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Iterative procedure for in-situ EUV optical testing with an incoherent source
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We propose an iterative method for in-situ optical testing under partially coherent illumination
that relies on the rapid computation of aerial images. In this method a known pattern is imaged with
the test optic at several planes through focus. A model is created that iterates through possible
aberration maps until the through-focus series of aerial images matches the experimental result.
The computation time of calculating the through-focus series is significantly reduced by a-SOCS, an
adapted form of the Sum Of Coherent Systems (SOCS) decomposition. In this method, the Hopkins
formulation is described by an operator S which maps the space of pupil aberrations to the space of
aerial images. This operator is well approximated by a truncated sum of its spectral components.

PACS numbers:

I. INTRODUCTION

As EUV optical systems move to larger numerical aper-
tures to achieve higher resolution, it is crucial to have a
simple and reliable procedure for characterizing the aber-
rations present in the optics. Standard interferometric
techniques are more difficult to perform at higher nu-
merical apertures. Reference wave interferometry such
as PS/PDI requires smaller pinholes that are difficult to
fabricate and provide low photon flux that gives poor
contrast fringes [1]. Grating-based interferometry such
as lateral shearing interferometry (LSI) is promising, but
has strict tolerances on the position and tilt of the op-
tical elements which couple with aberrations much more
prominently at higher numerical apertures. Many iter-
ative procedures have the benefit of being independent
of numerical aperture, making them much more exper-
imentally feasible. They also have the advantage that
they can be made to work with existing tools with no
additional experimental setup.

II. SETUP AND PROCEDURE

A schematic representation of a typical EUV optical
system is shown in Figure 1. Light radiates from an ex-
tended incoherent source placed in the rear focal plane of
a collector optic that illuminates a test pattern, which is
imaged by the test optic onto the detector. Here, the de-
tector can either be a CCD camera in an imaging setup,
or a resist-coated wafer in a lithography setup. We ob-
tain a through-focus series of images by translating the
detector stage in z between each exposure. In a lithogra-
phy tool, images are obtained by developing the photore-
sist and viewing them by a scanning electron microscope
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(SEM), using the commercial software SuMMiT to pro-
cess and convert the images into binary line-edge profiles.

An important consideration is picking a test pattern
that has a unique through-focus signature in response to
the aberrations of interest of the test optic. For exam-
ple, a test pattern containing only vertical lines may be a
poor choice since it has a similar through-focus signature
in response to aberrations that are symmetric about the
y-axis, such as spherical aberration and secondary x-y
astigmatism (each of which has a 4th order x-dependence
). A proper test pattern will have a diffraction pattern
that sufficiently probes the test optic pupil. If a case
arises where certain aberrations are more important than
others to detect, an appropriate test pattern can be de-
signed to send the diffracted light at targeted angles.

A flow-diagram of the reconstruction algorithm is
shown in Figure 2. A computer model of the optical
system is generated using the known test pattern and
source parameters. It has been shown [2] that the effect
of resist blurring can be modeled as a linear system whose
point-spread function is described by a host function with
parameters that we allow to float in the algorithm. An
aerial image through-focus series is generated via a-SOCS
using a initial guess vector of aberrations. In the imag-
ing setup, a merit function is generated by comparing
the image series to the experimental aerial images. In
the lithography setup, the image series is convolved with
the resist point-spread function, thresholded and com-
pared with the experimental line-edges. The aberration
vector and host function parameters are modified using
a hybrid simplex/simulated annealing algorithm whereby
the best results from a set of independent trials is used
as the initial guess of a subsequent generation of trials.
The calculation is performed iteratively until the merit
function reaches a desired tolerance.
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III. FAST AERIAL IMAGE COMPUTATION

The robustness of the algorithm relies on the compu-
tation of many iterations, each of which involves the cal-
culation of several aerial images. Aerial image modeling
is normally computationally taxing because the Hopkins
equation which governs the partially coherent imaging
system requires integration across four variables. In or-
der to make the reconstruction algorithm more compu-
tationally feasible, we develop a new method for aerial
image calculation that leverages the specific configura-
tion of our experiment to optimize the calculation.

A. Motivation

In one dimension the Hopkins integral for aerial image
calculation takes the following form:

I (ν) =
∫∫

dp dzJ0(p)K (ν)K ∗(ν − z) (1)

×T (ν + p)T ∗(ν − z + p) (2)

Here I is the aerial image intensity Fourier transform,
K is the coherent transmission function, J0 is the
Fourier transform of mutual intensity of the light illumi-
nating the mask and T is the mask Fourier transform.
The Hopkins integral can be thought of as a system that
takes three inputs, the mask, the source, and the pupil,
and outputs the aerial image. In our experiment, the
source and the mask are the same across all the calcu-
lations, so we can represent the Hopkins integral as a
new system S that has the source and mask information
integrated in the system. We can now think of the sys-
tem S as mapping a pupil to an aerial image directly.
Mathematically we can write this as

I (ν) =
∫ ∞
−∞

dzK (ν)K ∗(ν − z)S(ν, ν − z) (3)

S(k,m) =
∫ ∞
−∞

dpJ0(p)T (k + p)T ∗(m+ p) (4)

where S is the system cross-coefficient (SCC) matrix,
that depends only on the source and mask. This formula-
tion is in direct analogy with the more familiar transmis-
sion cross-coefficients (TCC) which depend on the source
and the pupil [3]. Since S is a constant in each of the
calculations, it can be computed once and stored, elimi-
nating the need to evaluate it each time. We now show
that by exploiting the mathematical structure of S, we
can approximate it and significantly reduce the number
of computations required to calculate the aerial image.

B. Spectral decomposition of the SCC matrix

By direct analogy to the TCC matrix in [3], it can be
shown that S(k,m) = S∗(m, k) over the complex field so

that S is Hermitian. Spectral theorem therefore guaran-
tees us that S is diagonalizable and that we can write
S as a sum over the outer products of its eigenvectors
weighted by their corresponding eigenvalues,

S(k,m) =
N∑

i=1

λiξi(k)ξ∗i (m) (5)

where N = rank{S}, which can be shown to be equal
to the number of sampled source points. Plugging back
into (3), and swapping the order of the sum and integral
gives:

I (ν) =
N∑

i=1

λi

∫ ∞
−∞

dz [K (ν)ξi(ν)][K ∗(ν − z)ξ∗i (ν − z)]

We recognize the integral as the autocorrelation of the
product K ξi and take the inverse Fourier transform of
both sides to get the space-domain aerial image intensity.

I(x) =
N∑

i=1

λi|F−1{K ξi}|2 (6)

C. Truncation of the spectral sum

Due to the energy compaction property of spectral de-
composition [4], the majority of the weight of S is repre-
sented in a relatively small number of terms. The aerial
image intensity is therefore well-approximated by consid-
ering only the first K∗ < N terms of the sum.

I(x) ≈ Ī(x) =
K∗∑
i=1

λi|F−1{K ξ}|2 (7)

K∗ is chosen to give a specified tolerance on the aerial
image computation. The normalized error E between
I(x) and Ī(x) is bounded by the sum of the remaining
eigenvalues:

E ≤
N∑

i=K∗+1

|λi| (8)

We find that in a typical case, to achieve an error less
than 1%, the value of K∗/N ≈ .1 to .15, meaning that
the aerial image computation is performed 7 to 10 times
faster than with conventional methods.

IV. SIMULATION AND DISCUSSION

We model a 0.35 NA imaging system operating at
λ = 13.5 nm with a coherence factor σ = 0.5 in MAT-
LAB. The test pattern is designed of a single pinhole of
diameter d = 50 nm, which is chosen to sweep through
the full extent of the test optic pupil under the given il-
lumination. An aberration vector of the first 10 Zernike
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polynomials is generated randomly using a Gaussian dis-
tribution with standard deviation sg = 0.25 waves. De-
tector shot noise is modeled using Poisson photon statis-
tics on a 16-bit camera. Aerial images at 3 focus steps
are computed using a-SOCS and matched to the target
image. A merit function is generated by integrating the
absolute difference between the normalized image inten-
sities. Each subsequent aberration vector guess is gen-
erated via a simulated annealing search, the details of
which will not be discussed here but can be found in
the literature [6]. The results in Figure 3 show the sim-
ulated test optic aberration map and the reconstructed
aberration map to be in good agreement with total rms
wavefront error Erms = .04 waves. The simulation was
performed on a Pentium-D 2.4 GHz dual-core processor
and completed in 134 s.

As with many iterative procedures, convergence of the
algorithm can be susceptible to long computation times
depending on the input parameters. Since non-convex
searches like simulated annealing tend to converge much
more slowly than convex algorithms, the computation of
many generations may be required before a desirable tol-
erance is achieved. Additionally, since simulated anneal-
ing relies on random motion in the parameter space to
step toward the solution, increasing the dimensionality
of the space by including more Zernike polynomials can
put further demands on the algorithm.

These drawbacks notwithstanding, it should be noted
that feeding the algorithm a larger set of through-focus
images or multiple illumination settings makes the con-
tour of the merit function more convex, which helps the
algorithm converge more quickly. Another key advantage
of simulated annealing is that it can be partitioned into
independent tasks that can be run in parallel on several
processors.

In summary, our preliminary simulations verify the vi-
ability an iterative image-based approach to optical test-
ing. Further work must be done in extending the simula-
tion to a lithography setup to assess the feasibility of us-
ing the method to test lithography tools. As we continue
to move toward higher resolution, iterative image-based
optical testing is a promising alternative to interferom-
etry and may play an important role in next-generation
optical systems.
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FIG. 1: A schematic representation of a typical EUV optical
system
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FIG. 2: (a) Flow diagram of iterative reconstruction algo-
rithm for lithography setup. (b) Flow diagram for imaging
setup
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a. b.

FIG. 3: a) Test wavefront. b) Reconstructed wavefront via
iterative algorithm. Total rms wavefront error Erms = .04
waves


