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ABSTRACT 

t has been shown that under certain conditions multidimen- 
sional signals can be recovered from one-level crossings (e.g. 

o crossings) However, the accuracy wlth which the loca- 
ns of the one-level crossings need to .be specified is large 
ough to  limit its applicabllity in practical situations. To 
ercome this problem, we derive two sampling strategies for 
construction of multidlmensional signals from multiple level 
reshold crossings. We then propose two reconstruction al- 
rithms for each of the two sampling schemes, and present 

a preliminary lnvestigation of their quantization characteris- 

1 Introduction 

Signal reconstruction in one and higher dimenslons from zero 
crossings has been an active area of research [2,3,4] Recently, 
Curtis et.al showed that  bandlimited periodic (BLP) 2-D 
signals are uniquely specified by their zero crossing to  within 
a scale factor. Representing a 2-D signal with one-level cross- 
ings requires only one amplitude blt, but, in theory, an infi- 
nite number of position bits. In practice, the locations of the 
one-level crossings must be specified extremely accurately for 
successful reconstructlon. On the other hand, representation 

nals via their samples a t  the Nyquist rate requires few 

een Nyquist sampling and one- 

heoretical Results 

ur approach is to  represent BLP signals of the form 
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n implicit sampling scheme is one such as zero crossings for which 
sampling coordinates are determined by the signal. A semi-implicit 
me is similar but, the sampling coordinates are additionally con- 
ned by a prespecified function. 

M1.2 

in terms of the polynomial 

S(Wl,W2) = 

by letting W1 = eJzTz,W2 
tion of f (2, y) is equivalent to  the coefficients of the 
polynomial g(W1, Wz), results from multivariate polynomial 
interpolation theory can be directly applied t o  a variety of 
multidimensional reconstruction problems. Unlike the uni- 
variate case, interpolation w ivariate polynomials is a 
non-trivial task. Whereas n y samples of a 1-D poly- 
nomial of degree n - 1 are t to  find its coefficients, 
the analogous result in dimensions higher than one does not 

circumvent this problem. 

2.1 Semi-implicit 

on multivariate 

in bivariate in- 
restrictive and 

e stated in the 

Theorem 1 Consider the b 

et of interpolation points 

) = 0, 0 5 j < S(i)} (3) 

re on the zntersections of two 
ny data set, we can uniquely 

rm of Bezout's theorem 
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Two classes of polynomials which are known t o  be irreducible, 
and are particularly useful in deriving sampling strategies for 
multidimensional signals are of the form: 

IS because the set of reducible polynomials with conjugate 
symmetric coefficients have been shown to be of measure zero 
in the set of polynomials with conjugate symmetric coeffi- 
cients. 

Theorem (2)  can be easily extended to  recovery of multi- W,". = a W p ,  W,".Wy = a ,  M,, Mu > 0 (4) 

where Mu and M, are positive integers which are relatively 
prime with respect t o  each other'. Using the relationship be- 
tween W1 and z, and between W2 and y ,  and letting a = eizrf l ,  
we conclude that  the curves in the W1 - Wz plane given by 
equation (4) correspond to  lines with rational slope of the 
form 

Muy = B + M,x, Muy + Mzz = P ,  M,, Mu > 0 (5) 

in the z - y plane. We can use this, together wit.h equation 
(2)  and Theorem (1) t o  define a semi-implicit sampling strat- 
egy for 2-D signals. More specifically, if the distribution of 
the samples of a 2-D BLP signal along lines of rational slope 
satisfies the conditions of Theorem (l), we can uniquely re- 
construct it.  An obvious way to apply this corollary to  the 
problem of reconstruction from multiple level crossings is to 
choose the interpolation points a t  the intersection of level 
crossing contours and the sampling lines. 

2.2 Implicit Approach 

A primary drawback of the semi-implicit approach is that 
we can not guarantee that there will be enough intersections 
between sampling lines and the threshold contours to satisfy 
the conditions of theorem (1). This is particularly true, if 
the number of thresholds is small. To overcome this diffi- 
culty, we propose the implicit sampling approach, which is 
based on conditionally regular interpolation. Conditionally 
regular methods are uniquely solvable for most selections of 
interpolation points, but not all of them. Our main theoret- 
ical result can be stated in the following manner: 

Theorem 2 Consider a real, BLP, 8-D signal given b y  equa- 
tion (1). Almost any k > 0 samples of its level crossings at 
a and (2N + 1)' - k samples of its level crossings at /3 # a 
are suficient for its unique reconstruction provided that the 
following two conditions are satisfied: 
1 .  The sets A, (R)  z { ( s , y ) E  R2 I f ( z , y )  = a }  and Ag 
(defined in a similar fashion) are of maximal topological di-  
mension. 
2. The polynomials 

2N 2N 

9,(B)(Wl,W2) = 1 Fe(D)(kl  - N , k z  - N)W:'W;? 
k l = 0  kz=O 

are irreducible over the set of complex numbers. 

The proof is included in 111. The first condition of the 
above theorem requires the a and P level crossings of the sig- 
nal to consist of a t  least one curve, and not isolated points. 
The second condition is also easily satisfied in practice. This 

. .  
dimensional signals from more than two threshold crossings. 
More specifically, for m distinct thresholds, t l ,  ..., t,, almost 
any distribution of ( 2 N  + 1)2 points among the thresholds 
will result in unique reconstruction of the signal under con- 
sideration, provided that the level crossings have maximal 
topological dimensions, and their associated polynomials are 
irreducible. 

3 Reconstruction Algorithms 

A complete survey of the reconstruction algorithms for the 
semi-implicit and implicit sampling strategies, and their cor- 
responding examples are included in [l]. In this paper, how- 
ever, we will briefly describe two classes of reconstruction 
algorithms. 

The most straightforward approach to  reconstruction from 
semi-implicit or implicit samples of level crossings is to  solve a 
linear system of equations (possibly overdetermined) in order 
to  determine the Fourier series coefficients of the signal un- 
der consideration. Most linear least-squares algorithms are 
extremely storage and computation intensive. This is be- 
cause reconstructing a signal with ( 2 N  + l) x (2N + l) re- 
gion of support in the Fourier domain requires storage of a 
(ZN + 1)' x ( 2 ~  + I ) ~  matrix. 

To circumvent the storage and computational problems 
of the linear least-squares approach, we have developed it- 
erative algorithms for reconstruction of signals from their 
level crossings. The iterative algorithm imposes space and 
frequency domain constraints on the signal in an iterative 
fashion. The steps of the iterat,ive algorithm for the implicit 
sampling strategy can be described in the following manner: 
1 .  Assume that all the crossing contours of the p thresholds 
t l  < ... < t ,  associated with a signal of the form given by 
equat,ion (1) are quantized in position on an M x M grid 
where M > (2N + 1). If t.he intensity of the signal lies in the 
range [to, t,+l], then the quantized threshold contours can be 
used to  derive the intensity range of the signal on the nodes 
of a M x M grid: 

nl nz 
t i (n1,nz)  5 f (G,G) 5 t i+l (n l ,nz ) ,  0 i ni ,nz  < M 

2 .  Let f ( l )  denote the solution in the [th iteration, and choose 
an arbitrary initial guess f ( O ) .  

3.  Take the DFT of f ( l )  to  get F( ' ) .  
4. Impose the bandlimited constraint: 

*As shown in [ l ] ,  for the special case when the irreducible interpo- 
lation curves are of the form W z  = OW?, there is an alternate proof 
to Theorem ( l ) ,  resulting in a recursive algorithm for determining the 

7. If all the nodes of the M x M grid satisfy the space domain 
constraint, we are done. Otherwise repeat steps (3) through 

(6). coefficients of the polynomial. 
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theory of projection onto convex sets 
that the algorithm converges to  a so- 

h the space and frequency domain con- 
< XI and Xz < 2. The simplest way to 
gence is over-relaxation, which involves 

2-D signal from 1-D ones The basic idea behind this algo- 
rithm is the fact that the 1-D signal obtained by sampling 
a 2-D BLP signal along a line of rational slope f is itself 
BLP. Thus, if all the intersections of level crossings and the 
sampling lines are known, we can deduce the intensity range 
for equally spaced points on the line This space domain 
constraint together with the frequency domain constraint re- 
sulting from bandlimitedness of the 1-D signals can be used 
to derive an iterative scheme for reconstruction of the 1-D 

nce of this algorithm, and determine 

ssociated with sampling lines are 
sed to  interpolate the 2-D signal 
value of a signal of the form given 
n a ( 2 N  + 1) x ( 2 N  + I) grid, one 

ation Properties 

point for further research in the areas of multidimensional 

on only one picture with 15 x 15 region of support in the 
Fourier domain. We begin with quantization characteristics 
of the linear least-squares method. 

Linear Least-Squares Method 

own in [I] ,  for the linear least-squares approach, the 
number of reconstruction samples affects the reconstruction 

al results initially decreases the required number of 
bits per sample Beyond a certain point however, it 
the total number of position bits required to  rep- 

signal. Thus, we have chosen to  carry out our ex- 
tal investigation at a fixed number of reconstruction 
. In addition, while our quantization strategy for im- 
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ize the coordinates of the 
locations of semi-implicit 

ions along their sampling 

e plot of mean square error 
number of amplitude and posi- 

samples, we have 
samples by quan 

(mse) versus the nor 

position. The mse between the original and reconstructed 

original one when .1 Normalized number of po- 
sition and amplitude bits is defined to  be the total num- 

tion samples) normal1 he number of Fourier coeffi- 
cients. By definition, t er of amplitude bits is given 

1 it is 7, for .06 5 mse 5 .2 it 

n of the semi-implicit approach. 

4.2.1 Semi-i 

structure of the samples used 
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Figure 1: Plot of mse versus normalized number of positior 
and amplitude bits as a function of the number of thresholds 
for the linear least-squares method with (a) 256 semi-implicit 
samples; (b) 256 implicit samples, and the iterative algorithm 
with: (c) semi-implicit samples; (d) implicit samples. 

number of quantization bits. The most straightforward way 
is to  quantize the location of threshold crossings on the sam- 
pling lines in a similar fashion to  quantization in the linear 
least-squares method, and derive the space domain constraint 
from the quantized sarnples. Alternatively, we can specify the 
intensity range for each of the equally spaced points on each 
sampling line. Our strategy in determining the total num- 
ber of position bits for the abscissa of figure (IC) has been to 
choose the minimum of the above two quantization strategies. 

As seen in figure (IC), the slope of each curve is negative 
indicating that for a fixed number of thresholds the mean 
square error decreases as M is increased. In addition, for 
fixed M ,  the mean square error is decreased as the number 
of thresholds is increased. The decreasing distance between 
the curves shown in figure ( IC)  is indicative of the fact that 
as the number of thresholds increases, the resulting drop in 
mse decreases. Thus, the decrease in mse as the number 
of thresholds changes from 6 to  8 is more substantial than 
when i t  changes from 12 to  16. An interesting question to 
address, however, is whether or not there is an “optimum” 
number of thresholds for which the lowest number of ampli- 
tude and position quantization bits is achieved. As figure 
(IC) shows, this “optimum” number varies as a function of 
the mean square error. For instance, for the value of mse in 

the range [0.53,0.85], it is between 6 t o  8, and for mse in the 
range [0.15,0.23], it is between 12 and 16. 

4.2.2 Implicit Sampling 

Similar to  the iterative reconstruction algorithm of the semi- 
implicit sampling, there are several strategies one might take 
to  arrive a t  the total number of amplitude and position quan- 
tization bits for representing a given image via the implicit 
sampling scheme. One way to  encode the boundary points of 
a quantized threshold contour is to  do contour tracing. Alter- 
natively, we can specify the range of the signal for each node 
of the 2b x 2’ quantization grid. Our adopted quantization 
strategy, which is almost certainly not optimal, has been to 
choose the minimum of these two quantization strategies for 
representing images. 

Figure (Id)  shows the plot the mean square error versus 
normalized number of position and amplitude bits as a func- 
tion of the number of thresholds. The five curves of figure 
( Id )  correspond to  reconstruction from different number of 
thresholds. Various points on each curve correspond to  re- 
construction with different values of grid size. The slopes of 
the curves are negative, indicating that the quality of recon- 
struction improves as the quantization grid becomes finer. In 
addition, the number of thresholds which results in small- 
est number of quantization bits is a function of mse. For 
instance, if we are interested in reconstructing signals with 
mse 5 ,556, then the optimal number of thresholds is be- 
tween 8 and 16. Finally, comparing figures (IC) and (Id) ,  
it seems that for fixed quality of reconstruction via iterative 
algorithms, implicit sampling results in lower number of bits 
than semi-implicit sampling with lines of unit slope. 
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