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ABSTRACT

"It has been shown that under certain conditions multidimen-
sional signals can be recovered from one-level crossings (e.g.

" zero crossings). However, the accuracy with which the loca-
tions of the one-level crossings need to.be specified is large
enough to limit its applicability in practical situations. To
overcome this problem, we derive two sampling strategies for
reconstruction of multidimensional signals from multiple level
threshold crossings. We then propose two reconstruction al-
gorithms for each of the two sampling schemes, and present

" a preliminary investigation of their quantization characteris-
tics:

©. 1 Introduction

Signal reconstruction in one and higher dimensions from zero
crossings has been an active area of research {2,3,4]. Recently,

Curtis et.al. showed that bandlimited periodic (BLP) 2-D
signals are uniquely specified by their zero crossing to within
a scale factor. Representing a 2-D signal with one-level cross-
ings requires only one amplitude bit, but, in theory, an infi-
nite number of position bits. In practice, the locations of the
one-level crossings must be specified extremely accurately for
successful reconstruction. On the other hand, representation
-of signals via their samples at the Nyquist rate requires few
position bits and infinite (theoretically) amplitude bits. In
‘this paper, we will develop intermediate sampling schemes
‘which’ bridge the gap between Nyquist sampling and one-

level crossing representation by enabling us to recover signals
from multiple level threshold crossings. To this end, we de-
rive semi-implicit and implicit'sampling strategies in section
2, and their corresponding reconstruction algorithms in sec-
tion 3. Section 4 includes a preliminary investigation of the
quantization characteristics of some of our proposed sampling
and reconstruction schemes. More detailed discussions of the
‘topics presented in this paper are included in [1].

2 Theoretical Results

‘Our approach is to represent BLP signals of the form

*This work has been supported in part by the Advanced Research
Projects Agency monitored by ONR under Contract No. N00014-81-
K-0742, in part by the National Science Foundation under Grant ECS-
8407285, and in part by the John and Fannie Hertz Foundation.

"' An implicit sampling scheme is one such as zero crossings for which
the sampling coordinates are determined by the signal. A semi-implicit
scheme is similar but, the sampling coordinates are additionally con-
strained by a prespecified function.
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f(x,y) = Z E F k1 k? en’r(’“lz + kay) (1)

ki=—N ky=-N
in terms of the polynomial
9W1,Wa) = f(z,y)W Wy )

by letting Wy = €272 W, . = /™. Since reconstruc-
tion of f(z,y) is equivalent to finding the coefficients of the
polynomial g(W1,W3), results from multivariate polynomial
interpolation theory can be directly applied to a variety of
multidimensional reconstruction problems. Unlike the uni-
variate case, interpolation with multivariate polynomials is a
non-trivial task. Whereas n afbitrary samples of a 1-D poly-
nomial of degree n — 1 are sufficient to find its coefficients,
the analogous result in dimensions higher than one does not
hold. In sections (2.1) and (2. 2) we propose two schemes to

circamvent this problem.

2.1 Semi-implicit Sampling Approach

Semi-implicit sampling strategies are based on multivariate
interpolation results in which the locations of the interpola-
tion points are restricted. ‘Our main result in bivariate in-
terpolation theory which is considerably less restrictive and
more general than the earlier ones [5] can be stated in the
following manner: )

Theorem 1 Consider the bivariate polynomial

Ny Nz

p(w,z) = ZZa(i,j)wizj

1=07=0

Let cg,c1,...,¢1 be distinct bivariate irreducible polynomials

with the mazimum degrees of ¢; in w and 2z given by mg) and
[

mf), and | being an inleger satisfying either n,, < ng) or
=0

n, < Zm(') Define A; to:be the set of interpolation points

i=0
on ¢; given by

A :{(W,,,)IC(w

where S(i) = m)(ny, = Z m®)+ml)(n, - E m®)+1. If

"’);= 0, o<j<s<i)} (3)

none of the points given by (8) are on the mtersectwns of two
or more of the c;’s, then for any datn set, we can uniquely
interpolate p(w, z).

The proof is based on a modified form of Bezout’s theorem
[6]. Theorem (1) requires irreducibility of the polynomials.
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Two classes of polynomials which are known to be irreducible,
and are particularly useful in deriving sampling strategies for
multidimensional signals are of the form:

Wylv = aWMs WMWM =6 M, M, >0 (4)
where M, and M, are positive integers which are relatively
prime with respect to each other?. Using the relationship be-
tween Wi and z, and between W and y, and letting o = e/27f,
we conclude that the curves in the W, — W, plane given by
equation (4) correspond to lines with rational slope of the
form

Myy=p8+ Mz, My+Mz=p8 M, ,M,>0 (5)
in the z — y plane. We can use this, together with equation
(2) and Theorem (1) to define a semi-implicit sampling strat-
egy for 2-D signals. More specifically, if the distribution of
the samples of a 2-D BLP signal along lines of rational slope
satisfies the conditions of Theorem (1), we can uniquely re-
construct it. An obvious way to apply this corollary to the
problem of reconstruction from multiple level crossings is to
choose the interpolation points at the intersection of level

crossing contours and the sampling lines.

2.2 Implicit Approach

A primary drawback of the semi-implicit approach is that
we can not guarantee that there will be enough intersections
between sampling lines and the threshold contours to satisfy
the conditions of theorem (1). This is particularly true, if
the number of thresholds is small. To overcome this diffi-
culty, we propose the implicit sampling approach, which is
based on conditionally regular interpolation. Conditionally
regular methods are uniquely solvable for most selections of
interpolation points, but not all of them. Our main theoret-
ical result can be stated in the following manner:

Theorem 2 Consider a real, BLP, 2-D signal given by equa-
tion (1). Almost any k > O samples of its level crossings at
a and (2N + 1)? — k samples of its level crossings at § # o
are sufficient for its unique reconstruction provided that the
following two conditions are satisfied:

1. The sets Ao(R) = {(z,y) € R? | f(z,y) = a} and Ap
(defined in a similar fashion) are of mazimal topological di-
mension.

2. The polynomaals

2N 2N
9a(m)W1W2) = 30 37 Faga)ks = N ky = MWW,
k1=0 ko=0
_ J F(0,0)-a(f) ki =k =0
Foig) (k1 k2) = { F(ky, k) elsewhere

are irreducible over the set of complex numbers.

The proof is included ir [{1]. The first condition of the
above theorem requires the o and # level crossings of the sig-
nal to consist of at least one curve, and not isolated points.
The second condition is also easily satisfied in practice. This

2As shown in [1], for the special case when the irreducible interpo-
lation curves are of the form W, = aW ", there is an alternate proof
to Theorem (1), resulting in a recursive algorithm for determining the
coefficients of the polynomial.
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is because the set of reducible polynomials with conjugate
symmetric coefficients have been shown to be of measure zero
in the set of polynomials with conjugate symmetric coeffi-
cients.

Theorem (2) can be easily extended to recovery of multi-
dimensional signals from more than two threshold crossings.
More specifically, for rn distinct thresholds, t1, ..., t,,, almost
any distribution of (2N + 1)? points among the thresholds
will result in unique reconstruction of the signal under con-
sideration, provided that the level crossings have maximal
topological dimensions, and their associated polynomials are
irreducible.

3 Reconstruction Algorithms

A complete survey of the reconstruction algorithms for the
serni-implicit and implicit sampling strategies, and their cor-
responding examples are included in [1]. In this paper, how-
ever, we will briefly describe two classes of reconstruction
algorithms.

The most straightforward approach to reconstruction from
semi-implicit or implicit samples of level crossings is to solve a
linear system of equations (possibly overdetermined) in order
to determine the Fourier series coefficients of the signal un-
der consideration. Most linear least-squares algorithms are
extremely storage and computation intensive. This is be-
cause reconstructing a signal with (2N + 1) x (2N + 1) re-
gion of support in the Fourier domain requires storage of a
(2N +1)? x (2N + 1)? matrix.

To circumvent the storage and computational problems
of the linear least-squares approach, we have developed it-
erative algorithms for reconstruction of signals from their
level crossings. The iterative algorithm imposes space and
frequency domain constraints on the signal in an iterative
fashion. The steps of the iterative algorithm for the implicit
sampling strategy can be described in the following manner:
1. Assume that all the crossing contours of the p thresholds
ty < .. < t, associated with a signal of the form given by
equation (1) are quantized in position on an M x M grid
where M > (2N +1). If the intensity of the signal lies in the
range [to, tp4+1), then the quantized threshold contours can be
used to derive the intensity range of the signal on the nodes
of a M x M grid:

ny n2
ti(n1,n2) < f( ;

w0 ay) S twilnna),
2. Let j(” denote the solution in the /th iteration, and choose
an arbitrary initial guess f(©).

3. Take the DFT of f() to get F(!).

4. Impose the bandlimited constraint:

(L= M) FD (ks ks) N <kyko<M=N
F(ky, k)

0Sn1,n2<M

,elsewhere

f'("*ll(kl,kg) = {

5. Take the inverse DFT of F(+1) to get f+1),

6. Impose the space domain constraint

f(1+1) < f(l—H) <tin
FED[ = xg] + Aoty FOD <y

FOO[L = A+ Agtigr 5 fOFU >4y

7. If all the nodes of the M x M grid satisfy the space domain
constraint, we are done. Otherwise repeat steps (3) through

(6)-

E]

f(l+1) =



- We can use the theory of projection onto convex sets
(POCS) [7] to show that the algorithm converges to a so-
lution satisfying both the space and frequency domain con-
straints, provided 0 < A; and Ay < 2. The simplest way to
accelerate the convergence is over-relaxation, which involves
setting 1 < Ay < 2.

~The iterative algorithm for the semi-implicit sampling
strategy reconstructs the 1-D signals associated with each

- “sampling line in a iterative fashion, and then interpolates the

-2-D signal from 1-D ones. The basic idea behind this algo-
rithm is the fact that the 1-D signal obtained by sampling
“-a 2-D BLP signal along a line of rational slope I is itself
“ BLP. Thus, if all the intersections of level crossings and the
sampling lines are known, we can deduce the intensity range
. for equally spaced points on the line. This space domain
constraint together with the frequency domain constraint re-
. sulting from bandlimitedness of the 1-D signals can be used
" to derive an iterative scheme for reconstruction of the 1-D
'si‘gnals‘ In a manner similar to the iterative algorithm for
the implicit sampling case, we can apply the theory of POCS
to establish the convergence of this algorithm, and determine
ways of ‘accelerating it.
After the 1-D signals associated with sampling lines are
“determined, they can be used to interpolate the 2-D signal
under consideration. If the value of a signal of the form given
by .equation (1) is needed on a (2N +1) x (2N + 1) grid, one
strategy is to first determine the value of the signal at the
"intersections of sampling lines and (2N + 1) equally spaced
horizontal or vertical lines, then reconstruct the 1-D signals
associated with these vertical or horizontal ones, and finally,
determine the signal at (2N + 1) equally spaced points on
each horizontal or vertical lines.

4 Preliminary Investigation of Quanti-
zation Properties

A rigorous and thorough investigation of the quantization
. properties of our various sampling and reconstruction schemes
involves extensive consideration of coding issues and exper-
iments, and has not yet been carried out. However, based
on some preliminary experiments, some tentative conclusions
and speculations are possible which can be used as a starting
point for further research in the areas of multidimensional
signal representation and image coding.

To.limit the computational intensity of the preliminary
investigation, we have chosen to carry out our experiments
on only one picture with 15 x 15 region of support in the
- Fouriér domain. We begin with quantization characteristics
" of the linear least-squares method.

'4.1 ' Linear Least-Squares Method

'As shown in [1], for the linear least-squares approach, the
number of reconstruction samples affects the reconstruction
robustness to a great extent. Specifically, increasing the num-

“ ber of samples beyond the minimum number required by the
theoretical results initially decreases the required number of
position bits per sample. Beyond a certain point however, it
increases the total number of position bits required to rep-
resent. a signal. Thus, we have chosen to carry out our ex-
perimental investigation at a fixed number of reconstruction
samp]es. In addition; while our quantization strategy for im-
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plicit sampling has been to quantize the coordinates of the
samples, we have chosen. to specify locations of semi-implicit
samples by quantizing their positions along their sampling
lines, and specifying the lines that they fall on.

Figures (la) and (1b) show the plot of mean square error
(mse) versus the normalized number of amplitude and posi-
tion bits as a function of the number of thresholds, for recon-
struction via the linear least-squares method and QR decom-
position. The mse: between the original and reconstructed
image is given by:

1 N N i
=@, 2, o Pk = Pl k)l (6)
1== ko=—

mse

where F(ky,k;) and F{ky, ky) correspond to the Fourier coef-
ficients of the original and reconstructed image respectively.
We have found experimentally that the quality of the recon-
structed image becomes .almost indistinguishable from the
original one when mse < .1. Normalized number of po-
sition and amplitude bits is-defined to be the total num-
ber of amplitude and position bits (for all the reconstruc-
tion samples) normalized to the number of Fourier coeffi-
cients. By definition, the number of amplitude bits is given
by logy (1 + number of thresholds). Figure (1b) corresponds
to the implicit sampling strategy ‘and (la) corresponds to
semi-implicit sampling strategy with equidistant lines of unit
slope. In both cases; the number of samples used for recon-
struction was 256. The slope of the curves shown in figures
(1a) and (1b) are negative, indicating that the quality of the
reconstruction is-improved as the the number of position bits
is increased. In addition, the spacing between the curves de-
creases from tight to left, indicating that the improvement in
the quality of reconstruction decreases as the the number of
thresholds becomes larger. The most interesting feature of
the semi-implicit curves of figure (1a) is that increasing the

“number of thresholds from 7 to 16 improves the quantization

characteristics, while further increase from 32 to 64 thresh-
olds, degrades it. Similarly for the implicit sampling curves
of figure (1b), the “optimum” number of thresholds which re-
sults in minimum number-of bits varies as a function of mse.
For instance, for :2 < 'mse < 11t is 7, for .06 < mse < .2 it
is 16, and for .02 <'mse < .06 it is 32.

4.2 Iterative Methods

We begin with characterization of the semi-implicit approach:
4.2.1 Semi-implicit Sampling

Figure {1c) shows the mean square error between our test im-
age and its reconstructed version via the iterative algorithm ,

versus the number of position and amplitude bits. The num-

ber of thresholds associatéd with the four curves is 6, 8, 12,
and 16. For each curve the thresholds were chosen with equal
spacing between 0-and 256. The four points on each curve
correspond to different numbers of equally spaced points on-
the sampling lines; ie.” M = 32, 64, 128. In addition,
the sampling lines were chosen to be equidistant and of unit
slope. The y axis corresponds to mse, as defined by equation :
(6), and the z axis indicates normalized number of position. ;
and amplitudé bits used.

Because of the inherent structure of the samples used by
the iterative algorithm, there are a variety of ways to rep-
resent the sigrial under' consideration and to arrive at the -
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Figure 1: Plot of mse versus normalized number of position
and amplitude bits as a function of the number of thresholds
for the linear least-squares method with (a) 256 semi-implicit
samples; (b) 256 implicit samples, and the iterative algorithm
with: (c) semi-implicit samples; (d) implicit samples.

number of quantization bits. The most straightforward way
is to quantize the location of threshold crossings on the sam-
pling lines in a similar fashion to quantization in the linear
least-squares method, and derive the space domain constraint
from the quantized samples. Alternatively, we can specify the
intensity range for each of the equally spaced points on each
sampling line. Our strategy in determining the total num-
ber of position bits for the abscissa of figure (1c) has been to
choose the minimum of the above two quantization strategies.

As seen in figure (1c), the slope of each curve is negative
indicating that for a fixed number of thresholds the mean
square error decreases as M is increased. In addition, for
fixed M, the mean square error is decreased as the number
of thresholds is increased. The decreasing distance between
the curves shown in figure (1c) is indicative of the fact that
as the number of thresholds increases, the resulting drop in
mse decreases. Thus, the decrease in mse as the number
of thresholds changes from 6 to 8 is more substantial than
when it changes from 12 to 16. An interesting question to
address, however, is whether or not there is an “optimum”
number of thresholds for which the lowest number of ampli-
tude and position quantization bits is achieved. As figure
(1c) shows, this “optimum” number varies as a function of
the mean square error. For instance, for the value of mse in
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the range [0.53,0.85], it is between 6 to 8, and for mse in the
range [0.15,0.23], it is between 12 and 16.

4.2.2 Implicit Sampling

Similar to the iterative reconstruction algorithm of the semi-
implicit sampling, there are several strategies one might take
to arrive at the total number of amplitude and position quan-
tization bits for representing a given image via the implicit
sampling scheme. One way to encode the boundary points of
a quantized threshold contour is to do contour tracing. Alter-
natively, we can specify the range of the signal for each node
of the 2° x 2* quantization grid. Our adopted quantization
strategy, which is almost certainly not optimal, has been to
choose the minimum of these two quantization strategies for
representing images.

Figure (1d) shows the plot the mean square error versus
normalized number of position and amplitude bits as a func-
tion of the number of thresholds. The five curves of figure
(1d) correspond to reconstruction from different number of
thresholds. Various points on each curve correspond to re-
construction with different values of grid size. The slopes of
the curves are negative, indicating that the quality of recon-
struction improves as the quantization grid becomes finer. In
addition, the number of thresholds which results in small-
est number of quantization bits is a function of mse. For
instance, if we are interested in reconstructing signals with
mse < .556, then the optimal number of thresholds is be-
tween 8 and 16. Finally, comparing figures (Ic) and (1d),
it seems that for fixed quality of reconstruction via iterative
algorithms, implicit sampling results in lower number of bits
than semi-implicit sampling with lines of unit slope.
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