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Video Compression Using Matching Pursuits

Osama K. Al-Shaykh, Eugene Miloslavsky, Toshio Nomura, Ralph Neff, and Avideh Zakhor

Abstract—The use of matching pursuit (MP) to code video signal. As the bit rate decreases, the distortion introduced

using overcomplete Gabor basis functions has recently beenpy matching pursuit coding takes the form of a gradually
introduced. In this paper, we propose new functionalities such increasing blurriness or loss of detalil

as SNR scalability and arbitrary shape coding for video coding In thi W functi lti . SNR
based on matching pursuit. We improve the performance of the n 's paper, We. propose. 0 new func 'Qna' 'es_' €.,
baseline algorithm presented earlier by proposing a new search Scalability and coding of arbitrary shaped video objects, based

and a new position coding technique. The resulting algorithm is on matching pursuit. We also propose two ways to improve

compared to the earlier one and to DCT-based coding. the performance of the baseline algorithm in [8]. These include
Index Terms—Arbitrary shape coding, matching pursuit, scal- New search strategies and new position coding techniques.
ability, video compression. This paper is organized as follows. Section Il reviews

video coding using matching pursuit, Section Il provides a
pessimistic bound on coding efficiency for positions of a group
of atoms, Section IV discusses SNR scalability, Section V in-
LL existing video compression standards are hybrigloduces new position coding and search strategies to improve
systems in that the compression is achieved in two mai@ding efficiency, and compares the performance of match-
stages: the first stage, motion estimation and compensatipiy pursuit with that of DCT-based coders (MPEG-4 [5]),
predicts each frame from its neighboring frames, compressgsction VI extends the MP coder to support arbitrary shape

the prediction parameters, and produces the prediction eNgdeo sequences, and finally, Section VII concludes the paper.
frame; the second stage codes the prediction error. All existing
video compression standards use block-based discrete cosine
transform (DCT) to code the residual error [1], [2], [4]. Al-
though DCT video coding is efficient, it introduces undesirable Representing a signal using an overcomplete basis set im-
blocking artifacts, especially at low bit rates. Moreover, due @ies that there is more than one representation for the signal.
bit-rate restrictions, some blocks are only represented by dner coding purposes, we are interested in representing the
or a small number of coarsely quantized transform coefficiengignal with the fewest basis vectors. This is &d’-complete
resulting in artifacts commonly known as ringing and mosquiteroblem [6]. Different approaches have been investigated
noise. Other approaches such as wavelets [7] introduce ringtagfind or approximate the solution. Matching pursuit is a
or rippling artifacts, which become most bothersome in thBultistage algorithm, which in each stage finds the basis vector
vicinity of image edges. that minimizes the mean-squared error [6].

Neff and Zakhor have recently applied the matching pursuit Suppose we want to represent a sigiféd] using basis
(MP) technique of Mallat and Zhang [6] to code the motionectors from an overcomplete dictionary or basis get
prediction error signal [8]. The MP coder divides each motiokdividual dictionary vectors can be denoted as
residual into blocks, and measures the energy of each block. )

The center of the block with the largest energy value is adopted g,lil €. (1)

as an initial estimate for an inner product search. A dictionawere : . : . . .
: . . ,7 Is an indexing parameter associated with a particular

of Gabor basis vectors is then exhaustively matched to 8|Q:tionary element. The decomposition begins by choosing

S x S window around the initial estimate. The location, basits '

vector index, and value of the largest quantized inner produgtmaxImlze the absolute value of the following inner product:

I. INTRODUCTION

Il. MATCHING PURSUIT VIDEO CODER

are then coded together. This procedure is applied recursively t = (f[d], g [i]) )
until either the bit budget is exhausted or the distortion goes K
below a prespecified threshold. wheret is the transform or expansion coefficient. A residual

Video sequences coded using matching pursuit do not sufggnal is computed as
from either blocking or ringing artifacts since the basis vectors
are only coded when they are well matched to the residual R[i] = f[i] —t g[i]. 3)
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(VLC). To code atom positions, the atoms are sorted in posi-
tion order from left to right and top to bottom within the resid-
ual image. A differential coding strategy employs three basic
codeword tables. The first tablel is used at the beginning of

a screen line to indicate the horizontal distance from the left
side of the image to the location of the first atom on the line.
For additional atoms on the same line, the second t&lile

ol
mN
UL
AUULA
L]

. | l | is used to transmit the interatom distances. Hietable also
contains an escape code indicating that no additional atoms
. I | l exist on the current line. The escape code, when used, is always

followed by aP3 code, indicating how many lines in the image

may be skipped before the next line containing coded atoms.
‘.'n -'- '- ~'| The P3 code is then followed by @1 code since the next
atom will be the first on a particular line. No special codeword
is needed to indicate the end of the atom field since the number
§| of coded atoms is transmitted as header information.

A

Ill. THEORETICAL BOUNDS ON POSITION CODING EFFICIENCY

In this section, we derive a theoretical bound on the number
of bits used for atom position coding. As we will see, the
theoretical bound shows that the efficiency of atom position
coding improves as the number of atoms that are to be coded
together is increased. This bound is relevant in understanding
Eodlng efficiency losses involved in achieving SNR scalability.

Fig. 1. Separable two-dimensional 2020 Gabor dictionary.

approximated by a linear function of the dictionary element:

. M . To characterize the dependence of coding efficiency on the
fli] = Z t[k] g [d]- (4)  number of atoms coded together in a single group, consider
k=1 a situation where atoms are assumed to be uniformly and

Direct application of matching pursuit to represent motioimdependently distributed on a¥; x N, image. Our goal
compensation residual error is computationly intensive to tieto derive an expression for entropy of various placements
extent that it makes the algorithm nonpractical. This is becausiea atoms on anV; x N, image, without taking the order of
an N; x N, residual image with onév; NV, luma pixels and atoms into consideration. This problem is equivalent to finding
two (N;/2)(N2/2) chroma components, and a dictionarghe entropy of the various ways in whiehindistinguishable
set of P basis functions would require the computation dballs can be put inta baskets where, in our case,s N; N
(3N1 N, P/2) inner products. ForN; = 176, N, = 144 anda is the size of the group of atoms whose positions are to
(QCIF image), andP = 400, we need to compute 15.2be coded. For example, in the case where= 2,n = 2,
million inner products. If the average support of the bastbere are three possible placements: both balls in the first
functions is15 x 15, we need 3.4 billion multiplications basket, both balls in the second basket, and one ball in each
and additions each time one function is computed. Clearlyasket. The probabilities of the first and second placements are
such a level of computation would make the algorithm t00.25 and of the third 0.5 since balls are placed into baskets
prohibitive from an implementation point of view. independently and uniformly. In general, there é?éL" 1)

To overcome this computational complexity, the matchingjfferent placements of balls inn baskets. Of course, some of
pursuit video coder in [8] first divides each motion residudahese placements have different probabilities, so if we assume
into blocks, and measures the energy of each block. The certext they all have equal probability, we will get an upper
of the block with the largest energy value is adopted as aound on the entropy which ngQ((“J’Z_l)). Also, note that
initial estimate for the inner-product search. A dictionary ahere are(z) placements in which no basket has more than
Gabor basis vectors, shown in Fig. 1, is then exhaustivatne ball, and that all such placements are equally probable.
matched to arf x S window around the initial estimate. TheTherefore,log,((")) is the lower bound on the entropy of
exhaustive search can be thought of as follows. Esich N placement distribution. Thus, the entropy per atom is between
dictionary structure is centered at each location in the sear@bg,((%))/a) and (log,((**77"))/a).
window, and the inner product between the structure and theFig. 2(a) shows the upper bound on the number of position
correspondingV x N region of image data is computed. Thebits per atom needed for 17& 144 QCIF images as a
largest inner product is then quantized. The location, basis véanction of the number of atoms coded together. As expected,
tor index, and quantized inner product are then coded togethte coding efficiency improves as the number of atoms in-

The decoder needs to know the basis function used to repeeeases. This is in agreement with the experimental results
sent the residual error, its locations, and the value of the quam-Section IV-A2. Fig. 2(b) shows the difference between
tized inner product. For a more efficient coder, the basis indthe theoretical lower and upper bounds as a function of the
and the inner product are coded using variable-length codasmber of atoms coded together, again for QCIF images.
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upper bound on placement entropy per atom for QCIF image size
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widely different available bit rates, and 2) fine grain scalability
with a continuum of available bit rates. The two-layer codecs
used in ATM applications are an example of the first class
[9], and the video codec developed by Taubman and Zakhor
[11] is an example of the second class. In most codecs in the
second class, fine grain scalability is achieved via multirate
guantization of the DCT or wavelet coefficients [10], [11].
However, as will be seen shortly, for an MP-based codec, a
natural way of achieving both fine and coarse scalability is
through the number of atoms.

In this section, we will investigate a number of scal-
able video coding schemes based on matching pursuits. In
Section IV-A, we will propose a one-residual image system
offering fine grain scalability, and in Section IV-B, we will
examine a two-residual image system offering better coding
efficiency at the expense of coarser scalability.

A. Using One Residual Image

Fig. 3 illustrates our basic approach to SNR scalability
in the “one residual image” scheme. As seen, the motion
compensation residual image is formed from the previously
reconstructed base layer frame in order to avoid the drifting
problem. Furthermore, the encoder only keeps track of only
one residual image, namely, the one corresponding to the base
layer. Once the residual image is found, a certain number of
atoms is used to code the base layer, and additional atoms are
used to code the enhancement layer. This way, the decoder can
stop at any time after decoding the base layer information with-
out losing track of the encoder. Moreover, if the enhancement
layer atoms are coded a few at a time as they are found, we can
have a scalable coder with resolution of a few atoms, e.g., 100
bits/frame. As we have seen in Section lll, there is a tradeoff
between coding efficiency and the fineness of scalability. In
the next section, we will describe a practical atom position
coding method that greatly improves coding of small groups
of atoms, and will present performance results of a fine grain

iid distributed atoms normalized by. (a) Upper bound. (b) Difference SNR-scalable MP-based coder with one residual image.

between upper and lower bounds.

As seen, the two bounds are fairly tight, with the maximu

1) NumberSplit—A Method for Coding the Position of
Atoms: The NumberSplit algorithm, used for coding atom

rHositions in the results of Section IV-A2, is based on the

difference being 0.0569 bits/atom @t= 1000. In Section v~ divide-and-conquer idea. First, the total number of atds

Al, we present a nhonadaptive algorithm that not only achiev

&oded on a given residual image is transmitted in the header.

but also outperforms these bounds by taking advantage '¢fen the image is divided into two halves along a larger

nonuniformity in atom distribution.

IV. SNR-SCALABLE MATCHING PURSUIT CODER

dimension, and the number of atoms in the left or top half
(depending on how the image was split) is coded. Note that if
we assume that each atom falls uniformly and independently
of other atoms onto either half, then the number of atoms in the

Developing scalable video compression algorithms has #itst half is binomially distributed o/0, - - -, 7} with p = 0.5.

tracted considerable attention in recent years. SNR-scalaBiace we know the total number of atoms on an image and
compression refers to encoding a sequence in such a wtlg distribution of the number of atoms in the first half, we
that different quality video can be reconstructed by decodimgn construct a Huffman table to encode the number of atoms
a subset of the encoded bit stream. Scalable compressiomishe first half. The total number of atoms and the number
useful in today’s heterogeneous networking environment @f atoms in the first half allows the decoder to calculate the
which different users have different rates, resolution, displagumber of atoms in the second half. This algorithm is then
and computational capabilities. applied recursively to the halves of the image until there are
Scalable video compression schemes can be broadly classi-more atoms in a given half image or until the size of the
fied into two categories: 1) coarse grain scalability with fewwalf image is one pixel. The Huffman tables used in encoding
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Previous Base-Layer Reconstructed Frame

Frame | MOTION MOTION ATOM CODER Base Layer
ESTIMATION COMP.

ATOM CODER —— = Enhancement Layer

Fig. 3. Block diagram illustrating the one-residual approach for two-layer SNR scalability.
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Fig. 4. Average number of bits per atoms position as a functiofi fufr following sequences: Container Ship QCIF at 10 kbit/s, Mother-Daughter QCIF at
10 kbit/s, Hall Monitor QCIF at 10 kbit/s, Container Ship QCIF at 24 kbit/s, Mother-Daughter QCIF at 24 kbit/s, Silent Voice QCIF at 24 kbit/s, Foreman
QCIF at 48 kbit/s, Coast Guard QCIF at 48 kbit/s, and News CIF at 48 kbit/s.

are built dynamically, depending on the number of atoms thstribution, the NumberSplit method spends fewer bits per
be coded, which allows the NumberSplit method to avoigtom position than the theoretical lower bound for the uniform
inefficiencies of fixed tables at a cost of more computation.independent atom distribution described in Section Ill. The
In real residual images, atoms are placed at the locatiorslue of f = 0.2 was used in the experiments described in
where motion estimation is ineffective. For this reason, atonSection 1V-A2 to explore the tradeoff between rate granularity
are not distributed uniformly and independently on an imand compression efficiency for scalable video.
age—they tend to “cluster” around the regions of high residual By coding all atoms together, NumberSplit achieves good
error. One heuristic way to tune the NumberSplit algorithm toompression efficiency, but also suffers from poor error re-
the real-life images is to modify the binomial distribution tcsilience since a single transmission error may affect all atoms.
account for clustering. It is easy to see that if atoms terdbwever, the effects of such an error would not bring long-
to cluster, the probability of many atoms being in the sanlasting drift and quality degradation problems since we are
half of the image is higher than if atoms are independeahly going to use NumberSplit to code atoms in the enhance-
and identically distributed. To account for this, we emphasizeent layer for the scheme described in Fig. 3. In the single
the tails of binomial distribution in the following way: all residual scheme in Fig. 3, atoms in the enhancement layer are
probabilities of splits that are smaller than some fractjon not in the motion compensation loop, so that errors in atom
of the maximum probability in the distribution are set tgositions for the enhancement layer will not propagate to the
/> maximum probability, followed by renormalization of thefuture frames.
distribution. In Fig. 4, we see that g5is varied from 0 to 2) Fine Scalability—Granularity Versus Coding Effi-
1, the average number of bits per position of an atom feiency: We have developed a finely scalable codec based
various video sequences and bit rates is between 8.52 amdthe approach shown in Fig. 3 in which the enhancement
8.87 bits/position. It is interesting to note that, by takingayer atoms are coded in groups &fatoms at a time, where
advantage of the dependence and nonuniformity in the atawcan range from 5 to 100. We use the NumberSplit algorithm
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TABLE |
BIT RATES UsING NUMBERSPLIT AND FIXED HUFFMAN TABLES FOR SENDING 50 ATOMS IN BASE LAYER AND 100
ATOMS IN ENHANCEMENT LAYER IN GROUPS OFVARIOUS SIZES FOR CONTAINER SEQUENCE AT 7.5 FRAMES/S

Size of the groups (in | Bitrates (in Kbits/s) us- | Bitrates (in Kbits/s) us- [ NumberSplit gain (in %)
atoms) ing NumberSplit ing fixed Huffan tables

) 30.16 33.39 10.70

10 29.56 31.83 7.67

20 28.90 30.34 4.99

50 27.96 28.80 3.02

100 27.19 27.78 2.15

for efficient position coding of each group &f atoms in the ment layer frames can be coded better with fewer bits than
enhancement layer. The advantages of using this positidie enhancement layer frames corresponding to a smaller base
coding technique over the one originally proposed in [8] ardyer and coded with more bits. The relationship between the
described in Section Il are twofold. First, as will be seen latequality of a base layer and the corresponding enhancement
simulation results in Table | show that for small valueshaf layer is nonlinear.
this position coding scheme is superior to the one originally Finally, comparing the PSNR after the enhancement layer
developed in [8]; second, the NumberSplit algorithm does neith that of a nonscalable coder, the loss is between 0.72
need trained Huffman tables for each valuehafand as such, and 1.78, depending on the atom allocation. This is mainly
requires no statistics to be gathered for each valu#&y of due to the fact that refinements produced by atoms in the
Fig. 5 shows the average PSNR versus bit-ramnhancement layer are not propagated to the next frame via
characteristics of the above scalable codec based on thetion compensation. In the next section, we discuss a method
NumberSplit position coding for 10 s of th€ontainer that comes closer to the performance of nonscalable codec.
sequence coded at 7.5 frames/s. Three different allocations
of atoms between layers have been used: (50,100), (75,75), ]
and (100,50) atoms coded in base and enhancement layBrsUSing Two Residuals
respectively, on each frame. In all three cases, the totalFig. 5 shows that using a single layer for motion com-
number of atoms is 150. In this scheme, the atoms in thensation is not efficient. To improve the coding efficiency,
base layer are sent together using the method describedvim will investigate schemes based on two residual images
Section Il, while the atoms in the enhancement layer are s€Rig. 6). This method of coding multiple residuals is similar
in groups using NumberSplit. The nonscalable coder is defingdpredictive coding of EP frames in H.263Annex O [3].
in [8]. It uses the method of Section Il to code atom positionFhe first residual is the base layer residual image, i.e., the
and is identical to the scalable coder in all other respects. image reconstructed using only the atoms of the base layer, and
Table | compares the total bit rates required to send ttige second residual image is the enhancement layer residual
scalable bit stream, with 50 atoms in the base layer and lidfage. While constructing both residual images, we use the
atoms in the enhancement layer for the groups of various sizesne motion vectors that were computed using the base layer
using NumberSplit and using the fixed Huffman-tables-bas@dage. Atom positions are coded using the method described
method described in Section Il. The table was generated using][8].
10 s of theContainer sequence at 7.5 frames/s. The gains, Since the enhancement layer will use the atoms of the
ranging from 10.7 to 2.1%, are especially pronounced for smhlise layer, the choice of the base layer atoms will affect the
groups of atoms whose statistics are described poorly by fixgdality of both the base and enhancement layers. One way
Huffman tables. to control the quality of both layers is by using different
Several observations can also be made from the resultsatom allocations. That is, if we want to improve the quality
Fig. 5: First, as the group size is increased, the bit rate requirgfdthe base layer, we allocate more atoms to the base layer.
to achieve the same PSNR value drops, in agreement with thewever, this implies increasing the bit rate of the base layer,
results of Section Ill. In fact, for the case where there akehich is usually predetermined by the application at hand.
50 atoms in the base layer, using a group size of 5 atoimssome of these applications, one is more concerned with
instead of 100 atoms produces a 10% increase in bit rate Faving good enhancement layer images, while in others, better
the full enhancement layer, but allows for 900 bit/s levels dfase layer images are desired. In the remainder of this section,
granularity. we propose a way of adjusting the quality between base and
The second observation to be made from Fig. 5 is thahhancement layers while keeping their relative bit rates fixed.
the PSNR of the enhancement layer improves as the relativéOur approach is to: 1) consider both the base and enhance-
number of the atoms in the enhancement layer to base laysnt layer residuals when finding the atoms that belong to
decreases. This happens because more bits are being allodadtll layers, and 2) only consider the enhancement residual
to the base layer, so that the images in the prediction loafen finding the remaining atoms that only belong to the
are of better quality, and enhancement layer frames encadéancement layer. One way to accomplish 1) is to minimize
much less important structural information. These enhanae-weighted sum of the error of the base layer and the
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Achievable (PSNRbitrate) pairs for enhancement layer (50 base atoms per frame)
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Fig. 5. Achievable (PSNR, bit rate) points for enhancement layer as a function of size of groups in which atoms are coded for (a) 50 atoms coded at the
base layer and (b) 75 atoms coded at the base layer as a function of the size of the coding groups.

enhancement layer for finding each atom. That is, if thbat reflect the importance of each layer. The solution to this
residual of the base layer i®, and the residual of the is to find the basis function that would give the highest inner
enhancement layer i&., we want to minimize product, i.e.,

J(g,t) = min o[ Ry =t - gl* + ol |[R. = £ - gl*  (5)

where ¢ is the expansion coefficient angl € G is a basis inax = MAX [{a1 By + aaRe, g)] 6)

function in the dictionang, «;, and «, are positive weights = o+ oo
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Achievable (PSNRbitrate) pairs for enhancement layer (75 base atoms per frame)
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Fig. 5 (Continued.)Achievable (PSNR, bit rate) points for enhancement layer as a function of size of groups in which atoms are coded for (c) 100 atoms
coded at the base layer and (d) bit rates for the full enhancement layer as a function of the size of the coding groups.

and the corresponding transform coefficient is

<061Rb + a2R€7 gmax>
o] + Qo

t= (7)

where (z,y) is the inner product oft and y, and g,.x IS

with «y Ry, + s Re. Without loss of generality, we assume
a1 + o = 1.0, i.e., 01 and e € [0, 1].

Fig. 7 shows the effect af; anda- on five different atom
allocations between the base and enhancement layers. As the
value of a» increases from 0 to 1, we find that: 1) the PSNR
of the base layer decreases by 2-3 dB, depending on atom

the basis function with the largest absolute inner produaliocation, and 2) the PSNR of the enhancement layer increases
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Fig. 6. Block diagram illustrating the two-residual approach for two-layer SNR scalability.
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H283+ vs. MP for coast sequence
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Fig. 8. Comparison of H.268 and MP coders in scalable and nonscalable modes. (a) Coast Guard. (b) Hall Monitor.

by about 0.1-0.5 dB, depending on the relative number iofiportant than that of the base layer, thes = 1 is a
atoms between the base and enhancement layers. Note tiedter choice tham: = 0. An example of a situation like
the PSNR change in the enhancement layer is considerathlis is in applications where scalable video is used over a
smaller than that of the base layer@schanges from 0 to 1. time-varying channel such as the Internet. In this case, if the
As seen, for a given rate for the enhancement and base layaxsilable bandwidth is at full capacity most of the time, it
one can trade off the relative PSNR performance of the tvi® worthwhile to keep the enhancement layer at as high a
layers by choosing the appropriate valueswgfand as. quality as possible at the expense of the base layer. On the
Another interesting conclusion to be drawn from Fig. 7 isther hand in applications where the base and enhancement
that, if the quality of the enhancement layer is much motayers are equally important, it is more reasonable to operate
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Fig. 8. (Continued.)Comparison of H.263 and MP coders in scalable and nonscalable modes. (c) Mother-Daughter. (d) Silent Voice.

at e = 0 rather thanvs = 1. An example of such situation is 26.1 kbit/s. Comparing this with the results in Fig. 7, the
transmission over time-varying channels such as the Interieethancement layer of the scalable coder has 0.5 dB lower
where one expects the channel to spend 50% of the timeP&NR performance at a 0.9 kbit/s higher bit rate. This is in
higher bandwidth and the other 50% at lower bandwidth. contrast with the results obtained in Section IV-A where there
It is also interesting to compare the PSNR and bit-rate a much larger gap between the performances of the scalable
performance of the enhancement layer to the case whared nonscalable codecs.
the bit stream is not scalable. The nonscalable codec withAnother interesting observation to be made from Fig. 7
150 atoms achieves a PSNR of 34.65 dB and a bit rate isfthat the PSNR of the enhancement layer increases up to
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H263+ vs. MP for cont sequence
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Fig. 8. (Continued.)Comparison of H.263 and MP coders in scalable and nonscalable modes. (e) Container. (f) Foreman.

someas, and then decreasésThis is because a higher, To summarize, the values of and«s can be thought of as
results in degrading the quality of the base layer, which &knob that controls the quality of the resulting images without
used for motion estimation. This results in less precise motiaffecting the bit rate. We should also mention that the decoder
estimation, reducing, in turn, the quality of the base layeloes not need to know the valuesaf and«» since they are
reconstructed images and enhancement layer reconstrugigecified at the encoder.
images. 1) Comparison with H.268 Coder: In this section, we
1This is more noticeable for the case when the number of atoms of th@MPare the performances of the MP coder described in
enhancement layer is much larger than the number of atoms of the base lag@ction 1V-B and the DCT-based H.263oder [3]. There are
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TABLE 1l

VARIOUS PARAMETERS USED IN COMPARISON OF MP AND H263+; ALL SEQUENCESARE QCIF
Sequence Container | Hall | Mom | Silent | Coastguard | Foreman
Base layer QP 16.00 17.00 | 14.00 | 13.00 22.00 24.00
Enh. layer QP 12.00 10.00 | 9.00 9.00 17.00 16.00
Non scalable coder QP 9.00 8.00 | 7.00 8.00 14.00 13.00
Framerate (frames/s) 7.50 7.50 | 7.50 | 10.00 10.00 10.00
Base layer and MP non scal- 10.63 10.14 ] 9.29 | 22.96 24.46 24.81
able bitrates (Kbits/s)
Enh. layer total bitrates 22.76 23.14 | 23.50 | 44.82 47.77 46.68
and MP non scalable bitrates
(Kbits/s)
Bitrates (Kbits/s) for H263+ 22.25 24.32 | 25.21 | 41.42 46.62 48.60
non scalable coder

a number of important differences between the H-2&2al-
able codec and the scalable codec described in Section IV-B. Block 1 | Block 2
First, in our proposed MP codec, the same set of motion natoms | k atoms
vectors is used for the base and enhancement layers, whereas
in H.263+, two sets of motion vectors are used. Second,
unlike H.263t+, where enhancement layer frames are predicted
bidirectionally from the previous enhancement layer frame and
current base layer reference frame, the MP enhancement layer
frames are only predicted from the previous enhancement layer
frame. Finally, as expected, the MP codec in Section 1V-B uses
the matching pursuit algorithm for coding the residuals, while
H.263+ uses DCT. In our comparisons, we have used the
publicly available version 3.1.2 implementation of the H.263
standard from the University of British Columbia [13].

Fig. 8 shows the plot of the base and enhancement lay&tg. 9. Example illustrating weighted search. Thereraendk atoms found
PSNR'’s for MP and H.268 scalable and nonscalable codecw blocks 1 and 2 of the residual frame, respectively.
for six different sequences. The circles correspond to PSNR'’s

of scalable MP with values at; varying from O to 1 inincre- ;. ihe sequence and values of and as, while for the

ments of 0.25. In all comparisons, rate control is determine;_qj.263+ coder, the gap ranges from 0.84 to 2.65 dB. Also
by running the H.263 coder with a fixed quantization stepith the exception of theForeman and Mother-Daughter

Size er all frames in the sequence. The MP coder uses t?tenquences, the MP nonscalable coder outperforms the #.263
same intraframes as the H.26%oder, and the same number,onscalable coder at both bit rates. The MP coder also allows
of bits for both the base and enhancement layers of each frafa&o flexibly trade off the PSNR of the base and enhancement
up to a precision of about 50 bits. Since the quantization stgRers, as discussed in Section IV-B, providing a continuum
size in the H.263- coder only takes integer values from 1 tqys operating points. As; changes from 0 to 1, the change in
31, the total bit rates of the scalable and non scalable H=263SNR is much larger in the base layer than in the enhancement
runs are slightly different. Nonscalable MP runs are basqa(g,er_ So, from a practical point of view; = 0.75 represents

on the first frames and bit rates generated by nonscalaalegood compromise between the qualities of the base and
H.263+ runs, with the bits spent on all but the first framenhancement layers.

prorated in such a way that they add up to the total bit rate of

the enhancement layer for the scalable run of H2638his

way, scalable MP, scalable H.263and nonscalable MP runs ) ) ) )

use the same number of bits, with nonscalable Hi268ns !N this section, we propose two ways of improving the

producing slightly different bit rates. Various parameters us&Seline algorithm proposed in [8]. In Section V-A, we modify

to generate the results in Fig. 8 are summarized in Table |Ithe basic search strategy in [8] to find atoms. In Section V-B,
From Fig. 8, we see that for most sequences, if we keep tff§ Mmodify the position coding scheme in [8] in order to make

base layer PSNR for MP and H.263dentical by exploiting 't More error resilient.

the alpha factor, MP outperforms H.2630y 0.5-2.5 dB at )

the enhancement layer. This is true for all sequences excBptVeighted Energy Search

for ForemanandMother-Daughtersequences where MP does In this section, we propose a new search strategy for the

worse at the base layer. We also see that the difference betwiasic video coding algorithm in [8]. The search strategy in [8]

performances of MP scalable and nonscalable coders for fhist determines the block with the highest energy, and then

enhancement layer is between 0.63 and 1.46 dB, dependirsgs the center of that block as the center of exhaustive search

V. CODING EFFICIENCY IMPROVEMENTS
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TABLE I
WEIGHTS FOR ENERGY SEARCH THAT REFLECT THE ENERGY DECREASE AFTER EACH ATOM
Number of visits 1 2 3 4 5 6 7 8 9 10
Weight 1.00 | .590 | .470 | 416 | .374 | .354 | .333 | .326 | .301 | .290
Number of visits 11 12 13 14 15 16 17 18 19 20
Weight 2791 268 | 235 | .235 | 223 | 217 | .201 | .182 | .180 | .180
TABLE IV
WEIGHTS FOR ENERGY SEARCH AND OPTIMIZED TO INCREASE THE AVERAGE PSNR
Number of visits 1 2 3 4 H 6 7 8 9 10
Weight 1.00 { .590 | .440 | .350 | .307 | .268 | .240 | .225 | .210 | .200
Number of visits 11 12 13 14 15 16 17 18 19 20
Weight 200 | .200 | .200 | .200 | .200 | .200 | .200 | .200 | .200 | .200
T : . 32 .
--- MPEG-4 VM
09+ | MP Not Weighted
\ _— MP Weighted
0.8 \ 31.5
0.7 \\
06F | g 3
H 5
05F i il
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Fig. 10. Heuristic weights (solid line) and weights computed as the normal-
ized energy decrease (dotted line).
29 50 100 150 200 250 300

Frame number

over ansS x S region. In [12], Banham and Brailean modify_ _ L
he basi h strate in such a wav that the blocks clogé' 11. Luminance ‘PSNR versus frame number fpr MPEGT4 ver|f|cat_|on
the basic search s ) gy | u w _y Bel (dash—dotted line), unweighted search matching pursuit (dotted line),
to the center of the image are more likely to be chosen farid weighted search matching pursuit (solid line). The sequence used is
exhaustive search. This strategy is based on an assumpﬁgpﬁainer Shipcoded at 7.5 frames/s and 10 kbit/s. All frames except the first

. . . . . a%e -frames, and the number of bits per frame matches in all approaches.
that the most important information is located in the center 0
a frame. The motivation behind our modified search strategy is

that the basic search strategy in [8] does not necessarily ressilitlefined as

in the most rapid energy decrease of the residual signal. From (R™,g.)|
the coding efficiency point of view, it is highly desirable to MR" f) = sup W 9)
reduce the residual energy with as few atoms as possible. In vew
the remainder of this section, we will propose a new strategyis means that
for finding the best block whose center is subsequently used 1 o2 Rl 12 o2
AR™ = ||R"f||* = |[R*TfII7 2 w[n] - |[R"f||*  (10)

for exhaustive search.
Recall that Mallat and Zhang [6] have shown that if W& hereAR™H is the energy decrease after coding atora 1.

are representing a signgl using an overcomplete set andrp 4 is, the energy decrease aftes- 1 atoms is bounded by

matching pursuits, then the relationship between the energy;Qf energy after. atoms weighted by a factor that depends

the residual aften + 1 atoms, || R"+* f||, and the energy of o the correlation between the residual afteatoms and the

the residual after. atoms||R" f|| is basis set. Using (10), the weights are related to the energies by

R FIP? — 1R f?
[l

IB" 1P < (B FI*(1 = win]) (8)

wherew[n] = A2(R" f) is the rate of decrease, which depends
on the correlation betweeR" f and the basis functions, andwhere A[n] is the normalized energy decrease.

wln] < Aln] = (11)
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TABLE V
CoMPARISON AMONG UNWEIGHTED SEARCH (UW), WEIGHTED SEARCH WITH WEIGHTS SHOWN
IN TABLE | (WO), AND WEIGHTED SEARCH WITH WEIGHTS SHOWN IN TABLE Il (WH)

Sequence Format Rate UW | WO | WH | WH-UW
frame | Bit
CONTAINER-SHIP QCIF | 10K | 7.5 30.41 | 30.94 | 30.99 +0.58
HALL-MoNITOR QCIF | 10K | 7.5} 30.55 | 31.12 | 31.17 +0.62
MOTHER-DAUGHTER QCIF | 10K 7.5 1 32.73 | 32.66 | 32.74 +0.01
CONTAINER-SHIP QCIF { 24K | 10.0 | 34.05 | 34.23 | 34.21 +0.16
SILENT-VOICE QCIF | 24K | 10.0 | 31.17 | 31.72 | 31.71 +0.54
MOTHER-DAUGHTER QCIF | 24K [ 10.0 | 35.46 | 35.54 | 35.56 +0.20
CoAST-GUARD QCIF | 48K | 10.0 | 29.95 | 29.95 | 29.84 -0.11
FOREMAN QCIF | 48 K | 10.0 | 30.64 | 30.79 | 30.78 +0.14

......................................................

Fig. 12. The effect of error if the gray atom was contaminated for the mode

where atoms in each macroblock are coded separately. The dotted linesRige 13. Scan used to code the atoms in a macroblock. First pixels 1, 2, 3,
the boundaries of the macroblocks. The black atoms are received correddyd 4 are coded.

while gray ones are contaminated. The light gray area is the area that may

be affected by the error.

TABLE VI
MAcCRoOBLOCK TYPES
The main idea behind our proposed search strategy is thgfsgs Atoms | Code 1 Mode Atoms | Code
the expected energy decrease for each block diminishes BSTRA Yes 101110 T INTRA No 101111
more atoms are coded in that block. As such, blocks with feWNTER Yes 110 INTER No 111
coded atoms may be better search candidates for reducing thiéTER4V | Yes 1010 INTERA4V | No 10110
energy than those with higher energy, but with more atoms.INTERO | Yes 100 INTERO | No 0

This concept can be used in predicting the block that will

decrease the energy the most. For example, while searching ] .
for the best block in Fig. 9, the following is true: To reduce the complexity, we assume that the weights of all

blocks in the frame are the same, i@;[n] = w[rn], for all <.
AR = [n]|| BT f|? (12)  This implies that the weights are only a function of the number
AR’Q““ > wo[K]||RE £12 (13) of atoms already in the block, and that they are independent
of the location of the block. This reduces our problem to
where R, and R, are the residuals of blocks 1 and 2egtimating a set of weights to be used for the whole frame
respectively, andk are the number of atoms found in blocks,, sequence. Our approach is to estimate the weights from

1 and 2, respectively, and training sequences. We use the unweighted search-matching
wi[n] = \2(RY) (14) pursuits toh choose It_hedsearch a:jea azs desc;ibedf_ ir(lj _[8]. We

compute the normalized energy decre after findin

waln] = NA(RY). (1s) SomP 9 b ;

each atom per block, where is the number of times the

Thus, if we can estimate the weighis andw,, we obtain a current block has been visited so far. That is, we find the
lower bound on the energy decrease using (12) and (13). decrease in the energy of the block after finding the atom, and
Computing the weights using (9) involves an exhaustiveormalize it to the energy of the block before finding the atom.

search to find the highest inner product from each block, akde then averageé\[n] for all three training sequences. Then
use them to compute the weights or pick the one that redutks weightsw[n] = A[n] are normalized to have a maximum
the energy the most. This is very computationally intensivef 1.0. The last step is unnecessary, however, since it indicates
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TABLE VII
AVERAGE PSNR oF DIFFERENT SEQUENCES AT DIFFERENT BIT RATES FOR THE FRAME-BASED
PosiTioN MP CoDER [8] AND THE MACROBLOCK-BASED PosiTioN MP CoDER

Sequence Format Rate PSNR (dB)

Bit | Frame Frame- Macro- Difference
based block-based

CONTAINER-SHIP QCIF 10 K 7.5 Y 31.29 31.40 +0.11
Cb | 37.10 37.22 +0.12
Cr | 37.41 37.53 +0.12
HALL-MONITOR QCIF 10K 75 Y | 31.58 31.77 +0.19
Cb | 36.39 36.52 +40.13
Cr | 39.50 39.74 +0.24
MOTHER-DAUGHTER QCIF 10 K 7.5 Y 33.06 33.21 +0.15
Chb | 38.58 38.86 +0.28
Cr 39.97 39.97 0.00
CONTAINER-SHIP QCIF 24 K 10.0 Y 34.27 34.38 +0.11
Cb |740.33 40.50 +0.17
"Cr 40.45 40.40 -0.05
SILENT- VOICE QCIF 24 K 10.0 Y 32.04 32.22 +0.18
" Cb | 36.35 36.71 +0.36
Cr | 37.53 37.74 +0.21
MOTHER-DAUGHTER QCIF 24 K 100 | Y | 35.68 35.80 +0.12
Cb | 40.72 40.93 +0.21
Cr | 41.65 41.77 +0.12
CoAsT-GUARD QCIF 48 K 100 Y 30.02 30.05 +0.03
Cb | 40.27 40.32 +0.05
Cr 42.82 42.93 +0.11
FOREMAN QCIF 48 K 10.0 Y 31.11 31.11 0.00
Cb | 37.85 37.81 -0.04
Cr | 38.27 38.36 +0.09
NEws CIF 48 K 7.5 Y 32.18 32.44 +0.26
Cb | 37.28 37.74 +0.46
Cr { 38.13 38.34 +0.21
CoAasT-GUARD CIF | 112 K 15.0 Y 27.50 27.64 +0.14
Cb | 38.07 38.44 4-0.37
Cr | 41.22 41.46 +0.24
FOREMAN CIF | 112 K 15.0 Y 30.05 30.11 +0.06
“Cb | 36.40 36.45 +0.05
Cr | 37.42 37.72 +0.30
NEws CIF 112 K 15.0 Y 35.40 35.52 +0.12
Cb | 39.97 40.19 +0.22
Cr 40.44 40.63 +0.19
MoOBILE-CALENDAR SIF 1M 30.0 Y 26.90 26.92 +0.02
Cb | 33.67 33.68 +0.01
Cr | 33.34 33.37 +0.03
STEFAN SIF 1M 30.0 Y 29.51 29.58 +0.07
Cb | 36.45 36.56 +0.11
Cr 36.36 36.43 +0.07

the relative energy decrease expected between a block visiBedMacroblock-Based Position Coding

once and a_nothervisitedtimes. Table IIl shows the resulting In video transmission over noisy channels, it is important

weights using this approa_\ch. . ... for bit streams to be robust to transmission errors. It is also
Anqther approagh tq f'r.]d. the weights _by _tralnlng Is b mportant, in case of errors, for the error to be limited to a

optimizing each yve|ght individually by maximizing the PSN small region, and not to propagate to other areas. However,

of a set of training sequences. That is, we @] = 1.0, Fin the position coding scheme introduced in [8], the atoms

then we varyw([2] in order to maximize the average PSN . L
of the training sequences. After that, we fi2] and start can appear in any position in the frame, and the error cannot
EPe limited to an area if it occurs. This is because the atom

tweaking w[3], and so forth. Table IV shows the resultin ,

weights using this technique. Fig. 10 shows that these weighg@meters are coded using VLC tables. 3

are very similar to the weights that reflect the energy decrease'Ve address this problem by developing a new position

and they have the same trend. coding mechanism that limits the effect of an error to a
Fig. 11 compares the luminance PSNR of each frame fo{acroblock (16x 16 pixels) and its immediate neighbors.

weighted and unweighted search. It is interesting to note thidle new position scheme codes atoms that are in the same

the PSNR increases as we code more frames for weightgacroblock together. Thus, if an error occurs, it would affect

search. Table V compares the average luminance PSNR doknown area in the image with the maximum area shown

the weighted and unweighted searches, showing that weightedrFig. 12. If the maximum size of the basis function is

search always outperforms unweighted search. 32, the maximum number of blocks affected is nine, i.e.,
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TABLE VIII
AVERAGE PSNROF DIFFERENT SEQUENCES AT DIFFERENT BIT RATES FOR ADCT CobeR (MPEG-4 VM) AND MATCHING PurRsuIT CODER

Sequence Format Rate PSNR (dB)
Bit | Frame" DCT MP P-DCT
CONTAINER-SHIP QCIF 10 K 751 Y [ 29.88 31.40 +1.52
Cb | 37.00 37.22 +0.22
Cr | 36.53 37.53 +1.00
HALL-MONITOR QCIF 10K 7.5 Y | 30.30 31.77 +1.47
Cb | 36.52 36.52 0.00
Cr { 39.63 39.74 +0.11
MOTHER-DAUGHTER QCIF 10 K 7.5 Y | 32.64 33.21 +0.57
Cb | 38.73 38.86 +0.13
Cr | 39.65 39.97 +0.32
CONTAINER-SHIP QCIF 24 K 100 | Y | 33.38 34.38 +1.00
Cb | 39.45 40.50 +1.05
Cr | 38.63 40.40 +1.77
SILENT-VOICE QCIF 24 K 100 [ Y | 31.04 32.22 +1.18
: Cb | 35.26 36.71 +1.45
Cr | 36.93 37.74 +0.81
MOTHER-DAUGHTER QCIF 24 K 100 [ Y | 35.27 35.80 +0.53
Cb [ 40.13 40.93 +0.80
Cr | 4091 41.77 +0.86
CoAsT-GUARD QCIF 48 K 100 Y 29.42 30.05 +0.63
Cb | 40.00 40.32 +0.32
- Cr | 41.90 42.93 +1.03
FOREMAN QCIF 48 K 100 { Y | 31.14 31.11 -0.03
Cb | 37.22 37.81 +0.59
r | 37.39 38.36 +0.97
NEws CIF 48 K 7.5 Y 31.14 32.44 +1.30
“Cb | 35.93 37.74 +1.81
Cr | 37.39 38.34 +0.95
CoAsT-GUARD CIF | 112K 150} Y | 26.07 27.64 +1.57
Cb | 38.05 38.44 +0.39
Cr | 40.27 41.46 +1.19
FOREMAN CIF | 112 K 15.0 Y 28.66 30.11 +1.45
Cb | 35.41 36.45 +1.04
Cr | 35.90 37.72 +1.82
NEwS CIF 112 K 15.0 Y 34.23 35.52 +1.29
Cb | 38.27 40.19 +1.92
Cr | 39.08 40.63 +1.55
MOBILE-CALENDAR SIF 1M 30,0} Y | 2645 26.92 +0.47
Cb | 30.82 33.68 +2.86
Cr | 30.35 33.37 +3.02
STEFAN SIF 1M 300 | Y | 2949 29.58 +0.09
Cb | 34.85 36.56 +1.71
Cr | 34.48 36.43 +1.95

3 x 3 macroblocks around the macroblock where the errtdTRA or INTER macroblocks. INTRA macroblocks are
occurred. The idea of coding atoms on a macroblock lpded independently of the other frames. INTER macro blocks
macroblock basis to improve error resilience was introduceepend on other frames because motion compensation is used
by Banham and Brailean in [12]. Our method improves the code them. In MPEG-4 and H.263, there are two INTER
macroblock-based position coding technique described in [If®gcroblocks: INTER, which uses one motion vector, and
by increasing the coding efficiency without sacrificing errdoNTER4V, which uses four motion vectors per macroblock.
resilience. These eight types are: INTRA macroblock without atoms,
The atoms of each macroblock are reordered accordingllTRA macroblock with atoms, INTER macroblock without
the scan shown in Fig. 13. Afterwards, the atoms are codatbms, INTER macroblock with atoms, INTER4V macroblock
differentially. Four different VLC tables are used to code theithout atoms, INTER4V macroblock with atoms, INTER
atoms depending on the number of atoms in it. With a smatlacroblock with zero motion vector (INTERO) without atoms,
loss of coding efficiency, we can code the position of ea@nd INTERO macroblock with atoms. The INTERO types were
atom absolutely within a macroblock. This will limit the effectadded because they are very common, especially at low bit
of the loss of an atom only to the support of that atom.  rates. These types and their codes are summarized in Table VI.
Since the atoms are coded on a macroblock level, we canTable VII compares the coding efficiency of the frame-
multiplex them with the motion information. An efficientbased [8] and macroblock-based position coding schemes. One
way to combine them is by defining eight different macrowould expect an error-resilient scheme to be less efficient than
block types. The eight types are defined because we arscheme without such properties. However, the average lumi-
using an MPEG-4 (or H.263) motion model that allows eitharance and choma PSNR’s of the macroblock-based mode se-
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Fig. 15. Frame 20 of 30 frameldobile Calendarsequence coded at 1 Mbit/s
using: (a) DCT-based coder (MPEG-4 VM) and (b) matching pursuit coder.
Blocking artifacts can be noticed on the DCT coded frame.

B of the MP video coder to that of a DCT-based coder. In
(b) . .
o 14 50 of 10 frameoast Guard dod at 48 Kbit! this section, we compare the performance of the MP coder
19. . rame (o) ramefsoas uarasequence coded al s, : H
using: (a) DCT-based coder (MPEG-4 VM) and (b) matching pursuit codeWIth that of MoMusSys version VM8f971 006 O_f the MPEG-4
Blocking artifacts can be noticed on the DCT coded frame. DCT-based coder. The comparison is done using the sequences
o _ tabulated in Table VIII coded at bit rates that range between
quences is higher than that of the frame-based mode in all gt kbit/s and 1 Mbit/s. The first frame for both approaches
one sequence. The gain ranges betwe®r01 and 0.21 dB. s coded using the MPEG-4 DCT INTRA mode. Both first
Macroblock-based mode achieves these gains by taking ift@mes are identical, and both coders code each frame with
account the propel’ties of atom distribution and the Correlatiqﬁb same number of bits up to the resolution of the MP Coden
between motion vectors and atom locations. The scannipg,, 30 bits.
order in F|g 13, combined with differential COding, utilizes the Table VIII shows the average luminance and chroma
fact that atoms are more likely to lie on the corners and edge§NR's for these different sequences. In all but one example
of macroblocks to improve coding efficiency. By multiplexingyf Table Vil the matching pursuit coder has a higher average
atom presence information with motion vectors, we utilize th8sNR than the DCT coder. Fig. 14 shows frame 50 of the
fact that atoms are unlikely to appear in a macroblock Wity frame/s QCIFCoast Guardsequence coded at 48 Kkbit/s
no motion. Thus, the macroblock-based mode offers betg—ging the MPEG-4 DCT coder [5] and the MP coder. The
coding efficiency performance and a potential for better ermgjcT coded frame suffers from blocking artifacts. Fig. 16(a)
resilience. compares the luminance PSNR for each frame of the sequence
] ) for the MPEG-4 VM DCT coder and the MP coder. Fig. 15
C. Comparison with DCT Approaches shows frame 20 of the 30 frame/s SMobile Calandar
All video compression standards are DCT-based coders [¢&guence coded at 1 Mbit/s using the MPEG-4 DCT coder [5]
[2], [4], [5], so it is of interest to compare the performancand the MP coder. Fig. 15 compares the luminance PSNR per
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Fig. 17. Padding technique used in computing the inner products. The stars
of value 0.25 correspond to pixels that are part of the signal. The solid part
28.5 . . . : . of the basis function is used to compute the inner product, and both the inner
50 100 150 200 250 300 product and the basis function are renormalized by the norm of this part.
Frame ro. The dotted part of the basis function is discarded when computing the inner
(a) product.
28.5

proposed to extend DCT-based techniques in order to handle
arbitrary-shaped objects [14]-[17]. In this section, we extend
the MP coder to support coding texture of arbitrary-shaped
objects. It should be clear, however, that we do not intend
here to develop a shape coder based on matching pursuits,
but to extend the MP coder to support the coding texture
of arbitrary shaped objects. Thus, we will use the MPEG-4
arbitrary-shape coder to code the shape information [5] for all
of our experimental results.

Two problems should be addressed when extending the MP
coder to support arbitrary-shaped objects. The first problem is
concerned with computing the inner products and comparing
them, especially at the boundaries of the object. The second
problem is how to code the atoms within the shape. The second
L . problem mainly deals with position coding.

26 T S 1 One solution to the first problem is to pad the object with
zero values. Thus, when computing the inner product, we only
consider the object pixels. This means that our basis functions

27.5F

Y PSNR (dB)
N
~

26.51

255 p v pr o~ pn 500 have changed on the boundaries to fit the object better. Fig. 17
Frame no. gives an illustration of how padding is done. The norm of each
(b) basis function will change according to the pixels it covers. We

Fig. 16. Frame-by-frame distortion of the luminance component of the (_mepeﬂsate for this by reno_rmalizmg the basis f_unCtion and the
Coast Guardsequence coded at 48 kbit/s and (b) Mobile Calendar sequeriewier product while searching and reconstructing. Moreover,
coo:%dl_at 1 Mbit/s using MPEG-4 VM (dotted line) and matching pursuitgyy petter performance, the energy of each block when doing
Soll ne). . . . .

( ) the energy search is weighted by the ratio of the pixels of the

, block are in the object.
frame. In both cases, the MP coder has better visual quality,s \will now describe two approaches to code the atoms

and consistently better PSNR. when coding video objects with arbitrary shapes.
1) Bounding Box ApproachThe first approach is the sim-
VI. CODING ARBITRARY-SHAPE VIDEO OBJECTS plest extension of the rectangular case. We simply fit the shape

One of the main differences between MPEG-4 and othirside a rectangular frame as shown in Fig. 18, and use the
video coding algorithms is the ability to code and randomlgriginal matching pursuits coder. It should be noted that since
access arbitrary shape objects. This is an important functiddPEG-4 codes shape in 16 16 blocks, we extend the frame
ality for many applications, e.g., multimedia databases, vidém include these blocks, even though their region of support
games, etc. In recent years, several approaches have beght be outside the object. Fig. 19 shows two frames of
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Fig. 18. Approach | to code the atoms by fitting a rectangular frame arou
the shaded object.

@

the Coast Guardsequence coded using SA-DCT and SA-MP
coders. The SA-DCT frame suffers from blocking artifacts
loss of detail, and changes the color of the front of the bos
from red to black. The SA-MP frame is cleaner, has mor
details, and does not have color problems.

2) Coding Only Objects:The second approach only scang
the atoms inside the object without fitting the shape with
rectangular frame.

Table IX shows the PSNR performance of this approac
as compared to the bounding box approach and the latg
SA-DCT results from the MPEG-4 Verification Model (VM).
As seen, there are three sets of results corresponding to ©
matching pursuit approach.

« MP1 stands for the case where the bounding box approa
is used, and the positions of the atoms are coded in t
“separate mode” as described in our original codec in [8
in the separate mode, all of the motion vectors are codg
separately from the atoms and their positions. This is i
contrast to the “combined” macro block position coding (b)
technique described in Section V-B where the residugly 19. Frame 30 of the 10 frameZ®ast Guardsequencébig boat)coded
image is divided into macroblocks and the positions @t 16 kbit/s using: (a) SA-DCT-based coder (MPEG-4 VM) and (b) SA-MP
motion vectors and atoms in each macroblock are codglfier- Details are lost by the deblocking filter on the DCT coded frame.
together.
« MP2 stands for “coding only objects” with separate mode.
« MP3 stands for “coding only objects” with combinedn the area of scalability, we found that the most natural
mode. way of generating scalable video using MP is to use the
As seen, The MP3 performs better than MP2, which inumber of coded atoms. We proposed two basic schemes for
turn performs better than MP1. The last column in the tabROth fine and coarse level scalability in Sections IV-A and
compares the performance of the MP3 and SA-DCT techniqu¥;B. respectively, and found that it is possible to achieve
As seen, the luminance performance of MP3 is better than tial€!Y fine level of rate scalability at the expense of loss
of VM in 11 cases, and worse than VM in two cases. As fdP PSNR. For the fine grain scalable codec in Section IV-A,
chroma, in ten cases, MP3 outperforms VM in bétrandv e proposed a new position coding algorithm, NumberSplit,

components and in one case, VM outperforms MP3 in botat does not require any Huffman tables and outperforms
I/ and V. the original position coding scheme in [8]. For the coarse

grain scalable codec in Section IV-B, we developed a way
of trading off the quality of the enhancement layer with that
of the base layer without changing the bit rate of each layer.

In this paper, we extended the basic residual video codifiyis is desirable in applications where the rates of both layers
scheme described in [8] to address issues regarding scaladié fixed, but the quality of the reconstructed frames for one
ity, arbitrary shape coding, and improved coding efficiencyayer is more important than the other one.

VII. CONCLUSIONS
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TABLE IX
CoMmPARISON BETWEEN SA-MP AND SA-DCT As Useb IN MPEG-4; VM: SA-DCT, ®wmBINED MoDEg; MP1: SA-MP, BouNDING Box APPROACH
SePARATE MODE; MP2: SA-MP, @DING ONLY OBJECTS SEPARATE MODE; MP3: SA-MP, @®DING ONLY OBJECTS COMBINED MODE

Sequence VM MP1 MP2 MP3 MP3-VM
CoAST-GUARD Bit-Rate(Kbits/s) | 21.81 21.60 21.66 21.94

object0 PSNR._Y(dB) 28.94 29.70 29.73 29.82 0.88
(water) PSNR.U(dB) 45.42 48.84 49.38 49.54 4.42
10frames/s PSNR.V(dB) 46.14 48.54 49.26 49.53 3.39
CoasT-GUARD Bit-Rate(Kbits/s) | 15.71 15.78 15.80 15.79

objectl PSNR_Y(dB) 27.17 27.45 27.57 27.53 0.36
{big boat) PSNR_U(dB) 39.66 39.87 39.89 40.24 0.58
10frames/s PSNR_V(dB) 36.54 39.31 38.87 38.36 1.82
CoasT-GUARD Bit-Rate(Kbits/s) | 9.499 9.506 9.489 9.357

object2 PSNR_Y(dB) 25.72 26.30 26.27 26.33 0.61
(small boat) PSNR.U(dB) 38.25 38.80 38.97 38.65 0.40
10frames/s PSNR_V(dB) 37.83 39.70 39.52 38.91 1.08
CoasT-GUARD Bit-Rate(Kbits/s) | 10.73 10.86 10.86 10.76

object3 PSNR_Y(dB) 26.48 27.20 27.15 27.25 0.77
(land) PSNR._U(dB) 36.47 36.34 36.22 36.34 -0.13
10frames/s PSNR_V(dB) 42.49 42.39 42.46 42.43 -0.06
CHILDREN Bit-Rate(Kbits/s) | 23.25 23.49 23.43 23.08

object0 PSNR_Y(dB) 29.09 29.07 29.14 29.16 0.07
(background) PSNR_U(dB) 28.56 29.26 29.33 29.26 0.70
10frames/s PSNR_V(dB) 29.84 30.46 30.54 30.63 0.79
CHILDREN Bit-Rate(Kbits/s) | 46.80 47.00 46.95 46.38

objectl PSNR_Y(dB) 26.60 25.85 26.15 25.88 -0.72
(kids and ball) | PSNR.U(dB) 29.93 30.98 31.08 30.91 0.98
10frames/s PSNR._V(dB) 29.57 30.86 31.04 30.84 1.27
HaALL-MONITOR Bit-Rate(Kbits/s) | 11.31 11.46 11.48 11.22

objectO PSNR.Y(dB) 31.02 31.44 31.51 31.49 0.47
(background) PSNR_U(dB) 36.82 36.76 36.77 36.78 -0.04
10frames/s PSNR_V(dB) 40.34 40.35 40.32 40.35 0.01
HaLL-MoNITOR | Bit-Rate(Kbits/s) | 5.325 5.450 5.441 5.275

objectl PSNR_Y(dB) 25.39 25.18 25.28 25.63 0.14
(person1) PSNR._U(dB) 33.61 33.90 34.40 34.16 0.55
7.5{rame/s PSNR_V(dB) 38.04 36.91 37.06 37.10 -0.94
HaLL-Monrror | Bit-Rate(Kbits/s) | 3.833 3.950 3.953 3.811

object?2 PSNR_Y(dB) 24.75 24.69 24.84 25.12 0.37
(person2) PSNR_U(dB) 34.41 34.46 34.44 34.50 0.09
7.5frames/s PSNR_V(dB) 37.52 37.79 37.94 38.04 0.52
WEATHER Bit-Rate(Kbits/s) | 27.66 27.82 27.81 27.54

objectO PSNR_Y(dB) 27.52 27.19 27.32 27.33 -0.19
(background) PSNR_U(dB) 25.96 27.23 27.39 27.38 1.42
7.5frames/s PSNR_V(dB) 27.91 28.93 29.09 29.01 1.10
WEATHER Bit-Rate(Kbits/s) | 22.43 22.59 22.56 22.17

objectl PSNR_Y(dB) 28.75 28.70 28.87 28.88 0.13
(Akiyo) PSNR_U(dB) 30.46 31.46 31.83 31.69 1.23
7.5frames/s PSNR._V(dB) 35.12 35.78 35.80 35.74 0.62
CONTAINER-SHIP | Bit-Rate(Kbits/s) | 5.726 5.870 5.849 5.745

object0 PSNR_Y(dB) 34.83 35.49 35.63 35.73 0.90
(water) PSNR.U(dB) 41.79 42.41 42.44 42.47 0.68
7.5frames/s PSNR._V(dB) 40.86 41.08 41.27 41.38 0.52
CoNTAINER-SHIP | Bit-Rate(Kbits/s) | 8.923 9.009 9.038 8.945

object1 PSNR_Y(dB) 26.06 26.94 26.96 27.05 0.99
(ship) PSNR_U(dB) 33.48 33.78 34.08 34.04 0.56
7.5frames/s PSNR_V(dB) 31.71 32.85 32.94 32.99 1.28

In the area of arbitrary-shape coding, we found that convemance of the MP codec exceeds that of the DCT-based VM
tional frame-based MP can be easily extended to MP textureMPEG-4 by as much as 1.4 dB. In addition, from a visual
coding of arbitrary shapes. In spite of its simplicity, the shapgoint of view, the MP coder did not suffer from blocking and
adaptive MP outperforms shape-adaptive DCT by as muchrégging artifacts, color bleeding, and loss of detail that are
1 dB. typical for low bit-rate DCT coders.

Finally, we demonstrated ways to improve the performance
of the matching pursuits video coder as described in [8]
by introducing a new weighted energy search and a new ACKNOWLEDGMENT
“combined” position coding technique. The combined position The authors wish to thank G.0&, B. Erol, M. Gallant, and
coding has the added advantage that it makes the MP coéeof. F. Kossentini from the University of British Columbia
more robust to errors. With these improvements, the perfdor providing them with the H268 coder.
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