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Abstract—The use of matching pursuit (MP) to code video
using overcomplete Gabor basis functions has recently been
introduced. In this paper, we propose new functionalities such
as SNR scalability and arbitrary shape coding for video coding
based on matching pursuit. We improve the performance of the
baseline algorithm presented earlier by proposing a new search
and a new position coding technique. The resulting algorithm is
compared to the earlier one and to DCT-based coding.

Index Terms—Arbitrary shape coding, matching pursuit, scal-
ability, video compression.

I. INTRODUCTION

A LL existing video compression standards are hybrid
systems in that the compression is achieved in two main

stages: the first stage, motion estimation and compensation,
predicts each frame from its neighboring frames, compresses
the prediction parameters, and produces the prediction error
frame; the second stage codes the prediction error. All existing
video compression standards use block-based discrete cosine
transform (DCT) to code the residual error [1], [2], [4]. Al-
though DCT video coding is efficient, it introduces undesirable
blocking artifacts, especially at low bit rates. Moreover, due to
bit-rate restrictions, some blocks are only represented by one
or a small number of coarsely quantized transform coefficients,
resulting in artifacts commonly known as ringing and mosquito
noise. Other approaches such as wavelets [7] introduce ringing
or rippling artifacts, which become most bothersome in the
vicinity of image edges.

Neff and Zakhor have recently applied the matching pursuit
(MP) technique of Mallat and Zhang [6] to code the motion
prediction error signal [8]. The MP coder divides each motion
residual into blocks, and measures the energy of each block.
The center of the block with the largest energy value is adopted
as an initial estimate for an inner product search. A dictionary
of Gabor basis vectors is then exhaustively matched to an

window around the initial estimate. The location, basis
vector index, and value of the largest quantized inner product
are then coded together. This procedure is applied recursively
until either the bit budget is exhausted or the distortion goes
below a prespecified threshold.

Video sequences coded using matching pursuit do not suffer
from either blocking or ringing artifacts since the basis vectors
are only coded when they are well matched to the residual
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signal. As the bit rate decreases, the distortion introduced
by matching pursuit coding takes the form of a gradually
increasing blurriness or loss of detail.

In this paper, we propose two new functionalities, i.e., SNR
scalability and coding of arbitrary shaped video objects, based
on matching pursuit. We also propose two ways to improve
the performance of the baseline algorithm in [8]. These include
new search strategies and new position coding techniques.

This paper is organized as follows. Section II reviews
video coding using matching pursuit, Section III provides a
pessimistic bound on coding efficiency for positions of a group
of atoms, Section IV discusses SNR scalability, Section V in-
troduces new position coding and search strategies to improve
coding efficiency, and compares the performance of match-
ing pursuit with that of DCT-based coders (MPEG-4 [5]),
Section VI extends the MP coder to support arbitrary shape
video sequences, and finally, Section VII concludes the paper.

II. M ATCHING PURSUIT VIDEO CODER

Representing a signal using an overcomplete basis set im-
plies that there is more than one representation for the signal.
For coding purposes, we are interested in representing the
signal with the fewest basis vectors. This is an -complete
problem [6]. Different approaches have been investigated
to find or approximate the solution. Matching pursuit is a
multistage algorithm, which in each stage finds the basis vector
that minimizes the mean-squared error [6].

Suppose we want to represent a signal using basis
vectors from an overcomplete dictionary or basis set
Individual dictionary vectors can be denoted as

(1)

Here, is an indexing parameter associated with a particular
dictionary element. The decomposition begins by choosing
to maximize the absolute value of the following inner product:

(2)

where is the transform or expansion coefficient. A residual
signal is computed as

(3)

This residual signal is then expanded in the same way as
the original signal. The procedure continues iteratively until
either a set number of expansion coefficients is generated or
some energy threshold for the residual is reached. Each stage

yields a dictionary structure specified by an expansion
coefficient and a residual which is passed on to
the next stage. After a total of stages, the signal can be

1051–8215/99$10.00 1999 IEEE



124 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 9, NO. 1, FEBRUARY 1999

Fig. 1. Separable two-dimensional 20� 20 Gabor dictionary.

approximated by a linear function of the dictionary elements:

(4)

Direct application of matching pursuit to represent motion
compensation residual error is computationly intensive to the
extent that it makes the algorithm nonpractical. This is because
an residual image with one luma pixels and
two chroma components, and a dictionary
set of basis functions would require the computation of

inner products. For
(QCIF image), and we need to compute 15.2
million inner products. If the average support of the basis
functions is we need 3.4 billion multiplications
and additions each time one function is computed. Clearly,
such a level of computation would make the algorithm too
prohibitive from an implementation point of view.

To overcome this computational complexity, the matching
pursuit video coder in [8] first divides each motion residual
into blocks, and measures the energy of each block. The center
of the block with the largest energy value is adopted as an
initial estimate for the inner-product search. A dictionary of
Gabor basis vectors, shown in Fig. 1, is then exhaustively
matched to an window around the initial estimate. The
exhaustive search can be thought of as follows. Each
dictionary structure is centered at each location in the search
window, and the inner product between the structure and the
corresponding region of image data is computed. The
largest inner product is then quantized. The location, basis vec-
tor index, and quantized inner product are then coded together.

The decoder needs to know the basis function used to repre-
sent the residual error, its locations, and the value of the quan-
tized inner product. For a more efficient coder, the basis index
and the inner product are coded using variable-length codes

(VLC). To code atom positions, the atoms are sorted in posi-
tion order from left to right and top to bottom within the resid-
ual image. A differential coding strategy employs three basic
codeword tables. The first table1 is used at the beginning of
a screen line to indicate the horizontal distance from the left
side of the image to the location of the first atom on the line.
For additional atoms on the same line, the second table2
is used to transmit the interatom distances. The2 table also
contains an escape code indicating that no additional atoms
exist on the current line. The escape code, when used, is always
followed by a 3 code, indicating how many lines in the image
may be skipped before the next line containing coded atoms.
The 3 code is then followed by a 1 code since the next
atom will be the first on a particular line. No special codeword
is needed to indicate the end of the atom field since the number
of coded atoms is transmitted as header information.

III. T HEORETICAL BOUNDS ONPOSITION CODING EFFICIENCY

In this section, we derive a theoretical bound on the number
of bits used for atom position coding. As we will see, the
theoretical bound shows that the efficiency of atom position
coding improves as the number of atoms that are to be coded
together is increased. This bound is relevant in understanding
coding efficiency losses involved in achieving SNR scalability.

To characterize the dependence of coding efficiency on the
number of atoms coded together in a single group, consider
a situation where atoms are assumed to be uniformly and
independently distributed on an image. Our goal
is to derive an expression for entropy of various placements
of atoms on an image, without taking the order of
atoms into consideration. This problem is equivalent to finding
the entropy of the various ways in whichindistinguishable
balls can be put into baskets where, in our case,is
and is the size of the group of atoms whose positions are to
be coded. For example, in the case where ,
there are three possible placements: both balls in the first
basket, both balls in the second basket, and one ball in each
basket. The probabilities of the first and second placements are
0.25 and of the third 0.5 since balls are placed into baskets
independently and uniformly. In general, there are
different placements of balls in baskets. Of course, some of
these placements have different probabilities, so if we assume
that they all have equal probability, we will get an upper
bound on the entropy which is Also, note that
there are placements in which no basket has more than
one ball, and that all such placements are equally probable.
Therefore, is the lower bound on the entropy of
placement distribution. Thus, the entropy per atom is between

and
Fig. 2(a) shows the upper bound on the number of position

bits per atom needed for 176 144 QCIF images as a
function of the number of atoms coded together. As expected,
the coding efficiency improves as the number of atoms in-
creases. This is in agreement with the experimental results
in Section IV-A2. Fig. 2(b) shows the difference between
the theoretical lower and upper bounds as a function of the
number of atoms coded together, again for QCIF images.
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(a)

(b)

Fig. 2. Lower and upper bound on the entropy of placement ofa uniformly
iid distributed atoms normalized bya. (a) Upper bound. (b) Difference
between upper and lower bounds.

As seen, the two bounds are fairly tight, with the maximum
difference being 0.0569 bits/atom at In Section IV-
A1, we present a nonadaptive algorithm that not only achieves,
but also outperforms these bounds by taking advantage of
nonuniformity in atom distribution.

IV. SNR-SCALABLE MATCHING PURSUIT CODER

Developing scalable video compression algorithms has at-
tracted considerable attention in recent years. SNR-scalable
compression refers to encoding a sequence in such a way
that different quality video can be reconstructed by decoding
a subset of the encoded bit stream. Scalable compression is
useful in today’s heterogeneous networking environment in
which different users have different rates, resolution, display,
and computational capabilities.

Scalable video compression schemes can be broadly classi-
fied into two categories: 1) coarse grain scalability with few

widely different available bit rates, and 2) fine grain scalability
with a continuum of available bit rates. The two-layer codecs
used in ATM applications are an example of the first class
[9], and the video codec developed by Taubman and Zakhor
[11] is an example of the second class. In most codecs in the
second class, fine grain scalability is achieved via multirate
quantization of the DCT or wavelet coefficients [10], [11].
However, as will be seen shortly, for an MP-based codec, a
natural way of achieving both fine and coarse scalability is
through the number of atoms.

In this section, we will investigate a number of scal-
able video coding schemes based on matching pursuits. In
Section IV-A, we will propose a one-residual image system
offering fine grain scalability, and in Section IV-B, we will
examine a two-residual image system offering better coding
efficiency at the expense of coarser scalability.

A. Using One Residual Image

Fig. 3 illustrates our basic approach to SNR scalability
in the “one residual image” scheme. As seen, the motion
compensation residual image is formed from the previously
reconstructed base layer frame in order to avoid the drifting
problem. Furthermore, the encoder only keeps track of only
one residual image, namely, the one corresponding to the base
layer. Once the residual image is found, a certain number of
atoms is used to code the base layer, and additional atoms are
used to code the enhancement layer. This way, the decoder can
stop at any time after decoding the base layer information with-
out losing track of the encoder. Moreover, if the enhancement
layer atoms are coded a few at a time as they are found, we can
have a scalable coder with resolution of a few atoms, e.g., 100
bits/frame. As we have seen in Section III, there is a tradeoff
between coding efficiency and the fineness of scalability. In
the next section, we will describe a practical atom position
coding method that greatly improves coding of small groups
of atoms, and will present performance results of a fine grain
SNR-scalable MP-based coder with one residual image.

1) NumberSplit—A Method for Coding the Position of
Atoms: The NumberSplit algorithm, used for coding atom
positions in the results of Section IV-A2, is based on the
divide-and-conquer idea. First, the total number of atoms
coded on a given residual image is transmitted in the header.
Then the image is divided into two halves along a larger
dimension, and the number of atoms in the left or top half
(depending on how the image was split) is coded. Note that if
we assume that each atom falls uniformly and independently
of other atoms onto either half, then the number of atoms in the
first half is binomially distributed on with
Since we know the total number of atoms on an image and
the distribution of the number of atoms in the first half, we
can construct a Huffman table to encode the number of atoms
in the first half. The total number of atoms and the number
of atoms in the first half allows the decoder to calculate the
number of atoms in the second half. This algorithm is then
applied recursively to the halves of the image until there are
no more atoms in a given half image or until the size of the
half image is one pixel. The Huffman tables used in encoding
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Fig. 3. Block diagram illustrating the one-residual approach for two-layer SNR scalability.

Fig. 4. Average number of bits per atoms position as a function off for following sequences: Container Ship QCIF at 10 kbit/s, Mother-Daughter QCIF at
10 kbit/s, Hall Monitor QCIF at 10 kbit/s, Container Ship QCIF at 24 kbit/s, Mother-Daughter QCIF at 24 kbit/s, Silent Voice QCIF at 24 kbit/s, Foreman
QCIF at 48 kbit/s, Coast Guard QCIF at 48 kbit/s, and News CIF at 48 kbit/s.

are built dynamically, depending on the number of atoms to
be coded, which allows the NumberSplit method to avoid
inefficiencies of fixed tables at a cost of more computation.

In real residual images, atoms are placed at the locations
where motion estimation is ineffective. For this reason, atoms
are not distributed uniformly and independently on an im-
age—they tend to “cluster” around the regions of high residual
error. One heuristic way to tune the NumberSplit algorithm to
the real-life images is to modify the binomial distribution to
account for clustering. It is easy to see that if atoms tend
to cluster, the probability of many atoms being in the same
half of the image is higher than if atoms are independent
and identically distributed. To account for this, we emphasize
the tails of binomial distribution in the following way: all
probabilities of splits that are smaller than some fraction
of the maximum probability in the distribution are set to

maximum probability, followed by renormalization of the
distribution. In Fig. 4, we see that as is varied from 0 to
1, the average number of bits per position of an atom for
various video sequences and bit rates is between 8.52 and
8.87 bits/position. It is interesting to note that, by taking
advantage of the dependence and nonuniformity in the atom

distribution, the NumberSplit method spends fewer bits per
atom position than the theoretical lower bound for the uniform
independent atom distribution described in Section III. The
value of was used in the experiments described in
Section IV-A2 to explore the tradeoff between rate granularity
and compression efficiency for scalable video.

By coding all atoms together, NumberSplit achieves good
compression efficiency, but also suffers from poor error re-
silience since a single transmission error may affect all atoms.
However, the effects of such an error would not bring long-
lasting drift and quality degradation problems since we are
only going to use NumberSplit to code atoms in the enhance-
ment layer for the scheme described in Fig. 3. In the single
residual scheme in Fig. 3, atoms in the enhancement layer are
not in the motion compensation loop, so that errors in atom
positions for the enhancement layer will not propagate to the
future frames.

2) Fine Scalability—Granularity Versus Coding Effi-
ciency: We have developed a finely scalable codec based
on the approach shown in Fig. 3 in which the enhancement
layer atoms are coded in groups of atoms at a time, where

can range from 5 to 100. We use the NumberSplit algorithm



AL-SHAYKH et al.: VIDEO COMPRESSION USING MATCHING PURSUITS 127

TABLE I
BIT RATES USING NUMBERSPLIT AND FIXED HUFFMAN TABLES FOR SENDING 50 ATOMS IN BASE LAYER AND 100

ATOMS IN ENHANCEMENT LAYER IN GROUPS OFVARIOUS SIZES FOR CONTAINER SEQUENCE AT 7.5 FRAMES/s

for efficient position coding of each group of atoms in the
enhancement layer. The advantages of using this position
coding technique over the one originally proposed in [8] and
described in Section II are twofold. First, as will be seen later,
simulation results in Table I show that for small values of
this position coding scheme is superior to the one originally
developed in [8]; second, the NumberSplit algorithm does not
need trained Huffman tables for each value ofand as such,
requires no statistics to be gathered for each value of

Fig. 5 shows the average PSNR versus bit-rate
characteristics of the above scalable codec based on the
NumberSplit position coding for 10 s of theContainer
sequence coded at 7.5 frames/s. Three different allocations
of atoms between layers have been used: (50,100), (75,75),
and (100,50) atoms coded in base and enhancement layers,
respectively, on each frame. In all three cases, the total
number of atoms is 150. In this scheme, the atoms in the
base layer are sent together using the method described in
Section II, while the atoms in the enhancement layer are sent
in groups using NumberSplit. The nonscalable coder is defined
in [8]. It uses the method of Section II to code atom positions,
and is identical to the scalable coder in all other respects.

Table I compares the total bit rates required to send the
scalable bit stream, with 50 atoms in the base layer and 100
atoms in the enhancement layer for the groups of various sizes
using NumberSplit and using the fixed Huffman-tables-based
method described in Section II. The table was generated using
10 s of theContainer sequence at 7.5 frames/s. The gains,
ranging from 10.7 to 2.1%, are especially pronounced for small
groups of atoms whose statistics are described poorly by fixed
Huffman tables.

Several observations can also be made from the results in
Fig. 5: First, as the group size is increased, the bit rate required
to achieve the same PSNR value drops, in agreement with the
results of Section III. In fact, for the case where there are
50 atoms in the base layer, using a group size of 5 atoms
instead of 100 atoms produces a 10% increase in bit rate for
the full enhancement layer, but allows for 900 bit/s levels of
granularity.

The second observation to be made from Fig. 5 is that
the PSNR of the enhancement layer improves as the relative
number of the atoms in the enhancement layer to base layer
decreases. This happens because more bits are being allocated
to the base layer, so that the images in the prediction loop
are of better quality, and enhancement layer frames encode
much less important structural information. These enhance-

ment layer frames can be coded better with fewer bits than
the enhancement layer frames corresponding to a smaller base
layer and coded with more bits. The relationship between the
quality of a base layer and the corresponding enhancement
layer is nonlinear.

Finally, comparing the PSNR after the enhancement layer
with that of a nonscalable coder, the loss is between 0.72
and 1.78, depending on the atom allocation. This is mainly
due to the fact that refinements produced by atoms in the
enhancement layer are not propagated to the next frame via
motion compensation. In the next section, we discuss a method
that comes closer to the performance of nonscalable codec.

B. Using Two Residuals

Fig. 5 shows that using a single layer for motion com-
pensation is not efficient. To improve the coding efficiency,
we will investigate schemes based on two residual images
(Fig. 6). This method of coding multiple residuals is similar
to predictive coding of EP frames in H.263Annex O [3].
The first residual is the base layer residual image, i.e., the
image reconstructed using only the atoms of the base layer, and
the second residual image is the enhancement layer residual
image. While constructing both residual images, we use the
same motion vectors that were computed using the base layer
image. Atom positions are coded using the method described
in [8].

Since the enhancement layer will use the atoms of the
base layer, the choice of the base layer atoms will affect the
quality of both the base and enhancement layers. One way
to control the quality of both layers is by using different
atom allocations. That is, if we want to improve the quality
of the base layer, we allocate more atoms to the base layer.
However, this implies increasing the bit rate of the base layer,
which is usually predetermined by the application at hand.
In some of these applications, one is more concerned with
having good enhancement layer images, while in others, better
base layer images are desired. In the remainder of this section,
we propose a way of adjusting the quality between base and
enhancement layers while keeping their relative bit rates fixed.

Our approach is to: 1) consider both the base and enhance-
ment layer residuals when finding the atoms that belong to
both layers, and 2) only consider the enhancement residual
when finding the remaining atoms that only belong to the
enhancement layer. One way to accomplish 1) is to minimize
a weighted sum of the error of the base layer and the
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(a)

(b)

Fig. 5. Achievable (PSNR, bit rate) points for enhancement layer as a function of size of groups in which atoms are coded for (a) 50 atoms coded at the
base layer and (b) 75 atoms coded at the base layer as a function of the size of the coding groups.

enhancement layer for finding each atom. That is, if the
residual of the base layer is and the residual of the
enhancement layer is we want to minimize

(5)

where is the expansion coefficient and is a basis
function in the dictionary and are positive weights

that reflect the importance of each layer. The solution to this
is to find the basis function that would give the highest inner
product, i.e.,

(6)
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(c)

(d)

Fig. 5 (Continued.)Achievable (PSNR, bit rate) points for enhancement layer as a function of size of groups in which atoms are coded for (c) 100 atoms
coded at the base layer and (d) bit rates for the full enhancement layer as a function of the size of the coding groups.

and the corresponding transform coefficient is

(7)

where is the inner product of and and is
the basis function with the largest absolute inner product

with Without loss of generality, we assume
i.e., and

Fig. 7 shows the effect of and on five different atom
allocations between the base and enhancement layers. As the
value of increases from 0 to 1, we find that: 1) the PSNR
of the base layer decreases by 2–3 dB, depending on atom
allocation, and 2) the PSNR of the enhancement layer increases
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Fig. 6. Block diagram illustrating the two-residual approach for two-layer SNR scalability.

(a)

(b) (c)

Fig. 7. Approach II for rate scalability wherea = �2 = 1 � �1: (a) Bit rate of the base and enhancement layer. (b) PSNR of the base layer. (c) PSNR
of the enhancement layer. The legend describes the atom distribution between both layers.
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(a)

(b)

Fig. 8. Comparison of H.263+ and MP coders in scalable and nonscalable modes. (a) Coast Guard. (b) Hall Monitor.

by about 0.1–0.5 dB, depending on the relative number of
atoms between the base and enhancement layers. Note that
the PSNR change in the enhancement layer is considerably
smaller than that of the base layer aschanges from 0 to 1.
As seen, for a given rate for the enhancement and base layers,
one can trade off the relative PSNR performance of the two
layers by choosing the appropriate values ofand

Another interesting conclusion to be drawn from Fig. 7 is
that, if the quality of the enhancement layer is much more

important than that of the base layer, then is a
better choice than An example of a situation like
this is in applications where scalable video is used over a
time-varying channel such as the Internet. In this case, if the
available bandwidth is at full capacity most of the time, it
is worthwhile to keep the enhancement layer at as high a
quality as possible at the expense of the base layer. On the
other hand in applications where the base and enhancement
layers are equally important, it is more reasonable to operate
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(c)

(d)

Fig. 8. (Continued.)Comparison of H.263+ and MP coders in scalable and nonscalable modes. (c) Mother-Daughter. (d) Silent Voice.

at rather than An example of such situation is
transmission over time-varying channels such as the Internet
where one expects the channel to spend 50% of the time at
higher bandwidth and the other 50% at lower bandwidth.

It is also interesting to compare the PSNR and bit-rate
performance of the enhancement layer to the case where
the bit stream is not scalable. The nonscalable codec with
150 atoms achieves a PSNR of 34.65 dB and a bit rate of

26.1 kbit/s. Comparing this with the results in Fig. 7, the
enhancement layer of the scalable coder has 0.5 dB lower
PSNR performance at a 0.9 kbit/s higher bit rate. This is in
contrast with the results obtained in Section IV-A where there
is a much larger gap between the performances of the scalable
and nonscalable codecs.

Another interesting observation to be made from Fig. 7
is that the PSNR of the enhancement layer increases up to
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(e)

(f)

Fig. 8. (Continued.)Comparison of H.263+ and MP coders in scalable and nonscalable modes. (e) Container. (f) Foreman.

some and then decreases.1 This is because a higher
results in degrading the quality of the base layer, which is
used for motion estimation. This results in less precise motion
estimation, reducing, in turn, the quality of the base layer
reconstructed images and enhancement layer reconstructed
images.

1This is more noticeable for the case when the number of atoms of the
enhancement layer is much larger than the number of atoms of the base layer.

To summarize, the values of and can be thought of as
a knob that controls the quality of the resulting images without
affecting the bit rate. We should also mention that the decoder
does not need to know the values of and since they are
specified at the encoder.

1) Comparison with H.263 Coder: In this section, we
compare the performances of the MP coder described in
Section IV-B and the DCT-based H.263coder [3]. There are
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TABLE II
VARIOUS PARAMETERS USED IN COMPARISON OF MP AND H263+; ALL SEQUENCESARE QCIF

a number of important differences between the H.263scal-
able codec and the scalable codec described in Section IV-B.
First, in our proposed MP codec, the same set of motion
vectors is used for the base and enhancement layers, whereas
in H.263 two sets of motion vectors are used. Second,
unlike H.263 where enhancement layer frames are predicted
bidirectionally from the previous enhancement layer frame and
current base layer reference frame, the MP enhancement layer
frames are only predicted from the previous enhancement layer
frame. Finally, as expected, the MP codec in Section IV-B uses
the matching pursuit algorithm for coding the residuals, while
H.263 uses DCT. In our comparisons, we have used the
publicly available version 3.1.2 implementation of the H.263
standard from the University of British Columbia [13].

Fig. 8 shows the plot of the base and enhancement layers’
PSNR’s for MP and H.263 scalable and nonscalable codecs
for six different sequences. The circles correspond to PSNR’s
of scalable MP with values of varying from 0 to 1 in incre-
ments of 0.25. In all comparisons, rate control is determined
by running the H.263 coder with a fixed quantization step
size for all frames in the sequence. The MP coder uses the
same intraframes as the H.263coder, and the same number
of bits for both the base and enhancement layers of each frame
up to a precision of about 50 bits. Since the quantization step
size in the H.263 coder only takes integer values from 1 to
31, the total bit rates of the scalable and non scalable H.263
runs are slightly different. Nonscalable MP runs are based
on the first frames and bit rates generated by nonscalable
H.263 runs, with the bits spent on all but the first frame
prorated in such a way that they add up to the total bit rate of
the enhancement layer for the scalable run of H.263This
way, scalable MP, scalable H.263, and nonscalable MP runs
use the same number of bits, with nonscalable H.263runs
producing slightly different bit rates. Various parameters used
to generate the results in Fig. 8 are summarized in Table II.

From Fig. 8, we see that for most sequences, if we keep the
base layer PSNR for MP and H.263identical by exploiting
the alpha factor, MP outperforms H.263by 0.5–2.5 dB at
the enhancement layer. This is true for all sequences except
for ForemanandMother-Daughtersequences where MP does
worse at the base layer. We also see that the difference between
performances of MP scalable and nonscalable coders for the
enhancement layer is between 0.63 and 1.46 dB, depending

Fig. 9. Example illustrating weighted search. There aren andk atoms found
in blocks 1 and 2 of the residual frame, respectively.

on the sequence and values of and while for the
H.263 coder, the gap ranges from 0.84 to 2.65 dB. Also,
with the exception of theForeman and Mother-Daughter
sequences, the MP nonscalable coder outperforms the H.263
nonscalable coder at both bit rates. The MP coder also allows
us to flexibly trade off the PSNR of the base and enhancement
layers, as discussed in Section IV-B, providing a continuum
of operating points. As changes from 0 to 1, the change in
PSNR is much larger in the base layer than in the enhancement
layer. So, from a practical point of view, represents
a good compromise between the qualities of the base and
enhancement layers.

V. CODING EFFICIENCY IMPROVEMENTS

In this section, we propose two ways of improving the
baseline algorithm proposed in [8]. In Section V-A, we modify
the basic search strategy in [8] to find atoms. In Section V-B,
we modify the position coding scheme in [8] in order to make
it more error resilient.

A. Weighted Energy Search

In this section, we propose a new search strategy for the
basic video coding algorithm in [8]. The search strategy in [8]
first determines the block with the highest energy, and then
uses the center of that block as the center of exhaustive search
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TABLE III
WEIGHTS FOR ENERGY SEARCH THAT REFLECT THE ENERGY DECREASE AFTER EACH ATOM

TABLE IV
WEIGHTS FOR ENERGY SEARCH AND OPTIMIZED TO INCREASE THE AVERAGE PSNR

Fig. 10. Heuristic weights (solid line) and weights computed as the normal-
ized energy decrease (dotted line).

over an region. In [12], Banham and Brailean modify
the basic search strategy in such a way that the blocks closer
to the center of the image are more likely to be chosen for
exhaustive search. This strategy is based on an assumption
that the most important information is located in the center of
a frame. The motivation behind our modified search strategy is
that the basic search strategy in [8] does not necessarily result
in the most rapid energy decrease of the residual signal. From
the coding efficiency point of view, it is highly desirable to
reduce the residual energy with as few atoms as possible. In
the remainder of this section, we will propose a new strategy
for finding the best block whose center is subsequently used
for exhaustive search.

Recall that Mallat and Zhang [6] have shown that if we
are representing a signal using an overcomplete set and
matching pursuits, then the relationship between the energy of
the residual after atoms, and the energy of
the residual after atoms is

(8)

where is the rate of decrease, which depends
on the correlation between and the basis functions, and

Fig. 11. Luminance PSNR versus frame number for MPEG-4 verification
model (dash–dotted line), unweighted search matching pursuit (dotted line),
and weighted search matching pursuit (solid line). The sequence used is
Container Shipcoded at 7.5 frames/s and 10 kbit/s. All frames except the first
areP -frames, and the number of bits per frame matches in all approaches.

is defined as

(9)

This means that

(10)

where is the energy decrease after coding atom
That is, the energy decrease after atoms is bounded by
the energy after atoms weighted by a factor that depends
on the correlation between the residual afteratoms and the
basis set. Using (10), the weights are related to the energies by

(11)

where is the normalized energy decrease.
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TABLE V
COMPARISON AMONG UNWEIGHTED SEARCH (UW), WEIGHTED SEARCH WITH WEIGHTS SHOWN

IN TABLE I (WO), AND WEIGHTED SEARCH WITH WEIGHTS SHOWN IN TABLE II (WH)

Fig. 12. The effect of error if the gray atom was contaminated for the mode
where atoms in each macroblock are coded separately. The dotted lines are
the boundaries of the macroblocks. The black atoms are received correctly,
while gray ones are contaminated. The light gray area is the area that may
be affected by the error.

The main idea behind our proposed search strategy is that
the expected energy decrease for each block diminishes as
more atoms are coded in that block. As such, blocks with few
coded atoms may be better search candidates for reducing the
energy than those with higher energy, but with more atoms.

This concept can be used in predicting the block that will
decrease the energy the most. For example, while searching
for the best block in Fig. 9, the following is true:

(12)

(13)

where and are the residuals of blocks 1 and 2,
respectively, and are the number of atoms found in blocks
1 and 2, respectively, and

(14)

(15)

Thus, if we can estimate the weights and we obtain a
lower bound on the energy decrease using (12) and (13).

Computing the weights using (9) involves an exhaustive
search to find the highest inner product from each block, and
use them to compute the weights or pick the one that reduces
the energy the most. This is very computationally intensive.

Fig. 13. Scan used to code the atoms in a macroblock. First pixels 1, 2, 3,
and 4 are coded.

TABLE VI
MACROBLOCK TYPES

To reduce the complexity, we assume that the weights of all
blocks in the frame are the same, i.e., for all
This implies that the weights are only a function of the number
of atoms already in the block, and that they are independent
of the location of the block. This reduces our problem to
estimating a set of weights to be used for the whole frame
or sequence. Our approach is to estimate the weights from
training sequences. We use the unweighted search-matching
pursuits to choose the search area as described in [8]. We
compute the normalized energy decrease after finding
each atom per block, where is the number of times the
current block has been visited so far. That is, we find the
decrease in the energy of the block after finding the atom, and
normalize it to the energy of the block before finding the atom.
We then average for all three training sequences. Then
the weights are normalized to have a maximum
of 1.0. The last step is unnecessary, however, since it indicates
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TABLE VII
AVERAGE PSNR OF DIFFERENT SEQUENCES AT DIFFERENT BIT RATES FOR THE FRAME-BASED

POSITION MP CODER [8] AND THE MACROBLOCK-BASED POSITION MP CODER

the relative energy decrease expected between a block visited
once and another visitedtimes. Table III shows the resulting
weights using this approach.

Another approach to find the weights by training is by
optimizing each weight individually by maximizing the PSNR
of a set of training sequences. That is, we fix
then we vary in order to maximize the average PSNR
of the training sequences. After that, we fix and start
tweaking and so forth. Table IV shows the resulting
weights using this technique. Fig. 10 shows that these weights
are very similar to the weights that reflect the energy decrease,
and they have the same trend.

Fig. 11 compares the luminance PSNR of each frame for
weighted and unweighted search. It is interesting to note that
the PSNR increases as we code more frames for weighted
search. Table V compares the average luminance PSNR for
the weighted and unweighted searches, showing that weighted
search always outperforms unweighted search.

B. Macroblock-Based Position Coding

In video transmission over noisy channels, it is important
for bit streams to be robust to transmission errors. It is also
important, in case of errors, for the error to be limited to a
small region, and not to propagate to other areas. However,
in the position coding scheme introduced in [8], the atoms
can appear in any position in the frame, and the error cannot
be limited to an area if it occurs. This is because the atom
parameters are coded using VLC tables.

We address this problem by developing a new position
coding mechanism that limits the effect of an error to a
macroblock (16 16 pixels) and its immediate neighbors.
The new position scheme codes atoms that are in the same
macroblock together. Thus, if an error occurs, it would affect
a known area in the image with the maximum area shown
in Fig. 12. If the maximum size of the basis function is
32, the maximum number of blocks affected is nine, i.e.,
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TABLE VIII
AVERAGE PSNROF DIFFERENT SEQUENCES ATDIFFERENT BIT RATES FOR A DCT CODER (MPEG-4 VM) AND MATCHING PURSUIT CODER

3 3 macroblocks around the macroblock where the error
occurred. The idea of coding atoms on a macroblock by
macroblock basis to improve error resilience was introduced
by Banham and Brailean in [12]. Our method improves the
macroblock-based position coding technique described in [12]
by increasing the coding efficiency without sacrificing error
resilience.

The atoms of each macroblock are reordered according to
the scan shown in Fig. 13. Afterwards, the atoms are coded
differentially. Four different VLC tables are used to code the
atoms depending on the number of atoms in it. With a small
loss of coding efficiency, we can code the position of each
atom absolutely within a macroblock. This will limit the effect
of the loss of an atom only to the support of that atom.

Since the atoms are coded on a macroblock level, we can
multiplex them with the motion information. An efficient
way to combine them is by defining eight different macro-
block types. The eight types are defined because we are
using an MPEG-4 (or H.263) motion model that allows either

INTRA or INTER macroblocks. INTRA macroblocks are
coded independently of the other frames. INTER macro blocks
depend on other frames because motion compensation is used
to code them. In MPEG-4 and H.263, there are two INTER
macroblocks: INTER, which uses one motion vector, and
INTER4V, which uses four motion vectors per macroblock.
These eight types are: INTRA macroblock without atoms,
INTRA macroblock with atoms, INTER macroblock without
atoms, INTER macroblock with atoms, INTER4V macroblock
without atoms, INTER4V macroblock with atoms, INTER
macroblock with zero motion vector (INTER0) without atoms,
and INTER0 macroblock with atoms. The INTER0 types were
added because they are very common, especially at low bit
rates. These types and their codes are summarized in Table VI.

Table VII compares the coding efficiency of the frame-
based [8] and macroblock-based position coding schemes. One
would expect an error-resilient scheme to be less efficient than
a scheme without such properties. However, the average lumi-
nance and choma PSNR’s of the macroblock-based mode se-



AL-SHAYKH et al.: VIDEO COMPRESSION USING MATCHING PURSUITS 139

(a)

(b)

Fig. 14. Frame 50 of 10 frame/sCoast Guardsequence coded at 48 kbit/s
using: (a) DCT-based coder (MPEG-4 VM) and (b) matching pursuit coder.
Blocking artifacts can be noticed on the DCT coded frame.

quences is higher than that of the frame-based mode in all but
one sequence. The gain ranges between0.01 and 0.21 dB.

Macroblock-based mode achieves these gains by taking into
account the properties of atom distribution and the correlation
between motion vectors and atom locations. The scanning
order in Fig. 13, combined with differential coding, utilizes the
fact that atoms are more likely to lie on the corners and edges
of macroblocks to improve coding efficiency. By multiplexing
atom presence information with motion vectors, we utilize the
fact that atoms are unlikely to appear in a macroblock with
no motion. Thus, the macroblock-based mode offers better
coding efficiency performance and a potential for better error
resilience.

C. Comparison with DCT Approaches

All video compression standards are DCT-based coders [1],
[2], [4], [5], so it is of interest to compare the performance

(a)

(b)

Fig. 15. Frame 20 of 30 frame/sMobile Calendarsequence coded at 1 Mbit/s
using: (a) DCT-based coder (MPEG-4 VM) and (b) matching pursuit coder.
Blocking artifacts can be noticed on the DCT coded frame.

of the MP video coder to that of a DCT-based coder. In
this section, we compare the performance of the MP coder
with that of MoMuSys version VM8-971 006 of the MPEG-4
DCT-based coder. The comparison is done using the sequences
tabulated in Table VIII coded at bit rates that range between
10 kbit/s and 1 Mbit/s. The first frame for both approaches
is coded using the MPEG-4 DCT INTRA mode. Both first
frames are identical, and both coders code each frame with
the same number of bits up to the resolution of the MP coder,
i.e., 30 bits.

Table VIII shows the average luminance and chroma
PSNR’s for these different sequences. In all but one example
of Table VIII, the matching pursuit coder has a higher average
PSNR than the DCT coder. Fig. 14 shows frame 50 of the
10 frame/s QCIFCoast Guardsequence coded at 48 kbit/s
using the MPEG-4 DCT coder [5] and the MP coder. The
DCT coded frame suffers from blocking artifacts. Fig. 16(a)
compares the luminance PSNR for each frame of the sequence
for the MPEG-4 VM DCT coder and the MP coder. Fig. 15
shows frame 20 of the 30 frame/s SIFMobile Calandar
sequence coded at 1 Mbit/s using the MPEG-4 DCT coder [5]
and the MP coder. Fig. 15 compares the luminance PSNR per
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(a)

(b)

Fig. 16. Frame-by-frame distortion of the luminance component of the (a)
Coast Guardsequence coded at 48 kbit/s and (b) Mobile Calendar sequence
coded at 1 Mbit/s using MPEG-4 VM (dotted line) and matching pursuits
(solid line).

frame. In both cases, the MP coder has better visual quality
and consistently better PSNR.

VI. CODING ARBITRARY-SHAPE VIDEO OBJECTS

One of the main differences between MPEG-4 and other
video coding algorithms is the ability to code and randomly
access arbitrary shape objects. This is an important function-
ality for many applications, e.g., multimedia databases, video
games, etc. In recent years, several approaches have been

Fig. 17. Padding technique used in computing the inner products. The stars
of value 0.25 correspond to pixels that are part of the signal. The solid part
of the basis function is used to compute the inner product, and both the inner
product and the basis function are renormalized by the norm of this part.
The dotted part of the basis function is discarded when computing the inner
product.

proposed to extend DCT-based techniques in order to handle
arbitrary-shaped objects [14]–[17]. In this section, we extend
the MP coder to support coding texture of arbitrary-shaped
objects. It should be clear, however, that we do not intend
here to develop a shape coder based on matching pursuits,
but to extend the MP coder to support the coding texture
of arbitrary shaped objects. Thus, we will use the MPEG-4
arbitrary-shape coder to code the shape information [5] for all
of our experimental results.

Two problems should be addressed when extending the MP
coder to support arbitrary-shaped objects. The first problem is
concerned with computing the inner products and comparing
them, especially at the boundaries of the object. The second
problem is how to code the atoms within the shape. The second
problem mainly deals with position coding.

One solution to the first problem is to pad the object with
zero values. Thus, when computing the inner product, we only
consider the object pixels. This means that our basis functions
have changed on the boundaries to fit the object better. Fig. 17
gives an illustration of how padding is done. The norm of each
basis function will change according to the pixels it covers. We
compensate for this by renormalizing the basis function and the
inner product while searching and reconstructing. Moreover,
for better performance, the energy of each block when doing
the energy search is weighted by the ratio of the pixels of the
block are in the object.

We will now describe two approaches to code the atoms
when coding video objects with arbitrary shapes.

1) Bounding Box Approach:The first approach is the sim-
plest extension of the rectangular case. We simply fit the shape
inside a rectangular frame as shown in Fig. 18, and use the
original matching pursuits coder. It should be noted that since
MPEG-4 codes shape in 16 16 blocks, we extend the frame
to include these blocks, even though their region of support
might be outside the object. Fig. 19 shows two frames of
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Fig. 18. Approach I to code the atoms by fitting a rectangular frame around
the shaded object.

the Coast Guardsequence coded using SA-DCT and SA-MP
coders. The SA-DCT frame suffers from blocking artifacts,
loss of detail, and changes the color of the front of the boat
from red to black. The SA-MP frame is cleaner, has more
details, and does not have color problems.

2) Coding Only Objects:The second approach only scans
the atoms inside the object without fitting the shape with a
rectangular frame.

Table IX shows the PSNR performance of this approach,
as compared to the bounding box approach and the latest
SA-DCT results from the MPEG-4 Verification Model (VM).
As seen, there are three sets of results corresponding to the
matching pursuit approach.

• MP1 stands for the case where the bounding box approach
is used, and the positions of the atoms are coded in the
“separate mode” as described in our original codec in [8];
in the separate mode, all of the motion vectors are coded
separately from the atoms and their positions. This is in
contrast to the “combined” macro block position coding
technique described in Section V-B where the residual
image is divided into macroblocks and the positions of
motion vectors and atoms in each macroblock are coded
together.

• MP2 stands for “coding only objects” with separate mode.
• MP3 stands for “coding only objects” with combined

mode.

As seen, The MP3 performs better than MP2, which in
turn performs better than MP1. The last column in the table
compares the performance of the MP3 and SA-DCT technique.
As seen, the luminance performance of MP3 is better than that
of VM in 11 cases, and worse than VM in two cases. As for
chroma, in ten cases, MP3 outperforms VM in bothand
components and in one case, VM outperforms MP3 in both

and .

VII. CONCLUSIONS

In this paper, we extended the basic residual video coding
scheme described in [8] to address issues regarding scalabil-
ity, arbitrary shape coding, and improved coding efficiency.

(a)

(b)

Fig. 19. Frame 30 of the 10 frame/sCoast Guardsequence(big boat)coded
at 16 kbit/s using: (a) SA-DCT-based coder (MPEG-4 VM) and (b) SA-MP
coder. Details are lost by the deblocking filter on the DCT coded frame.

In the area of scalability, we found that the most natural
way of generating scalable video using MP is to use the
number of coded atoms. We proposed two basic schemes for
both fine and coarse level scalability in Sections IV-A and
IV-B, respectively, and found that it is possible to achieve
a very fine level of rate scalability at the expense of loss
in PSNR. For the fine grain scalable codec in Section IV-A,
we proposed a new position coding algorithm, NumberSplit,
that does not require any Huffman tables and outperforms
the original position coding scheme in [8]. For the coarse
grain scalable codec in Section IV-B, we developed a way
of trading off the quality of the enhancement layer with that
of the base layer without changing the bit rate of each layer.
This is desirable in applications where the rates of both layers
are fixed, but the quality of the reconstructed frames for one
layer is more important than the other one.
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TABLE IX
COMPARISON BETWEEN SA-MP AND SA-DCT AS USED IN MPEG-4; VM: SA-DCT, COMBINED MODE; MP1: SA-MP, BOUNDING BOX APPROACH,

SEPARATE MODE; MP2: SA-MP, CODING ONLY OBJECTS, SEPARATE MODE; MP3: SA-MP, CODING ONLY OBJECTS, COMBINED MODE

In the area of arbitrary-shape coding, we found that conven-
tional frame-based MP can be easily extended to MP texture
coding of arbitrary shapes. In spite of its simplicity, the shape-
adaptive MP outperforms shape-adaptive DCT by as much as
1 dB.

Finally, we demonstrated ways to improve the performance
of the matching pursuits video coder as described in [8]
by introducing a new weighted energy search and a new
“combined” position coding technique. The combined position
coding has the added advantage that it makes the MP codec
more robust to errors. With these improvements, the perfor-

mance of the MP codec exceeds that of the DCT-based VM
in MPEG-4 by as much as 1.4 dB. In addition, from a visual
point of view, the MP coder did not suffer from blocking and
ringing artifacts, color bleeding, and loss of detail that are
typical for low bit-rate DCT coders.
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