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Recent results indicate the reconstruction of two-dimensional 
signals from crossings of one level requires, in theory and practice, 
extreme accuracy in positions of the samples. The representation 
of signals with one-level crossings can be viewed as a trade-off 
between bandwidth and dynamic range, in the sense that if the 
available bandwidth is sufficient to preserve the level crossings 
accurately, then the dynamic range requirements are significantly 
reduced. On the other hand, representation of signals via their 
samples at the Nyquist rate can be considered as requiring rela- 
tively small bandwidth and large dynamic range. This is because, 
at least in theory, amplitude information at prespecified points are 
needed, to infinite precision. Sampling and reconstruction 
schemes are derived whose characteristics lie between these two 
extremes. First, an overview of existing results in zero crossing rep- 
resentation is presented, and next a number of new results on 
sampling schemes for reconstruction from multiple-level thresh- 
old crossing are developed. The quantization characteristics of 
these sampling schemes appear to lie between those of Nyquist 
sampling and one-level crossing representations, thus bridging the 
gap between explicit Nyquist sampling, and implicit one-level 
crossing sampling strategies. 

I .  INTRODUCTION 

Signal reconstruction from partial information plus con- 
straints has been an active area of research for many years. 
Reconstruction of bandlimited signals from Nyquist sam- 
ples is, of course, aclassical and extremely important exam- 
ple. Another, which has been the basis for considerable 
research, i s  reconstruction of a signal from its zero 
crossings' and, more generally, from its crossings of a pre- 
specified function such as a constant threshold or a sin- 
usoid [1]-[7. Other examples include reconstruction of one-, 
dimensional or multidimensional signals from Fourier 
transform magnitude, phase, or signed-magnitude infor- 
mation [8]-[12]. The variety of results on signal reconstruc- 
tion have not only had a major impact in fields such as signal 
processing, communication theory and information the- 
ory, but also have been extensively applied to problems in 
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such diverse areas as optics, radio astronomy, crystallog- 
raphy, tomography, geophysics and oceanography. 

Nyquist sampling and signal representation in terms of 
zero crossings both correspond to sampling strategies. 
Sampling methods based on prespecified sampling 
instants, such as Nyquist sampling, are often referred to as 
explicit [A. Sampling strategies such as zero crossings, or 
crossings of a prespecified function, in which a represen- 
tation is sought in terms of the instants in which the signal 
assumes prespecified values, are referred to as implicit. The 
great majority of research in this area has been in com- 
munication theory, and has concentrated on one-dimen- 
sional signals. For example, Bond and Cahn [2] considered 
representation and manipulation of one-dimensional sig- 
nals by means of their real and complex zeros. Extensive 
workon this topic has been done by Voelcker [4], who shows 
how modulation processes can be considered to be meth- 
ods of manipulating or extracting the zeros of a signal and 
that different systems can be analyzed as to how they affect 
the zeros of a signal. Computer simulation of these results 
has been reported by Sekey[3]. Logan developed a new class 
of bandpass signals which are uniquely specified by their 
real zero crossings [5]. Specifically, he showed that almost 
all bandpass signals of bandwidth less than one octave are 
uniquely specified by their real zero crossings. In addition, 
Bar-David [A  considered the important case of one-dimen- 
sional implicit sampling in terms of real variables alone. 
These results have been used to overcome distortions that 
are incurred either by intentional nonlinear processing or 
by inadvertent nonlinearities. Such nonlinearities might 
arise in single sideband systems, where the modulating sig- 
nal is typically hardlimited to decrease its dynamic range. 
Also, in magnetic tape recording, a strong higher frequency 
bias tone is  usually added onto the signal to ensure fidelity 
in the presence of inherent material nonlinearity. 

From a practical point of view, implicit sampling also has 
potential applications in multidimensional problems in 
image processing and vision. For instance, it has been sug- 
gested that image representation in vision may be accom- 
plished by extraction of zero crossings [6]. Also, a number 
of papers in vision stress the importance of the information 
contained in the edges of objects which, from a compu- 
tational point of view, correspond to the zero crossings of 
the Laplacian of the Gaussian of the image [14]. Further- 
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more, one theory of human vision relies primarily on edge 
detection as the mechanism by which humans process 
visual information. There are also a number of applications 
in which it i s  desired to recover a signal from its threshold 
crossings. For instance, an image which has been corrupted 
by a memoryless nonlinear distortion containing at least 
one monotonic region, can be recovered from threshold 
crossings of its distorted version [15]. This could be poten- 
tially useful in applications in which intensity levels of 
images recorded on film are likelyto becomedistorted over 
time but for which threshold crossing information could be 
preserved. 

From a theoretical point of view, there are two major 
results in implicit sampling of multidimensional signals, 
both of which deal with reconstruction from zero cross- 
ings. Specifically, Rotem and Zeevi [I61 extended Logan’s 
one-dimensional result for bandpass signals to two dimen- 
sions, and Curtis and Oppenheim [I] found conditions 
under which bandlimited periodic (BLP) signals can be 
reconstructed from their crossings of a single prespecified 
threshold (e.g., a threshold of zero for the specific case of 
zero crossings, or one-level crossings more generally). 
Although the latter results are more general than those 
based on the extension of one-dimensional results, the 
accuracywith which the locations of the one-level crossings 
need to be specified is large enough to limit applicability 
of the results in many practical situations. Specifically, in 
theory, the positions of the crossings must be known to 
infinite precision, and in practice, with extreme accuracy. 

The representation of signals with one-level crossings can 
be viewed as a trade-off between bandwidth and dynamic 
range, in the sense that if the available bandwidth i s  suf- 
ficient to preserve the level crossings accurately, then the 
dynamic range requirements are significantly reduced. On 
the other hand, representation of signals via their samples 
at the Nyquist rate can be considered as requiring relatively 
small bandwidth and large dynamic range. This i s  because, 
in theory, exact recovery of signals via Nyquist sampling 
requires amplitude information at prespecified points, to 
infinite precision. Thus the natural question which arises 
is whether or not there are intermediate sampling and 
reconstruction schemes whose characteristics lie between 
these two extremes. In this paper, we review results on two- 
dimensional signal reconstruction from zero crossings and 
develop a number of new results on sampling schemes for 
reconstruction from multiple-level threshold crossings. As 
we will see, the quantization characteristics of these sam- 
pling schemes appear to lie between those of Nyquist sam- 
pling and one-level crossing representations, thus bridging 
the gap between explicit and implicit sampling strategies. 

The outline of the paper i s  as follows. In section II we 
review thetwo-dimensional zero crossings results of Rotem 
and Zeevi [I61 and of Curtis and Oppenheim [I]. In section 
I l l ,  we derive semi-implicit and implicit sampling strategies 
for reconstruction of signals from multiple-level threshold 
crossings. As stated previously, in implicit sampling meth- 
ods a signal i s  represented in terms of the points at which 
it assumes prespecified values on prespecified curves. An 
example of semi-implicit sampling would be the set of sam- 
ples representing the intersections of all zero crossingcon- 
tours with a circle. As we will see in section Ill, the semi- 
implicit sampling results can be used not only to recon- 
struct signals from their multiple level crossings, but also 

to recover them from their crossings with arbitrary func- 
tions, or from nonuniformly spaced samples. 

A problem distinct from that of uniquely specifying sig- 
nals with level crossings i s  that of developing specific algo- 
rithms for recovering them from level crossing information, 
once it is known that the signals satisfytheappropriatecon- 
straints. In section IV, we propose a variety of reconstruc- 
tion algorithms for each of the two sampling strategies of 
section Ill, and demonstrate the results for several images. 
Section V includes a preliminary investigation of the quan- 
tization characteristics of some of the proposed sampling 
and reconstruction schemes. Finally, conclusions and 
future directions of research are included in section VI. 

11. PREVIOUS WORK ON RECONSTRUCTION FROM ZERO 
CROSSINGS 

Zero crossing representation of signals is a special case 
of implicit sampling. Most of the work in this area has been 
in communication theory and has concentrated on one- 
dimensional signals [5]. The two major existing results in 
implicit sampling of multidimensional signals deal with sig- 
nal representation in terms of zero crossings. The first one 
is  by Rotem and Zeevi [I61 and the other one is by Curtis, 
Oppenheim, and Lim [ Iq ,  [I]. We will begin with a review 
of the former one. 

Rotem and Zeevi’s results are an extension of Logan’s 
results to two dimensions. Logan’s theorem (Theorern 
states that one-dimensional bandpass signals of less than 
one octave in bandwidth which have only real zeros of 
degree one in common with their Hilbert transform, are 
represented up to a constant by their zero crossings [5]. 
Rotem and Zeevi extended this result to two kinds of two- 
dimensional signals: those which are bandpass in both 
dimensions (Theorem 2), and those which are bandpass in 
one dimension and lowpass in the other (Theorem 3). Theo- 
rem 2 basically states that f ( x ,  y), a real square-integrable 
bandpass function in both dimensions, can be uniquely 
specified from itszerocrossings towithin ascalefactor pro- 
vided there exist 

a yo such that the one-dimensional function of x ,  f ( x ,  
yo) and its Hilbert transform have only real zeros of 
degree one in common; 
a sufficiently high density sampling set { x k }  such that 
the one-dimensional functions in y given by f ( X k ,  y) 
have only real zeros of degree one with their Hilbert 
transforms. 

The required densityof the sampling set is afunction of the 
bandpass frequencies of f ( x ,  y) along the x direction. Since 
the one-dimensional functions f ( X k ,  y) and f ( x ,  yo) Satisfy 
Logan‘s conditions, we can construct the functions along 
vertical lines x = X k ,  scale them according to the function 
on the horizontal line yo, and then, having a sampling set 
{ x k } ,  the value of f ( x ,  y) i s  determined (up to a constant) at 
every point in the plane. 

Rotem and Zeevi’s result for the case where the signal is 
lowpass in one dimension and bandpass in the other i s  for- 
mally given in Theorem 3. It states that f ( x ,  y), a real, square- 

21n the body of this paper only an interpretive informal descrip- 
tion of the theorems is given. The formal statement of all theorems 
isgiven in Appendix A. A proof is included onlyfor theoremswhich 
represent original contributions of this paper. 
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integrablefunction which i s  bandpass in thexdirection and 
low pass in the y direction, is uniquely specified up to a 
scale factor from its zero crossings provided there exist 

a sufficiently high density sampling set { yk} such that 
the one-dimensional functions in x, f(x, yk) and their 
Hilbert transforms have only real zeros of degree one 
in common; 
a straight line Soriented in certain directions such that 
the one-dimensional signal along S i s  integrable, and 
that has only real zeros of degree one in common with 
its Hilbert transform. 

The required range of the angle of line S with the x axis 
depends on the spectral characteristics of f(x, y), i.e., the 
frequencies above or below which the Fourier transform 
of f(x, y) is zero. In addition, the density of the sampling set 
{ yk} depends on the bandwidth of f(x, y) along they direc- 
tion. In this case the function i s  determined on horizontal 
lines Yk and scaled on the diagonal s. Since { Yk} is a sam- 
pling set, it can be used to determine the value for every 
point between the lines. 

A few examples of reconstructions for these results are 
included in [16]. The major drawback of these theorems is 
that most two-dimensional signals encountered in practice, 
such as images, are lowpass in both dimensions. The result 
by Curtis et al. deals with periodic signals which are band- 
limited in both dimensions and, in particular, can be low- 
pass. Furthermore, unlikeTheorems 2 and 3, the results are 
truly two-dimensional since they exploit the fact that zero 
crossingcontou rs for two-dimensional signals contain infi n- 
itely many points. 

The result by Curtis et al. i s  based on the theory of bivar- 
iate polynomials. A bivariate polynomial will be repre- 
sented in the form 

II(N,,N,) i s  used to refer to the space of polynomials p(w, z) 
with maximumdegreeN,in wandN,inz.II,isusedtorefer 
to the space of polynomials p(w, z) for which the maximum 
degree of the one-dimensional p(x, x) i s  R. The degree of 
p(x,x) i s  also referred to as the total degree of p(w, z). Clearly, 
polynomials in II(N,,N,, are also in II(Nw+Nz). The distinction 
between the spacesof polynomials i s  related to the fact that 
in the i-j plane associated with the coefficients in (I), 
II(Nw,Nz) i s  defined by the rectangular region of support (N, 
+ 1) x (N, + I), while IIR is defined by a triangular region 
of support. A bivariate polynomial i s  referred to as irre- 
ducible over complex numbers if it cannot be factored in 
polynomials of smaller degree with complex Coefficients. 

The formal description of the result by Curtis etal. is given 
by Theorem 5. Theorem 5 states that a real two-dimensional 
doubly periodic bandlimited signal f(x, y) is uniquely spec- 
ified towithin ascalefactorfrom afinite numberof samples 
of its zero crossings provided its associated bivariate poly- 
nomial (BLP) is irreducible. For a BLP signal of the form 

with period 1 in x and y directions, and (ZN, + 1) x (2N, + 
1) region of support in the Fourier domain, the associated 
polynomial i s  defined as: 

g(w, z) = f(x, y)wN"zNy 
2Nx 2Ny 

k,=O ky=O 
= E F(k, - N,, k, . 

(3) 

N,) w k x ~  ky 

where 

, z = eP*v. (4) w = e/2*x 

In terms of the preceding definitions, Theorem 5 implies 
that 4(N, + N,)' + 1 samples of the zero crossings of f(x, y) 
are sufficient for its unique specification to within a scale 
factor provided g(w, z) is irreducible over complex num- 
bers. Since the set of reducible two-dimensional polyno- 
mials are of measure zero in the set of two-dimensional 
polynomials [13], most BLP signals encountered in practice 
are likely to have irreducible associated polynomials. 

This theorem is a direct consequence of Bezout's theo- 
rem [40], [41] (Theorem 4), which provides an upper bound 
on the number of common zeros of bivariate polynomials. 
Specifically, it states that two bivariate polynomials of total 
degrees Rand S, which have no factors or order greater than 
zero, can have a maximum of RS common finite zeros. Zak- 
hor and lzraelivitz [I81 (Theorem 6) have modified Bezout's 
theorem to derive a tighter bound on the number of finite 
common zeros of two polynomials whose coefficients have 
rectangular (rather than triangular) regions of support. 
Theorem 6 basically states that two relatively prime poly- 
nomials p (~ ,  y) and q(x, y) whose coefficients have (N, + 1) 
x (N, + 1) and (M, + 1) x (My + 1) regions of support, 
respectively, cannot have more than N,M, + N,M, com- 
mon finite zeros. This result has been used to modify Theo- 
rem 5. Specifically, it implies that a BLP signal of the form 
given by (2) with an irreducible associated polynomial i s  
uniquely specified up to a scale factor from 8N,N, + 1 sam- 
ples of its zero crossings. The modified version of Bezout's 
theorem will also be instrumental in deriving new results 
in Section Ill-A.2. 

A possible algorithm for reconstruction based on Theo- 
rem 5 involves solving an overdetermined system of linear 
equations to find the Fourier coefficients of the signal under 
c~nsideration.~ Examples of such reconstructions are 
included in [ Iq, [I]. Potential applications of the result 
include recovery in recovery of images which have been 
corrupted by memoryless nonlinear distortions containing 
at least one monotone region, and the recovery of band- 
limited continuous-tone images from halftones [15]. 

The experimental results in [I] indicate that the major 
drawback to reconstruction from zero crossings i s  the 
extreme sensitivity to the locations of the zero crossings. 
For instance, reconstruction of a BLP signal with a 31 X 31 
region of support in the Fourier domain requires approx- 
imately 56 bits of accuracy for each coordinate of a zero 
crossing sample. This i s  an illustration of the fact that azero 
crossing representation needs the minimum number of 
amplitude bits (i.e., 1) and a large number of position bits, 
in contrast to Nyquist sampling, which requires relatively 
few position bits and a large number of amplitude bits. In 
the next section, we propose semi-implicit and implicit 
sampling strategies for reconstruction from multiple-level 
crossings, in an attempt to bridge the gap between these 
two extremes. 

3This is described in more detail in Section IV. 
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I l l .  THEORETICAL RESULTS 

In this section, we will derive two sampling strategies for 
reconstruction of multidimensional signals from multiple- 
level threshold crossings. Our approach to this problem is  
similar to that in [ I ]  in the sense that we represent BLP sig- 
nals in terms of polynomials. The reasons for doing so are 
twofold. First, as indicated in (2)-(4), BLP signals can be writ- 
ten as polynomials viawhose Fourier series expansion. Sec- 
ond, since reconstruction from multiple-level crossings i s  
a special case of reconstruction from nonuniform samples, 
we hope to be able to use a variety of mathematical results 
on polynomial interpolation theory. Unfortunately, unlike 
the univariate case, interpolation with multivariate poly- 
nomials i s  a nontrivial task. Whereas n arbitrary samples of 
aone-dimensional polynomial of degree n - 1 are sufficient 
to find its coefficients, the analogous result in higher 
dimensions does not hold [191-[22]. 

In this section we propose two ways to circumvent this 
difficulty. The first approach, described in Section Ill-A, 
involves imposing certain restrictions on the locations of 
the interpolation points in order to guarantee a unique 
solution to the resulting interpolation problem, and there- 
fore represents semi-implicit sampling. The second 
approach, discussed in Section 111-6, deals with implicit 
sampling based on conditionally regular interpolation 
rnethod~.~ 

A. Semi-Implicit Sampling 

Semi-implicit samples of a multidimensional signal are 
defined to be points whose coordinates are related to each 
other, or equivalently their locations are constrained. Our 
approach in this section i s  to constrain the location of the 
samples of the signal in such a way that unique recovery 
of its associated polynomial (or equivalently the signal itself) 
i s  guaranteed. This i s  a problem in bivariate polynomial 
interpolation theory which has been an active area of 
research for many years in the mathematics community[l9], 
[24]-[29]. We begin with a brief review of some of the exist- 
ing results in this field. 

I )  Review of Bivariate Polynomial Interpolation Theory: 
Bivariate polynomial interpolation can be done either in IIR, 
the space of polynomialswith total degree less than or equal 
toR,or in I I (Nw,Nz) ,  thespaceof polynomialsp(w,z)with max- 
imum degree N, in w and N, in z. The most well-known 
result on interpolation in II(N,,N,) deals with the case where 
the interpolation points are on a nonuniform rectangular 
grid [19], [24]-[26]. It states that the set of points 

{(wl, z,)(i = 0, . . . , N,; j = 0, . . . , N,;} 

uniquely specify the polynomial 
NW N7 

p(w, z) = ,Z C a(i, j)w'z/. 
I = o  / = o  (5) 

Thereare serious limitations in applying this theorem to the 
problem of reconstruction from level crossings. This i s  

4An interpolation method iscalled "regular" if it is uniquely solv- 
able for any selection of the points of interpolation. Conditionally 
regular interpolation methods are not solvable for all selections of 
points, but only for most of them [23]. For methods of this type, 
if one has a concrete problem and selects the interpolation points 
at random, it will be extremely unlikely that the problem will be 
unsolvable. 

because the available threshold contours are highly unlikely 
to pass through a nonuniform rectangular grid. A moregen- 
era1 result on interpolation in IIR was derived by Gasca and 
Maeztu [27. The formal description of their result i s  given 
by Theorem 7. It states that a polynomial in IIR with (R + 
1)(R + 2)/2 coefficients i s  uniquely specified from ( R  + I ) ( R  
+ 2)/2 of its samples distributed on lines lo, . I R ,  provided 
there are (2; + 1) points on the ith line5. Different proofs 
of Gasca and Maeztu's result are included in [19], [27, and 
[28], and special cases of their theorem were proved earlier 
by Stenger [29] and Chung [24]. 

Theorem 7 can be applied to the problem of reconstruc- 
tion from level crossings. For instance, suppose that we are 
interested in reconstructing a real BLP signal with (2N, + 
1) x (2N, + 1) region of support in the Fourier domain. The 
polynomial associated with this signal has total degree of 
2N, + 2N,, and if we choose its 2N, + 2N, + 1 sampling lines 
to be of the form 

z = eiZrP'w 0 5 i < 2N, + 2N, + 1 

then, by (4), the corresponding lines in the x - y domain 
will be of the form y = x + 0,. Theorem 7 guarantees that 
the sampling set consisting of i samples on the ith sampling 
line in the x - y domain uniquely specifies the BLP signal 
under consideration. Clearly, for the problem of recon- 
struction from level crossings, these samples must be cho- 
sen at the intersection of sampling lines and threshold con- 
tours. 

From this example, we realize that for a signal of the form 
of (2), we need a total of (N, + N, - I)(N, + N, - 2)/2 sam- 
ples to guarantee its unique reconstruction. It can easily be 
shown thatthis numberof required samples isat leasttwice 
the number of unknown Fourier coefficients. If the support 
regions of the Fourier coefficients of signals are rectangular 
rather than triangular, we can avoid oversampling by mod- 
ifying Theorem 7 to apply to polynomials in II(N,,N,) with the 
additional advantage that the locations of the interpolation 
points become considerably less restrictive. 

2) New Results on Bivariate Interpolation Theory: As 
mentioned in Section II, Bezout's theorem (Theorem 4) 
dealswith polynomials innR. Specifically, it statesthat if two 
polynomials in IIR and II, have no common factors, then 
they have at most RS common zeros. The modified version 
of Bezout's theorem (Theorem 6 )  deals with polynomials in 
II(Nw,Nz). It basically says that two relatively prime polyno- 
mials in II(NW,Nz) and II(MW,Mz) can not have more than N,M, 
+ M,N, common finite zeros. An implication of this theo- 
rem is that if a polynomial p(w, z) E II(Nw,Nz) has more than 
N,M, + M,N, common zeros with an irreducible poly- 
nomial q ( w , z ) ~ I I ( ~ ~ , ~ ~ ) ,  then q(w,z) must beafactorofp(w, 
z). We can use this to derive Theorem 8, which is a more 
general version of Theorem 7. Theorem 8 states that the 
bivariate polynomial of the form shown in (5) is uniquely 
reconstructible from samples on n, + 1 distinct irreducible 
curves provided there are a minimum of 

, i-I , 
+ M ~ ( N ,  - c M:")) + I o 5 i 5 n, 

k = O  

'The ordering of the lines can be drawn arbitrarily. 
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samples on the ith curve. The maximum degrees of the ith 
curve in wand zaredefined to be M c  M!) ,  respectively.The 
number of required sampling curves, nc + 1, is  defined to 
be an integer satisfying either of the following two con- 
ditions: 

nr 

N, < c M f  
1 = 0  

n. 

(7) 

For the special case of Theorem 8 for which all the sampling 
curves are chosen to be lines passing through the origin, 
there is an alternative proof which provides a recursiveway 
of computing the coefficients of the polynomial under con- 
sideration [30]. This proof is included in Appendix B. An 
example of the distribution of sampling points required by 
Theorem 8 for N, = N, = 2, M t )  = M:’,’) = 1 and M t ’  = 2 
i s  shown in Fig. l(a). The irreducible curves in this example 
are of the form: 

CO: wz = (Yo 

c,: z2 = q w .  

Unlike Theorem 7, Theorem 8 deals with polynomials in 
II(N,,N,). It is also considerably more general than Theorem 
7 in the sense that the interpolation points can be chosen 
on any irreduciblecurves (polynomials) rather than straight 

Z 

Y 

4 

X 
(b) 

Fig. 1. Geometric distribution of sampling points. (a)Theo- 
rem (8) for N, = N, = 2. (b) Corollary (1) for N, = N, = 1. 

lines.6 In general, determining the irreducibility of poly- 
nomials is a nontrivial task [31]. Two classes of polynomials 
that are known to be irreducible and are particularly useful 
in deriving sampling strategies for multidimensional sig- 
nals are of the form 

Z M Y  = awMx, p Y W M ”  = a, M, > 0, My > 0 (8) 

where M, and M, are relatively prime positive integers. 
Using the fact that wand z of (2) are related to x and y, the 
signal coordinates, via (4), and letting a = e’2To, the curves 
in the w-z plane given by (8) correspond to lines with pos- 
itive or negative rational slope of the form 

M,y = p + M,x, M,y + M,x = 0, 
M, > 0,  My > 0 (9) 

in the x-y plane. We can use this fact, together with Theo- 
rem 8, to define a sampling strategy for BLP signals in which 
the samples are chosen on lines of rational slope. This sam- 
pling scheme is described in Corollary2 in Appendix B, and 
states that the two-dimensional BLP signal of the form 
shown in (2) i s  uniquely reconstructible from samples on 
N, + 1 distinct lines with rational slope provided there are 
a minimum of 

S( i )  = M I )  2N, - MLk) + M t )  2N, - MY + 1 

samples on the ith line. The ith line is defined to be of the 
forms 

( k = O  ’ - I  ) ( k = O  I - ’  ) 

MF’y = M;’x,  P,, M:’y + Mi’x = P,, M;) ,  M: )  > 0 

and the number of required sampling lines, NI + 1, is 
defined to be an integer satisfying either of the following 
two conditions: 

NI 

I = o  

NI 

,=n 

Whereas Theorem 7 can be used to reconstruct multi- 
dimensional BLP signalsfrom their samples on lines of slope 
one, Corollary 2 to Theorem 8 requires samples on lines of 
positive or negative rational slope. An example of the geo- 
metric distribution of the sampling points required by this 
corollary for N, = N, = 1 is shown in Fig. l(b). The sampling 
lines in this example are of the form 

2N, < M t )  (10) 

2N, < c M!’ .  (11) 

Io: y + x = Po 

I,: 2y = x + P I .  

Note that the curves of Fig. l(a) in w-z domain correspond 
to lines of Fig. l(b) in the x-y domain. In addition, since we 
are dealing with periodic signals in the x-y domain, lines 
of rational slope “wrap around” or extend modulo I’ in x 
and y throughout the signal under consideration. This i s  
illustrated in Fig. l(b), where lines Io and 11, with slopes -1 
and 112, are wrapped around once and twice, respectively. 

To apply Corollary 2 to the problem of reconstruction 
from multiple-level crossings, we choose the intersections 

‘Note that straight lines are a special case of irreducible poly- 

’We have assumed the period to be 1 in both x and ydirections. 
nomials. 
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of sampling lines and the threshold contours as the inter- 
polation points. One drawback of such a reconstruction 
strategy is that, in general, there is no guarantee that we will 
obtain enough intersections to satisfy the distribution 
required by Corollary 2. Of course, we can propose various 
guidelines for choosing the slope and position of the sam- 
pling lines in an “optimal” fashion so that the number of 
intersections is maximized [30]. However, the problem still 
remains that for a small number of thresholds there might 
not be any set of sampling lines which satisfythe theoretical 
requirements. This is the main motivation for deriving the 
implicit sampling scheme of Section Ill-B. 

Beforewe end this section, let us make afew observations 
on the more general problem of reconstruction from cross- 
ings with arbitrary functions. For certain class of functions 
such as sinusoids, the number of intersections of sampling 
lines with function crossings of the signal becomes pre- 
dictable. As an example, consider the eye picture shown in 
Fig. 2(a) and its sinusoid crossings with the function 

(1 2) 

shown in Fig. 2(b) for p = 9 = 1. As seen, h(x, y) assumes 
its maximum value, A + 6, and minimum value, A - 6, on 
equidistant lines of slope - (p/9).  If we impose the con- 
dition 

A - 6 = [ N x ,  y)lrnln < fk y) < [h(x, y)lmax 

h(x, y )  = A + 6 COS (27r(px + 9y)) 

= A + 6, V(X,  y) (1 3) 

on the amplitude of the signal f (x ,  y), then between every 
two neighboring parallel lines where h(x, y)  assumes its 
minimum and maximum values, there exists a contour of 
crossings of h(x, y) with f(x, y). Under these conditions, the 
number of intersections of a line with rational slope nlm 
with the sinusoid crossings i s  guaranteed to be 2 r p m  + 
qn l  ,where Tal i s  defined to be the smallest integer greater 
than a. As shown in Fig. 2(b), each intersection point lies 
between the two lines at which h(x, y) assumes i t s  maximum 
and minimum values. This more or less even distribution 
of crossings across the image results in awell-posed recon- 
struction problem, which can be successfully solved via 
reasonably efficient reconstruction algorithms [30]. In addi- 
tion, reconstruction of signals from their intersections with 
sinusoid crossings can be applied to recovery of contin- 
uous-tone images from halftones [15]. 

B. Implicit Approach to Reconstruction 

In this section we develop an implicit sampling strategy 
based on algebraic geometric concepts. Unlike the semi- 
implicit method, this approach can be used for reconstruc- 
tion from an arbitrarily small number of level crossings. 
However, since it corresponds to conditionally regular 
interpolation, it is not guaranteed to be solvable for all 
selections of points on the level-crossings contours, but 
most of them. 

Consider a two-dimensional real BLP signal f(x, y) whose 
Fourier series expansion is given by (2). For simplicity we 
assume F(k,, k,) to have a square region of support of size 
(2N + 1) x (2N + 1). Our results can be easily modified for 
the case when F(k,, k,) has a rectangular region of support. 
Since f (x ,  y) is real, its Fourier series coefficients are con- 
jugate symmetric. That is, 

Rk,, k,) = F*(-k, ,  - ky )  Ik,l, (k,J < N. (14) 

(C) 

Fig. 2. (a) Original 256 x 256eye picturewith 31 x 31 region 
of support in Fourier domain. (b) Sinusoid crossings of eye 
picture; the lines at which the sinusoid assumes its maxi- 
mum and minimum values are also shown. (c) Recon- 
structed version of eye picture via linear least-squares 
approach and QRdecomposition from intersectionsofeight 
level crossings, shown in (a), with 15 lines of sloped 1, 2, *;, *3. *$, *4,  *:, 5. 
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Using this relationship, f ( x ,  y )  can be rewritten as 

f ( x ,  y )  = Re[F(O, O)] + 2 c Re[F(O, k,)] cos (27rk,y) i" k y = l  

- Im [F(O, k,)] sin (27rk,y) 

+ c Re [F(k,, k,)] cos [27r(k,x + k,y)l 

(1 5) - Im [F(k,, k,)] sin [27r(k,x + k,y)]] .  

Thus f ( x ,  y )  can be uniquely specified with (2N + real 
numbers which represent the real and imaginary part of its 
Fourier series coefficients. Therefore unique reconstruc- 
tibility of f ( x ,  y )  from ( 2 N  + 

N N  

k , = l  k y = - N  

samples of it, given by 

(x ,  y,) i = 1, * * . , ( 2 N  + 
i s  equivalent to nonsingularity or full rank of the ( 2 N  + 
x ( 2 N  + matrix whose ith row, r,, is given by 

1 

cos (27ryJ 

cos (47ryJ 

cos (2N7ry,) 

. . .  

sin (27ryJ 

sin (2N7ryJ 

cos [27r(x, - NyJl  

cos [27r(Nx, + N y , ] .  

. . .  

sin [27r(x, - Ny, ) ]  

. . .  

sin [27r(Nx, + Ny,)]  

(1 6) 

We will refer to this matrix as being associated with the 
points (x,, y,), i = 1, . . . , ( 2 N  + Il2, and denote its deter- 
minant by the function d(x l ,  y1, . . . , X(2N+1)21 Y(2N+1)2). Let 
us define the sets A, and AB as y and 6 level crossings of 
f(x, y): 

A,(C) = { ( x ,  y )  E C21 f ( x ,  Y )  = y) 

ATV?) = { ( x ,  y )  E R2 I f ( x ,  y )  = y} = A,(C) n R2 (17) 

A&C) = { ( x ,  y )  E C2 I f ( x ,  y )  = 6) 

A@) = { ( x ,  y )  E R 2 )  f ( x ,  y )  = 6)  = A&C) n R2 (18) 

where C2 and R2 are the two-dimensional fields of complex 
and real numbers, respectively. Furthermore, let B(R) c 
R2(2N+1)2 denote the cross product 

B(R) = A$R) X Ah2N+1)2-k (R)  

where Ak(R) is k times the cross product of A,(/?) with itself, 
and AL2N7'1)2-k(R) i s  ( 2 N  + - k times the cross product 
of A&?) with itself. 

To show that almost any 0 < k < ( 2 N  + 1)' points from 
real y level crossings (i.e., A$)) and ( 2 N  + 112 - k points 

from real 6level crossings(i.e.,A,(R))aresufficientfor unique 
specification of f ( x , y ) , w e  must findconditions underwhich 

become of measure zero in the set B(R) C R2(2N+1)2. To for- 
mulatethis in an algebraicgeometric framework, wechange 
variables to express trigonometric functions such as d as 
algebraic polynomials.' To this end, let 

real zeros of the function d ( x l ,  y l ,  * . . I X(2N + 1)2, Y(2N + 1)2) 

sin (27rx) = w, cos (27rx) = z, 

sin (27ry) = U ,  cos (27ry) = v 

so that 

f (x ,  y )  = fcw, z, U ,  v )  

d ( x l ,  y1, . ' * I X(ZN+1)2r Y(2N+V2 

= d ( w l ,  Z l r  ul, v l ,  * * I W(2N+1)2, Z(2N + 1 ) 2 ~  U(2N+1)2r V(2N+1)2) 

1 
1 

( w ,  z, U ,  v )  E c41 f(w, z, U ,  v) = y 

W 2 + 1 = 1  

u 2 + $ = 1  

( w ,  z, U ,  v )  E c41 fcw, z ,  U ,  v) = 6 

w2+3=1 

u Z + $ = 1  

i 
i 

A,(C) = 

(C) 

&(C) = 

A,(,?) = &(C) n R ~ ,  A,(,?) = A,(c) n R~ 

B(C) = A $ )  x / q N + 1 ) 2 - k  

7 (R). (19) = B(c) ,q ~ 2 ( 2 N + 1 ) '  = A k ( , y )  A ( Z N + l ) ' - k  

Since there is a one-to-one correspondence between ele- 
ments of the setSA, and A,, A6 and &, and B and B, we must 
find conditions under which real zeros of d(wl ,  zl, . . . , 
U(2N+l)Zr  have measure zero in I%?). Unlike A,, A*, 
and B, the sets A,(R) and A,(/?) are algebraic sets in p, and 
B(R) is an algebraic set in R4(2N+1)2. An algebraic set is one 
which can be written as common zeros of a set of poly- 
nomials. Specifically, if A" denotes the n time Cartesian 
product of a field A with itself, then X C A" is an algebraic 
set in A" provided there exists a set of polynomials S, with 
coefficients in A, such that the set of their common zeros 
V(S) is identical to X [32].  An algebraic set Vis reducible if 
V = V, n V2, where V, and V2 are algebraic sets in A", distinct 
from each other and V. Vl and V2 are referred to as com- 
ponents of V. If V is not reducible, it is irreducible. Given 
an irreducible algebraic set V in A", the zeros of a poly- 
nomial with coefficients in A are either of measure zero in 
Vor contain all the points in V. Since we want to show that 
zeros of d are of measure zero in b(R), we must find con- 
ditions under which &?) becomes irreducible. These con- 
ditions, which are included in Theorem 9, can be sum- 
marized in the following way: 

1) &(R) and &R) have maximal topological 
dimensionsg; 

2 )  the polynomials associated with y and 6 level cross- 
ings are irreducible over complex numbers. 

In effect, Theorem 9 provides conditions under which two- 
dimensional BLP signals with ( 2 N  + 1) x ( 2 N  + 1) region of 

'This is becausealgebraicgeometrydealsonlywith zerosof alge- 

'Definition of topological dimension is given in Appendix C. 
braic polynomials rather than trigonometric ones. 
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support in the Fourier domain can be uniquely specified 
from almostanyo <: k < (2N + 1)'pointsfrom theirycross- 
ings and (2N + - k points from their 6 crossings. It is 
natural to question the strictness of these conditions in 
practical situations. The first condition in Theorem 9 
requires&(/?) and&(/?) to have maximal topological dimen- 
sions. Since the complex topological dimensions of both 
&C) and &C) are 1, maximal dimensions for both A,(/?) 
and A,(/?) are 1. This implies that y and 6 level crossings of 
f(x, y) must contain at least a curve rather than isolated 
points. By proper choice of y and 6, this condition can be 
easily satisfied in practice. This is also true of the second 
condition of the theorem in the sense that the set of redu- 
cible polynomials have been shown to be of measure zero 
in the set of all bivariate polynomials with conjugate sym- 
metric coefficients [33], [34]. 

Theorem 9 can be extended to recovery of multidimen- 
sional signals from more than two threshold crossings. Spe- 
cifically, we can show that given m distinct thresholds tl, 
. . .  , t,, almost any distribution of (2N + points among 
the thresholds will result in unique reconstruction of the 
signal under consideration, provided the topological 
dimensions of the level crossings are maximal and their 
associated polynomials are irreducible. Furthermore, this 
theorem can be extended to reconstruction from crossings 
with BLP functions whose bandwidth lies within the band- 
width of the signal under consideration. Finally, Theorem 
9 implies that almost any (2N + 1)' samples of one level 
crossings of a signal with (2N + 1)  x (2N + 1) region of sup- 
port in the Fourier domain i s  sufficient for its unique recon- 
struction to within a scale factor, provided the polynomial 
associated with the signal i s  irreducible. This i s  in contrast 
with (16N2 + 1) samples required by Theorem 5 and dis- 
cussed in Section 1 1 .  

IV. RECONSTRUCTION ALGORITHMS 

In this section, we propose a number of algorithms for 
reconstruction of signals from implicit or semi-implicit 
samplesof their multiple-level threshold crossings. Our first 
approach involves solving linear systems of equations, and 
the second one is an iterative approach based on the theory 
of projection on convex sets (POCS) [35]. In both cases, we 
exploit the theoretical results of Section I l l  to ensure that 
each reconstruction algorithm will almost always have a 
unique solution. 

A. Linear Least-Squares Approach 

The most straightforward approach to reconstruction 
from one- or multiple-level crossings i s  to solve a linear sys- 
tem of equations. To reconstruct a (2N + 1) x (2N + 1) BLP 
signal from N,  thresholds, N, 2 (2N + 1)' semi-implicit or 
implicit samples of the level crossings can be used to deter- 
mine the Fourier coefficients by solving the (possibly over- 
determined) linear system of equations given by 

N N  

C C F(k,, ky)e/2"(kx"l+kyY/J = t 
k,=-N ky=-N 

I s i s N , ,  I s j s M .  

It is important to emphasize that, in either case, we are not 
merely solving N, 2 (2N + 
unknowns. If ( x / ,  y/) are semi-implicit samples chosen on 

equations in (2N + 

lines of rational slope, their distribution must satisfy the 
conditions of Theorem 6; otherwise the system of equations 
might become singular, resulting in non-unique solutions. 
Similarly, i f  (x,, y,) are implicit samples chosen on threshold 
contours of the signal under consideration, the conditions 
of Theorem 9 must be satisfied to be almost always guar- 
anteed of the nonsingularity of the preceding system of 
equations. 

Fig. 2(c) shows the reconstructed versions of the eye pic- 
ture, from the intersections of 13 sampling lines of slopes 
1, 2, f I, 3, 3 ,  4, a, 5 with eight level crossings, cor- 
responding to semi-implicit sampling. Robustness of the 
linear least-squares approach depends on a number of fac- 
tors, including the number of reconstruction samples and 
the actual algorithm used to solve the system of equations. 
For the example shown in Fig. 2(c), the number of recon- 
struction samples was 1548, and QR decomposition was 
used to solve the equations. The most stable linear least- 
squares algorithms, such as QR decomposition, are com- 
putation- and storage-intensive. In general, the storage 
requirement of these i s  proportional to N 4  for an N x N 
signal."Toovercorne the storage problem, we propose iter- 
ative algorithms for semi-implicit and implicit sampling 
strategies. 

B. Iterative Algorithms Based on POCS 

In this section we propose two iterative algorithms for 
reconstruction of multidimensional signals from semi- 
implicit and implicit samples. The basic idea behind these 
algorithms is to iterate between the space and frequency 
domains by successively imposing the appropriate con- 
straints in each domain: the bandlimitedness of the signal 
constitutes the frequencydomain constraint, and the space 
domain constraint is derived from the quantized semi- 
implicit or implicit samples. The convergence of these algo- 
rithms is based on the theory of POCS, while the unique- 
ness of the solutions are guaranteed by the theoretical 
results of Section Ill. 

We begin with the iterative algorithm for implicit sam- 
pling. 

7) The Iterative Algorithm for Implicit Sampling: Con- 
sider a BLP signal with (2N + I) x (2N + 1) region of support 
in the Fourier domain and an M x M grid, where M > 2N 
+ 1 as indicated in Fig. 3(c). We assume N, thresholds tl < 
t2 < . . . < tNt, with the minimum signal value less than t, 
and the maximum greater than tN,, so that each threshold 
crossing is acontour. From the threshold crossing contours 
we can associate with each gridpoint an upper and lower 
amplitude value. Specifically, with t,(n,, ny) and tu(nx, ny) 
denoting the lower and upper bound for the (nx, ny)th point 
on the grid, 

n,, ny = 0, . , M - 1. 

''Iterative algorithms, such as conjugate gradient, which do not 
need to store the matrix explicitly, converge very slowly. However, 
they can only be successfully applied to well-conditioned prob- 
lems such as reconstruction from sinusoid crossings. In addition, 
the recursive approach described in Appendix B is not nearly as 
storage-intensive as the least-squares approach. However, in gen- 
eral, it does not result in robust reconstruction. 
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0 Non-quantized samples - Sampling lines 

0 Quantized samples Lines used for quantization 
along sampling lines 

0 Non-quantized samples 

0 Quantized samples 

(C) (d) 
Fig. 3. (a) Derivation of space-domain constraint for iter- 
ative algorithm of semi-implicit sampling. (b) If we have N 
equidistant horizontal or vertical sampling lines, together 
with N equally spaced samples on each line, resulting semi- 
implicit sampling set corresponds to amplitude quantized 
Nyquist samples. (c) Derivation of space-domain constraint 
for iterative algorithm of implicit sampling. (d) Amplitude- 
quantized samples derived from quantized threshold con- 
tours by two-dimensional iterative algorithm are identical 
to amplitude quantized Nyquist samples. 

The steps of the algorithm are as follows. 

1) Let f")(n,/M, nJM) denote the value of f in  the Ith iter- 
ation at the point (n,/M, nJM). Take the M x M dis- 
crete Fourier transform (DFT) of f"'(n,lM, nJM) to get 
F"'(k,, k,). 

2) Impose the bandlimited constraint: 

F"'(k,, k,), 0 5 k,, k, 5 N, 

M - N 5 k,, k, < M i.. elsewhere. 

P('+lJ(k,, k,) = 

3) Apply the operator Tl = 1 + X1(P1 - 1) to f"'(n,/M, ny/ 
M) to get 

P, i s  the bandlimiting operator of step (3) and ?('+l)(n,/ 
M, nJM) is the inverse DFT of F(""(k,, k,). 

Impose the space domain constraint by projecting 
f'"" onto ?/"' via the operator P,: 

Apply the operator T2 1 + X2(P2 - 1) to F"+l): 

M' M 

If all the nodes of the M x M grid satisfy the space 
domain constraint, we are done. Otherwise repeat 
steps (2)-(7). 

We can use the theory of POCS [35] to establish the con- 
vergence of this algorithm. The formal description of this 
theory is given by Theorem IO. The theorem specifies away 
of finding an element in CO, the intersection of the sets C,, 
. . ., C,,, which are defined to be convex, closed subsets of 
a Hilbert space, H. It basically states that successive appli- 
cation of the operator 

T = TmTm-, . * Tl 

to any element in Hconverges to an element in CO provided 

TI = 1 + X,(P, - 1) 0 < X, < 2, 1 5 i I m 

and f ,  i s  a projection operator onto C,. The convergence is 
strong if either H is  finite-dimensional or if one of the sub- 
sets, e.g., C,, is finite-dimensional and A, = 1. 

The iterative algorithm is  essentially a special case of this 
theorem, where the Hilbert space H is the finite-dimen- 
sional space of all M X M-point real two-dimensional 
sequences and the inner product between two M x M-point 
sequences x,(n,, n,) and x2(nx, ny) i s  defined to be 

M - I  M - 1  

(XI ,  x,> = c c Xlb,, ny) x*(nx, n,). 
n,=O ny=O 

The convex closed subsets of H are Cl and C,. Cl is the set 
of all M x M-point real bandlimited sequences whose DFT 
i s  zero in the range N < k,, k, < M - N, and C, i s  the set 
of all M x M-point real sequences, which satisfy the space 
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domain constraint derived from the level crossing infor- 
mation as described in the first step of the algorithm. Pl i s  
the bandlimiting operator which projects onto the set C1, 
and P2 i s  the projection operator which imposes the space 
domain constraint and projects onto C2. Thus the iterative 
algorithm consists of successive applications of the oper- 
ator T = Tl T2 to an arbitrary initial condition, and by Theo- 
rem 10 it converges strongly to an element in the set CO = 
C, fl C,, which in this case is  the set of M x M-point real 
sequences satisfying both the space and frequencydomain 
constraints. As long as M i s  finite, there might be many 
sequences satisfying both constraints. However, in the limit 
as M -+ 00, Theorem 9 implies that the set CO will almost 
always contain exactly one sequence. Under these circum- 
stances, H will not be finite-dimensional and strong con- 
vergence is  no longer guaranteed. However, by Theorem 
I O ,  as long as at least one of the convex closed subsets, 
namely Cl, is finite-dimensional, strong convergence is 
guaranteed provided XI = 1. In general, we can control the 
convergence rate of the algorithm by proper choice of the 
relaxation parameters XI and X2. The simplest such tech- 
nique is overrelaxation, which consists of setting 1 < X < 
2”. Values of X outside the interval (0, 21 disrupt conver- 
gence. 

Fig. 4(a) shows the reconstructed version of the eye pic- 
ture from 4, 6, and 8 thresholds, using the iterative algo- 
rithm for different values of M. The relaxation parameters 
for all the reconstructions were chosen to be XI = 1, X 2  = 
1.75. The initial guess was chosen to be 

=O;..,M-l 

As shown, increasing the number of thresholds improves 
thequalityof reconstruction in a more substantial waythan 
increasing M. Since the iterative algorithm is  considerably 
less storage-intensive than the least-squares approach, it i s  
capableof reconstructing larger images.An exampleof such 
a reconstruction i s  shown in Fig. 5(b), where vegas picture 
of Fig. 5(a) with 127 x 127 Fourier region of support i s  
recovered from eight thresholds. The relaxation parame- 
ters were hl = 1 and X 2  = 1.75, and the grid size was M = 
512. In the next section, we describe the iterative algorithm 
for semi-implicit sampling, and in Section V, quantization 
characteristics of the iterative algorithms will be discussed. 

3) Iterative Algorithm for Semi-Implicit Sampling: The 
iterative algorithm for semi-implicit sampling reconstructs 
the one-dimensional signals associated with the sampling 
lines of a 2D signal by imposing constraints in frequency 
and space domains successively. The I D  signals are then 
used to recoverthe2D signal underconsideration.Thusthe 
iterative algorithm is part of a “line by line” reconstruction 
approach. This approach exploits the fact that signals 
defined along lines of rational slopes of 2D BLP signal, are 
also bandlimited and periodic,” and by Fourier series 
uniqueness, can be specified by a finite number of their 

”We speak of underrelaxation when 0 < X < 1. With X = 2, we 
have another special case, referred to by Motzkin and Schoenberg 
[36] as the “reflection method.” 

’*The fact that the one-dimensional signal associated with a sam- 
pling line with rational slope is bandlimited and periodic was orig- 
inally shown by Mersereau [37l. 

samples. For instance, the number of Fourier harmonics of 
the signal associated with a sampling line of slope nlm for 
a signal with (2N + 1) x (2N + 1) support in the Fourier 
domain is 2N(m + n) + 1, and therefore 2N(m + n) + 1 
samples of it are sufficient for its unique recovery. 

Before describing the iterative algorithm, we make three 
comments. First, the iterativealgorithm isoneof manyways 
to recover the one-dimensional signals associated with the 
sampling lines. For instance,onecould solvealinear system 
of equations (possibly overdetermined) to determine their 
Fourier  coefficient^.'^ Second, the sampling requirements 
of line-by-line reconstruction are, in general, more strin- 
gent than those of Corollary 2. For instance, if all the sam- 
pling lines arechosen to be of slope n/m, line-by-line recon- 
struction requires 2N(m + n) + 1 samples on each line, 
whereas Corollary 2 only requires one line with as many 
points as 2N(m + n) + 1. Third, there are many ways to 
recover the two-dimensional signal under consideration, 
once its corresponding one-dimensional signals have been 
reconstructed. If the value of the signal on a (2N + 1) X (2N 
+ 1) grid i s  needed, our proposed strategy i s  to determjne 
its value at the intersections of sampling lines and (2N + 
1) equally spaced horizontal or vertical lines, reconstruct 
the one-dimensional signals associated with these vertical 
or horizontal ones, and determine the signal value at (2N 
+ 1) equally spaced points on each horizontal or vertical 
line. Reconstruction of the one-dimensional signals asso- 
ciated with the horizontal or vertical lines i s  possible 
because each one intersects all the sampling lines at (2N 
+ 1) points. That is, if inequality (6) of Theorem 8 is satisfied, 
then each of the horizontal lines intersects the sampling 
lines at (2N + 1) points, and if inequality(7) i s  satisfied, then 
each of the vertical lines intersect the sampling lines at (2N 
+ 1) points. 

Let us now describe the iterative algorithm for recon- 
struction of one-dimensional signals associated with sam- 
pling lines. The algorithm is rather similar to that of Section 
IV-9.1 in the sense that it iterates between space- and fre- 
quency-domain constraints by imposing appropriate con- 
straints on the signal in each domain. If the locations of all 
the crossings of a one-dimensional continuous BLP signal 
g(z) with N, thresholds tl < t2 . - < tN, are known, and the 
signal i s  known to be in the range [to, tNt+l], then the inten- 
sity range of an arbitrary point zo can easily be deduced. 
This process i s  shown pictorially in Fig. 3(c).I4 For a BLP sig- 
nal with 2N + 1 Fourier harmonics, the intensity range of 
M > 2N + 1 equally spaced points of the signal constitute 
the space-domain constraint and the bandlimitedness of 
the signal constitutes the frequency-domain constraint. 
Similar to the two-dimensional iterative algorithm of the 
previous section, by iterating between the frequency and 
space domain, the algorithm can be shown to converge. In 
fact, Theorem 10 guarantees its convergence to a solution 
satisfying the constraints in both domains. As long as M is  
finite, there might be many M-point real sequences satis- 
fying both conditions. However, in the limit as M + 00, the 
solution set will contain exactly one sequence, as long as 

13Examples of such reconstructions are included in [30]. 
14T0 derive the correct range information for any point on a line, 

weneed aminimum oftwosamplescorrespondingtotwodifferent 
thresholds; samples corresponding to one threshold are incapable 
of resolving the sign ambiguity of theone-dimensional signal under 
consideration. 
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(b) 
Fig. 4. (a) Reconstructed version of original eye picture from its implicit samples via iter- 
ativealgorithm; Numberof thresholds is4,6,and8, increasing from rightto left; and num- 
ber of equally spaced samples on lines M i s  31 (no reconstruction), 32,64,128, increasing 
from top to bottom. (b) Reconstructed version of eye picture from i t s  semi-implicit samples 
viaiterativealgorithm;numberofthresholdsis4,6,8, increasing from right to left; number 
of equally spaced samples on lines increases from top to bottom and i s  64 and 128. 

the number of samples on agiven line exceeds the number 
of Fourier coefficients of the one-dimensional signal 
(because of the uniqueness of. Fourier series). 

Fig. 4(b) shows the reconstructed version of the eye pic- 
ture from the intersections of equally spaced lines of unit 
slope with 4, 6, and 8 theshold contours, via 20 iterations 
of the iterative algorithm for M = 64 128. In this case, since 

all the nodes of the (2N + 1) x (2N + 1) square grid of the 
two-dimensional signal are located on the sampling lines, 
interpolation from the one-dimensional signal to the orig- 
inal two-dimensional one is  relatively straightforward. The 
relaxation parameters were chosen to be hl = 1, h2 = 1.75. 
As seen, increasing the number of thresholds or M improves 
the quality of reconstruction. Due to i t s  lenient storage 
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Fig. 4. (Continued.) 

requirements, the iterative algorithm of this section can also 
be used to recover relatively large images. An example of 
such reconstruction is shown in Fig. 5(c), where the vegas 
picture is recovered from the intersections of 128 equally 
spaced lines of unit slope with eight threshold contours. 
The number of equally spaced samples on each line was 
512, and the relaxation  parameter^'^ were A, = 1, X 2  = 1.75. 
In Section V, we discuss the quantization characteristics of 
the iterative algorithms. 

V. PRELIMINARY SPECULATIONS ON QUANTIZATION PROPERTIES 

In the last two sections, we have proposed various 
approaches to the problem of reconstruction from multi- 
ple-level crossings. In this section, we present a preliminary 
investigation of the position and amplitude quantization 
requirements of the samplingheconstruction schemes as 
a function of the number of thresholds. A thorough inves- 
tigation of these quantization characteristics involves 
extensive dealing with coding issues and experiments. 
Since we have not examined these issues rigorously, the 
discussions in this section tend to be rather preliminary, 
and most of the conclusions are somewhat tentative. How- 
ever, these speculative results can be used as a starting point 

. for further research in the areas of multidimensional signal 
representation and image coding. We begin with quanti- 
zation properties of the linear least-squares approach in 
Section V-A, and continue with those of the iterative algo- 
rithms in Section V-B. 

A. Linear Least-Squares Approach 

This section includes a preliminary investigation of the 
way in which the number of thresholds affect position and 
amplitude quantization characteristics of reconstruction 

"Some of the sampling lines in the reconstruction examples of 
this section did not contain as many threshold crossings as the 
number of Fourier harmonics of their corresponding I D  signal. 

via the linear least-squares approach. We have chosen the 
QR decomposition to solve the least-squares problem pri- 
marily because of i t s  robustness. In Section V-A.l, we dis- 
cuss the quantization characteristics of the semi-implicit 
and implicit sampling strategies, and in Section V-A.2, we 
show that, under certain circumstances, Nyquist sampling 
simply becomes a special case of the semi-implicit and 
implicit sampling strategies. Before approaching these, 
however, we need to address a few issues. 

The first issue has to do with the fact that quantization 
procedures for the implicit and semi-implicit sampling 
schemes are somewhat different from each other. Fig. 6(a) 
shows quantization of samples of threshold contours 
obtained via the implicit sampling approach. As shown, the 
quantized coordinates of a sample associated with a par- 
ticular threshold are chosen to be the coordinates of the 
center point of the square the sample falls in. For situations 
in which two or more samples corresponding to different 
thresholds fall into the same quantizing square, the sample 
closest to the center of the square i s  kept and the remaining 
ones are discarded. 

For the semi-implicit approach, we can take advantage of 
the geometry of the sampling lines. As shown in Fig. 6(c), 
in a sampling scenario with NI sampling lines, our strategy 
for specifying the location of a given sample has been to 
use log, NI bits to specify the line it falls on, and b bits to 
specify i ts  location along the sampling line. It is important 
to mention that there are many other ways to quantize the 
position of the samples for both the semi-implicit and 
implicit sampling schemes, and our proposed coding 
schemes are almost certainly not optimal. 

The second issue that needs to be addressed is  the way 
in which the number of reconstruction samples influences 
reconstruction robustness. Although the theoretical results 
of Section Ill provide sufficient conditions for unique 
recovery of BLP signals, using more interpolation points 
than the minimum required by these theoretical results 
improves the robustness of reconstruction and thus 
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(C) 

Fig. 5 .  (a) Original 256 x 256 vegas picture with 127 x 127 region of support in Fourier 
domain. (b) Reconstructed version of vegas picture from i t s  implicit samples of eight level 
crossings via iterative algorithm. (c) Reconstructed version of vegas picture from its semi- 
implicit samples of eight level crossings via iterative algorithm. 

decreases the accuracy needed for specifying the location 
of the crossings. We have found experimentally that, 
although for afixed qualityof reconstruction increasing the 
number of samples will initially decrease the number of 
position bits per sample, beyond acertain point it increases 
the total number of bits used to represent a signal [30]. In 
investigating the effects of the number of thresholds on 
quantization characteristics when the linear least-squares 
reconstruction i s  used, we have chosen to keep the number 
of reconstruction samples at a fixed level in all the exper- 
iments. Furthermore, to limit the computational intensity 
of the investigation, we have chosen to carry out all our 
experiments on only one picturewith 15 X 15 region of sup- 
port in the Fourier domain. This picture, which is referred 
to as “eye.lp,” i s  more or less the lowpass version of the 
original eye picture shown in Fig. 2(a). A more thorough 
studywould obviously utilize a large number of images with 
different support regions. 

7) Quantization Characteristics as a Function of the 
Numberof Thresholds: Fig. 7(a) and 7(b) show mean square 
error (rnse) versus the normalized number of amplitude and 
position bits as a function of the number of thresholds, for 
reconstruction of the eye.lp picturevia a linear least-squares 
method and QRdecomposition. Fig. i’(a)corresponds to the 
semi-implicit sampling strategywith equidistant lines of unit 
slope, and Fig. 7(b) corresponds to the implicit sampling 
strategy. The mean square error between the original and 
reconstructed image is  defined by: 

N N  1 
mse = ~ c c [F(k,, k,) - m,, k,)I2 (20) 

(2N + k,= - N  k,= - N  

where F(k,, k,) and F(k,, k,) correspond to the Fourier coef- 
ficients of the original and reconstructed images, respec- 
tively. We have found experimentally that the qualityof the 
reconstructed image becomes almost indistinguishable 
from the original one when mse 5 0.1. The normalized 
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Fig. 6 .  (a) Quantization procedure for implicit samples of linear least-squares approach. 
(b) Position-quantized samplesoccupyall N’nodesofaN x Ngrid if numberofthresholds 
are large enough. (c) Position-quantized samples obtained via semi-implicit sampling for 
linear least-squares reconstruction. (d) If we have N equidistant horizontal or vertical sam- 
pling lines, and number of thresholds i s  large enough, position quantized samples will 
occupy all NZ nodes of N x N grid. 
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0 points with intensity c 1, 
0 points with intensity z t ,and c 1, 
0 points with intensity > t p  

(C) 

1 1  .i t p  

0 points with Intensity 

0 points with intensity > t ,and c t2 

0 points with intensity > t 2  

Fig. 7. Plot of mse versus normalized number of position 
and amplitude bits as function of number of thresholds for 
reconstruction of eye.lp picture. (a) Via 256 semi-implicit 
samplesand linear least-squares method. (b)Via256 implicit 
samples and linear least-squares method. (c) Via semi- 
implicit samples of iterative algorithm. (d) Via implicit sam- 
ples of iterative algorithm. 

number of position and amplitude bits i s  defined as 

The slopes of the curves shown in Fig. 7(a) and 7(b) are 
negative, indicating that the quality of the reconstruction 
i s  improved as B is  increased. In addition, for fixed mean 
square error above 0.1, the spacing between the curves 
apparently decreases from right to left, indicating that the 
improvement in the quality of reconstruction decreases as 
the number of thresholds gets larger. For instance, in curves 
of Fig. 7(a) (semi-implicit sampling), increasing the number 
of thresholds for a fixed mean-square error does not nec- 
essarily result in a decrease in the normalized number of 
position and amplitude bits. For curves of Fig. 7(b) (implicit 
sampling), the "optimum" number of thresholds which 
results in minimum total (position and amplitude) number 
of bits varies as a function of m e .  For instance, for 0.2 5 
mse I 1, it i s  7; for 0.06 5 mse 5 0.2, it i s  16; and for 0.02 
5 mse 5 0.06, it is 32. 

2) Relationship of Semi-lmplicit and Implicit Sampling to 
Nyquist Sampling: In explicit sampling a function is rep- 
resented by i ts  samples at prespecified points. An impor- 
tantexampleofsuchatechniqueisNyquistsampling,which 
involves amplitude specification of the signal at equally 
spaced points. In this section, we will show that, under cer- 
tain circumstances, the locationsof samples used for recon- 
struction via the linear least-sqaures approach become 
identical to those of Nyquist sampling. We will begin with 
the semi-implicit sampling strategy. 

Semi-implicit sampling: As discussed in Section Ill-A, 
reconstruction of an N x N signal from i ts  crossings with 
N,  arbitrary functions, via the semi-implicit sampling strat- 
egy, consists of sampling the function crossings of the sig- 
nal along lines of rational slope, and quantizing the posjtipn 
of the samples to b bits along the line. The above proce'ss 
i s  shown pictorially in Fig. 6(c). As shown in Fig. 6(d), if the 
crossing functions are chosen to be constants (i.e., the 
reconstruction samples are chosen from level crossings of 
the signal), the sampling lines are chosen to be equally 
spaced horizontal or vertical lines, and 2' = N,  then the 
locations of the N 2  position quantized samples correspond 
to the nodes of a N x N grid or, equivalently, the location 
of Nyquist samples. Note that for the preceding conditions 
to hold, the number of thresholds used for reconstruction 
must be large enough so that each of the N horizontal (or 
vertical) lines contain N samples after quantizing the x (or 
y) position of the samples to logn N bits. 

number of position and amplitude bits per sample x number of samples 
number of Fourier coefficients 

B =  

The number of amplitude bits per sample i s  defined to tie 
log, (number of thresholds). For all the curves of Fig. 7(a) 
and 7(b), the number of reconstruction samples was 256. 
Moreover, since all the curves were obtained from a single 
image, namely eye.lp, the number of Fourier coefficients 
i s  identical in each case. Thus, in effect, these curves rep- 
resent the mean square error as a function of the number 
of position and amplitude bits per sample for different 
choices of the number of thresholds. As we will see later, 
unlike the linear least-squares approach, increasing the 
number of position bits per sample for the iterative auto- 
matically increases the number of samples used for recon- 
struction. This i s  the reason behind choosing the normal- 
ized number of position and amplitude bits as a "metric" 
for comparing various algorithms and sampling strategies. 

Although locations of Nyquist and semi-implicit samples 
become identical under these characteristics, it i s  impor- 
tant to bear in mind that these sampling sets are inherently 
different from each other. In Nyquist sampling, the ampli- 
tude information i s  quantized at the nodes of a N x N grid, 
whereas in semi-implicit sampling the nodes of this N x N 
grid correspond to position-quantized samples of level 
crossings. In other words, Nyquist sampling corresponds 
to amplitude quantization at prespecified points, and 
reconstruction from level crossings via semi-implicit sam- 
pling corresponds to position quantization along sampling 
lines at prespecified amplitudes. 

lmplicit sampling: As discussed in Section 111-6, recon- 
struction of a N x N signal from implicit samples of i ts  N, 
level crossings via the linear least-squares approach con- 
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sists of quantizing the threshold contours by superimpos- 
ing a 2‘ x 2‘ grid over the signal in the space domain, and 
choosing N, > N2 of the 112’ x 112’ squares whose centers 
correspond to quantized reconstruction samples. This pro- 
cess i s  shown pictorially in Fig. 6(a). As seen in Fig. 6(b), for 
a sufficiently large number of thresholds, all the 2” squares 
associated with the 2’ x 2’ grid will have a threshold value 
associated with them. Moreover, if the grid size i s  the same 
as the signal size, i.e.,2’ = N, the number of reconstruction 
samples, M, becomes equal to N2, and the locations of posi- 
tion-quantized samples of level crossings correspond to 
nodes of a N x N grid or, equivalently, the locations of 
Nyquist samples. Thus Nyquist sampling corresponds to 
amplitude quantization at prespecified points, and recon- 
struction from level crossings corresponds to position 
quantization at prespecified amplitudes. 

B. Iterative Approach 

The quantization properties of the iterative algorithms 
are somewhat different from those of the linear least- 
squares approach. In Section V-B.l, we present a prelimi- 
nary investigation of amplitude and position quantization 
requirements of the semi-implicit and the implicit sampling 
strategies. Section V-B.2 shows that, under certain circum- 
stances, Nyquist samples become identical to semi-implicit 
and implicit samples used for reconstruction via the iter- 
ative algorithms. 

1) Quantization Characterization as a Function of the 
Number of Thresholds: We begin with characterization of 
the semi-implicit approach. 

Semi-implicit sampling: In Fig. 7(c) we show the mean 
square error between the origional eye.lp picture and i ts  
reconstructed version via the iterative algorithm as a func- 
tion of the normalized number of position and amplitude 
bits. As indicated, the number of thresholds associated with 
the four curves i s  6,8,12, and 16. For each curve, the thresh- 
olds were chosen with equal spacing between 0 and 256. 
The points on each curve correspond to different numbers 
of equally spaced points on the sampling lines, i.e., M = 32, 
64,128. In addition, the sampling lines were chosen to be 
equidistant and of unit slope.I6 The y axis corresponds to 
mse, as defined by (20), and the x axis indicates normalized 
number of position and amplitude bits used for the par- 
ticular reconstruction at hand. 

Because of the inherent structure of the samples used by 
the iterative algorithm, there are a variety of ways to rep- 
resent the signal under consideration and to arrive at the 
number of quantization bits. The most straightforward way 
is  to quantize the locations of threshold crossings on the 
sampling lines to log, M bits in such a way that the space 
domain constraint for the M equally spaced points on each 
of the sampling lines can be derived easily. Using this strat- 
egy, the total number of amplitude and position bits for 
representing the signal is (log, M + log, N, + log, NI) 
Cf”l, NI, where NI denotes the number of intersections of 
the i th threshold crossings with a l l  the sampling lines, N, 

denotes the number of thresholds, Nldenotes the number 
of sampling lines, and M denotes the number of equally 
spaced points on each of the sampling lines. 

An alternative strategy for representing the signal i s  to 
specify the intensity range for each of the equally spaced 
points on the sampling lines. More specifically, if the num- 
ber of thresholds i s  N,, then the value of the signal at any 
given point lies in one of the (N, + 1) intervals correspond- 
ing to the N, thresholds. In this case, the total number of 
bits used to represent the signal i s  given by MN, log, (N, + 
1). Clearly, this second quantization strategy outperforms 
the first one for large values of N, and small values of M. 
Our strategy in determining the total number of position 
bits for the abscissa of Fig. 7(c) has been to choose the min- 
imum of the preceding twoquantization strategies. We have 
found experimentally that we would reach similar conclu- 
sions regardless of the quantization strategy used. 

Having discussed the details of generating the curves 
shown in Fig. 7(c), it is now appropriate to makeafew obser- 
vationsand comments regardingtheir shapes.AswewouId 
expect, the slope of each curve i s  negative, indicating that 
for fixed number of thresholds the mean square error 
decreases as M is  increased. In addition, for fixed M, the 
mean square error i s  decreased as the number of thresh- 
olds i s  increased. An interesting question to address i s  
whether or not there i s  an “optimum‘ number of thresholds 
for which the lowest number of amplitude and position 
quantization bits i s  achieved. As Fig. 7(c) shows, this “opti- 
mum”numbervariesas afunction of the mean squareerror. 
For instance, for mse in the range [0.53, 0.851, it i s  6-8, and 
for mse in the range t0.15, 0.231, it is 12-16. Thus the “opti- 
mum” number of thresholds i s  a decreasing function of 
mse. In the next section, we will investigate iterative recon- 
struction using implicit sampling. 

Implicit sampling: In this section we investigate quan- 
tization properties of the iterative reconstruction algorithm 
for the implicit sampling strategy. Similar to the iterative 
reconstruction algorithm of the semi-implicit sampling, 
there are several strategies one might take to arrive at the 
total of amplitude and position quantization bits for rep- 
resenting a given image via the implicit sampling scheme. 
Since in each of these strategies we are encoding the quan- 
tized contours corresponding to different thresholds, 
almost all of the efficient coding schemes for two-tone 
images proposed and studied by many researchers [38], [39] 
can be used for representing our images. The most obvious 
way of encoding the boundary points of a threshold con- 
tour quantized to b bits is to use 2b bits for thex and ycoor- 
dinates of each point. Using this strategy, the total number 
of bits required to specify N, threshold contours i s  (log, N, 
+ 2b)(Cf”L, N,(b)),where N,(b)denotesthenumberofquan- 
tized boundary points on a 2‘ x 2‘ quantization grid for the 
ith threshold. A second and more efficient way of repre- 
senting the boundary points i s  to follow the boundary, i.e., 
to do contour tracing. Since the image is  quantized on a 2’ 
x 2’ square grid, each pel has only eight neighbors. There- 
fore it i s  sufficient to use 3 bits to indicate where the next 
boundary point is. Of course, to get on each boundary, we 
need to specify the position of an initial point. Thus, ignor- 
ing the additional bits required to get to the initial points 
on the boundaries and to specifytheir associated threshold 
value, total number of bits required for specifying an image 

’“Although the theoretical results of Section Ill-A require only 
15 sampling lines of unity slope, to be able to use the FFT with a 
power of 2 for the interpolation part of the iterative algorithm (i.e., 
interpolation from recovered one-dimensional signals to a square 
grid on the two-dimensional one) wechosel6equallyspaced Sam- 
pling lines. i s  3CY11 N,(b). 
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Ourthird encoding strategy involves specifying the range 
of the signal for each node of the 2' x Z'quantization grid. 
This strategy is suitable for sampling schemes with large 
number of thresholds and coarse quantization of the con- 
tours. The total number of bits required for specifying an 
image via this encoding technique is  2" log, (N + 1). 

As far as efficiency of these encoding strategies goes, 
clearly the second one outperforms the first one, and the 
relative efficiencies of the second and third ones depend 
on the form of N,(b). Intuitively, we would expect N,(b) to 
be proportional to2', since the number of boundary points 
of quantized threshold contours is  doubled as the size of 
quantizing grid i s  increased from 2' x 2' to 2'" x 2'+'. 
Thus, for small values of b and large values of N,, the third 
strategy outperforms the second one. As it turns out, our 
major conclusions are more or less independent of the 
actual encoding scheme used; so our adopted strategy has 
been to choose the minimum of second and third ones to 
represent images. 

Having described the quantization strategy, we will now 
examine how the number of thresholds affect the required 
number of position bits and the quality of reconstruction. 
Fig. 7(d) shows a plot of the mean square error versus the 
normalized number of position and amplitude bits as a 
functionof thenumberofthresholds.Thefivecurvesof Fig. 
7(d) correspond reconstruction from different numbers of 
thresholds. Various points on each curve correspond to 
reconstruction with different values of grid size. The slopes 
of the curves are negative, indicating that the quality of 
reconstruction improves as the quantization grid becomes 
finer. In addition, the number of thresholds which results 
in smallest number of quantization bits i s  afunction of mse. 
For instance, if we are interested in reconstructing signals 
with mse I 0.556, then the optimal number of thresholds 
is between 8 and 16. Finally, comparing Fig. 7(c) and 7(d), 
it seems that, for fixed qualityof reconstruction via iterative 
algorithms, implicit sampling results in lower number of 
bits than semi-implicit sampling with lines of unit slope. 

2) Relationship to Nyquist Sampling: In this section, we 
will show that, under certain circumstances, the samples 
used for reconstruction via the iterativealgorithms become 
identical to those of Nyquist sampling. We begin with the 
sem i-i m pl icit sampling strategy. 

Semi-implicit sampling: As shown in Fig. 3(c), the iter- 
ative algorithm for the semi-implicit sampling strategy uti- 
lizes position-quantized semi-implicit samples to derive the 
space domain constraint. Therefore, the input to the iter- 
ative algorithm can be represented by the intensity range 
of equally spaced points on the sampling lines. Since all the 
intersections of sampling lines with the threshold contours 
are utilized, the intensities of the M equally spaced points 
lie in one of N, + 1 intervals defined by the N, thresholds. 
In addition, suppose that we have N equally spaced hori- 
zontal or vertical sampling lines for a signal with N x N sup- 
port region in the Fourier domain. As Fig. 3(d) shows, if M 
= N, then the N equally spaced samples on N horizontal 
or vertical lines correspond to nodes of a N x N grid, and 
since the amplitude of each node is  in one of the (N, + 1) 
intervals corresponding to N, thresholds, the sampling set 
becomes identical to log, (N, + 1) bit amplitude-quantized 
Nyquist samples. 

Implicit sampling: Recall from Section V-B.l that the 
quantization procedure for iterative reconstruction of a N 

x N signal from N, level crossings via the implicit sampling 
strategy consists of deriving the amplitude range for the 
nodes of a 2' x 2'grid by utilizing the quantized threshold 
contours. Pictorially, this i s  shown in Fig. 3(a). Sincethe iter- 
ative algorithm needs all the quantized contours associated 
with all the thresholds to derive the correct space domain 
constraint, the intensity of each node of the grid lies in one 
of the N, + 1 intervals defined by the N, thresholds. Thus, 
as shown in Fig. 3(b), we can think of the nodes of the grid 
being amplitude-quantized to log2(N, + 1) bits. In addition, 
if the size of the grid, 2', assumes its minimum possible 
value, i.e., N, then the sampling set becomes identical to 
log, (N, + 1) bit amplitude-quantized Nyquist samples. 

VI. CONCLUSION 

Our main goal in this paper has been to discuss sampling 
strategies for reconstruction of multidimensional signals 
from multiple level threshold crossings, whose character- 
istics lie in between Nyquist sampling and the zero-cross- 
ing representation proposed by Curtis and Oppenheim [I], 
1171. Our approach has been to formulate the problem in 
terms of multivariate interpolation theory. Our main the- 
oretical results in this paper deal with two major sampling 
strategies. 

Our first strategy, described in Section Ill-A, consisted of 
imposing restrictions on the location of interpolation points 
used for recovery of the bivariate polynomial associated 
with the signal under consideration. To this end, we devel- 
oped theoretical results on multivariate polynomial inter- 
polation theory using algebraic geometric concepts. We 
then used these results toderivethe semi-implicit sampling 
strategy to provide sufficient conditions under which mul- 
tidimensional BLP signals can be recovered from their non- 
uniform samples on lines of rational slope. To utilize these 
results in the context of reconstruction from level cross- 
ings, the nonuniform samples were chosen at the inter- 
section of sampling lines with level crossings. As shown in 
[30], the semi-implicit sampling strategycan also be applied 
to a variety of other problems, such as reconstruction from 
crossings with arbitrary functions and reconstruction from 
projections. 

The major drawback of the line-sampling strategy for 
reconstruction from level crossings is the fact that, for a 
small number of thresholds, we are not guaranteed to get 
enough intersections between the sampling lines and level 
crossings to satisfy the conditions of Theorem (8). To over- 
come this difficulty, in Section Ill-B, we proposed the 
implicit sampling strategy for reconstruction from an arbi- 
trarily small number of thresholds. The major result in Sec- 
tion I l l -B states that for almost all signalswith N x N region 
of support in the Fourier domain, almost all k > 0 points 
from its y level crossings and N2 - k points from its 6 level 
crossings are sufficient to uniquely specify it. This result 
was extended to situations where the number of thresholds 
i s  larger than 2, and to the problem of reconstruction from 
crossings with functions whose bandwidths lie within the 
bandwidth of the signal. 

Having developed the semi-implicit and implicit sam- 
pling strategies, we then proposed a number of reconstruc- 
tion algorithms in Section IV.The most straightforward way 
of carrying out reconstructions for both the semi-implicit 
and implicit sampling strategies is to solve a linear system 
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of equations to find the Fourier-series coefficients associ- 
ated with the signal. Although the linear least-squares 
approach can result in stable reconstructions, i ts  storage 
requirements are rather demanding. To overcome this 
problem, we proposed the iterative algorithms for both 
semi-implicit and implicit sampling strategies. 

In Section V, we presented a preliminary investigation of 
the quantization properties of the reconstruction algo- 
rithmsasafunctionofthe numberof thresholds. In Section 
V-A, we found that for a fixed quality of reconstruction and 
fixed number of reconstruction samples, the quantization 
characteristics of the linear least-squares approach initially 
improve as the number of thresholds i s  increased. How- 
ever, for large number of thresholds, further increase in the 
number of thresholds does not necessarily lead to fewer 
quantization bits. As we saw in Section V-B, the quanti- 
zation properties of the iterative algorithms suggest that 
the "optimum" number of thresholds which results in the 
smallest number of position and amplitude bits i s  highly 
dependent on thequality of the reconstructed images. More 
specifically, as Figs. 7(c) and 7(d) show, for smaller values 
of the mean square error, the "optimum" number of 
thresholds i s  larger. It i s  important to mention that the 
results presented in Section V are extremely preliminary 
and thattheconclusionsaretentative. Our hope isthatthese 
speculative results can be used as a starting point for fur- 
ther research in the applications of the theory to areas of 
multidimensional signal representation and image coding. 

Our goal in this paper has been to derive sampling 
schemes whose bandwidth and dynamic range character- 
istics lie in between those of Nyquist and zero-crossings 
sampling. While recovery of an N x N signal from its Ny- 
quist samples requires minimum (log, N )  number of posi- 
tion bits and large number of amplitude bits, and recovery 
from zero crossings requires large number of position bits 
and minimum (1) number of amplitude bits, the position 
and amplitude quantization requirements of our sampling 
strategies for reconstruction from multiple level crossings 
lie in between thesetwoextremes. In fact, theexperimental 
results of Section V seem to suggest that the optimal num- 
berof thresholds,which results in minimum number of total 
amplitude and position bits, is neither infinite, as it is with 
Nyquist sampling, nor is it one, as i s  the case with zero- 
crossing sampling. Indeed, this optimum number depends 
on a variety of factors, such as 

quality of reconstruction, 
the specific sampling strategy used, i.e., semi-implicit 
or implicit sampling, 
the specific reconstruction strategy, 
the number of reconstruction samples. 

Finally, as we saw in Sections V-A.2 and V-B.2, represen- 
tation of two-dimensional signals via their amplitude-quan- 
tized explicit Nyquist samples i s  intimately related to their 
position-quantized implicit or semi-implicit samples. The 
results of Section V seem to indicate that not only does the 
amplitude and position quantization characteristics of our 
sampling and reconstruction schemes lie in between those 
of Nyquist and zero-crossings, but also, under certain cir- 
cu mstances, sem i-i m pl icit and i m pl icit Sam pl i ng strategies 
become a special case of Nyquist sampling. In short, recon- 
struction from multiple-level threshold crossings has 
bridged thegap between explicit, semi-implicitland implicit 

sampling strategies, has unified seemingly unrelated sam- 
pling schemes, and has provided us with a spectrum of sam- 
pling techniques for multidimensional signals. 

APPENDIX A 
FORMAL STATEMENTS OF SOME OF THE THEOREMS 

Thisappendixcontainstheformal statements ofthetheo- 
rems cited in the body of the paper. Theorems which rep- 
resent new contributions of this paper are indicated with 
an asterisk. Proofsare included forthesetheoremsonlyand 
are contained in Appendices B and D with some associated 
discussion. 

Logan's theorem provides conditions for unique recov- 
ery of one-dimensional signals from their zero crossings. 

Theorem I (Logan [5]): Consider two real-valued band- 
pass functions hl(t) and h,(t), having spectra confined to 
[amin, urnax] and [-amax, -U"""]), where 0 < amin < amax < 
2amin. If they have no free zeros other than real simple free 
zeros, then 

sgn[h,(t)l = sgn[h,(t)] --OD < t < 00 

implies 

hl(t) Ah,([). 

The free zeros of a real-valued bandpass function h(t) are 
simply the common zeros of h with i t s  Hilbert transform, 

The following theorem is  an extension of Logan's result 
to two-dimensional signals which are bandpass in both 
directions. 

Theorem 2 (Rotem and Zeevi [76]): Let f (x ,  y) be a real 
square-integrable bandpass function in both dimensions 
whose Fourier transform F(u,, U,,) is  zero for 

where 

0 < a:'" < U? < 2 4 ' "  0 < a?'" < WymaX < 24% 

Assume the following conditions are satisfied: 

1) There exists a yo such that the one-dimensional func- 
tion of x, f(x, yo) and its Hilbert transform have only 
real zeros of degree one in common. 

2) There exists a sampling set { x k }  for B(aT'", with 
density greater than ay - wTi"/x such that the one- 
dimensional functions in ygiven by f (xk ,  y) have only 
realzerosof degreeonewith their Hilberttransforms. 
6(4!"", COY) denotes the one-dimensional bandpass 
signals g(z) whose Fourier transform, G(w), i s  zero for 
(a1 > U? and I u (  < and sampling set with den- 
sity greater than WY - o:'"/x implies 

N(L) U,max - UTin lim sup- > 
L - m  L x 

where N(L) denotes the number of samples in the interval 
(0, L). Then f (x ,  y) i s  uniquely specified from i t s  zero cross- 
ings to within a scale factor. 

The following theorem is  an extension of Logan's result 
to two-dimensional signals which are bandpass in one 
direction and lowpass in the other. 
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Theorem 3 (Rotem and Zeevi [16]): Let f (x ,  y) be a real 
square-integrable function which i s  bandpass in one direc- 
tion and lowpass in the other. In other words, its Fourier 
transform F(wx,  U,) i s  zero for 

Theorem 6 (Zakhor and lzraehvitz [181): Consider two 
bivariate polynomials p(x, y) E ~ ( N , , N ~ )  and q ( X ,  Y) E 
n(MX,My) of the form 

N x  N v  

p(x, y) = , = o  C j = o  C a(;, j ) x ' y j  

where 

0 < U;'" < ay < 2 4 ' "  0 < WymaX < 03. 
If the following conditions are satisfied: 

1)  there exists a sampling set { yk} for one-dimensional 
lowpass signals with bandwidth u r  such that the 
one-dimensional functions in x, f(x, yk)  and their Hil- 
bert transforms have only real zeros of degree one in 
common; 

2) there exists a straight line S of angle 0 to the x axis, 
where tan (0) < 24"" - w y l 3 a Y  such that the one- 
dimensional signal along s, f(s) has only real zeros of 
degreeone in commonwith i t s  Hilbert transform and 
satisfies 

f(s) ds < 00 
--m 

then f(x, y) i s  uniquely specified up to a scale factor 
from i t s  zero crossings. 

As shown in the following, Benzout's theorem provides 
an upper bound for maximum common zeros of two bi- 
variate polynomials. 

Theorem 4 (Bezout[40], [41]): If two bivariate polynomials 
of total degree R and S given by 

R R - i  

p(x, y) = C C a(;, j ) x ' y i  
,=o j = o  

have no common factors of degree greater than zero, then 
they have at most RS common zeros. 

The following theorem deals with unique specification 
of BLP signals from their zero crossings. 

Theorem 5 (Curtis and Oppenheim [I]): Consider a real 
two-dimensional doubly periodic bandlimited signal 

N N  

The polynomial representation of this signal i s  given by 
2N 2N 

g(W, Z )  = f (x ,  y)wNzN = C C F(k, - N, k, - N)wk"zkJ' 
k x = O  k y = O  

If g(w, z) i s  irreducible (nonfactorable), then f(x, y) can be 
uniquely specified to within a scale factor from 16N2 + 1 
or more of its samples. 
The following theorem is  the modified version of Bezout's 
theorem. It provides an upperbound on the maximum 
number of finitecommon zerosof polynomialswhosecoef- 
ficients have rectangular region of support. 
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If p and q have no common factors of degree greater than 
zero, then they have at most N,M, + M, N, common zeros. 

The following theorem deals with interpolation of 
polynomials whose coefficients have triangular region of 
support. 

Theorem 7(Gasca and Maetzu [27]): Consider the distinct 
lines lo, . , IR with the set of distinct points 

{(w:), z/))l j = 0, I, * . . , i }  

on I,. If none of the interpolation points (w:), 2:)) are on the 
intersection of any two lines from Io, . . . , I,, then for any 
data set 

{t,(')\ j = 0, . - , i ;  i = 0,1, . . , R} 
there i s  a unique bivariate polynomial p E nR such that 

p(w:", ,:,)) = $ 1 )  O ~ j r i ,  OI~IR. 

The following theorem is  the basis for the semi-implicit 
sampling strategy and provides conditions under which 
bivariate polynomials can be recovered from their samples 
on irreducible curves. 

Theorem 8 *(Section Ill-A.2): Let co, C,, . . , CN, be dis- 
tinct bivariate irreducible polynomials with the maximum 
degrees of C, in wand z given by M: and M!) and N, being 
an integer satisfying either of the following two conditions: 

Define Ai to be the set of 

points on Cj given by 

Ai = {(w:), 2:)) I Ci(w/), 2:)) = 0, 0 5 j < S( i ) } .  (27) 

If none of the interpolation points given by (27) are on the 
intersections of two or more of the C;s, then for any data 
set 

{t/)IO I i I N,, 0 I j < S( i ) }  

there i s  no more than one bivariate polynomial of the form 
N w  NZ 

such that 

p(w/', 2:)) = t;) 0 I i I N,, 0 5 j < S ( i ) } .  (28) 

The following theorem is  the basis of the implicit sam- 
pling strategy. The definition of the polynomials and sets 
used in this theorem are given in section Ill-B. 
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Theorem 9 *(Section I / /-B): The set of real zeros of the 
polynomial d(wl, . . . , V(2N+1)2) is of measure zero in the set 
B(R) provided the following conditions hold. 

1) A,(R) and &(R) have maximal topological dimen- 

2) The polynomials 
sions." 

2N 2N 

g,(WI, W2) = C C F,(k, - N ,  k,  - N ) W F W ?  
k , = O  k,=O 

2N 2 N  

g,(Wl, W2) = C C F*(k,  - N ,  k, - N ) W P W ?  
k , = O  k,=O 

with 

F(0, 0) - 6 k, = k, = 0 

F(k,, k,) elsewhere 
Fs(k,, ky) = 

are irreducible over the set of complex numbers. 

The following theorem is on the theory of POCS: 

Theorem 70 (Youla and Webb [35]): Let H be a Hilbert 
space with elements f, g, . . . , etc., a zero vector 4, and an 
inner product ( x ,  y ) .  Furthermore, let CO, the intersection of 
closed convex subsets C1, * * , C,  of H given by 

m 

C, = n C, 
i = l  

be non-empty. Consider the composition operator 

T = T,T,-, * * Tl 

where 

TI = 1 + X,(P, - 1) 

and P, is a projection operator onto C,.  Then, for every x E 
H and every choice of relaxation constants A,, , X, in 
the interval 

O < X , < 2 ,  I s i s m  

the sequence {T"x}  converges weakly to a point in Co. If 
H is finite dimensional, the convergence is strong. In addi- 
tion, i f  one of the Cl's, e.g., C,, is finite dimensional by set- 
ting 

A, = 1 

we are guaranteed of strong convergence, even though H 
might be infinite dimensional. 

APPENDIX B 
PROOF AND COROLLARIES OF THEOREM 8 

This appendix includes proof of Theorem 8 and a recur- 
sive proof for a special case of it. We begin with the proof 
of Theorem 8. 

Proof:Toshowthatthere isaunique polynomial which 
satisfies (28), we have to show that there are no polynomials 
in I I ( N , , N r )  which vanish at all the interpolation points U A , .  
Suppose, on the contrary, that there is a polynomial q(w, 

"Definition of topological dimension is given in Appendix C. 
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z )  E II(N,,N,, which vanishes at all the interpolation points. 
Since 9 has M t ' N ,  + N,MF' + 1 common zeros with CO, by 
the modified version of Bezout's theorem, CO must be a fac- 
tor of q(w, z). That is, 

q(w, z) = CO(W, z)q"'(w, z) 

where q("(w, z) is a polynomial of maximum degree N, - 
ME' in wand N, - MF) in z.  Furthermore, since by hypoth- 
esis, none of the interpolation points on C1 are on CO and 
q(w, z) has 1 + MF)(N, - ME)) + M t ' ( N ,  - MF') common 
zeros with C,, q"'(w, z )  must also have the same number of 
common zeros with C1. Taking into account the irreduci- 
bility of C1, by modified version of Bezout's theorem, Cl 
must be a factor of q"'(w, z), and hence q(w, z) .  

Repeatingtheprecedingargumentforc,, . . * ,CNc-lrwe 
get 

where cf4'(w, z)  has the maximum degree N, - C z ; '  M t  
in w and maximum degree N, - CY;O1 M ! )  in z and has 1 
+ M F ' ( N ,  - Cr:il MIk)) + MLNc)(Nw - Cr2O1 M$')common 
zeros with CNc. Since CN, i s  irreducible, by modified version 
of Bezout's theorem it must be a factor of q""(w, z).  This 
contradicts the hypothesis, since by inequalities (28) and (6) 
the degree of CN, in either w or z is larger than that of 

There i s  an alternate proof for a special case of Theorem 
8where all the sampling curves are chosen to be lines pass- 
ingthrough origin. This proof is not necessarilysimplerthan 
the one we have given for the most general case earlier. 
However, it provides a recursivewayof computing thecoef- 
ficients of the polynomial under consideration. This special 
case of Theorem 8 can be stated in the following manner. 

* , IN be distinct lines with I,, the ith 
line, defined by 

z = a,w a, # 0 (29) 

9(w, 2) = CO(W, z) * * CN,-l(W, z)q"C'(w, z) 

q"c'(W, 2). 0 

Corollary 7: Let Io, * 

and consider arbitrary distinct points on I, given by 

{(w,('), z,(')) 1 j = 0, . . . , 2i } (30) 

where the ordering of the lines is arbitrary. If none of the 
interpolation points is equal to (0, 0), the common inter- 
section of all lines, then for any data set 

{$')IO I j s 2;; 0 5 i s N }  (31) 

there is no more than one bivariate polynomial of the form 

p(w, z) = C C a(;, j ) w ' z /  (32) 
r = O  ,=o 

N N  

such that 

p(w,(", z,(')) = t,(') 0 I j 2;; 0 5 i c: N. (33) 

The recursive proof of the preceding corollary is as fol- 

Proof: Substituting the equation of the kth line, / k  into 

lows. 

p(w, z), we get 

(34) 
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where 

a(i - m, m)ar OI~IN 
blk) = (35) 

a(i - m, m)$ N 5 i 5 2N. 
m = i - N  

For an arbitrary integers 2 -1, we can split the summation 
in (34) in the following manner: 

2N-s-1 S 2N c bjk’W1 = p(W, ffkw) - 2 bjk’W‘ - bjk’W’. 
1 = s + l  1=0 1=2N-s  

(36) 

Settings = -l,usingthe2N + 1 pointsofl,,wecanuniquely 
determine bj” for 0 5 i 5 2N. In particular, considering 
(351, the values of bbf“’ and b\x’ enable us to determine a(0, 
O ) ,  a(N, N), and b t ,  for 0 I j I N - 1. This i s  because, from 
(35), we have 

bbk’ = a(0, 0) (37) 

(38) 

Similarly, by settings = Oin (36)and usingthe2N - 1 points 
on we can uniquely specify bjN-” for 1 I i I 2N - 
1. This can be done because the determinant 

b(k) - 
2~ - a(N, N)ff:. 

is nonzero as long as the xi’s are different from each other 
and from zero. Now we can utilize the values of 
biN) and b‘rJ”’ together with (35) to find a(0, 1) and a(1, 0). 
More specifically, from (35) we have: 

bik) = ffka(0, 1) + a(l ,  0). (40) 

Letting k = N, N - 1 in the preceding equation, we can 
uniquely specify a(0, I), a(1, O ) ,  a(1, O ) ,  and hence v$ for 0 I 

In a similar manner, the values of b&)NN)-l and b$!,NN--:) can be 
used to find a(N, N - 1) and a(N - 1, N), and hence 
biz-._,. More specifically, from (35) we get 

b $ - ,  = aFa(N - 1, N)  + oc:-’a(N, N - 1). (41) 

The determinant of the preceding system of equations for 
k = N, N - 1 i s  given by 

 IN-2. 

Taking into account that f f k  # 0, the preceding determinant 
is guaranteed to be nonzero. Thus the coefficients a(N, N 
- 1) and a(N - 1, N )  can be specified uniquely. 

Repeating the preceding procedure fors = 1, . . , 2N 
- 1, we can find all the coefficients a ( ; , / ) .  More specifically, 
at the sth stage, we know b$%-s and b!k’for 0 k 5 N, and 
usingthe2(N - s )  - 1 pointsoftheIinelN-,-,,wecanfind 
b)N-”l’fors + I  5 i12N -s-1.Thesevalueswillenable 
us to uniquely specify the coefficients 

{a( ; ,  j ) l i  + j = s + 1, 2N - s - I} 

and hence bix-s-l  and b‘,k!, for 0 I k 5 N - s - 2. Con- 
sequently, we can completely and uniquely determine all 

U 

Thus the preceding proof not only shows that the appro- 
priate set of interpolation points on lines passing through 
the origin results in a unique solution, but also provides us 
with a recursive method to find the coefficients of the poly- 
nomial under consideration. The recursive algorithm 
described by the preceding proof essentially consists of s 
- - -1,  . . . ,2N + 1 stages, and at each stage two Van der 
Monde linear system of equations are solved. More spe- 
cifically, at the sth stage, the algorithm first uses the com- 
puted values of b\%-, and blk’for 0 I k I N, together with 
the 2(N - s) - 1 samples on the line lN-s- l ,  in order to find 
bjN-s- l )  for s + 1 I i 5 2N - s - 1 by solving a (2N - s) 
x (2N - s) linear system of equations. It then uses these 
values in (35) to find the coefficients {a(;, j ) l i  + j = s + 1, 
2N - s - I} by solving a (k + 2) x (k + 2) system of linear 
equations. 

Since lines passing through origin in the w-zdomain cor- 
respond to linesof unit slope in the w-zdomain, the recur- 
sive algorithm outlined by the proof of Corollary 1 can be 
used to reconstruct BLP signals from their samples on line 
of unit slope. 

Another special caseof Theorem 8 resulting in a recursive 
algorithm occurs when all the sampling curves are chosen 
to be of the form z = awm, with rn being a fixed positive 
integer. Since curves of the form z = aWm, m > 0 in the 
w-z domain correspond to lines of positive integer slope 
in the w-z domain, the recursive proof of this case can be 
used, at least in principle, to reconstruct multidimensional 
BLP signals from their samples on parallel lines of positive 
integer slope. The proof is considerably more complex than 
that of Corollary 1 and is  included in [30]. 

Another corollary of Theorem 8 can be derived by taking 
into account that curves of the form given by (8) are irre- 
ducible and that they correspond to lines of rational slope 
in the x-y domain. As indicated in section Ill-A.2, this cor- 
ollary is the basis for the semi-implicit sampling scheme. 

Corollary 2: Consider a bandlimited continuous-time 
periodic signal f ( x ,  y )  with period one in the x and y direc- 
tions and Fourier series representation: 

the coefficients of p(w, z). 

Nx Ny 

f (x’  ’) = k , = - N ,  k , , - N ,  2 [(k X I  ky)e/z*(kxxtkyY) . (43) 

Let lo, . . . , lNI be distinct lines in the x-y plane with I , ,  the 
i th  line given by 

M(1) y = M ! ’ X  + 0, or ~ ! ’ y  + M $ ’ X  = 0, M!) ,  M ; )  > o 
(44) 

where M t )  and M;)  are relatively prime positive integers. 
Let N, be an integer satisfying either one of the following: 

NI 

1=0 

NI 

2N, < c M ! )  (45) 

2Ny < c MI) .  (46) 
1 = 0  

Suppose that the set of 

S(;) = M I )  ( 2N, - k = O  ‘2 MLk’) + M!’ (2Ny - zo Y ) + l  

1-1 
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arbitrary distinct samples on I,, i s  given by 

{(x;), y:,)) 10 5 i I NI, 0 - -= j < S ( i ) } .  (47) 

If none of the interpolation points given by (47) are on the 
intersection of two or more of the c,’s, then for any data set 

(48) 

there exists no more than one signal of the form given by 
(43) which satisfies 

{r,(’)Io 5 j < ~ ( i ) }  

APPENDIX C 
A RESULT IN ALGEBRAIC GEOMETRY 

In this Appendix, we will briefly go over few definitions, 
and then prove a result in algebraic geometry, which is used 
in the proof of Theorem 9. 

Consider the polynomials 

p,(X~,”’,Xn)=O, i=l;..,r 

defining an irreducible algebraic set Vover X. Let usdenote 
the r x n Jacobian matrix associated with Vby(af,/ax,). Points 
x’ of Vat which the Jacobian matrix assumes i s  maximum 
rank are called ordinary points. Any point of Vwhich i s  not 
ordinary is said to be singular [42]. If the singular points of 
V are removed, we obtain a manifold whose dimension 
defines the topological dimension of V.18The dimension of 
a reducible algebraic set i s  defined to be the maximum of 
topological dimensions of its various irreducible compo- 
nents. 

The complex topological dimensions of V c C”, which 
is defined to be the dimension of i t s  associated complex 
manifold, i s  also given by [44]: 

. n - 

where P ranges over the points in V. By definition, the real 
dimension of V is twice its complex dimension. For con- 
venience, we will use the term topological dimension to 
denote real dimension unless specified otherwise. If V(R) 
denotes the real part of V C C”, we have [45] 

where dimtop denotes the topological dimension. V(R) is said 
to be of maximal topological dimension if i ts  dimension i s  
exactly half the dimension of V. 

We are now ready to prove the following theorem, which 
is ultimately used in the proof of Theorem 9. 

Theorem 7719: Let V C CN be the set of complex zeros of 
polynomials fl, . . . , f,. Then if V i s  irreducible and V(R), the 
real points of V, have maximal topological dimension, then 
V(R) i s  Zariski dense in V. That is, every polynomial that van- 
ishes on V(R) must vanish on all of V. 

Proof: We will prove the preceding result by contra- 
diction.” If a polynomial f vanishes on V(R) and does not 
vanish on V, then let W c V be the set of real and complex 
zeros of f which are in V. Since V is irreducible, and W is 

’*Precise definition of manifolds i s  included in  [43]. 
‘’This theorem and i t s  proof were suggested by Prof. M. Artin 

at MIT. 

(49) 

a proper subset of V, 

dimtop W < dimtop V 

Since the real part of W and V are the same, then 

dim,,, W(R) = dim,,, V(R). 

Using the preceding equation and the assumption of max- 
imal topological dimension for V(R), we get 

dimtop W(R) = ;dimtoP V. (50) 

Furthermore, as we mentioned earlier, 

dimtop W(R) I ;dimtop W. (51 ) 

From equations (50) and (51) we conclude that 

dimtop V 5 dimtop W 

which contradicts inequality (49). 0 

APPENDIX D 
PROOF OF THEOREM 9 

This appendix includes the proof of Theorem 9. 

Proof: The outline of the proof i s  as follows. We will 
first usethefirstcondition toshowthatB(R) isan irreducible 
algebraic set over reals. Then either zeros of p are of mea- 
sure zero in B(R) or all points in B(R) are zeros of p. Since 
our objective i s  to prove that real zeros of p are of measure 
zero in &R), all we have to show i s  that there is at least one 
point in b(R) at which p does not vanish. As we will see, the 
second condition of the theorem will be used to show this. 

To begin, notice that the polynomials g,(Wl, W2) and 
g6(W1, W2) are related to our BLP signal f(x, y )  via the change 
of variables 

w - e/2ux 

w - /2UY 

1 -  

2 - e  

in the following manner: 

f(x, y )  - y = WTN W;Ng,(Wl, W2) 

f(x, y )  - 6 = W;NW;Ngs(W1, W2). 

Thus there is a one to one correspondence between zeros 
of g,( W1, W,) (resp. gs(W1, W,)) andA,(C) (resp.&(C).There- 
fore the second condition of the theorem implies that A, 
and As are also irreducible. Considering (19), since 6(C) i s  
the Cartesian product of A,(C)’s and &(C)’s, we can con- 
clude that B(C) is also irreducible over complex numbers. 

Similarly, sinceA,(R_) and&(R) have maximal topological 
dimensions, so does B(R). Therefore, considering Theorem 
11 of Appendix (C) and taking into account that B(C) is  irre- 
ducible, we can conclude that B(R) is  Zariski dense in B(C). 
This means that every polynomial that vanishes on B(R) van- 
ishes on all of &C). This, together with the fact that &C) is 
irreducible, implies that B(R) is  irreducible over complex 
numbers and thus the reals. Therefore, in order to show 
that the real zeros of p(wl, . . . , V(2N+1)2) are of measure zero 
in &R), we merely have to show that there exists at least one 
point in B(R) at which p does not vanish. That is, p does not 
vanish identically on &R). 

Since, by hypothesis, g,(Wl, W2) and gs(Wl, W2) are irre- 
ducible over complex numbers, taking into account mod- 
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i f ied version o f  Bezout’s theorem, w e  can conclude that  any 
8N2 + 1 samples of A, wi l l  enable us to specify f ( x ,  y )  - y 
to w i th in  a scale factor [46]. This means the  (8N2 + 1) x (2N 
+ matrix associated with any 8N2 + 1 points  o f  A,, D, 
has rank (2N + 1)’ - 1, and its nu l l  vector is specified by 
the  coefficients of f ( x ,  y )  - y. Similarly, D,, the  8N2 + 1 x 
(2N + matrix associated with any 8N2 + 1 points  of A,, 
has rank (2N + - 1, and its null vector i s  given by the  
coefficients of f ( x ,  y) - 6. Since by hypothesis y # 6, the  
d i rect ion of the  nu l l  vectors o f  D, and D, are dif ferent f r o m  
each other. Therefore there exists at least o n e  combinat ion 
o f  k rows f r o m  D, and (2N + - k rows f r o m  D,, which  
result i n a f u l l  rank(2N + 112 x (2N + 1)2matr ixwi th  nonzero 
determinant p. Hence p does not vanish identical ly 
on B(R).  

Since B(R) is i r reducib le  over reals and p does not vanish 
on it identically, the  real zeros o f p  must  b e  of measure zero 
in &R). QED. U 
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