k=0
1
T
Tk/N+A
. (S (@) dt> /M (71
Tk/N-A
The above estimator is unbiased and its error covariance
is given by
. N—1 N-1
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Since in most practical situations A << T, we can ap-
proximate sin (2miA /T) with 2miA /T for all values of i.
In doing so, the estimator of (71) can be rewritten as

iL. 1 N-1 Tk/N+A -
5(5) = 525 5 (o, 0 @) e
i Tk/N—4A

and its error covariance is given by
2

MSE (i) = 74

2AN

C. Increasing the Number of Samples of the Observed
Signal

We can improve the performance of the estimator of the
previous section by increasing the number of samples of
the observed signal 7 (z). Specifically, the error covariance
of the estimator with PN samples of r(¢) given by

il 1 PN-1 Tk/PN +A
B <W}> T 2APN Zo <S / ) dt) el
k= Tk/PN—A
(75)
is
2

o
2APN’

MSE (i) = (76)
It is important to note that the error covariance of the es-
timator of (75) cannot become arbitrarily small by in-
creasing P: When P becomes large enough so that
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T
— < 2A

PN an

the integration interval of the neighboring samples of r(r)
overlap. Under these conditions, the noise samples
§TK/EN*2 n(t) dt are not independent of each other and the
error covariance is no longer given by (76). Thus, (76)

only holds when

I = 2A (78
PN~ T )
Combining the above inequality with (76), the error co-
variance of the estimator of (75) can be lower bounded in
the following way:

2

MSE (i) = —.

T 79

Thus, we have managed to find a discrete time implemen-
tation of the optimal continuous time estimator of (18).
Specifically, if (¢) is sampled at T/2 A points, where the
kth sample is defined to be [33; *4 r(t) dt, then, the esti-
mator of (75) will have the lowest possible error covari-
ance, i.e., that of the continuous time optimal filter of
(18).

In most practical situations, sampling at the rate T/2 A
is extremely demanding. In fact, most analog-to-digital
converters cannot possibly sample as fast as their aperture
time. Fortunately, as we will see in Section III-B, we can
take advantage of the band limitedness of the ‘‘clean”
MRI signal s(?) in order to reduce the required sampling
rate.
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