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View Generation for Three-Dimensional
Scenes from Video Sequences

Nelson L. Chang,Student Member, IEEE, and Avideh ZakhorMember, IEEE

Abstract—This paper focuses on the representation and view
generation of three-dimensional (3-D) scenes. In contrast to exist-
ing methods that construct a full 3-D model or those that exploit
geometric invariants, our representation consists of dense depth
maps at several preselected viewpoints from an image sequence.
Furthermore, instead of using multiple calibrated stationary
cameras or range scanners, we derive our depth maps from
image sequences captured by an uncalibrated camera with only
approximately known motion. We propose an adaptive matching
algorithm that assigns various confidence levels to different re-
gions in the depth maps. Nonuniform bicubic spline interpolation
is then used to fill in low confidence regions in the depth maps.
Once the depth maps are computed at preselected viewpoints,
the intensity and depth at these locations are used to reconstruct
arbitrary views of the 3-D scene. Specifically, the depth maps
are regarded as vertices of a deformable 2-D mesh, which are
transformed in 3-D, projected to 2-D, and rendered to generate
the desired view. Experimental results are presented to verify
our approach.

I. INTRODUCTION

I N LIGHT of recent advances in technology, virtual envi-
ronments have become an important tool in engineering,

design, manufacturing, and many other areas. Especially im-
portant to the development of this growing field is the problem
of arbitrary view generation (AVG), in which a novel view
of a three-dimensional (3-D) scene is generated from its
neighboring views.

Existing work in this area can be placed into three classes.
In the first class, a full 3-D model of the scene is constructed
by volumetric intersection and then reprojected in order to
generate the desired view [11], [1], [4], [17]. The main diffi-
culty with this approach is that of registering and combining
the two-dimensional (2-D) information to generate a full 3-D
model.

In the second class, views are generated by direct methods,
without having to estimate structure directly. In [35] and [27],
image mosaics are constructed by registering and reducing the
set of input images into a single, larger resolution frame. This
frame then serves as the representation of the scene. While this
representation is useful for capturing the information generated
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by panning a given environment, it is difficult to generate
an arbitrary view with this approach, since the necessary
depth or structure information has not been estimated. Other
researchers have considered exploiting certain invariants in
the geometry of the problem [38], [33], [25]. This approach,
however, correctly reconstructs only those points that lie in
the intersection of the given views and not points that become
uncovered. In the case of [24], despite being able to generate
novel views from a set of reference views, one requires dense
correspondences and the epipolar geometry to be knowna
priori . In addition, these kinds of approaches would require a
considerable amount of computation to continuously update a
user-defined viewpoint for a real-time application.

The third class of AVG algorithms attempts to deal with
occluded/uncovered regions in the scene better than the second
class while not resorting to a full 3-D representation of
the first class. Generally, a set of depth surfaces is first
estimated and then combined to generate the desired view. For
example, Chen and Williams [10] measure range information
and camera transformation to establish pixel correspondence
and then apply morphing techniques to interpolate intermediate
views. Similarly, Skerjanc and Liu [34] compute depth with
known camera positions in order to synthesize intermediate
pictures. Kanadeet al. [22] estimate depth using a camera set-
up with known camera geometry from which they estimate
depth and generate new views.

In this paper, we address the problem of representing a
static scene from a given image sequence and reconstructing
the view from an arbitrary viewpoint. Our approach to AVG
falls into the third category [7], [5], [6]. However, unlike
existing techniques, we use a sequence of images captured
by a hand-held, uncalibrated camcorder with translational
motion confined to the - plane. We will assume the motion
is primarily horizontal with some possible fluctuations in
the vertical direction. Uncalibrated cameras with unknown
position are used to avoid the difficult and time-consuming
step of calibration, thereby increasing the flexibility of the
image acquisition process. Our motivation for using a sequence
of video images rather than a few still images is to improve
the robustness of the depth estimation step. Wide availability
of video cameras in today’s research and commercial envi-
ronment justifies their use in place of still cameras in many
applications.

Our proposed approach consists of translating a camcorder
by hand across several trajectories, including at different
elevations, around an object in the scene to generate image
sequences used to construct the depth maps. This simple
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Fig. 1. Experimental set-up used to generate results.

imaging geometry is shown in Fig. 1. The motivation for not
choosing rotation, or a combination of rotational and transla-
tional motion, is the sensitivity of depth reconstruction to these
classes of motion, especially when the motion parameters are
unknown. In addition, it is well known that depth reconstruc-
tion can be more accurate when the camera translates across
an object, rather than when the camera translates toward or
away from it. The idea is to estimate depth only at several
prespecified locations, called “reference frames,” by using
their neighboring captured frames. Once the depth has been
computed at reference frames, the neighboring intensity frames
are discarded, and solely the depth and intensity at reference
frames are kept as a compact representation of the scene. The
motivation for compactness stems from the desire to download
only that information necessary for telepresence applications.
This representation is then used to reconstruct arbitrary views
located on or off the scanning trajectories.

The outline of the paper is as follows. In Section II,
we discuss an adaptive approach to dense depth estimation.
Section III describes the reconstruction algorithm used to
generate the desired view from the representation. Results
from real-world scenes are presented in Section IV. The paper
concludes with a discussion in Section V.

II. COMPACT REPRESENTATION

Our overall approach in deriving the depth information at
reference locations is to establish correspondence between the
reference frame1 and each of its neighboring frames. The
resulting disparity maps at the reference frames are normalized
and combined in order to form a depth map for the reference
frame. Once completed, the neighboring frames are discarded
in the reconstruction process; therefore, their use affects only
the quality of the representation and not its compactness. In the
remainder of this section, each step will be discussed in detail.

A. Depth Estimation

In the first step of the representation process, local dense
depth maps are generated by matching the reference frame
and each neighboring frame. There are many approaches

1We shall assume the reference frames have been previously selected.
The problem of choosing reference frames from the video sequences is an
important issue but is beyond the scope of this paper.

to accomplish this task. Some approaches fall under the
classification of optical flow, e.g., see [19], [23], and [2].
The results provide a dense flow field and are generally
acceptable. However, many of these algorithms work for only
small motions and do not perform well across discontinuities
without assuming local similarity.

A second class of approaches consist of stereo matching al-
gorithms. With stereo algorithms [13], it is generally assumed
that either camera positions or camera motion is knowna
priori . Typically, some additional information is furnished to
aid in matching, such as uniqueness and disparity constraints
for random dot stereograms [28], a third view [20] or even
more views [32], shading information [15], or different filtered
outputs [21].

Other approaches are classified as solving the structure-
from-motion (SFM) problem [29], [36], [41], [37]. For these
algorithms, a set of features, e.g., edges in [37] and corners
in [41], are identified and tracked. The motion of the camera
and the structure of these features are then computed simul-
taneously. Despite the complexity of solving this nonlinear
optimization problem under perspective projection, the SFM
algorithms perform reasonably well given two or more ar-
bitrary views. However, many times they are practical in a
computational sense for only a small number of points in the
scene. Moreover, many of these algorithms require point or
feature correspondences in advance.

Our approach is similar to the above approaches for estimat-
ing depth whereby the norm of intensity error is minimized
over possible depth values. However, unlike the approaches
that produce depth for a sparse set of points, we recover dense
depth information as required by the problem of AVG. Since
we have confined the motion to be planar, the depth estimation
problem reduces to a one-dimensional (1-D) correspondence
matching problem [17]. In this case, the epipolar lines of the
two images are parallel and may be found using the algorithm
described in [42]. For every pair of matches, and ,
the depth of the corresponding scene point is related to
disparity2 by

(1)

where is the focal length and is the baseline distance
between the two images’ coordinate systems. Hence, the
depth may be estimated as the inverse of disparity

, obtained by

(2)

where and are the two images, respectively,
and represent the motion vector, is the appropriate

epipolar line, and is the region of intensities
under consideration, not necessarily centered at .

2The terms “disparity” and “baseline” are typically defined with respect to
horizontal motion only. However, we shall use them to describe the norms in
the direction of the epipolar lines and motion. Alternatively, we may consider
rectifying the initial images so that the epipolar lines are parallel with the scan
lines.
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There are some artifacts inherent both in the algorithm and
the problem itself that induce incorrect disparities for certain
regions [6]. In what follows, we describe four of the most
important artifacts and explain techniques of minimizing their
effects.

1) Artifacts: To begin with, if the relative motion between
two images is translational in the plane, then an artifact
known as aperture ambiguity occurs for edges oriented parallel
to the epipolar lines. It arises because the blockused for
matching is too small and does not include enough distinct
features when matching. A similar artifact occurs in regions of
nearly constant intensity. Note that in both cases, the matching
equation (2) is a shallow function over all possible disparities;
the disparities are almost all equally good. The minimization
depends largely on the actual intensity values, which may
be noisy due to the imaging process and different lighting
conditions. Despite the lack of distinct features, the matching
algorithm may still lead to the correct disparity for horizontal
edges and low textured regions.

In contrast, there are other artifacts of intensity-based match-
ing algorithms which almost always produce the wrong dis-
parity—these occur in occluded regions and near depth dis-
continuities. An occluded region is an area that appears in one
image but not in the other. For instance, a moving object in
the scene generally occludes some points and uncovers other
points from view. In such regions, the matching algorithm
blindly attempts to find the best match but fails miserably
because only one image has information about the region.

Incorrect disparity information is also generated near depth
discontinuities. It is difficult to identify depth discontinuities
of a scene beforehand, since the ultimate goal is to estimate
depth. Intensity discontinuities are often considered instead
because it is not uncommon for depth discontinuities in the
scene to be related to intensity discontinuities in the image.
For points near object boundaries but not part of the object,
the search block is large enough to include some features of
the object. In minimizing the intensity error for such a point,
the matching algorithm yields a motion vector similar to the
motion of the object itself. The end result is poor localization
of the object boundary in the disparity domain by pixels,
i.e., the object seems to have expanded in all dimensions.
Clearly, the localization of depth discontinuities depends on
the size of the block used for matching—the smaller the block,
the better the localization. However, it is widely known that
using blocks that are too small produces many false matches,
since intensity patterns will be less distinctive [17].

An example of all four artifacts is shown in Fig. 2. The
two images shown are related by horizontal translational
motion, i.e., the two optical axes are parallel to each other
and perpendicular to the direction of motion and the epipolar
lines are coincident with the scan lines. The object is a
rectangle of constant grey while the background is entirely
white. If points in Image 1 are matched with those in Image
2, the aforementioned problems will lead to incorrect disparity
estimates. Mismatches at horizontal line segments identified
as Fig. 2(a) are due to aperture ambiguity. Constant intensity
ambiguity occurs in both the foreground and background as
with the point indicated by Fig. 2(b). Little information may

Fig. 2. Example of regions where matching fails due to (a) aperture ambigu-
ity; (b) constant intensity ambiguity; (c) occlusion; and (d) depth discontinuity
localization ambiguity.

be obtained in occluded regions like those in Fig. 2(c). As
shown in Fig. 2(d), localizing depth discontinuities may also
pose a problem.

It is straightforward to identify most of these artifacts and
subsequently assign confidence levels to different regions in
the scene. These confidence levels are important for locat-
ing the regions to ignore when combining multiple depth
maps together. To detect aperture ambiguity (AP), a gradient-
based edge detector [26] is used to locate the horizontal
edges.3 Points in the image near these edge pixels are marked
as possibly spurious. To identify constant intensity regions
(CONST), a small window is used to find regions where
the intensity variance is below a prespecified threshold. A
low variance suggests that the block consists of little texture
and nearly constant intensity. Matching the images in both
directions helps to identify occluded regions and inconsistent
matches [15], [40]. Occluded regions (OCCL) are precisely the
unmatched points in the images, whereas inconsistent matches
(INCONS) may be found by validating matches in both
directions. In the end, the scene will consist of low confidence
regions marked according to the different artifacts: constant
intensity, aperture ambiguity, occlusion, and inconsistencies
in matching.

2) Adaptive Matching Scheme:Since many real world
scenes consist largely of low textured regions, the above
matching algorithm will produce a high percentage of low
confidence regions due to constant intensity. To avoid too
sparse a depth map, we attempt to improve estimates in these
regions by proposing an adaptive matching approach [5].
The approach consists of essentially dividing the image into
CONST and non-CONST regions and finding the best matches
for both regions. To match images and , all AP points
in both images are located first using edge detection. We can
avoid performing any matching for these points since they are
likely to be wrong and we can incorporate information from
other matches as described later. Once the AP points have
been excluded, we identify CONST regions by low-variance
thresholding (LVT) with a 3 3 block.4 Once found, the

3Since the relative motion between the images is primarily horizontal
translation, we need to worry about only horizontal edges in the scene. If
the two images to be matched were related by a vertical translation, then we
would require the edge detector to locate all vertical edges.

4Generally, a small block size is preferred, since textured regions near or
along intensity discontinuities will be better localized. This tends to improve
the localization of depth discontinuities since many times intensity edges are
related to depth ones. We note that depth discontinuities can be much better
localized by human interaction as done in [22].
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Fig. 3. Example of disparity map using fixed block size 9� 9.

non-CONST points are then matched using (2) forwith
respect to and also with respect to .

With the non-CONST points matched, the next step is to
find the best match for each CONST point . Since the
main ambiguity stems from using a block that is too small, we
consider instead using the largest rectangular block containing
the point that consists entirely of CONST points. Note
that the block does not have to be centered at . One
way to find such a block is by growing a 3 3 block
around and then extending each side evenly until the
extension encounters at least one non-CONST point or until
some prespecified dimension maximum, i.e., block size limit,
has been reached. In this way, the algorithm utilizes the shape
and relative size of the CONST region without including too
many features that may mislead the algorithm.

Once every point has been classified, the algorithm de-
termines the occluded points (OCCL) and inconsistent ones
(INCONS) as described above. Notice that both the CONST
and non-CONST points alike could be reassigned to OCCL or
INCONS, depending on the outcome of matching.

Because the block size is not fixed and actually adapts to the
confidence region, this adaptive scheme overcomes the well-
known trade-off between good boundary localization with a
small window and improved matching in low textured regions
with a large window. The final result consists of fairly dense
and reasonably accurate disparities. Consider an example of
matching between two images, frames 37 and 34 of the Mug2
sequence described in Section IV; frame 37 is shown in
Fig. 19. Fig. 3 shows the resulting disparity map using a fixed
9 9 block size. While the mug and stool are somewhat
discernible, there are a large number of artifacts throughout the
scene due primarily to the many regions of constant intensity.
In contrast, Fig. 4 shows an improved disparity map obtained
using an adaptive block size with various low confidence
regions marked accordingly. These low confidence regions will
be dealt with in the upcoming sections.

B. Normalization of Initial Estimates

The depth maps from the previous stage need to be nor-
malized so that they are all related by the same scaling factor.

Fig. 4. Example of disparity map using adaptive block size. Legend: blue,
CONST; red, AP; yellow, INCONS; green, OCCL.

For this task, we propose to estimate the translation parameter
between maps and scale by the reciprocal. A point
in one image and in a translated second image are
related by the disparity equation

(3)

where is the translation parameter relating the two images.
If a third image is introduced, one yields a similar equation

(4)

with the translation parameter linking the first and third
images; Fig. 5 shows this relationship. Note that the depthis
the same in both cases, since all three image points correspond
to the same physical point. Combining (3) and (4) leads to the
following relation:

(5)

Suppose now we consider high confidence disparity points
common to the two depth maps. For each point, (5) holds,
thus leading to the matrix equation

...
...

(6)

By linear least squares, we may solve (6) for the ratio
to get

(7)

If is assumed to be one, then is precisely the scaling
factor by which we need to adjust theth depth map. In this
way, each of the depth maps can be normalized with respect
to the same scale factor.
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Fig. 5. Exploiting geometry of camera set up to normalize depth maps.

Since we are not confident about every disparity estimate,
an iterative process may be used to improve the estimate by
reducing the error to some desired amount. During
every pass, outlier points greater than a given error percentage
are disregarded when computing. The procedure converges
when the number of points does not change between iterations.
This modification helps to further improve the accuracy of the
scaling factor. In our experiments, we use a generous error of
30% since the vector consists of possibly erroneous data.
The algorithm typically converges in only three iterations.

C. Combination of Multiple Depth Maps

Once all the depth maps have been normalized to a common
scaling factor, they are combined to form a single depth
map for a particular reference frame. Since each local depth
map may consist of low confidence areas and incorrect depth
data, the combination process should retain only the informa-
tion which seems consistent; otherwise, it should regard the
information as invalid.

Let for denote the normalized
depth maps and let represent the combined result. For
every point , we may regard the problem as an estimation
problem, i.e., given votes for , determine the most
accurate value. An iterative procedure is used to analyze the
statistics of the given data, throw out outliers, and reduce the
data set to a more consistent one.

Because of the predominantly bimodal distribution of the
data, i.e., foreground and background points, we consider
using the median instead of mean to throw out outliers [5].
Generally, the depth associated with the cluster consisting of
the majority of points is reasonably correct. We found that
when dealing with bimodal distributed data, outlier identifica-
tion was significantly improved by using the median rather
than using the mean. The effect is that one cluster of the
bimodal distribution of depths is discarded; the underlying
majority in depth wins. As an example, consider the set of
depths . The mean is 0.58, the standard
deviation is 0.4792, and the median is 0.3. A general
practice is to throw out outliers that lie outside the ; in
this case, the range is and, hence, both 0.1
and 1.3 are discarded. If we instead consider , the range
becomes and only the foreground points

remain.
As discussed before, depth information from horizontal

matches contains artifacts along horizontal edges due to hori-
zontal aperture ambiguity. If only these depth maps are used in

combination, then there will be considerable problems in AP
regions. To circumvent the problems, we propose including
information derived by matching a vertically related pair of
images, that is, using corresponding images from two linear
trajectories at different vertical elevations.5 If the second
image with respect to the reference frame is a perfect vertical
translation, then solving correspondence leads directly to an
estimate of depth. Observe that the depth map will have
vertical aperture ambiguity and will contain occluded regions
generally not coincident with those found in the horizontal
matches. Hence, this information may be incorporated in the
combining stage to improve the accuracy of the depth map in
AP regions.

The algorithm may be further refined by introducing the
notion of weights to the depth data. At every stage in the
representation process, confidence levels are assigned based
on the validity of the data. It is thus quite intuitive to weight
points in the combination stage based on the confidence levels.
For example, along horizontal edges, more weight is placed
on the vertical information, since it is more reliable here
than information from horizontal matches. Lower confidence
AP, OCCL and INCONS points are not included during
combination whereas CONST points are considered since they
are seemingly correctable. The depth is then given as
the weighted average with

high confidence
CONST vertical match
CONST horizontal match

otherwise.

(8)

Fig. 6 provides an example of combining several disparity
maps together as described. The map has been quantized to
256 levels, where brighter intensity level represents a larger
disparity. The disparity map is then converted to a depth map
by inverting each disparity pointwise. The depth map is a more
accurate estimate of the given scene as compared with the
disparity map in Fig. 4. The regions in the combined depth
map which may be inaccurate are marked in yellow to indicate
low confidence.

D. Cubic B-Spline Approximation

The depth map after the combination stage is fairly accurate
in many regions. There are however a considerable number of
low confidence regions. To fill in these regions and to make
the map much denser while not sacrificing too much accuracy,
nonuniform cubic B-splines are used [12], [3], [5]. Every
depth point in low confidence regions is interpolated by its
neighboring high confidence depth vertices along the same row
or column, depending on the variance of these vertices. The
depth surface is treated as a tensor product, i.e., the product
of 1-D functions, so the data may be processed first along one
direction and then along the other, which helps to simplify
computations. We may apply this spline technique to Fig. 6 to
obtain the final depth map shown in Fig. 20.

Once the depth map for each reference frame has undergone
spline approximation, we are left with depth estimates at

5Note that other images may be considered as well, including those obtained
by arbitrary translational motion in thex-y plane.



CHANG AND ZAKHOR: VIEW GENERATION 589

Fig. 6. Example of combined depth map. Legend: yellow, low confidence.

different locations around the scene. The final step in the
representation process is to estimate the relative camera motion
between reference frames using an approach like [36]. Once
the relative motion between all reference frames is known, a
geometric relationship may be constructed among the different
reference frames. This enables us to select the reference frames
needed to use in the reconstruction stage.

In the end, the representation of the scene consists of the
intensity-depth pair at each reference location along with the
relative motion among reference frames. Once these data have
been derived, they may be stored in a database for later
reconstruction.

III. RECONSTRUCTION OFVIEWS

Once we have generated the representation for a particular
3-D scene, we may choose to reconstruct the view of the scene
at some specified viewpoint. Assume that the center of one
reference frame coincides with the origin of the coordinate
system and that the desired viewpoint is known with respect
to this origin. The reconstruction algorithm consists of the
following: First, the appropriate reference frames are chosen.
Then initial estimates of the desired view are constructed by
applying motion parameters to each reference frame. Finally,
the estimates are combined into a single image, interpolating
when necessary.

A. Selection of Appropriate Reference Frame(s)

Given the relative position and orientation of the desired
view, it should be a straightforward task to determine which
reference frames to use. One way of deciding is to include
those frames with the smallest motion in norm relative to the
view. This measurement may be used to determine the amount
a particular reference frame contributes to the view estimate.
Intuitively, the reference frame corresponding to the smallest
motion in norm should be weighted the most, and vice versa.
For example, suppose the representation consists of three
reference frames lying in a plane, as shown in Fig. 7, and the
desired view is at the location marked with an “,” a distance

Fig. 7. Example of computing weights for three reference frames.

away from the th reference frame. Then, the first reference
frame should contribute only out of ,
or and likewise for the other reference frames.
In general for reference frames, the weight assigned to
the th reference is given by

(9)

If represents the view estimate from reference frame,
then the desired view can be represented as the weighted
average of view estimates, namely . This
equation may be applied to most points; however, more detail
will be seen in Section III-C.

Another consideration is the number of reference frames.
If the specified view is very close to one of the reference
frames, then we may choose to use only that single frame.
However, at least two reference frames are needed to properly
reconstruct the desired view to reduce noise and to recover
occluded regions in the scene. Additional reference frames
help to reduce noise further at the cost of requiring more
precise registration among the frames.

B. Generation of View Estimates

In this section, we will describe our approach to generating
a view estimate from one intensity-depth reference pair. In
Section III-C, we will describe how estimates from multiple
reference frames are combined.

A possible approach to view generation is to regard the
points in the reference frame as discrete independent
points, since neither the image nor the depth map is a contin-
uous surface. However, if we consider transforming only this
set of points to generate the view estimate, the resulting image
may exhibit inconsistencies in the ordering of foreground and
background points [5], [6].

A better approach is to consider the points of the reference
frame arrays as vertices of a deformable 2-D wire mesh.
Neighboring points in the reference frame are viewed as con-
nected to one another to form a meshlike structure consisting
of quadrilateral patches. Specifically, every set of four vertices

,
with the corresponding depth and intensity information, consti-
tute the corners of a single patch in space. Notice that the order
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of the four points is important for orientation; we consider the
patch to have clockwise orientation starting with the upper left
corner. We also consider the patch to have two sides, an outer
one whose intensities can seen by the camera and an inner one
whose intensity information is unknown. An alternative view
is that the upper side of the patch has a surface normal given
by the left-hand rule. To transform the 2-D mesh into 3-D, we
consider the following mapping: A point with depth is
mapped to the 3-D point ,
where is the center of the image plane,is the focal
length, and is a scaling factor to adjust for the field of view.
A view estimate is then generated by transforming every patch
in the reference frames into 3-D as described above, applying
the appropriate motion parameters to the mesh, and finally
reprojecting the mesh to construct its 2-D image through
rendering; these steps are described in detail below.

Once all the points of the reference frame have been mapped
into 3-D accordingly, they are then transformed according to
the appropriate motion parameters. The notion of applying
motion parameters to a frame has been addressed in con-
ventional computer vision and robotics literature [18], [30].
Let be a point in the scene and suppose the
frame of reference undergoes a rigid transformation
given by and where
both rotation and translation are in terms of the world
coordinates. Then, in matrix form, the new scene coordinates

are given by

(10)

The subsequent image coordinates are then given by

(11)

(12)

with as the focal length.
At this point, the reference frame has been viewed as a

single deformable mesh consisting of connected patches. How-
ever, if regions of the mesh are not grouped into foreground
or background categories, transforming every patch in the
mesh will lead to a potentially incorrect view estimate. As
an example, consider Fig. 8. The rectangle is an object in the
foreground with small depth that moves to the right in front of
a uniform background of far away depth. Notice if we consider
rendering the square patch drawn, whereby its two left points

and have far away depths while its two right points
and are near to the camera, the result will interpolate the
depths and thereby consist of streaks in the view estimate.

The need to segment the image by depth is apparent for
obtaining accurate results. One simple approach is to identify
the depth discontinuities in the reference frame. Patches which
fall along depth discontinuities should be discarded and not
even be transformed since connecting regions of different
depths may lead to an inaccurate image. To detect patches
along depth discontinuities, we estimate the local variance

Fig. 8. Examples of invalid patches due to depth discontinuities.

Fig. 9. Examples of invalid patches due to incorrect orientation.

with a 5 5 window on the depth maps and mark points
whose variance is above a certain threshold [9]. This technique
of searching for large depth variations is similar in nature
to a crude intensity-based edge detection algorithm. Patches
associated with a depth discontinuity are not rendered to avoid
streaking. We note that the resulting edge map produces a
rudimentary description of how to segment the given scene
into foreground and background components.

After the patches in the reference frame have been trans-
formed, it seems straightforward to render the new patches to
generate an estimate of the view. However, not all patches
need to be or ought to be rendered. More specifically, trans-
formed patches that do not preserve orientation should not
be rendered since they usually result from occlusion and
cannot be seen. Consider an example of a rectangular object
with small depth moving to the right in front of a uniform
background with large depth. Fig. 9 shows two types of trans-
formed patches whose orientation is not clockwise, namely
twisted and flipped patches. The top patch consists of three
background depths for Points 1, 2, and 3, and only one
foreground depth for Point 4. Once transformed, the first three
points remain in roughly the same relative position while Point
4 occurs to the right of Point 3, yielding a twisted patch.
Similarly, the lower patch consists of two foreground depths
at Points 1 and 4 and two background depths at Points 2 and
3. For an apparent motion to the right, Points 2 and 3 remain
stationary while Points 1 and 4 move past them creating a
flipped patch with counterclockwise orientation. Notice that in
both cases, the transformed patches have a surface normal that
is directed away from the camera, and hence their outer sides
are barely, if at all, visible.

To determine whether the orientation of the candidate patch
has been preserved, we consider the following. Assuming
clockwise orientation as shown in Fig. 10, Point 1 is
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Fig. 10. Testing for valid patches.

Fig. 11. Geometrical relationship among the reference frames for experi-
ment.

translated to become the origin and the patch is rotated so that
Point 3 lies along the positive -axis. A patch is said
to preserve clockwise orientation if i) Point 2 has a positive

coordinate, and ii) Point 4 has a negativecoordinate. In
particular, let be the rotation matrix to rotate Point
3 to the positive -axis after Point 1 has been translated to
the origin

(13)

where is the angle formed by the line connecting Point 1
and Point 3 with the -axis. It can be easily shown that
is given by

(14)
A point has the new coordinates

. To check for orientation, Points 2 and 4 are
substituted into this expression. Since only the sign of the
transformed coordinate is important and since the root of
any positive number is nonnegative, we may simplify the
coordinate to be

(15)

to check whether the two conditions are satisfied.
With the patches transformed, we are now in a position

to generate the view estimate. The set of valid patches are
projected onto the image plane and then rendered using a
scan-line algorithm [14]. For each patch, the four edges are

Fig. 12. Reference frame 35 (intensity) of Mug1.

Fig. 13. Reference frame 65 (intensity) of Mug1.

stored in memory and sorted in decreasingcoordinate.
Starting at the smallest coordinate, every scan line is filled
in according to an intensity-based interpolation scheme. In
addition, we employ a software-buffering technique [16],
[31] to determine the ordering of patches with respect to the
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Fig. 14. Reference frame 35 (depth) of Mug1 filled in by splines.

Fig. 15. Reference frame 65 (depth) of Mug1 filled in by splines.

smallest depth. Thus, a given pixel in the view estimate is
assigned an intensity corresponding to the patch closest to the
camera. This approach allows us to handle occlusions quite
nicely when the foreground object obscures portions of the
background scene. It is worth noting that a view estimate can
be generated much faster on a platform with a specialized
graphics library such as the HP Starbase Library.

The majority of pixels in the view estimate will have
an associated intensity from this technique. However, it is
possible for some pixels not to be assigned any intensity,
leaving “holes” in the estimated image. Examples can be seen
in Figs. 16 and 17, where the holes are marked in red. These
holes arise because of two primary reasons. The first involves
the accuracy of the depth maps. Since we estimate depth for
every point in the reference frame and do not attempt to fit a
surface through these data, it is quite likely that the depths are
not completely consistent or smooth, and as a result, “cracks”
in the view estimate may appear. In Figs. 16 and 17, cracks
can be seen in the mug face and in front of the stool

In addition, holes also occur in areas of the view estimate
that were previously unseen and become uncovered. Identify-
ing depth discontinuities, and hence segmenting the image into
foreground and background regions, induces these uncovered
areas to form. Certainly, if the segmentation step was ignored

Fig. 16. Horizontal view estimate with respect to frame 35.

Fig. 17. Horizontal view estimate with respect to frame 65.

and patches that transcend depth boundaries were rendered,
very few uncovered regions would appear, replaced by the
smearing artifact mentioned previously. The red regions to the
left of the mug and stool in Fig. 16 and to the right in Fig. 17
are precisely the uncovered regions in the scene.

In both cases, the holes are left unmarked in the estimated
image, since a single reference frame has no information about
these points. As we will see in the next section, some of these
holes will be eliminated in a combination stage where other
reference frames having information at these locations may
fill in the holes. We also propose other techniques in Section
III-C to deal with covering holes.

C. Combination of Reconstructed Data

Once we compute the estimates of the desired view with
respect to each of the chosen reference frames, we must
combine these data to generate the appropriate reconstruction
and deal with the remaining holes. Suppose there are
reference frames for reconstruction with corresponding view
estimates for . To find the intensity for
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Fig. 18. Reconstructed view along horizontal trajectory.

pixel , we examine points from the view estimates
in a pixel region centered around pixel .6

Akin to the -buffering technique from the previous section,
only points in with the smallest depths, i.e., closest
to the camera, are considered; all other points in are
thrown out. When an object moves in a frame, we would
like the pixels of the foreground to precede those from the
background occupying the same region. The intensities of the
remaining points are examined for consistency and outliers
are discarded in a manner similar to the approach described
in Section II-C. Holes are automatically filled in as long as at
least one reference frame has information about the region in
question. Once the number of points in has been reduced,
the intensity is simply the weighted average of the
remaining points, i.e.,

(16)

where is defined as the weight from (9) if none of the
reference frames has a hole at (i.e., ) and as

the weighted average of ’s for the contributing reference
frames for .

It should be clear that this combination technique allows
the uncovered points from one view estimate to be filled in by
the other view estimates, thus minimizing the number of holes
in the scene. However, it is still possible that there exists no
points in a given region from any of the view estimates;
these are the holes that lie in the intersection of the holes of
all the reference frames. As mentioned before, these holes are
either due to regions that become uncovered or due to a rough
depth map. In the former case, we cannot fundamentally do
anything for these holes since there is no information about
them. However, holes resulting from a rough depth map may
be interpolated to fill them in.7 One approach is to grow the
area out to a region, where is the smallest

6We selectS to be 1 because a largerS tends to blur the final image too
much.

7Introducing even more reference frames and view estimates may help to
further reduce the size of both types of holes.

Fig. 19. Reference frame 37 (intensity) of Mug2.

Fig. 20. Reference frame 37 (depth) filled in by splines.

value for which a point falls within the area , i.e., the
region is no longer a hole. Once we find such an area, we
then use the above technique to find the intensity value at the
grid point . Examples of this will be shown in Section IV.

IV. RESULTS

We shall now examine some results using the techniques
described above. Since it is difficult to reconstruct an arbitrary
view that is precisely coincident with any one frame from the
original sequence, we have not computed reconstruction error
for the following results.

A. Mug Scene

The first scene consists of a mug placed atop a stool. A
CCD camcorder is moved horizontally by hand to follow
trajectories at two different elevations to generate an image
sequence for each trajectory, similar to the set up drawn in
Fig. 1. The reference frames from both trajectories are shown
in Fig. 11. Each frame is 640 480 pixels large and consists
of intensity only. No special lighting was used to film the
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scene; specularities of the stool and the lid of the mug are
very apparent in the images.

For the first set of results, the desired view is roughly
halfway between two reference frames along the same hor-
izontal trajectory. Frames 35 and 65 from the first trajectory
Mug1 sequence are selected as the reference frames; they are
shown in Figs. 12 and 13. The chosen view is perhaps the
one most prone to errors due to the large occluded regions.
Note that there is roughly a maximum of a 120-pixel disparity
between the two reference frames.

Figs. 14 and 15 show the corresponding depth maps ob-
tained by using the proposed matching algorithm.8 The mug
and stool are estimated well and do not contain many spurious
depths. There is a gradual change in depth as expected for a
hallway scene. Artifacts are most prevalent in the handle of
the mug. Problems arise here because intensity-based matching
schemes perform poorly for background regions that can be
seen through foreground regions.

The estimates of the desired view generated by the two
reference frames are shown in Figs. 16 and 17. As described
in Section III-B, the holes marked in red are the points in the
scene that have become uncovered or that stem from bumpy
depth maps. However, combining the information in both view
estimates into a single one eliminates the uncovered points
entirely; only cracks remain due to the rough depth maps.
Interpolating these remaining cracks results in Fig. 18. The
image quality is good for the most part. The horizontal edges,
e.g., top of the door, top of the mug, specularities in front of
the stool, and the drawers, have been reconstructed quite well.
The proposed algorithms take care of problems in occluded
regions; there are only a few errors to the right of the mug
and near the mug handle. These artifacts arise because the
depth edges were not localized perfectly.

To generate a view not originally scanned by the camcorder,
two frames from different vertical elevations, frame 35 from
Mug1 and frame 37 from Mug2 are chosen as reference
frames. The intensity and depth for frame 37 are shown in
Figs. 19 and 20, respectively. The desired view is roughly
the midpoint on the vertical trajectory relating the two views
given in Fig. 21. As before, the view estimates each possess
uncovered regions about which a single reference frame has no
information. However, the combined image turns out to be a
reasonable estimate of the desired view where the cracks have
been filled in appropriately. As before, the most troublesome
region in the image lies inside the handle of the mug.

Using all three reference frames, we can reconstruct the
view translated arbitrarily along the- plane. The image is
shown in Fig. 22. For the most part, the image appears to be a
good estimate. As expected, the artifacts appear at the occluded
or uncovered portions of the image, namely underneath the
mug handle and the stool legs. The regions marked in red
indicate precisely those uncovered regions for which the three
reference frames have no information. For instance, the cluster
of points near the right stool leg is a portion of the background
that is obscured in the three original reference frames. Notice

8As described in Section III-C, the depth maps have been quantized to 25-b
levels. In addition, their histograms have been equalized to increase contrast
for visualization.

Fig. 21. Reconstructed view along vertical trajectory.

Fig. 22. Reconstructed Mug view fromx-y plane.

Fig. 23. Reconstructed Mug view from translation along�z axis.

that filling these holes with the algorithm described above will
inevitably produce an inaccurate image since the holes are
relatively large and since we have no information about them.
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Fig. 24. Reconstructed Mug view from translation along+z axis.

Fig. 25. Reconstructed Mug view from pan of 10� clockwise, translation of
12 units along thex-axis and 0.02 units along thez-axis.

More interesting views not necessarily confined to the-
plane may be reconstructed with this representation. For

instance, the viewpoint of a camera translated toward the scene
can also be rendered quite easily; it is given in Fig. 23. Note
that this view differs from a simple “zoom-in,” since the latter
requires only a larger focal length and it does not uncover
occluded regions. The two regions above the stool are marked
red because none of the reference frames has information
about what lies behind the stool in the scene. Fig. 24 shows
the view translated away from the scene with the uncovered
regions marked accordingly. Finally, Fig. 25 shows an oblique
view of the scene taken by rotating the camera 10clockwise
and translating along both the- and -axes. The quality of
the reconstructed image is quite good given the amount of
uncovered regions.

B. Chess Scene

A more complicated scene featuring a chess set is filmed by
the camcorder. We have confined the motion so that the image
plane is parallel to the direction of motion; the camcorder

Fig. 26. Reference frame 10 (intensity) of Chess scene.

Fig. 27. Reference frame 23 (intensity) of Chess scene.

moves primarily in a horizontal motion with occasional motion
in the vertical direction. Each frame is digitized to 320240
pixels, and again consists of intensity only.

Figs. 26 and 27 show frames 10 and 23 from the sequence.
We note that this scene exhibits a much larger motion than
in the previous case; the largest disparity is 170 pixels for
the bottommost white pawn, over 50% of the entire image.
The described matching algorithm leads to the corresponding
depth maps in Figs. 28 and 29. The different chess pieces have
been recovered in the depth maps as indicated by the differing
levels of grey.

The view that lies between the two reference frames is given
in Fig. 30. The resulting image quality is quite good especially
given the complexity of the scene. It is interesting to note that
that the algorithm incorporates the bishop, seen in only the first
image, and the rightmost pawn from the second image into the
new view. If we consider translating the camera toward the
scene, we obtain the view shown in Fig. 31. The holes in the
scene are again drawn in red. Translating away from the scene
leads to the image shown in Fig. 32. We observe that the result
consists of the union of the points seen in the two reference
images and is similar to a 3-D parallax corrected mosaic [24].
Finally, Fig. 33 demonstrates an oblique view obtained by
tilting the camera 10 and translating along all three axes.
The results for each of the views are quite reasonable.
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Fig. 28. Reference frame 10 (depth) of Chess scene.

Fig. 29. Reference frame 23 (depth) of Chess scene.

Fig. 30. Reconstructed view along horizontal trajectory.

C. Comparison to Previous Work

We found that most of the methods described in Section
I have different input data requirements from the proposed
approach, making it difficult for direct comparison. For ex-
ample, image mosaics [35], [27] restrict camera motion to be

Fig. 31. Reconstructed Chess view from translation along�z axis.

Fig. 32. Reconstructed Chess view from translation along+z axis.

panning, not roughly translational. The approach of Skerjanc
and Liu [34] requires a calibrated trinocular set-up, while that
of Kanadeet al. [22] uses clusters of fixed arrays of cameras.

In the end, we have chosen to compare our results with
the approach of Laveau and Faugeras [25]. They require only
a set of reference frames and a dense disparity map, both
consistent with our approach. The algorithms also have similar
storage requirements; their approach needs two images and
one disparity map, whereas the proposed approach requires
one additional depth map. To construct a new view, Laveau
and Faugeras employ a ray-tracing-like algorithm whereby
the intersection of the projections of certain optical rays is
examined. This step is however computationally intensive for
reconstruction. In contrast, much of the complex processing in
our approach may be done offline, since our representation and
reconstruction processes are distinct, thus leading to a faster
reconstruction stage.

In our implementation of Laveau and Faugeras’ algorithm,
the reference frames in Figs. 26 and 27 are the input images,
while the depth map in Fig. 29 serves as the correspondence
map. Because of our reference pair configuration, their algo-
rithm exhibits artifacts near the trifocal plane [25]. Also, we
found that views like Fig. 30 lying along the baseline between
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Fig. 33. Reconstructed Chess view from tilt of 10�, translation of four units
along thex- axis, three units along they-axis, and 0.04 units along thez-axis.

Fig. 34. Reconstructed Chess view with Laveau and Faugeras’ algorithm
for translation along�z axis.

the two reference images are unattainable due to collinearity
of the optical centers. Fig. 34 shows the camera translating
toward the scene. As compared to Fig. 31, their algorithm has
difficulty recovering the king and the rightmost knight. Also
our approach performs better in uncovered regions, such as to
the right of the rook and above the white pawn at the bottom
of the image. Similarly, we may compare the view with the
camera translating away as given in Fig. 35. It should be clear
that only the points that are common to both images are drawn
in their algorithm in contrast to ours in Fig. 32.

V. DISCUSSION

We have proposed an approach for representing and re-
constructing static 3-D scenes. For views along a horizontal
trajectory, the algorithms produce reasonable reconstructed
images where most of the error is concentrated near the
occlusion boundaries. For views not scanned by the camcorder,
the discussed approach leads to promising results. Our results
are comparable to full 3-D modeling techniques yet not as
complicated. Moreover, using depth surfaces to estimate scene
structure results in recovering uncovered background points
in the scene much better and leads to a faster rendering
approach. Direct methods based on projective geometry, such

Fig. 35. Reconstructed Chess view with Laveau and Faugeras’ algorithm
for translation along+z axis.

as that in [25], reconstruct only those points that lie in the
intersection of the input views, whereas our approach can
render points that lie in the union of the input views. In
addition, there is no depth recovery or explicit representation
stage with direct methods. As a result, an exhaustive search
over every optical ray needs to be performed for every
view generation. Consequently, no off-line processing can be
executed beforehand and, hence, the approach becomes more
computationally intensive. This is in contrast to our approach
where the intensity-depth representation can be generated off-
line, leading to straightforward and relatively fast rendering
of new views.

Future work in this area includes examining the optimum
choice and number of reference frames to fully capture a scene.
The reference frames in the paper were chosen rather arbi-
trarily. With our current approach, a desired view chosen far
away from the reference frames leads to very erroneous results.
In addition, there is a noticeable decrease in performance as
the baseline between reference images increases. The issue
of automatically selecting reference frames and choosing an
optimum set remains a difficult problem to solve. A more
complete analysis must be performed in order to determine
what is the scope of a single reference frame, or conversely,
what is the optimum set and locations of reference frames to
compactly represent a given scene.

In addition, the proposed representation is certainly not
the most optimum. While multiple reference frames help to
fill in uncovered regions of the scene, there is a significant
amount of redundancy in both the intensity and depth maps.
Since most of the frames of the original data have been
discarded, we do not utilize all the information about the scene
with our representation. We are currently examining layered
representations [39] and multivalued intensity and depth maps
to encapsulate the scene information better [8].

Finally, a real-time implementation of the reconstruction
algorithm would expedite the development of a virtual en-
vironment. Using a stereoscopic display and head tracking
device, we will be able to simulate such a system by recon-
structing an arbitrary view of a scene in real time as the user
moves his/her head.
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