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Two-Dimensional Polynomial Interpolation From
Nonuniform Samples

Avideh Zakhor, Member, IEEE, and Gary Alvstad

Abstract—We derive a number of results on sufficient condi-
tions under which the two-dimensional (2-D) polynomial inter-
polation problem has a unique or nonunique solution. We find
that unless an appropriate number of interpolation points are
chosen on an appropriate number of irreducible curves, the
resulting problem might become singular. Specifically, if the
sum of the degrees of the irreducible curves on which the in-
terpolation points are chosen is small compared to the degree
of the interpolating polynomial, then the problem becomes sin-
gular. Similarly, if there are too many points on any of the
irreducible curves on which the interpolation points are cho-
sen, then the interpolation problem runs into singularity. Ex-
amples of geometric distribution of interpolation points satis-
fying these conditions are shown. The examples include
polynomial interpolation of polar samples, and samples on
straight lines. We propose a recursive algorithm for computing
2-D polynomial coefficients for the nonsingular case where all
the interpolation points are chosen on lines passing through the
origin. Finally, we apply our result to the problem of nonuni-
form frequency sampling design for 2-D FIR filter design, and
show a few examples of such design.

I. INTRODUCTION

NONUNIFORM sampling is of importance in many
signal processing problems such as filter design,
speech processing, power spectral estimation, hologra-
phy, astronomy, and data compression [1]. In most of
these problems, either uniform samples are not available
due to practical reasons, or variations in the instantaneous
bandwidth of a signal necessitates nonuniform sampling
rates corresponding to local characteristics of the signal.

Nonuniform samples in the frequency domain have been
used for the design of finite impulse response (FIR) filters
[2]-[5]. The basic idea is that the transfer function of a
one-dimension (1-D) filter is a 1-D polynomial of a finite
order and therefore can be reconstructed from a finite
number of nonuniform frequency samples.

While 1-D polynomial interpolation techniques have
been extensively applied to filter design and other signal
processing problems [6], [7], there has been little work in
the area of multidimensional (M-D) interpolation. This
can be attributed to the fact that a number of mathematical
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results in 1-D do not hold in two or higher dimensions.
For instance, the fundamental theorem of algebra which
guarantees factorizability of polynomials in 1-D, does not
hold in two or more dimensions. In fact, it has been shown
that most 2-D polynomials are irreducible [8].

Another such example is polynomial interpolation. Un-
like the univariate (one-dimensional) case, interpolation
with multivariate polynomials is a nontrivial task.
Whereas N arbitrary samples of a univariate polynomial
of degree N — 1 are sufficient to find its coefficients, the
analogous result in dimensions higher than one does not
hold, primarily because Chebyshev systems in R* for s =
2 have been shown not to exist. Chebyshev systems are
important in interpolation theory, and have been exten-
sively studied by many researchers including Karlin [9],
Karlin and Sudden [10], and Krein [11]. A linearly de-
pendent set of continuous functions {ug(x), « * * , uy(x)}
defined on [a, b] is a Chebyshev system if for any a < x,
< - - <xy=bandyy, -, yy€eR, there is a unique
linear combination u(x) = E\_, a;u;(x) satisfying u(x;) =
yifori =0, - -, N. Clearly, the set of N continuous
functions consisting of the powers of x form a Chebyshev
system. Another example of a Chebyshev system is u; (x)
= ¢M* where A; are distinct and x € (— o0, +00) [12].

Although Chebyshev systems are helpful in studying
univariate interpolation, we must leave them behind as
soon as we turn to multivariate interpolation. This is be-
cause there are no sets of N universal functions which can
be used for interpolation at any N distinct points [13]. An
implication of this result is that powers of x or y do not
form a Chebyshev system in R?, and thus, bivariate poly-
nomials are not in general uniquely reconstructible from
their samples at arbitrary locations. Although it can be
argued that almost all random selections of interpolation
points result in a unique solution [4], there are two- major
problems with this approach. First, from a numerical
analysis point of view, the condition number of the re-
sulting inverse problem might become too large, thus re-
sulting in unstable interpolation. Second, in many appli-
cations, the interpolation points are likely to be chosen on
well-defined geometric objects such as lines or circles,
and therefore are not randomly distributed. As we will-
see, this can greatly enhance the likelihood of running
into singularities.

In this paper, we derive conditions under which the 2-D
interpolation problem is guaranteed to have a unique or
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nonunique solution, develop a recursive algorithm for a
class of interpolation points, and apply our results to a
2-D FIR filter design problem.

II. ResuLTs oN UNIQUE INTERPOLATION

Our approach in deriving conditions for unique 2-D in-
terpolation is to constraint the locations of interpolation
points on irreducible curves.! Specifically, we have

Theorem 1: A bivariate polynomial of the form

Nw N

pw,2) = 22 2 a(, jyw'z )
i=0j=0

is uniquely reconstructible from samples on n. + 1 dis-
tinct, irreducible curves provided there are a minimum of

i—1
SG) = MQ”(NW - EO M&?)

i1
+ MY <NZ - kZO Mg">> +1
samples on the ith curve, with no samples on intersection
of any two curves. The maximum degrees of the ith curve
in w and z are defined to be MY and M®, respectively.
The number of required sampling curves, n, + 1 is de-
fined to be an integer satisfying either of the following two
inequalities:
ne ne
N, < 'ZO MO N, < _ZO MY, @

The proof is included in Appendix A. An example of
the distribution of sampling points required by this result
forN, =N, =2, M® = M®V = 1 and M{} = 2 is shown
in Fig. 1. The irreducible curves in this example were
chosen to be of the forms wz = og and 22 = a;w. In
general, determining irreducibility of polynomials is a
nontrivial task [15]. However, two classes of polynomials
which are known to be irreducible, and are particularly
useful in deriving our results, are of the form

Mt = €)

where M, and M,, are relatively prime positive integers.
As we will see in Section IV, we can apply the above
result in conjunction with Theorem 1 to nonuniform fre-
quency sampling design of 2-D FIR filters.

While Theorem 1 provides conditions for unique inter-
polation,? it does not specify an algorithm for the actual
interpolation. The counterpart of such an algorithm in 1-D
uses divided differences or Newton’s method [16]. The
most straightforward, but not so elegant, way of deter-

M= M

'By irreducible curves, we mean curves whose algebraic equations are
not factorable.

2Even though Theorem 1 deals with unique recovery of polynomial coef-
ficients, we will use the term *‘unique interpolation’’ rather than ‘‘unique
reconstruction’’ throughout this paper. This has to do with the fact that in
the mathematics community where most multidimensijonal interpolation re-
sults appeared originally, unique interpolation is the terminology used for
unique specification or reconstruction of the polynomial coefficients.

N

Fig. 1. An example of geometric distribution of the interpolation points
for Theorem 1 with N, = N, = 2 and M = M®P = 1, and M) = 2.
The irreducible curve ¢, is of the form wz = aq, and ¢, is of the form 22
= a,w.

mining the polynomial coefficients in 2-D is to solve a
linear (possibly overdetermined) system of equations,
which by Theorem 1 is guaranteed to have a unique so-
lution. The inherent disadvantage of solving a linear least
squares (LLS) problem is its computational complexity.
Specifically, robust linear least square algorithms such as
the ones based on QR decomposition require O(N % op-
erations for a 2-D polynomial with N X N coefficients
[17]. On the other hand, if we impose a specific structure
on the location of the frequency samples, we can devise
less computationally intensive algorithms. An example of
this is the case in which there is one sampling curve of
the form z = aw” with (N + 1)? sampling points. Under
these conditions the problem of finding filter coefficients
reduces to that of solving 2N + 1)> X (2N + 1)* Van-
dermonde equations which can be solved with as little as
O(N*).

Similarly, for the special case where all the irreducible
curves are chosen to be lines passing through the origin,
we can derive a recursive algorithm for computing the
coefficients. The basic idea behind this algorithm is that
substitution of equations of these lines in the equation of
the 2-D polynomial results in a series of 1-D polynomials.
Specifically, consider an N X N polynomial with N + 1
interpolation lines Iy, /;, - - -, Iy of the form z = a;w
with o; # 0 and 2i + 1 points on the ith line. Defining
the variables b associated with the kth sampling line in
terms of its slopes oy and the polynomial coefficients
a(i, j) in the following way:

i

2 a — m, myoy 0<i<N
po =4 "0 @
i N

2 aii —m,maf N<i=<?2N

m=i—N

we conclude that sampies on the kth line satisfy

IN-s—1 N
A 2 bBOw = pw, qw) — 2 BPw (5
i=s+1 i=2N-s

The recursive algorithm essentially consists of 2N + 1
steps corresponding to s = —1, -+ , 2N — 1in the
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above equation. Spécifically, at the sth stage, the algo-
rithm uses the computed values of bg?,_s and b® for 0 <
k =< N, together with the 2(N — s) — 1 samples on the
line ly_;_,inorderto find b " Dfors + 1 <i < 2N
— s — 1 by solving a Vandermonde linear system of equa-
tions indicated by (5). These values are then used in “)
to find the coefficients a(i, j) fori + j = s + 1 and i +
J = 2N — s — 1 by solving a second set of linear Van-
dermonde equations. Finally, these newly determined
coefficients are used to find b%,_;_, and b®, for 0 < &
= N — 5 — 2 via (4) for the next step of the algorithm.
Sizes of the first and second set of Vandermonde equa-
tions in the sth step are 2N — 5) X (2N — s)and (s + 2)
X (s + 2), respectively. Since stable techniques for solv-
ing N X N Vandermonde equations require O(N*) oper-
ations, the number of flops for recovering the coefficients
of an 2N + 1) X (2N + 1) filter via the proposed recur-
sive method is of the order of O(N*).

The extension of the above algorithm to the case where
all the sampling lines have identical integer slope is in-
cluded in Appendix B.

III. RESULTS ON NONUNIQUE INTERPOLATION

In the previous section, we discussed sufficient condi-
tions for unique recovery of polynomials from their sam-
ples on irreducible curves. We will now find conditions
under which the interpolation problem is guaranteed to
run into singularity.

Theorem 2: Letcy, cy, - -+ , ¢, be distinct, irreducible
bivariate polynomials with the maximum degree of c;inw
and z given by MY and MY where p is an integer satis-
Jying the following two inequalities:

P P
N, > _20 M9 N, > _;0 M9, ©6)

If the interpolation points are chosen on Co, " " *, Cp, then
the polynomial coefficients of (1) cannot be uniquely de-
termined.

The proof is included in Appendix C. Intuitively speak-
ing, the above theorem implies that if the sum of the de-
grees of the irreducible curves on which the interpolation
points are chosen is small compared to the degree of the
polynomial, then the interpolation problem becomes sin-
gular and therefore has a nonunique solution. Three ex-
amples of geometric distribution of the points correspond-
ing to the above theorem are shown in Fig. 2. In Fig. 2(a),
N,, = N, = 2 and the algebraic equation for the irreduc-
ible curve ¢, is given by wz = «. Note that Fig. 2(a) can
be obtained from Fig. 1 by moving all the points on ¢, to
¢o, and that in doing so, we convert a nonsingular inter-
polation problem to a singular one. A second example of
Theorem 2 is shown in Fig. 2(b) where the degree of the
interpolating polynomial is N,, = N, = 3, and the sam-
pling curves are chosen to be lines. As seen, unless the
number of sampling lines is large compared to the degree
of interpolating polynomial, the problem of interpolation
from samples on lines could become singular. The third
example of Theorem 2 is shown in Fig. 2(c) where the
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Fig. 2. Three examples of geometric distribution of the interpolation points
for Theorem 2.

degree of interpolating polynomial is assumed to be 5 in
w and in z and the interpolation curves are chosen to be
circles. From Fig. 2(c) it is clear that in order to avoid
running into singularities, the degree of 2-D polynomials

"interpolating polar samples must be chosen appropriately

with respect to the number of circles. :

Our next result is also on conditions under which the
2-D interpolation problem runs into singularity:

Theorem 3: Consider a polynomial of the form shown
in (1) with (N,, + 1) (N, + 1) interpolation points. If there
is an irreducible curve, c,, of the form

M, __ My

Z = aw My _

or MeyM = o 0
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which contains more than M,N,, + M, N, + 1 interpola-
tion points, then the coefficients of the polynomial cannot
be uniquely determined.

The proof is included in Appendix D. The above theo-
rem states that if there are too many points on any one of
the irreducible curves on which the interpolation points
are chosen, then the interpolation problem runs into sin-
gularity. Intuitively, if the equation of the curve shown in
(7) is substituted into the 2-D polynomial equation (1), a
1-polynomial results. In effect, too many points on this
curve corresponds to overspecification of its correspond-
ing 1-D polynomial, and hence nonunique interpolation.
Two examples of geometric distribution of the interpola-
tion points corresponding to the above theorem are shown
in Fig. 3. In Fig. 3(a), the degree of the interpolating
polynomial is chosen to be N,, = N, = 2, ¢, is of the form
wz = o, and c, is of the form z = o, w?. Note that the
distribution of the points in Figs. 1 and 3(a) is very sim-
ilar in a sense that by moving one point from ¢, to ¢y, we
obtain the latter from the former. Nonetheless, one set
corresponds to nonsingular and the other corresponds to a
singular interpolation problem. The second example cor-
responding to Theorem 3 is shown in Fig. 3(b) where the
degree of the interpolating polynomial is chosen to be N,,
= N, = 3 and the irreducible sampling curves consist of
a line and a circle.

IV. ArpLICATION TO 2-D FIR FILTER DESIGN

Let the frequency response of a 2-D FIR filter with im-
pulse response h(n,, n,) be given by
Ne—l Ny

H(e™, ey = 2 2 h(n, n,) exp j(wn, + w,n)
nx=—Nx ny=—Ny
)]

and the polynomial representation of the above frequency
response be given by

H(w, 2) = wMzVH(e™, /)

2Nx 2Ny
= X 2 h(n, = Ny ny, = Nyw"z"  9)

where w = ¢ #* and z = e /. The relationship between
(w, z) and (w,, w,) implies that irreducible polynomials of
the form shown in (3) correspond to lines with positive or
negative rational slopes of the form M,w, = 8 + M,w, in
the w, — w, plane. We can use this in conjunction with
Theorem 1 in order to define a nonuniform frequency
sampling technique in which the samples are chosen on
lines of rational slope in the w, — w, plane. Specifically,
we have the following.

Corollary 1: Coefficients of a 2-D FIR filter of the form
given in (8) can be uniquely determined from frequency
samples on N; + 1 lines in the w, — w, plane provided
there are a minimum of S(i) = |M§’v) |2N, — ZiZh
IMP)) + | MO |2(N, — TiZh |[MP ) + 1 samples on the
ith line. The slope of the ith line is rational and is given
by M /M. The number of required sampling curves,

N

Co

(a)

(b)

Fig. 3. Two examples of geometric distribution of the interpolation points
for Theorem 3.

N, + 1 is defined to be an integer satisfying either of the
Jollowing inequalities:

N Ni
2N, < _EO M| 2N, < Zo MO (10)
Furthermore, if the total number of interpolation points
Mo S(@i) is equal to the number of filter coefficients, then
the frequency response of the interpolated filter passes
through prescribed values at the sampling points.

The above corollary provides an exact description of
the distribution of the frequency sampling points required
for unique specification of the filter coefficents. Specifi-
cally, it states that for a given filter size, if an appropiate
number of sampling points on an appropriate number of
lines with rational slope are chosen, then the filter coef-
ficients can be uniquely determined. It also specifies con-
ditions under which the designed filter actually takes on
prescribed values at prescribed points. This could be im-
portant in applications in which specific spatial frequen-
cies need to be removed or emphasized. Design parame-
ters of the nonuniform frequency sampling technique
based on Corollary 1 include: a) the number of the sam-
pling lines and their slopes; b) the distribution of the sam-
pling lines in the frequency plane; and c) the distribution
of the frequency samples on each line. A similar nonun-
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iform frequency sampling technique has already been ap-
plied to the 2-D FIR filter design problem [4], [5]. This
technique, however, is a special case of Corollary 1 since
the locations of the frequency samples in [4] are con-
strained to be on parallel horizontal or vertical lines.

An example of the geometric distribution of the sam-
plmg pomts required by the corollary for N, = N, =1
MO = M(O) M“) =1, M“) =2is shown in
Fig. 4. Note that the curves of Fig. 1 in the w — z domain
correspond to lines of Fig. 4 in the w, — w, domain. In
addition, since the frequency response is a periodic func-
tion in the w, — w, plane, lines of rational slope ‘‘wrap
around’’ or extend modulo 27 in w, and w, throughout the
frequency domain. This is illustrated in Fig. 4 where lines
lo and I, with slopes —1 and 2 are wrapped around once
and twice, respectively.

Plots of frequency responses corresponding to a 15 x
15 circular low-pass filter with passband at 0.4 and stop-
band at 0.67 designed via the recursive and LLS ap-
proaches are shown in Figs. 5(a) and 6(a). The distribu-
tion of the sampling lines and sampling points for these
two cases are shown in Figs. 5(b) and 6(b). The sampling
points are more or less uniformly distributed along each
line, except that for lines passing through the stopband
and passband, there is a minimum of three equally spaced
points in the transition band. The values of the transition
points for the interpolation problem are chosen linearly
from O to 1. There are sampling points at the intersection
of passband/stopband contours and the sampling lines.
The total number of sampling lines for both the recursive
and LLS schemes is 15. However, the sampling lines for
the LLS approach have slopes + 1, while those of the re-
cursive approach have slope 1. This is because the recur-
sive approach can only be applied to lines of identical
slope in the w, — w, domain or equivalently to lines pass-
ing through origin in the w — z plane. As seen in Fig.
6(c), since the sampling lines for the LLS case run in two
different directions, we can place frequency sampling
points all over the perimeter of the passband and stopband
contours. This feature does not exist in Fig. 5(c) because
all the lines run along the same direction, and therefore
the sampling points can only exist along half the perim-
eter of stopband/passband contours. This difference man-
ifests itself in a slightly better isocontour shapes and pass-
band/stopband maximum deviation values for the LLS
approach than the recursive approach, even though our
technique is not designed to optimize these values. The
isocontours for the LLS and recursive approach for
| H(e’, e’)| = 0.3, 0.5, 0.7, 0.9 are shown in Figs.
6(d) and 5(d), respectively. As seen, the isocontours of
the recursive approach are less circular in the lower left
and upper right of the frequency plane, whereas those of
the LLS approach are more or less isotropic.

A thorough performance comparison between our tech-
nique and uniform sampling requires extensive testing for
a variety of filter specifications, and as such is an exhaus-
tive task. Nevertheless, we have obtained some prelimi-
nary results on performance comparison of the filters in
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Fig. 4. An example of geometric distribution of the frequency samples of
Corollary 1. The sampling curves in (w — z) domain in Fig. 1 correspond
to lines in (w, — w,) plane in Fig. 4.

Fig. 6(a) and a 15 X 15 uniform frequency sampling fil-
ter. The frequency response and isocontours of the latter
filter at 0.3, 0.5, 0.7, and 0.9 are shown in Figs. 7(a) and
(b). Comparing Figs. 7(b) and 6(d) we conclude that the
nonuniform sampling results in more circular contours
than uniform sampling, particularly at the 0.9 level.
Quantitatively, this can be explained by noting that the
stopband and passband ripples for uniform sampling are
0.036 and 0.060, while those of the nonuniform samples
are 0.043 and 0.036.

Similar to Theorem 1, Theorems 2 and 3 can be used
to derive conditions under which the nonuniform fre-
quency sampling technique does not result in unique filter
coefficients. Specifically, Theorem 2 implies that if the
number of sampling lines of unit slope is fewer than 15,
then the coeflicients of the 2-D 15 X 15 filter cannot be
uniquely determined. Theorem 2 also implies that if the
sampling lines are chosen to be of slope 2 (or 3), then the
minimum number of required sampling lines to avoid sin-
gularity is 8. Theorem 3, on the other hand, implies that
if the total number of interpolation points is 225, then no
one line of slope +1 or —1 could have more than 15 fre-
quency samples.

An interesting point to notice is that our proposed non-
uniform frequency sampling technique can be combined
with the transformation technique [18]-[20]. Specifically,
it can be used to design a low-order filter which is then
frequency transformed via a one-dimensional optimal fil-
ter to result in a high order two-dimensional FIR filter.
An example of this for a directional filter with ideal fre-
quency response of the form [21]

1 Tt (&)< and
8 w, 4

H(eij’ ej‘*’,v) = 047 < (wz + wg) < 0.97

0 otherwise

(11)

is shown in Fig. 8(a). The transition bandwidth used in
designing the filter is 0.27. The entire ‘‘hybrid’’ two-di-
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Fig. 5. (a) The frequency response of a 15 X 15 low-pass filter designed via Corollary 1 and the recursive algorithm. (b) The
distribution of the frequency samples used for interpolation. (c) Intersection of sampling lines and passband/stopband contours.

(d) Isocontours of the filter in (a).

mensional filter is 19 X 19, the low-order two-dimen-
sional filter designed via our proposed technique is
3 X 3, and the optimal, minimum ripple, one-dimen-
sional filter is of length 7. The low-order 2-D filter was
designed by sampling the ideal frequency response shown
in (11) along three lines of unit slope.

Our last example is a 15 X 15 directional filter de-
signed via the nonuniform frequency sampling technique
of Corollary 1 with the LLS approach, shown in Fig. 8(b).
As seen in Fig. 8(c), 13 of the sampling lines are chosen
to be of slope —1 and two are chosen to have slope +1.
The sampling points are more or less uniformly distrib-
uted along each line, except that for lines passing through
the stopband and passband, there is a minimum of three
equally spaced points in the transition band. Furthermore,
as seen in Fig. 8(d), there is a sampling point at the in-
tersection of passband/stopband contours and the sam-

pling lines. The isocontours of the filters in Figs. 8(a) and
(b) are shown in Figs. 8(e) and (f). As seen, even though
the passband and stopband deviation characteristics of the
transformation filter is superior to that of the nonuniform
frequency sampling, the isocontours of the latter are more
similar to the shape of the specifications for passband and
stopband contours.

V. DiscussioN

We derived a number of results on conditions under
which the 2-D polynomial interpolation problem has
unique or nonunique solution. Our approach consisted of
finding appropriate constraints on the locations of the in-
terpolation points. We proposed a recursive algorithm for
computing 2-D polynomial coefficients for the case where
all the interpolation points are chosen on lines passing
through origin. Finally, we applied our result to the prob-
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Fig. 6. (a) The frequency response of a 15 X 15 low-pass filter designed via Corollary 1 and the LLS approach. (b) The
distribution of the frequency samples used for interpolation. (c) Intersections of sampling lines and passband/stopband contours.

(d) Isocontours of the filter in (a).

lem of nonuniform frequency sampling design for 2-D FIR
filter design, and showed an example of such a design.

We found that unless an appropriate number of inter-
polation points are chosen on an appropriate number of
irreducible curves the 2-D polynomial interpolation prob-
lem might run into singularities. Specifically, Theorem 2
implies that if the sum of degrees of the irreducible curves
on which the interpolation points are chosen is small com-
pared to the degree of the polynomial, then the interpo-
lation problem becomes singular. Theorem 3 states that if
there are too many points on any of the irreducible curves
on which the interpolation points are chosen, then the in-
terpolation problem runs into singularity. Examples of
geometric distribution of interpolation points satisfying
these theorems were shown. Two important applications
of these examples are polynomial interpolation of polar
grid samples and samples on straight lines.

In applying the results to the 2-D FIR filter design prob-
lem, we found that an appropriate selection of frequency
samples on an appropriate number of lines with rational
slope results in a unique determination of the coefficients.
Examples of low-pass and directional filters using the re-
cursive and LLS approach were shown. To shape the is-
ocontours in a desired fashion, the sampling points were
chosen at the intersection of sampling lines and passband/
stopband contours. Unlike the recursive approach which
requires the sampling lines in the frequency plane to have
identical slopes, the lines in LLS can be of any slope. As
a result, we get slightly better contour shaping properties
with the latter method.

The results presented here can be easily extended to
dimensions larger than 2. Furthermore, they can be ex-
tended to the case where the interpolation points are on
reducible curves, since by definition, a reducible curve
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Fig. 7. (a) The frequency response of a 15 X 15 low-pass filter designed
via uniform frequency sampling and inverse discrete Fourier transform. (b)
Isocontours of the filter in (a).

can be factored into a number of irreducible ones. It is
important to emphasize that the multidimensional poly-
nomial interpolation results presented in this paper are im-
portant to many other areas of signal processing and sys-
tems problems as well as FIR filter design [22]. For
instance, they have already been applied to nonuniform
sampling of band-limited periodic signals [13], [23]. Pos-
sible directions for future research include modeling of
multidimensional signals and systems.

APPENDIX A
PROOF OF THEOREM 1

Proof: To show that there is a unique polynomial,
we have to show that there are no polynomials in Iy, v,
which vanish at all the interpolation points U 4;. Suppose,
on the contrary, that there is a polynomial g(w, z) €
Iy, n, which vanishes at all the interpolation points.
Since g has MO'N, + N,,M® + 1 common zeros with C,,
by the modified version of Bezout’s theorem, Co must be
a factor of g(w, z). That is

qw, 2) = Co(w, 2 (w, 2)
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where ¢ (w, z) is a polynomial of maximum degree N,,
~ MY inwand N, — M? in z. Furthermore, since by
hypothesis, none of the interpolation points on C; are on
Co and g(w, z) has 1 + MOWN, — M9) + MD
(N, — M) common zeros with C;, ¢'” (w, z) must also
have the same number of common zeros with C,. Taking
into account the irreducibility of C,, by modified version
of Bezout’s theorem, C, must be a factor of ¢'") (w, z) and
hence g(w, z).

Repeating the above argument for C,, -« * - , Cy.—1, We
get

qw, 2) = Cyw, 2) -+ - Cy._1(w, g™ (w, 2)

where ¢ (w, z) has maximum degree N,, — TV ' M© in
w and maximum degree N, — ZM ! M© in z and has 1 +
MO (N, — Ty MP) + MY N, — £Vt M®)Y com-
mon zeros with Cy,. Since Cy, is irreducible, by modified
version of Bezout’s theorem, it must be a factor of g™
(w, 2). This contradicts the hypothesis since by inequali-

ties (2), the degree of Cy, in either w or z, is larger than
that of g™ (w, 2). O

APPENDIX B
GENERALIZED RECURSIVE ALGORITHM

In this Appendix, we describe a recursive algorithm for
finding coefficients of a polynomial of the form

N N
pw,2) = 20 20 aG, jyw'z
i=0j=0
from its samples on irreducible curves ¢y, ¢;, * * -
The ith curve c; is assumed to be of the form
= a["Vm o; 0

where m < N, and p is chosen to be the smallest integer
such that

)4
?6 [(m + n — 2mi] = (N + 1)

The set of interpolation points on c; is given by
{w?,zM]j=0,---,m+ )N ~ 2mi}
and the interpolation points are assumed not to be on the
intersection of any two curves.
The recursive algorithm consists of p + 1 steps. We

will use induction to show that in the ith step we can find
the 2mi coefficients given by the set

{aly, I + ml,

=@-1Dm, -+ ,im—1,Nm+ 1)

—im+1, -+, Nm+ 1)}.
In doing so, we exploit the fact that sampling the bivariate
polynomial p(w, z) along the ith curve, c; is equivalent to
sampling the univariate polynomial
Nm+1)

piw) = p(w, qw™) = 2

r=

b w" (12)
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Fig. 8. (a) Frequency response of a 19 X 19 directional filter designed via the frequency sampling technique and McClellan’s
transformation. (b) Frequency response of a 15 X 15 directional filter designed via the sampling points in (c) using LLS ap-
proach. (c) Sampling points for the filter shown in (b). (d) Intersections of sampling lines and passband/stopband contours. ()
Isocontours of the filter in (a). (f) Isocontours of the filter in (b).
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with
N
b(i ) —
Y =

N
2
] ,§0 afadl, ). (13)

h=010
Li+mh=r

In the first step of the algorithm, we can use the points on
the curve ¢, given by the set

{w, W) j =0, -+, (m + DN}

in order to uniquely determine © for i = 0, - - - |,
N(m + 1). This is because py(w) of (12) is a one-dimen-
sional polynomial degree N(m + 1), and thus any (m +
1)N + 1 distinct samples of it are sufficient for unique
determination of its coefficients. We can now use the value
of the quantities

BPli=0, -, m—1,Nom + 1)
—(m-=1,: -, Nm+ 1)}
together with (13) to find the coefficients
fali, | +mh =0, -+ ,m— 1, Nm + 1)
—(m=1), -+, Nm +‘1)}.

The values of the remaining coefficients of the polynomial
Po(w), which are found in the first step of the algorithm

will be used in future steps. More specifically, forj = 0,

*, m — 1 the quantities b{%, ,; and b, 1 1, _ i _; will be

used in the (i + 1)st step of the algorithm.

Having shown the validity of the induction hypothesis
for the first step of the algorithm, we will now show that
if in steps 1 through i the quantities

{aly, | +ml, =0, -+ ,im -1, Non + 1)
—im+1, -+, Nm+ 1)}
and
=0,
r=jm,jm+ 1, -+ Nm+ 1) — jm + 1}
are found, then in the (i + 1)st step the quantities
{ath, )|l + mi,
=mi, --- 7m(i+ 1) —1,Nim + 1)
=@+ Dm -, Nim+ 1) — im}
and
B0 r=im, -+ Nom + 1) — im}
can be determined. Rearranging the terms in (12) we get
Pw, a;w™)

= pw, a;w™)

N N
=0 h=0
Li+mh=0,--+ . m~1,Nm+1)y—im+1,"-- Non+1)

. (X,{za(ll, 12)w11 +mly
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N N
= Z Z * oz,{za(l], 12)W1|+m’2
=0 L=0
Li+mhy=im,- -+ Nm+1)—im
Nm+1) —im
= 2 bpw 14)
r=im

By hypothesis, since the point (0, 0) is on the intersection
of all the curves ¢y, * - -, ¢, it could not possibly be one
of the interpolation points. Therefore we have

w}”#:O j=0,---,Nm+1) - 2im.

This implies that the points on the ith curve ¢; given by
the set '

{w?, sw)|j =0, ,Nom + 1) — 2mi}
are sufficient to uniquely specify the coefficients
O r =im, -+, Nom + 1) — im}
of the univariate polynomial given by (14). The values of
b’s found in the (i 4 1)st step of the algorithm together
with the ones found in previous steps can now be used for
finding the coefficients of p(w, z). More specifically, for
J =0, ,m— 1 the quantities
i1k =0, i}
can be used to find coefficients

{a(ll, lz)lll + mlz = mi +J}.
Using (13) we have

i
by, = _Oa; a(j + im — rm, r).

r

15)

Since the curves ¢;, * - -, ¢, are distinct, the o’s corre-
sponding to different curves are different from each other.
Therefore the coefficients

{a(ll, IZ)III + m12 = mi +j}

can be uniquely found by solving the Vandermonde sys-
tem of (15). The same procedure can be applied for find-

ing
{atl;, )|l + mly, = Nom + 1) — im — j}
from the quantities
{b%‘()m+1)—im—j|k =0, ,i}.

Therefore, we have shown that in step i + 1, we can
uniquely determine the quantities

{a(lh l2)|11 + mi,
=mi, - ,mi+1)—1,Nm+1)
— @@+ 1m+1,---,Nm+ 1) — im}.

This completes the induction and the description of the
algorithm.
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AprPENDIX C
PROOF OF THEOREM 2

Proof: To show that there are an infinite number of
polynomials, it is sufficient to show that there is at least
one polynomial of maximum degree smaller than N,, in w
and smaller than N, in z which vanishes at all the inter-
section points defined by the theorem. The most obvious
choice for this polynomial is g(w, z) = m?_y ¢;(w, 2).
Since by inequalities in (6), the maximum degree of
q(w, 7) is less than N,, in w and less than N, in z, there
exists an infinite number of polynomials of degree N, in
w and N, in z passing through the interpolation points. (]

APPENDIX D
PROOF OF THEOREM 3

Proof: To show that there are infinite number of
polynomials, it is sufficient to show that the interpolation
matrix associated with the interpolation points has depen-
dent rows. The jth row of the interpolation matrix corre-
sponds to the jth interpolation points and is given by

2 Nu 2
(1, w, ws, = - W™, 2, zw, zw?, -« - |

N

w . Nw].

. Mw
Our strategy is to show that the rows associated with the
points on ¢, are dependent. To show this, consider the
one-dimensional function A(z)® defined by inserting the al-
gebraic equation associated with ¢, into p(w, 2) of (1).
Since ¢y is of the form given by (7), h(z) is in fact a poly-
nomial in z'/** or in z =/ depending upon whether ¢,
is of the form z" = aw™ or z*w™ = 4. Without loss
of generality, assume A(z) is a polynomial in z!/M*. If we
let h(z) = f(z'/™"), then the polynomial f(z) will be of
degree N,M,, + N, M, in z, and hence can be uniquely
specified from N, M,, + N, M, + 1 samples. For instance,
if ¢, is of the form ZQ’ = aw™ then inserting w =
(@™ %)M into p(w, z) of (1) we get

Nw N
M@ = 2 2 al, ja Mg/t 0/M (16)
Nw N
f@ = hz"™) = E}OEB ai, jya~™g/ ™ (17)

If Q denotes the number of interpolation points on ¢, the
dimension of the interpolation matrix, Fo s N + MM, + 1y
associated with f(z) is Q X (N,M,, + N, M, + 1). Since
by hypothesis Q > N,M,, + N, M, + 1, the rank of F
cannot exceed N,M,, + N, M, + 1, hence making its rows
linearly dependent. The interpolation matrix associated
with p(w, z) on the other hand is (N,, + DN, + 1) x
(N, + DN, + 1) dimensional, with each row corre-
sponding to one interpolation point. Suppose the Q rows
of this matrix corresponding to the Q points on ¢, form a
Q X (N, + D, + 1) dimensional matrix which we

*The same argument can be repeated for the variable w.
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denote by G. Careful examination of F and G shows that
each column in F is a linear combination of a number of
columns in G. This is because (16) and (17) imply that
coefficients of f(z) are linear combination of coefficients
of p(w, z). Therefore, linear dependency among the rows
of F imply linear dependency among rows of G. This im-
plies that the (N, + 1)V, + 1)) X ((N,, + DN, + 1))
dimensional interpolation matrix associated with rw, 2)
is rank deficient. Therefore, there are infinitely many
polynomials interpolating the points specified by the
theorem. O
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