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View Generation for Three-Dimensional
Scenes from Video Sequences

Nelson L. ChangStudent Member, IEEEand Avideh ZakhoMember, IEEE

Abstract—This paper focuses on the representation and view by panning a given environment, it is difficult to generate
generation of three-dimensional (3-D) scenes. In contrast to exist- gn arbitrary view with this approach, since the necessary
ing methods that construct a full 3-D model or those that exploit depth or structure information has not been estimated. Other

geometric invariants, our representation consists of dense depth h h idered loiti tain | iants i
maps at several preselected viewpoints from an image sequence.researc €rs have considered exploiing certain invariants in

Furthermore, instead of using multiple calibrated stationary the geometry of the problem [38], [33], [25]. This approach,
cameras or range scanners, we derive our depth maps from however, correctly reconstructs only those points that lie in
image sequences captured by an uncalibrated camera with only the intersection of the given views and not points that become
approximately known motion. We propose an adaptive matching ,,-,yered. In the case of [24], despite being able to generate
algorithm that assigns various confidence levels to different re- L ’ . )
gions in the depth maps. Nonuniform bicubic spline interpolation NOVel views from a set of reference views, one requires dense
is then used to fill in low confidence regions in the depth maps. correspondences and the epipolar geometry to be knawn
Once the depth maps are computed at preselected viewpoints, priori. In addition, these kinds of approaches would require a

arbitrary views of the 3-D scene. Specifically, the depth maps Aafi . : . L
are regarded as vertices of a deformable 2-D mesh, which are user def”fmd viewpoint for a rea_l time application. .
transformed in 3-D, projected to 2-D, and rendered to generate  1he third class of AVG algorithms attempts to deal with

the desired view. Experimental results are presented to verify occluded/uncovered regions in the scene better than the second
our approach. class while not resorting to a full 3-D representation of
the first class. Generally, a set of depth surfaces is first
estimated and then combined to generate the desired view. For
) _ ‘example, Chen and Williams [10] measure range information
N LIGHT of recent advances in technology, virtual envigng camera transformation to establish pixel correspondence
ronments have become an important tool in engineering,q then apply morphing techniques to interpolate intermediate
design, manufacturing, and many other areas. Especially igja\ys. Similarly, Skerjanc and Liu [34] compute depth with
portant to the development of this growing field is the problegg,qn camera positions in order to synthesize intermediate
of arbitrary view generation (AVG), in which a novel viewpicyres. Kanadet al. [22] estimate depth using a camera set-

of a three-dimensional (3-D) scene is generated from {i% with known camera geometry from which they estimate

neighboring views. _ depth and generate new views.
Existing work in this area can be placed into three classes,, his paper, we address the problem of representing a

In the first class, a full 3-D model of the scene is constructeghyic scene from a given image sequence and reconstructing
by volumetric mtgrsect_lon and then reprojected in (_)rde_r_me view from an arbitrary viewpoint. Our approach to AVG
generate the desired view [11], [1], [4], [17]. The main diffity 5 into the third category [7], [5], [6]. However, unlike
culty with this approach is that of registering and Comb'”'ngxisting techniques, we use a sequence of images captured

the two-dimensional (2-D) information to generate a full 3-[y 5 hand-held, uncalibrated camcorder with translational

mcl)de:; dcl , 4 by di h motion confined to the:-y plane. We will assume the motion
n the second class, views are generated by direct met Ogs’primarily horizontal with some possible fluctuations in

without having to estimate structure directly. In [35] and [27 he vertical direction. Uncalibrated cameras with unknown

image mosaics are constructed by registering and reducing H&%ition are used to avoid the difficult and time-consuming

fset of |trr1]put Images 'n:ﬁ asingle, I?rger refstohlutlon frarc\cler.].;r tep of calibration, thereby increasing the flexibility of the
rame then serves as the representation of the scene. e i ge acquisition process. Our motivation for using a sequence

representation is useful for capturing the information generatgd, © images rather than a few still images is to improve
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to accomplish this task. Some approaches fall under the
classification of optical flow, e.g., see [19], [23], and [2].
The results provide a dense flow field and are generally
acceptable. However, many of these algorithms work for only
small motions and do not perform well across discontinuities
without assuming local similarity.

A second class of approaches consist of stereo matching al-
gorithms. With stereo algorithms [13], it is generally assumed
that either camera positions or camera motion is knawn
priori. Typically, some additional information is furnished to
aid in matching, such as uniqueness and disparity constraints
for random dot stereograms [28], a third view [20] or even
more views [32], shading information [15], or different filtered
Fig. 1. Experimental set-up used to generate results. outputs [21].

Other approaches are classified as solving the structure-

imaging geometry is shown in Fig. 1. The motivation for noftrom-motlon (SFM) problem [29], [36], [41], [37]. For these

. . N i Igorithms, a set of features, e.g., edges in [37] and corners
choosing rotation, or a combination of rotational and transl&- T o ' ' .
9 In [41], are identified and tracked. The motion of the camera

tional motion, is the sensitivity of depth reconstruction to these :

; : . and the structure of these features are then computed simul-

classes of motion, especially when the motion parameters ?re . . . . .

o L aneously. Despite the complexity of solving this nonlinear

unknown. In addition, it is well known that depth reconstruc- timization broblem under perspective broiection. the SEM

tion can be more accurate when the camera translates acgqos%rithms grform reasonatF))I vf/)ell ivepn tjwo or’more ar-
an object, rather than when the camera translates toward c?r P y 9

away from it. The idea is to estimate depth only at severg\ rary VIEws. However, many times they are prac_tlcal_ n a
. computational sense for only a small number of points in the

prespecified locations, called “reference frames,” by usms% ne. Moreover. manv of these alorithms require point or
their neighboring captured frames. Once the depth has k:ﬁeﬁ ' ' y 9 q P

computed at reference frames, the neighboring intensity fra g%t:eacoigfcaogdggﬁg tI(r)] tﬁgvsgg\?é aporoaches for estimat-
are discarded, and solely the depth and intensity at reference PP . approaches Tor €
depth whereby thé& norm of intensity error is minimized

frames are kept as a compact representation of the scene. THe . :
P P b ver possible depth values. However, unlike the approaches

motivation for compactness stems from the desire to downlo :
at produce depth for a sparse set of points, we recover dense

only that information necessary for telepresence applications. . . ) .
This representation is then used to reconstruct arbitrary vie\?\?%pth information as required by the problem of AVG. Since

located on or off the scanning trajectories. we have confined the motion_to be planar, the depth estimation
The outline of the paper is as follows. In Section ”proble_m reduces to a one—d_|men3|onal (H.D) corrgspondence

we discuss an adaptive approach to dense depth estimathc}ﬁ.t(.:hmg problem [17]. In this case, the eplp'olar lines of.the

Section Il describes the reconstruction algorithm used two Images are paraliel and may be found‘ using thg albgorlthm

generate the desired view from the representation. Res{JfSCriped in [42]. For every pair of matchésy) and(iz, j),

from real-world scenes are presented in Section IV. The pag dgpthz .Of. the corresponding scene point is related to

concludes with a discussion in Section V. iSparity’ d(i, j) by

Camcorder View 2

5 oa) — g — 332 q— 4,32 — L
Il. COMPACT REPRESENTATION d(L’J)_\/(L i2)? 4 (7 —J2)? = zb ()

Our overall approach in deriving the depth information aihere f is the focal length and is the baseline distance
reference locations is to establish correspondence betweengigveen the two images’ coordinate systems. Hence, the
reference frameand each of its neighboring frames. Thejepth may be estimated as the inverse of dispaifiy;) =
resulting disparity maps at the reference frames are normalizg#,2 1,2, obtained by
and combined in order to form a depth map for the reference
frame. Once completed, the neighboring frames are discarded
in the reconstruction process; therefore, their use affects only min ¢ > > |L(z,y) = bz +my+n)|* » (2)
the quality of the representation and not its compactness. In the nek (z,y)€ B(3,j)

remainder of this section, each step will be discussed in detail. , )
where I1(-,-) and I,(-,-) are the two images, respectively,

m and n represent the motion vectok, is the appropriate

epipolar line, andB(¢, ) is the B; x By region of intensities
In the first step of the representation process, local denggjer consideration, not necessarily centere@ at).

depth maps are generated by matching the reference frame

and each neighboring frame. There are many approache2sThe terms “disparity” and “baseline” are typically defined with respect to
horizontal motion only. However, we shall use them to describe the norms in
IWe shall assume the reference frames have been previously selectied direction of the epipolar lines and motion. Alternatively, we may consider
The problem of choosing reference frames from the video sequences isregtifying the initial images so that the epipolar lines are parallel with the scan
important issue but is beyond the scope of this paper. lines.

A. Depth Estimation
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There are some artifacts inherent both in the algorithm and
the problem itself that induce incorrect disparities for certain | (a)
regions [6]. In what follows, we describe four of the most
important artifacts and explain techniques of minimizing their |
effects. !

1) Artifacts: To begin with, if the relative motion between ‘ (d
two images is translational in the— yplane, then an artifact 1
known as aperture ambiguity occurs for edges oriented parallel
to the epipolar lines. It arises because the blétkised for _ o _
matching is t00 small and does not include enough distirf &  EXmee ofegons ubere malching el due o (&) sperure ambi-
features when matching. A similar artifact occurs in regions @jcalization ambiguity. ’ '
nearly constant intensity. Note that in both cases, the matching
equation (2) is a shallow function over all possible disparities;

J

Imag

the disparities are almost all equally good. The minimizati c Obt?“”e‘_’ in occludeo! _regions Iike_ those_ in_ _Fig. 2(c). As
depends largely on the actual intensity values, which m own in Fig. 2(d), localizing depth discontinuities may also

. . . : A blem.
be noisy due to the imaging process and different Ilghtlrféose_ a pro . . .
conditions. Despite the lack of distinct features, the matchin%g IS stra|tg|]htforvx_/ard to :rddentlfy :nos': OI th de:fe arttlfacts_ and.
algorithm may still lead to the correct disparity for horizonta;f’h sequen ¥ha55|gn C?_g' encle e\I/e stod er(;,\n tr?glolns '?
edges and low textured regions. e scene. These confidence levels are important for locat-

In contrast, there are other artifacts of intensity-based matdh¥ th? re’?r:ons_rto d|§1notre Whten Comb*?'””flg mgltlple d(e;ptht
ing algorithms which almost always produce the wrong di&-2PS t09€ther. 10 detect aperture ambigul y (AP), a gradient-

parity—these occur in occluded regions and near depth dé”lsed edge Qetectqr [26] is used to Iocat(_a the horizontal
%céges". Points in the image near these edge pixels are marked

continuities. An occluded region is an area that appears in 0 . i . . ' . .
image but not in the other. For instance, a moving object possibly spurious. To |d§nt|fy constar_1t |nten_5|ty regions
the scene generally occludes some points and uncovers o e(PNST)’_a sm_all Wln_dow is used to fmd. regions where
points from view. In such regions, the matching algorith € mtepsny variance is below a prespec_med th_reshold. A
blindly attempts to find the best match but fails miserabl W varlance suggest'_s that 'the block .conS|sts' of little .texture
nd nearly constant intensity. Matching the images in both

because only one image has information about the region. . =~ . . ) . - .
Incorrect disparity information is also generated near deIo%g]rectlons helps to identify occluded regions and inconsistent

discontinuities. It is difficult to identify depth discontinuities™2ches [15], [40]. Occluded regions (OCCL) are precisely the

of a scene beforehand, since the ultimate goal is to estim ﬁmatched points in the images, whereas inconsistent matches

depth. Intensity discontinuities are often considered inste Ireccgglnz) "r]nt"m SE q f?ﬁgicgze\ﬁilllldfélggistrg?tlzr\l\?io%i dt:;t(k:]e
because it is not uncommon for depth discontinuities in the ' L . . )
regions marked according to the different artifacts: constant

scene to be related to intensity discontinuities in the imaqe ) .2 : ) . .
. . . Antensity, aperture ambiguity, occlusion, and inconsistencies
For points near object boundaries but not part of the objecrE, matching

. . I
the search bloclB is large enough to include some features of 2) Adaptive Matching SchemeSince many real world

the object. In minimizing the intensity error for such a point : .
. . . " o scenes consist largely of low textured regions, the above
the matching algorithm yields a motion vector similar to the ; . ; .
. S ; ... matching algorithm will produce a high percentage of low
motion of the object itself. The end result is poor localization . ; : .
. ) . : . : confidence regions due to constant intensity. To avoid too
of the object boundary in the disparity domain By2 pixels, . . .
) : . . ._sparse a depth map, we attempt to improve estimates in these
i.e., the object seems to have expanded in all dlmen5|orr1e.ions by proposing an adaptive matching approach [5]
Clearly, the localization of depth discontinuities depends 9 Y brop 9 b 9 app i

. L e approach consists of essentially dividing the image into
the size of the blOCk. US.Ed for matchlng 'the 'smaller the blog ONST and non-CONST regions and finding the best matches
the better the localization. However, it is widely known th

. or both regions. To match imagds and I, all AP points
using blocks that are too small produces many false matches . . k .

. . : : A I both images are located first using edge detection. We can
since intensity patterns will be less distinctive [17].

An example of all four artifacts is shown in Fig. 2. Thqe.WO'd performing any matching for these points since they are

. . ._likely to be wrong and we can incorporate information from
two images shown are related by horizontal translation . .
motion. ie. the two ontical axes are parallel to each othorher matches as described later. Once the AP points have
T ptical ax pa OMELen excluded, we identify CONST regions by low-variance
and perpendicular to the direction of motion and the ep'pOIeresholdin (LVT) with a 3x 3 block? Once found, the
lines are coincident with the scan lines. The object is a 9 ' '

rectangle of constant grey while the background is entire|y3Since the relative motion between the images is primarily horizontal

; ; ; ; ; nslation, we need to worry about only horizontal edges in the scene. If
white. If points in Image 1 are matched with those in Imagﬁﬁ two images to be matched were related by a vertical translation, then we

2, the aforementioned problems will lead to incorrect disparityould require the edge detector to locate all vertical edges.

estimates. Mismatches at horizontal line segments identifiedGenerally, a small block size is preferred, since textured regions near or

as Fig. 2(a) are due to aperture ambiguity. Constant imensq{gng intensity discontinuities will be better localized. This tends to improve
2 . the localization of depth discontinuities since many times intensity edges are

amb|gu'w occurs in both the foreground and background fPated to depth ones. We note that depth discontinuities can be much better

with the point indicated by Fig. 2(b). Little information maylocalized by human interaction as done in [22].
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Fig. 3. Example of disparity map using fixed block sizex90.

Fig. 4. Example of disparity map using adaptive block size. Legend: blue,
) ) ) CONST; red, AP; yellow, INCONS; green, OCCL.
non-CONST points are then matched using (2) ferwith

respect tol; and alsol; with respect tols.

With the non-CONST points matched, the next step is X X
P P etween maps and scale by the reciprocal. A péintv;)

find the best match for each CONST poift j). Since the . , lated di
main ambiguity stems from using a block that is too small, w@ one image an_cduli,_vli) Ina translated second image are
ted by the disparity equation

consider instead using the largest rectangular block containfr‘?éa
the point (¢, j) that consists entirely of CONST points. Note
that the block does not have to be centerediay). One %

way to find such a block is by growing a 3 3 block whereb; is the translation parameter relating the two images.

arounq(z,j) and then extending each side evenly- untl thﬁ'.a third image is introduced, one yields a similar equation
extension encounters at least one non-CONST point or until

some prespecified dimension maximum, i.e., block size limit, d,i2 \/(umi "u)? + (omi — i = fbm @)

E)or this task, we propose to estimate the translation parameter

dii 2V (uli —u)? + (vl —v;)? = ibl (3)

has been reached. In this way, the algorithm utilizes the shape Z

and relative size of the CONST region without including togjith ,, the translation parameter linking the first and third
many features that may mislead the algorithm. . images; Fig. 5 shows this relationship. Note that the depi
Once every point has been classified, the algorithm dgr same in both cases, since all three image points correspond

termines the occluded points (OCCL) and inconsistent ongsthe same physical point. Combining (3) and (4) leads to the
(INCONS) as described above. Notice that both the CONSdjiowing relation:

and non-CONST points alike could be reassigned to OCCL or b
INCONS, depending on the outcome of matching. dyi—

Because the block size is not fixed and actually adapts to the by
confidence region, this adaptive scheme overcomes the wé&lisppose now we considéf high confidence disparity points
known trade-off between good boundary localization with @@mmon to the two depth maps. For each pain5) holds,
small window and improved matching in low textured regionthus leading to the matrix equation

= drn,i . (5)

with a large window. The final result consists of fairly dense dy 1 1

and reasonably accurate disparities. Consider an example of d172 b drn72

matching between two images, frames 37 and 34 of the Mug2 TR = T (6)
sequence described in Section 1IV; frame 37 is shown in : by :

Fig. 19. Fig. 3 shows the resulting disparity map using a fixed di,x A, i

9 x 9 block size. While the mug and stool are somewhat — \_‘y’_/

discernible, there are a large number of artifacts throughout the .
scene due primarily to the many regions of constant intensifsY llnéar least squares, we may solve (6) for the rafig/t,
In contrast, Fig. 4 shows an improved disparity map obtain&d 9€t

using an adaptive block size with various low confidence b I ot T E‘Iil(dli)(dmi)
regions marked accordingly. These low confidence regions will b (ATA)T Ay ===¢ 7d S (7
be dealt with in the upcoming sections. 2i=i(dyi)

If by is assumed to be one, theép, is precisely the scaling
factor by which we need to adjust theth depth map. In this

The depth maps from the previous stage need to be namay, each of the depth maps can be normalized with respect
malized so that they are all related by the same scaling facttur.the same scale factor.

B. Normalization of Initial Estimates
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combination, then there will be considerable problems in AP
regions. To circumvent the problems, we propose including
information derived by matching a vertically related pair of
images, that is, using corresponding images from two linear
trajectories at different vertical elevationslf the second
image with respect to the reference frame is a perfect vertical
translation, then solving correspondence leads directly to an
estimate of depth. Observe that the depth map will have
vertical aperture ambiguity and will contain occluded regions
generally not coincident with those found in the horizontal
Fig. 5. Exploiting geometry of camera set up to normalize depth maps,n4tches. Hence, this information may be incorporated in the
combining stage to improve the accuracy of the depth map in
Since we are not confident about every disparity estimaigp regions.
an iterative process may be used to improve the estimate byrhe algorithm may be further refined by introducing the
reducing the erroff Ab,, —y/||» to some desired amount. Duringnotion of weights to the depth data. At every stage in the
every pass, outlier points greater than a given error percentaggresentation process, confidence levels are assigned based
are disregarded when computibig. The procedure convergeson the validity of the data. It is thus quite intuitive to weight
when the number of points does not change between iteratiogsints in the combination stage based on the confidence levels.
This modification helps to further improve the accuracy of trpor examp|e, a|ong horizontal edges, more Weight is p|aced
scaling factor. In our experiments, we use a generous errorf the vertical information, since it is more reliable here
30% since the vectoy consists of possibly erroneous datathan information from horizontal matches. Lower confidence
The algorithm typically converges in only three iterations. AP, OCCL and INCONS points are not included during
combination whereas CONST points are considered since they

C. Combination of Multiple Depth Maps are seemingly correctable. The degiz, ») is then given as
Once all the depth maps have been normalized to a comnibg weighted averag®., wx(z,y)Dy(z,y) with

scaling factor, they are combined to form a single depth 1.0 (z,y) high confidence

map for a particular reference frame. Since each local depth 1.0 (z,y) CONST,k vertical match

map may consist of low confidence areas and incorrect depth"k(%y) =3os3 (x,y) CONST, k horizontal match (8)

data, the combination process should retain only the informa- 0 otﬁerwise. ’

tion which seems consistent; otherwise, it should regard the_. i . ) .
information as invalid. Fig. 6 provides an example of combining several disparity

Let Di(-,-) for i = 1,2,...N denote theN normalized maps together as described. The map has been quantized to

depth maps and leb(-, ) represent the combined result. Fo?_56 Ie_vels, whe_re brighter ir_1tensity level represents a larger
every point(z, ), we may regard the problem as an estimatiofSParity- The disparity map is then converted to a depth map
problem, i.e., givem votes for D(-,-), determine the most by inverting e_ach disparity pplntwlse. The depth map is amore
accurate value. An iterative procedure is used to analyze fieFurate estimate of the given scene as compared with the

statistics of the given data, throw out outliers, and reduce tﬂbsparity map in Fig. 4. The regions in the combineq dgpth
data set to a more consistent one. map which may be inaccurate are marked in yellow to indicate

Because of the predominantly bimodal distribution of thl@W confidence.
data, i.e., foreground and background points, we consider ) ) ) )
using the median instead of mean to throw out outliers [f- CuPic B-Spline Approximation
Generally, the depth associated with the cluster consisting ofThe depth map after the combination stage is fairly accurate
the majority of points is reasonably correct. We found th&h many regions. There are however a considerable number of
when dealing with bimodal distributed data, outlier identificdow confidence regions. To fill in these regions and to make
tion was significantly improved by using the median rathehe map much denser while not sacrificing too much accuracy,
than using the mean. The effect is that one cluster of thenuniform cubic B-splines are used [12], [3], [5]. Every
bimodal distribution of depths is discarded; the underlyindepth point in low confidence regions is interpolated by its
majority in depth wins. As an example, consider the set akighboring high confidence depth vertices along the same row
depths{0.1,0.2,0.3,1, 1.3}. The meann is 0.58, the standard or column, depending on the variance of these vertices. The
deviation ¢ is 0.4792, and the median is 0.3. A general depth surface is treated as a tensor product, i.e., the product
practice is to throw out outliers that lie outside the+ o; in  of 1-D functions, so the data may be processed first along one
this case, the range {6.1008,1.0592] and, hence, both 0.1 direction and then along the other, which helps to simplify
and 1.3 are discarded. If we instead considef o, the range computations. We may apply this spline technique to Fig. 6 to
becomes[-0.1792,0.7792] and only the foreground pointsobtain the final depth map shown in Fig. 20.
{0.1,0.2,0.3} remain. Once the depth map for each reference frame has undergone

As discussed before, depth information from horizontalpline approximation, we are left with depth estimates at
matches contains artifacts along horizontal edges due to hor.E'Note that other images may be considered as well, including those obtained
zontal aperture ambiguity. If only these depth maps are useijnarbitrary translational motion in the-y plane.
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Fig. 7. Example of computing weights for three reference frames.

3 i d; away from theith reference frame. Then, the first reference

Fig. 6. Example of combined depth map. Legend: yellow, low confidencg.réunne SDOdUId ContrlbUt.e On.ly/dl out of 1/d1 ™ 1/d2 - 1/d3'
e and likewise for the other reference frames.

didz+dads¥dgdi . .
In general forN reference frames, the weight assigned to
different locations around the scene. The final step in thige ith reference is given by
representation process is to estimate the relative camera motion L. d;
between reference frames using an approach like [36]. Once i = # (9)
the relative motion between all reference frames is known, a Zkzl(l_[#k d;)
geometric relationship may be constructed among the differentA(k) _ _
reference frames. This enables us to select the reference frathes~ 'ePresents the view estimate from reference frame
needed to use in the reconstruction stage. then the des[red wey] can be repAresent?\g as Ehg we|ghted
In the end, the representation of the scene consists of f§rage of view estimates, namely= »_;_, wlI®. This
intensity-depth pair at each reference location along with tf@uation may be applied to most points; however, more detail
relative motion among reference frames. Once these data h4{lk P& seen in Section I1I-C.

been derived, they may be stored in a database for latefANOther consideration is the number of reference frames.
reconstructior;. If the specified view is very close to one of the reference

frames, then we may choose to use only that single frame.

However, at least two reference frames are needed to properly

reconstruct the desired view to reduce noise and to recover
Once we have generated the representation for a particudatluded regions in the scene. Additional reference frames

3-D scene, we may choose to reconstruct the view of the scérdp to reduce noise further at the cost of requiring more

at some specified viewpoint. Assume that the center of opeecise registration among the frames.

reference frame coincides with the origin of the coordinate

system and that the desired viewpoint is known with respegt Generation of View Estimates

to th|s_ origin. The reconstr_uctlon algorithm consists of the In this section, we will describe our approach to generating

following: First, the appropriate reference frames are chosen

- . . . view estimate from one intensity-depth reference pair. In
Then initial estimates of the desired view are constructed %é y-aep P

applying motion parameters to each reference frame. Final ction 1lI-C, we will descri_be how estimates from multiple
the estimates are combined into a single image inte.rpolatingference.frames are comblr_1ed. L
when necessary k A possmle_ approach to view generatlpn is tq regard the
' points (u,v) in the reference frame as discrete independent
points, since neither the image nor the depth map is a contin-
uous surface. However, if we consider transforming only this
Given the relative position and orientation of the desireskt of points to generate the view estimate, the resulting image
view, it should be a straightforward task to determine whicmay exhibit inconsistencies in the ordering of foreground and
reference frames to use. One way of deciding is to includackground points [5], [6].
those frames with the smallest motion in norm relative to the A better approach is to consider the points of the reference
view. This measurement may be used to determine the amofratne arrays as vertices of a deformable 2-D wire mesh.
a particular reference frame contributes to the view estimatéeighboring points in the reference frame are viewed as con-
Intuitively, the reference frame corresponding to the smallas¢cted to one another to form a meshlike structure consisting
motion in norm should be weighted the most, and vice versa. quadrilateral patches. Specifically, every set of four vertices
For example, suppose the representation consists of th{ee, ps,ps,ps} = {(v,v), (u+1,v), (u+1,v+1), (uw,v+1)},
reference frames lying in a plane, as shown in Fig. 7, and théth the corresponding depth and intensity information, consti-
desired view is at the location marked with ax," a distance tute the corners of a single patch in space. Notice that the order

I1l. RECONSTRUCTION OFVIEWS

A. Selection of Appropriate Reference Frame(s)
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of the four points is important for orientation; we consider the “ —
patch to have clockwise orientation starting with the upper left : ‘
corner. We also consider the patch to have two sides, an outer,
one whose intensities can seen by the camera and an inner on A
whose intensity information is unknown. An alternative view

is that the upper side of the patch has a surface normal given| B
by the left-hand rule. To transform the 2-D mesh into 3-D, we |
consider the following mapping: A poiltt:, v) with depthz is ‘
mapped to the 3-D poirtX, Y, Z)' = (ﬁu_—;fﬁ7 K%E’ ¢zY, Fig. 8. Examples of invalid patches due to depth discontinuities.
where(z.,y.) is the center of the image plang,is the focal
length, and{ is a scaling factor to adjust for the field of view.

A view estimate is then generated by transforming every patch
in the reference frames into 3-D as described above, applying
the appropriate motion parameters to the mesh, and finally
reprojecting the mesh to construct its 2-D image throughg
rendering; these steps are described in detail below.

o 1//////2
. B N

Once all the points of the reference frame have been map - ‘ Sy
into 3-D accordingly, they are then transformed according to i V////g =» P
the appropriate motion parameters. The notion of applying ‘ //é% ]
motion parameters to a frame has been addressed in con- A 3 e

ventional computer vision and robotics literature [18], [30].
Let (X1,Y1,%;) be a point in the scene and suppose the Fig. 9. Examples of invalid patches due to incorrect orientation.
frame of reference undergoes a rigid transformatidh ")

i — [p. . 3Ix3 _ /
g;inrsza\fizo;}zp%]detr;znslat%?ic;j;r_e (nAgtUe’ rﬁ%’ ﬁfz zhg\/h%ﬁ d with a 5 x 5 window on the depth maps and mark points
coordinates. Then. in matri; form thle new scene coc\;vrdinatvé/hose variance is above a certain threshold [9]. This technique
, " ' ofgsearching for large depth variations is similar in nature
(X2,Ys,Z5) are given by

to a crude intensity-based edge detection algorithm. Patches

X, ri1 e Tis] [X) Az associated with a depth discontinuity are not rendered to avoid
Yo | = 101 10 73| |Y1 |+ [Ay]. (10) streaking. We note that the resulting edge map produces a
Zs r31 T30 Tas | |21 Az rudimentary description of how to segment the given scene

into foreground and background components.

The subsequent image coordinates, v2) are then given by After the patches in the reference frame have been trans-

formed, it seems straightforward to render the new patches to
7 N R (11) generate an estimate of the view. However, not all patches

need to be or ought to be rendered. More specifically, trans-

Yo _ pr2aXs 72001 + 72521 + Ay (12) formed patches that do not preserve orientation should not
Zy Traa Xy F Y1+ raaZi + Az be rendered since they usually result from occlusion and
with f as the focal length. cannot be seen. Consider an example of a rectangular object

At this point, the reference frame has been viewed as™h small depth moving to the right in front of a uniform
single deformable mesh consisting of connected patches. H&@ekground with large depth. Fig. 9 shows two types of trans-
ever, if regions of the mesh are not grouped into foregrouffgfMed patches whose orientation is not clockwise, namely
or background categories, transforming every patch in thuisted and flipped patches. The top patch consists of three
mesh will lead to a potentially incorrect view estimate. A§ackground depths for Points 1, 2, and 3, and only one
an example, consider Fig. 8. The rectangle is an object in tiegeground depth for Point 4. Once transformed, the first three
foreground with small depth that moves to the right in front doints remain in roughly the same relative position while Point
a uniform background of far away depth. Notice if we consider occurs to the right of Point 3, yielding a twisted patch.
rendering the square patch drawn, whereby its two left poingémilarly, the lower patch consists of two foreground depths
A and B have far away depths while its two right poinfs at Points 1 and 4 and two background depths at Points 2 and
and D are near to the camera, the result will interpolate thd For an apparent motion to the right, Points 2 and 3 remain
depths and thereby consist of streaks in the view estimate.stationary while Points 1 and 4 move past them creating a

The need to segment the image by depth is apparent fipped patch with counterclockwise orientation. Notice that in
obtaining accurate results. One simple approach is to identifgth cases, the transformed patches have a surface normal that
the depth discontinuities in the reference frame. Patches whistdirected away from the camera, and hence their outer sides
fall along depth discontinuities should be discarded and nate barely, if at all, visible.
even be transformed since connecting regions of differentTo determine whether the orientation of the candidate patch
depths may lead to an inaccurate image. To detect patches been preserved, we consider the following. Assuming
along depth discontinuities, we estimate the local varianctockwise orientation as shown in Fig. 10, Poinfu , v;) is

Xy Xy +rpY1+r13Z1 + Az
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Fig. 10. Testing for valid patches.

Ref #37

ViewZ%liJ\Hf;.‘i

Viewl L || e
| - ! i i | I H [
Ref #35 Ref #65
- (Horizontal) -

Fig. 11. Geometrical relationship among the reference frames for experi
ment.

translated to become the origin and the patch is rotated so th
Point 3(us, v3) lies along the positiver-axis. A patch is said
to preserve clockwise orientation if i) Point 2 has a positive
v coordinate, and ii) Point 4 has a negativeoordinate. In
particular, letR € R?>*? be the rotation matrix to rotate Point
3 to the positiveu-axis after Point 1 has been translated to
the origin

Fig. 12. Reference frame 35 (intensity) of Mugl.

R:[ cos 6 SinH} (13)

—sinf cos#

where § is the angle formed by the line connecting Point 1
and Point 3 with theu-axis. It can be easily shown thdt
is given by

R= 1 |:U,3—U,1 113—1}1:|'
Vi(us —u1)2+ (v —v)2 ["V3t v uz—ug

(14)
A point p = (u,v) has the new coordinates = (v/,v') =
R(p — p1). To check for orientation, Points 2 and 4 are
substituted into this expression. Since only the sign of the
transformedv coordinate is important and since the root of
any positive number is nonnegative, we may simplify the
coordinate to be

o A —(vg _ vl)(u _ Ul) + (u:», _ ul)(v _ Ul) (15) Fig. 13. Reference frame 65 (intensity) of Mugl.

to check whether the two conditions are satisfied. stored in memory and sorted in decreasingcoordinate.
With the patches transformed, we are now in a positidstarting at the smallest coordinate, every scan line is filled

to generate the view estimate. The set of valid patches @meaccording to an intensity-based interpolation scheme. In

projected onto the image plane and then rendered usin@ddition, we employ a software-buffering technique [16],

scan-line algorithm [14]. For each patch, the four edges d@&l] to determine the ordering of patches with respect to the
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Fig. 14. Reference frame 35 (depth) of Mug1 filled in by splines.

Fig. 15. Reference frame 65 (depth) of Mug1 filled in by splines.

smallest depth. Thus, a given pixel in the view estimate il=
assigned an intensity corresponding to the patch closest to the
camera. This approach allows us to handle occlusions quite

nicely when the foreground object obscures portions of the .
background scene. It is worth noting that a view estimate c8Rd Patches that transcend depth boundaries were rendered,

be generated much faster on a platform with a specializ¥@'y féw uncovered regions would appear, replaced by the
graphics library such as the HP Starbase Library. smearing artifact mentioned previously. The red regions to the

The majority of pixels in the view estimate will haveleft of the mug and stool in Flg 16 and to the rlght in Flg 17

an associated intensity from this technique. However, it fe precisely the uncovered regions in the scene. .
possible for some pixels not to be assigned any intensit In both cases, the holes are left unmarked in the estimated

leaving "holes” in the estimated image. Examples can be sd8if98: since a single reference frame has no information about
in Figs. 16 and 17, where the holes are marked in red. Thd3gSe points. As we will see in the next section, some of these
holes arise because of two primary reasons. The first invol/&¥es Will be eliminated in a combination stage where other

the accuracy of the depth maps. Since we estimate depth ri%frerence frames having information at these locations may

every point in the reference frame and do not attempt to fity IN the holes. We also propose other techniques in Section

surface through these data, it is quite likely that the depths ateC © deal with covering holes.

not completely consistent or smooth, and as a result, “cracks” o

in the view estimate may appear. In Figs. 16 and 17, cracks Combination of Reconstructed Data

can be seen in the mug face and in front of the stool Once we compute the estimates of the desired view with
In addition, holes also occur in areas of the view estimatespect to each of the chosen reference frames, we must

that were previously unseen and become uncovered. Identiépmbine these data to generate the appropriate reconstruction

ing depth discontinuities, and hence segmenting the image iatod deal with the remaining holes. Suppose there ZEre

foreground and background regions, induces these uncoverefgrence frames for reconstruction with corresponding view

areas to form. Certainly, if the segmentation step was ignorestimates/*) for k = 1,2,---N. To find the intensity for

Fig. 17. Horizontal view estimate with respect to frame 65.
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Fig. 18. Reconstructed view along horizontal trajectory. Fig. 19. Reference frame 37 (intensity) of Mug2.

pixel (¢, 7), we examine points from thé/ view estimates
in a S x S pixel region 4; ; centered around pixeli, 5).°
Akin to the z-buffering technique from the previous section,
only points in A4, ; with the smallest depths, i.e., closest
to the camera, are considered; all other pointsdip; are
thrown out. When an object moves in a frame, we would
like the pixels of the foreground to precede those from the [
background occupying the same region. The intensities of the

are discarded in a manner similar to the approach described
in Section II-C. Holes are automatically filled in as long as at |
least one reference frame has information about the region inf%
question. Once the number of points43 ; has been reduced,
the intensity /(7,j) is simply the weighted average of the
remaining points, i.e.,

Fig. 20. Reference frame 37 (depth) filled in by splines.

M
IG,5) =Y apI®(,j (16)
6. 3) kz_:_l 6. 3) value for which a point falls within the ared, ;, i.e., the
region is no longer a hole. Once we find such an area, we
then use the above technique to find the intensity value at the

grid point(z, 7). Examples of this will be shown in Section IV.

whereqy, is defined as the weighy;, from (9) if none of the
N reference frames has a hole(aty) (i.e., M = N) and as
the weighted average af,'s for the M contributing reference
frames forAM < N.

It should be clear that this combination technique allows
the uncovered points from one view estimate to be filled in by
the other view estimates, thus minimizing the number of holesWe shall now examine some results using the techniques
in the scene. However, it is still possible that there exists gscribed above. Since it is difficult to reconstruct an arbitrary
points in a givenS x S region from any of the view estimates;view that is precisely coincident with any one frame from the
these are the holes that lie in the intersection of the holes @ifginal sequence, we have not computed reconstruction error
all the reference frames. As mentioned before, these holes f@ethe following results.
either due to regions that become uncovered or due to a rough
depth_ map. In the former case, we c_annot _fundamgntally do Mug Scene
anything for these holes since there is no information about ) )
them. However, holes resulting from a rough depth map ma The first scene consists of a mug placed atop a stool. A

be interpolated to fill them iA.One approach is to grow the CCD camcorder is moved horizontally by hand to follow
aread; ; out to am x m region, wheren > S is the smallest trajectories at two dn‘fe_;rent elev_at!ons to generate an image
sequence for each trajectory, similar to the set up drawn in

6We selectS to be 1 because a largértends to blur the final image too Fig. 1. The reference frames from both trajectories are shown
much. s

“Introducing even more reference frames and view estimates may heIp"?oF'Q' 11:' Each frame is 649 480_plxels Iarge and ans'StS
further reduce the size of both types of holes. of intensity only. No special lighting was used to film the

IV. RESULTS
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scene; specularities of the stool and the lid of the mug ar
very apparent in the images. 5,

For the first set of results, the desired view is roughly}
halfway between two reference frames along the same hoj
izontal trajectory. Frames 35 and 65 from the first trajectory
Mugl sequence are selected as the reference frames; they
shown in Figs. 12 and 13. The chosen view is perhaps t
one most prone to errors due to the large occluded region
Note that there is roughly a maximum of a 120-pixel disparit
between the two reference frames.

Figs. 14 and 15 show the corresponding depth maps ol
tained by using the proposed matching algorithithe mug
and stool are estimated well and do not contain many spurio
depths. There is a gradual change in depth as expected fo
hallway scene. Artifacts are most prevalent in the handle g
the mug. Problems arise here because intensity-based match
schemes perform poorly for background regions that can be
seen through foreground regions.

The estimates of the desired view generated by the tw-;
reference frames are shown in Figs. 16 and 17. As describe §
in Section 111-B, the holes marked in red are the points in the & &
scene that have become uncovered or that stem from bum| § %
depth maps. However, combining the information in both view £
estimates into a single one eliminates the uncovered poin
entirely; only cracks remain due to the rough depth maps§
Interpolating these remaining cracks results in Fig. 18. The ;
image quality is good for the most part. The horizontal edges £ &
e.g., top of the door, top of the mug, specularities in front of §
the stool, and the drawers, have been reconstructed quite we|
The proposed algorithms take care of problems in occlude |
regions; there are only a few errors to the right of the mucf
and near the mug handle. These artifacts arise because ff
depth edges were not localized perfectly. |

To generate a view not originally scanned by the camcorde
two frames from different vertical elevations, frame 35 from
Mugl and frame 37 from Mug2 are chosen as reference Fig. 22. Reconstructed Mug view from+y plane.
frames. The intensity and depth for frame 37 are shown in
Figs. 19 and 20, respectively. The desired view is roughl [
the midpoint on the vertical trajectory relating the two views [
given in Fig. 21. As before, the view estimates each posse M.
uncovered regions about which a single reference frame has
information. However, the combined image turns out to be i
reasonable estimate of the desired view where the cracks ha
been filled in appropriately. As before, the most troublesom
region in the image lies inside the handle of the mug. e

Using all three reference frames, we can reconstruct tr
view translated arbitrarily along the-y plane. The image is
shown in Fig. 22. For the most part, the image appears to be
good estimate. As expected, the artifacts appear at the occlud
or uncovered portions of the image, namely underneath tt
mug handle and the stool legs. The regions marked in re
indicate precisely those uncovered regions for which the thre
reference frames have no information. For instance, the clust™
of points near the right stool leg is a portion of the background Fig. 23. Reconstructed Mug view from translation aloag axis.
that is obscured in the three original reference frames. Notice

. o ) ) that filling these holes with the algorithm described above will

As described in Section III-C, the depth maps have been quantized to 2

levels. In addition, their histograms have been equalized to increase contfggetwj[ably prOduce a.n Inaccurate |mqge smcg the holes are
for visualization. relatively large and since we have no information about them.

Fig. 21. Reconstructed view along vertical trajectory.
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Fig. 26. Reference frame 10 (intensity) of Chess scene.

Fig. 27. Reference frame 23 (intensity) of Chess scene.

moves primarily in a horizontal motion with occasional motion

in the vertical direction. Each frame is digitized to 320240

Fig. 25. Reconstructed Mug view from pan of°16lockwise, translation of pixels, and again consists of intensity only.

12 units along the:-axis and 0.02 units along theaxis. Figs. 26 and 27 show frames 10 and 23 from the sequence.

. . . . . We note that this scene exhibits a much larger motion than
More interesting views not necgssarl_ly confined to_ the in the previous case; the largest disparity is 170 pixels for

y plane may be reconstructed with this representation. e bottommost white pawn, over 50% of the entire image.

instance, the viewpoint of a camera translated toward the sc & described matching algc')rithm leads to the corresponding

can also be rendered quite easily; it is given in Fig. 23. No pth maps in Figs. 28 and 29. The different chess pieces have

that Fh's view differs from a simple “zoom-.m," since the Iatte[)een recovered in the depth maps as indicated by the differing
requires only a larger focal length and it does not UNCOVES ols of grey

chllé)ded regions. Thef t;/;/]o regfmns abofve the S:]OOI &.lr? marl;eq.he view that lies between the two reference frames is given
r% tecﬁuf‘? notr;eh.od the ret erle_ncizh rames E.S Igzrn:]a fﬂrf:ig. 30. The resulting image quality is quite good especially
about what 1ies benin € stoolin the scene. Fig. SNOY®en the complexity of the scene. It is interesting to note that

the view translated away from the scene with the uncover t the algorithm incorporates the bishop, seen in only the first

re_:gions marked accordingly. Fi”?‘"y’ Fig. 25 shows an c_)bliqq age, and the rightmost pawn from the second image into the
view of the scene taken by rotating the camera dlockwise new view. If we consider translating the camera toward the

and translating along both the: and z-axes. The quality of ¢ ene, we obtain the view shown in Fig. 31. The holes in the

the reconstruc@ed image is quite good given the amount Lene are again drawn in red. Translating away from the scene
uncovered regions. leads to the image shown in Fig. 32. We observe that the result
consists of the union of the points seen in the two reference
images and is similar to a 3-D parallax corrected mosaic [24].

A more complicated scene featuring a chess set is filmed Binally, Fig. 33 demonstrates an oblique view obtained by
the camcorder. We have confined the motion so that the imageng the camera 10 and translating along all three axes.
plane is parallel to the direction of motion; the camcordérhe results for each of the views are quite reasonable.

B. Chess Scene
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Fig. 28. Reference frame 10 (depth) of Chess scene.

r’ ¢

Fig. 29. Reference frame 23 (depth) of Chess scene.

Fig. 30. Reconstructed view along horizontal trajectory.

C. Comparison to Previous Work

Fig. 31. Reconstructed Chess view from translation alengaxis.

Fig. 32. Reconstructed Chess view from translation al¢ngaxis.

panning, not roughly translational. The approach of Skerjanc
and Liu [34] requires a calibrated trinocular set-up, while that
of Kanadeet al. [22] uses clusters of fixed arrays of cameras.

In the end, we have chosen to compare our results with
the approach of Laveau and Faugeras [25]. They require only
a set of reference frames and a dense disparity map, both
consistent with our approach. The algorithms also have similar
storage requirements; their approach needs two images and
one disparity map, whereas the proposed approach requires
one additional depth map. To construct a new view, Laveau
and Faugeras employ a ray-tracing-like algorithm whereby
the intersection of the projections of certain optical rays is
examined. This step is however computationally intensive for
reconstruction. In contrast, much of the complex processing in
our approach may be done offline, since our representation and
reconstruction processes are distinct, thus leading to a faster
reconstruction stage.

In our implementation of Laveau and Faugeras’ algorithm,
the reference frames in Figs. 26 and 27 are the input images,

We found that most of the methods described in Sectigihile the depth map in Fig. 29 serves as the correspondence
| have different input data requirements from the proposefap. Because of our reference pair configuration, their algo-
approach, making it difficult for direct comparison. For exrithm exhibits artifacts near the trifocal plane [25]. Also, we
ample, image mosaics [35], [27] restrict camera motion to eund that views like Fig. 30 lying along the baseline between
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Fig. 33. Reconstructed Chess view from tilt of°1@anslation of four units

along thex- axis, three units along the-axis, and 0.04 units along theaxis. Fig. 35. Reconstructed Chess view with Laveau and Faugeras’ algorithm

for translation alongt-z axis.

as that in [25], reconstruct only those points that lie in the
intersection of the input views, whereas our approach can
render points that lie in the union of the input views. In
addition, there is no depth recovery or explicit representation
stage with direct methods. As a result, an exhaustive search
over every optical ray needs to be performed for every
view generation. Consequently, no off-line processing can be
executed beforehand and, hence, the approach becomes more
computationally intensive. This is in contrast to our approach
where the intensity-depth representation can be generated off-
line, leading to straightforward and relatively fast rendering
of new views.
Future work in this area includes examining the optimum
) T choice and number of reference frames to fully capture a scene.
Fig. 34. R_econstructed C_hess view with Laveau and Faugeras’ algorithme reference frames in the paper were chosen rather arbi-
for translation along—z axis. . . . .
trarily. With our current approach, a desired view chosen far
) . . away from the reference frames leads to very erroneous results.
the two reference images are unattainable due to collineatity , ygition, there is a noticeable decrease in performance as
of the optical centers. Fig. 34 shows the camera translalifg, paseline between reference images increases. The issue
toward the scene. As compared to Fig. 31, their algorithm hgg 5 tomatically selecting reference frames and choosing an
difficulty recovering the king and the rightmost knight. Alscb timum set remains a difficult problem to solve. A more
our approach performs better in uncovered regions, such agapiete analysis must be performed in order to determine
the right of the rook and above the white pawn at the bottof, o+ s the scope of a single reference frame, or conversely,

of the image. Similarly, we may compare the view with thg, ¢ s the optimum set and locations of reference frames to
camera translating away as given in Fig. 35. It should be Cl%mpactly represent a given scene.

that only the points that are common to both images are drawn, addition, the proposed representation is certainly not

in their algorithm in contrast to ours in Fig. 32. the most optimum. While multiple reference frames help to
fill in uncovered regions of the scene, there is a significant
V. DiscussioN amount of redundancy in both the intensity and depth maps.

We have proposed an approach for representing and $nce most of the frames of the original data have been
constructing static 3-D scenes. For views along a horizontéiscarded, we do not utilize all the information about the scene
trajectory, the algorithms produce reasonable reconstructeith our representation. We are currently examining layered
images where most of the error is concentrated near tlepresentations [39] and multivalued intensity and depth maps
occlusion boundaries. For views not scanned by the camcorderencapsulate the scene information better [8].
the discussed approach leads to promising results. Our resultBinally, a real-time implementation of the reconstruction
are comparable to full 3-D modeling techniques yet not adgorithm would expedite the development of a virtual en-
complicated. Moreover, using depth surfaces to estimate sceirenment. Using a stereoscopic display and head tracking
structure results in recovering uncovered background poimtsvice, we will be able to simulate such a system by recon-
in the scene much better and leads to a faster renderstgucting an arbitrary view of a scene in real time as the user
approach. Direct methods based on projective geometry, sucbves his/her head.
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