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Abstract

In this thesis, the error properties of various discrete Hartley transform (DHT)
algorithms are investigated theoretically and experimentally. More specifically, we
analyze the arithmetic roundoff error characteristics of DHT algorithms proposed
by Bracewell and Wang and develop and analyze a new DHT algorithm.

Statistical models for roundoff errors and linear system noise theory are
employed to estimate output noise variance for these DHT algorithms. By consider-
.ing the overflow constraint in conjunction with these noise analyses, output noise to
signal ratios are derived for both fixed and floating-point arithmetic. Experiments
are used to support the theoretical predictions obtained via the statistical models.
The empirical results are found to be in excellent agreement with the predictions
based on the models.

Comparing Bracewell’s, Wang’s and the new algorithm in terms of their error
properties, we find that Bracewell’s algorithm exhibits the most desirable error
characteristics. These results were found to hold for both decimation-in-time and
frequency and for a variety of different radices. For a given radix, the total opera-
tion count for all the algorithms investigated in this thesis are found to be identical.
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CHAPTER 1: Introduction

The continuous-time Hartley transform was first proposed by R. V. Hartley [2]
in 1942 in the context of transmission problems. Many of the concepts behind
Fourier theory such as discrete and continuous-time Fourier series and transforms
can be directly applied to the Hartley domain. In particular, Bracewell has recently
proposed the discrete Hartley transform (DHT) which is essentially the counterpart
of the discrete Fourier transform (DFT).

The real and imaginary parts of the DFT can be obtained from the even and
odd parts of the DHT. Therefore discrete Hartley and Fourier transforms can be
easily computed from each otﬁer. In addition, as' we will see in chapter 2, for every
property of the DFT, there is a corresponding one for the DHT. However the
DHT has two important characteristics that are different from those of the DFT;
since it is a real transform it uses only real arithmetic. Second the inverse DHT is
identical to the forward DHT ( within a scale factor ). These characteristics make
the DHT an attractive substitute for the DFT in many signal processing applications
such as spectra.l analysis and convolutions. For example, the power spectra can be
obtained from the DHT without first calculating the real and imaginary parts of the
DFT as in the usual way of calculating the power spectra.

The DHT has fast algorithms similar in style to the FFT, the first of these pro-
posed by Bracewell [4]. Some of these DHT algorithms can be used to compute the
DFT more efficiently that the FFT. The fundamental principle that all these algo-

rithms are based upon is that of decomposing the computation of the discrete



Hartley transform of a seql.xence of length N into successively smaller discrete
Hartley transforms as is also the case with the FFT. The manner in which this prin-
ciple is implemented leads to a variety of algorithms with different computational
efficiencies and error properties. In this thesis we will analyze the arithmetic round-
off error characteristics of DHT aigorithms proposed by Braceweil and Wang in
addition to a new DHT algorithm.

Chapter 3 reviews the basic idea behind Bracewell’s original decimation-in-
time radix 2 algorithm. Decimation-in-frequency, radix 4 and split radix implemen-
tations of Bracewell’s algorithm, proposed by Burrus [6], are also described in
chapter 3. In chapter 4, we will review Wang’s aigorithm. Chapter 5 describes the
new algorithm we have developed for computing the DHT with decimation-in-time
and frequency, radix 2, radix 4 and split radix realizations. In addition, a chirp
Hartley transform (CHT) aléorithm similar to the chirp z-transform (CZT) algo-

rithm is described in chapter 5.

The effects of quantization on fixed-point and floating-point implementations

", of the algorithms described in chapters 3 through S are studjed in some detail in
chapters 6 and 7. In general, effects of quantization on implementation of the DHT
algorithms are sources of two kinds of error: errors due to coefficient quantization
and errors due to rounding in computation. In this thesis we are only concerned
with errors due to rounding in computation. In chapter 6, statistical models for
roundoff errors and linear system noise theory are employed to estimate output

noise variance in various DHT algorithms. By considering the overflow constraint
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in conjunction vgith these noise analyses, output noise to signal ratios are derived.
Noise to signal ratio analyses are carried out for both fixed and floating pint arith-

metic.

The statistical models used in our noise analysis can not in general be verified
theoreticaily and thus one must resort to experimental noise measurements to sup-
port the predictions obtained via the models. The experimental resuits are
presented in chapter 8 and are found to be in exceilent agreement with the theoret-
ical predictions based on the statistical models. In chapter 8, all the DHT algo-
rithms of the previous chapters are compared in terms of their error properties and
their computational efficiencies. Chapter 9 concludes this thesis Witil suggestions for

future research.



CHAPTER 2: The Discrete Hartley Transform: Definition and Properties

In this chapter, we will begin by defining the continuous and discrete Hartley
transforms and exploring their relationships with the Fourier transform. Then the
properties of the discrete Hartley transform (DHT) are described in detail. As we
will see, since the Hartley and Fourier transforms are related to each other, their
properties are somewhat similar. In addition, the DHT hcs fast algorithms similar in
style to the FFT, the first of these proposed by Bracewell. These characteristics
make the DHT an attractive substitute for the discrete Fourier transform (DFT) in

many signal processing applications such as spectral analysis and linear filtering.

2.1. The Hartley transform
 The Hartley transform was first proposed by R. V. Hartley [2] in 1942 in the
context of transient and steady state transmission problems. The Hartley transform

H (w) of a real function x(¢) is defined as:

+x
H(w) = [x(¢) [ cos (wt) + sin (wz) ] ds (2.1)
Comparing the definition of the Hartley transform with that- of the Fourier

transform given by

+x
F(w) = [x(t) [ cos (wt) — j sin (wt) ] dt (2.2)
we see that the two transforms are closely related to each other to a great extent.
In fact, since cosine is an even function and sine is an odd function, the even part

of the Hartley transform corresponds to the real part of the Fourier transform and



-11 -

the odd part of the Hartley transform corresponds to the negative of the imaginary
part of the Fourier transform. Moreover, the even and odd parts of H (w)

correspond to the even and odd parts of x (¢) respectively; i.e.

Falw) = 2@ *‘2” o) o gr [Eﬁ)—tzi(‘—‘l 1= [x)on (o) (2.3a)
—F )= & “"l‘z"' Co) ., m[i‘-(il‘—z‘—(:'l = [x(@)sin (o) (2.3b)

where Fp(w) and F;(w) denote the real and imaginary parts of the Fourier
transform respectively and HT stands for the continuous-time Hartley transform.
Using equation (2.3), the relationship between the Hartley and Fourier transforms

can be summarized as:

H(w) = Fp(w)—F(w) (2.4a)
F(mj _ H(w) +2Htm) iy H(g)—ZH(-m) (2.4b)

One of the differences between the Fourier and Hartley transform is the fact that
the Hartley transform is its own inverse. That is, the original time function can be
obtained by taking the Hartley transform of H (w).

e

(1) = —21; [ H(@) cas (wr)a . 2.5)
where cas (0) as originally defined by Hartley is:
cas (0) =cos(0) +sin(0)
In a completely analogous manner to the I‘;ourier transform, the continuous-
time Hartley transform can be used to derive, the continuous-time Hartley series,
the discrete-time Hartley transform (DTHT), the discrete Hartley series (DHS) and

the discrete Hartley transform (DHT). As shown in (1], there are a number of
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points of view that can be taken toward the derivation and interpretation of the
DFT presentation of finite duration sequences. As we will see, this is also the case
for the DHT. More specifically, one approach in deriving the DHT of an N-point
real sequenc:e x(n) is to view the DHT as one period of the discrete Hartley series
representation of a periodic sequence for which each period is identical to the finite
length sequence x(n). Another approach is to consider the DHT to be equally
spaced samples of the discrete-time Hartley transform. That is, if we define the

discrete-time Hartley transform of x(n) to be

N-1
H(w) = Zox(n) cas( wn ) ' (2.6)
ns
then the DHT of x(n) can be obtained by sampling H (w) at ® = 3‘-’?— ie.
Mt 2mnk, | . 2wnk —pen
"2 x(n)[ cos (5=) + sn(==) | Osk=N-1 @2.7)
H(")’[H(“’)]u,g‘?_: 0 otherwise

The extension of the continuous-time Hartley transform to the DHT was originally
proposed by Bracewell [3]. Comparing equation (2.7) with the definition of the

DFT given by

N-1
S x(n)[ cos (

n=0

F(k)= 0

2mwnk . ., 2nnk
N ) — j sin( N ) ] Osks=N-1

otherwise
we see that the DHT and the DFT are closely related to each other. In fact, simi-
lar to the continuous-time case, the even and odd parts of the DHT correspond to

the real and negative of the imaginary parts of the DFT. Moreover, the even and

odd parts of H (k) also correspond to the even and odd parts of x(n). That is:
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N-1
Fer) = BELT AN B _ ppr (2@ 2 2Wo8) 2 5y e TE)  (280)
a=)
- - - - N-1
£y (k) = EEL=HWR) L pyp ( 20 =2 Vo8) 2 5 o) imBE)  (2.8D)
5'0
where
HN) = H(0) (2.8¢)
(V) = x(0) (2.8d)

and Fg(k) and F;(k) denote the real and imaginary parts of the Fourier transform.

Using equation (2.8) the relationship between the DFT and the DHT can be sum-

marized as:
H(k) = Fp(k) — Fy(k) (2.92)
Fk) = H(kp—;;(zv—k) {03 —ZH(N-IQ (2.9b)

where H (N) is defined in equation (2.8c). One major difference between the DFT
and the DHT is the fact that the inverse DHT is identical to the forward DHT.

That is, the original sequence can be obtained by taking the DHT of H (k) and

scaling it by a factor of T}i:

R 2mnk
=S H (k)eas (255) 0<n<N

n=0
x(n) = 0 otherwise

The above result can be obtained by using the orthogonality of the cas(.) function.

(2.10)

We shall now state some of the notation to be used in the remainder of this
thesis +. The notation x((n))y is used to denote the periodic replication of x(n)

~ with period N . i.e.,

+ The notation used in this thesis is basically that described in section 3.6 of Oppenbeim and Schafer {1].




- 14 -

+cc

x((r))y = 3 x(n+rN) (2.11)
The original finite duration sequence x(n) is obtained from x ((N))yby extracting
one period; i.e.,

x(n) = x((n))NRy(n) (2.12)
where Ry(n) is used to denote the rectangular sequence given by:

O=a<N

1
Ry(n) = [0 otherwise (2.13)

2.2. Properties of the Discrete Hartley Transform

For every property of the DFT, there is a corresponding one for the DHT.
There are basicaily two ways of deriving the properties shown in this chapter. The
first approach is to use the properties of the DFT and the relationship between the
DFT and the DHT. The second approach is to derive the properties directly. Since
most of the derivations are straightforward, we will merely state the theorems and
the propertes. Let H.(k), Hy(k), H(k), Fi(k), F5(k) and F (k) denote the
discrete Hartley and Fourier transforms of the sequences x;(n), x2(n) and x(n)

respectively. The following observations can be made:

2.2.1. Linearity Property
This property is shared by both the Hartley and Fourier transforms; if two real

sequences x;(n) and x,(n) are linearty combined as in:

x(n) = axy(n) + bxy(n) (2.14)
Then the DHT of x(n) is
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H(k) = aH (k) + bHy(k) (2.15)

Clearly if x1(n) has duration N, and x5(n) has duration N,, then the max-
imum duration of x(n) will be N = max [Ny, N, ]. Thus in general N-point

DHTs must be computed for equation (2.15) to hold.

2.2.2. Circular Shift Property

Using the notation introduced earlier, if we have:

xi(n) = x((n+m))yRy(n) (2.16)
then
2ntmk 2nmk
N N
Because of duality between the time and frequency domains, a similar resuit

Hy(k) = H (k)cos — H((N -k))yRy(k) sin (2.17)

holds when a circular shift is applied to the DHT coefficients.

2.2.3. Symmetry Properties

If we define the even part of the real sequence x(n) by:

2 (n) = (x(n) + x((;"))nlkzv(n) (2.18)

and its odd part by

) = EEL 2Dl 2.19)

then DFT of x,,(n) is real and its DHT denoted by H,, (k) is even, i.e,

Hep(k) = Hyp (N —k))nRy(k) (2.20)
Also DFT of x,, (1) is purely imaginary and its DHT denoted by H,p, (k) is odd:

Hop(k) = — Hop((N —k))nRy (k) (2.21)
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This property was also mentioned in the first part of this chapter. It states that

the DHT of an even sequence is even and the DHT of an odd sequence is odd.

2.2.4. Convolution Property

Let x4(n) and 'xz(n) be Ny and Ny-point sequences respectively and their con-
!
volution be an ( Ny + N3 — 1 )-point sequence given by
z(n) = xy(n) * x5(n) (2.22)
The DHT can be used to perform linear convolution. More specifically, the
(Ny + N3 — 1)-point  discrete  Hartley transform of the sequences

x(n), x1(n), x5(n) are related as follows:

H(k) = Hy(k)Ho (k) + H{((N—k))yRy(k) Ho, (k) (2.23)
where '

Hok) + Hy((N—k))NyRy(k)

Ho, (k) = . (2.24)
Hoy (k) = Ho(k) - HZ((;"'k))NRN(k) (2.25)

Note that the reason behind choosing the size of the DHTs to be
(Ny + N3 — 1) is completely analogous to the DFT case described in [1]. The
convolution \property is by far one of the most important properties of the DHT. In
many applications such as linear filtering, one can bypass the Fourier domain alto-
gether and perform the convolution in the Hartley domain. This is particularly
attractive in applications such as image processing where the impulse response of
the filters used are usually symmetric. In this case H,, becomes zero and equation

(2.23) becomes
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H(k) = Hq(k) Ho(k) (2.26)
which is similar to what we would have obtained had we used the DFT to perform

convolution.

2.2.5. Reciprocal Property

To perform inverse DFT using a forward DFT algorithm, we would have to
rearrange the sequence. This is not necessary for the discrete Hartley transform

since it is its own inverse. This is shown in equations (2.7) and (2.10).

2.2.6. Reversal Property

Let
xy(n) = x((N—n))yRy(n) (2.27)
Then ‘
Hy(k) = H((N —k))yRy(k) (2.28)
Note that the symmetry properties can be derived using the reversal property in a

straightforward manner.

2.2.7. Product theorem

If

x(n) = x1(n) x5(n) (2.29)
Then

N-1
H) = 5 3 B Haoy(V~k+D)yRy@) + i =Dy Hay (6 =DR (1) (2.30)

where H, (k) and H,, (k) are defined in equations (2.24) and (2.25) respectively.

The product theorem stated above is the dual of the convolution theorem described
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earlier.

2.2.8. Parseval’s Theorem

For an N -point real sequence x(n) we have

N-1 N-1
3 xXn) =N kzoﬁz(k) (2.31)

n=0

The cross correlation, autocorrelation, initial value, sum of sequence, similarity

and packing theorems are identical for the DFT and DHT [3],[17].

For comparison purposes the DHT and DFT propertiec are shown in table 2.1.
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Sequence DHT DFT
x(n) H(k) F(k)
" 24(m) H, (k) Fy(&)
24(n) Haok) F (k)

ax,(n) + hx,(n)

afl (k) + bH(k)

afF (k) + &F ,(k)

2wim
(armRyln) | HEo ) )
= H(V =)y (a2
24(a)z(n) M, (k) + H (N DRy (R, ) | FL @)
1 N=t 1 N=1
zy{n)xy(n) ;% (O, (N =k+1)Ry (k)y + ¥ 2 FiF (k=) Ry (1)
! =g
H{((N =)y Ry ()H o, ((k=1))yRy (1)}
1y () H,y (k) = Hoy (V=) Ry (1) Re(F (&)
5y (n) Hy (k) = =8, (N =E)yRy (k) fmiF®)]

x((N =n))yRy(n)

H((N=k))yRy (k)

Fo((N=E))yRy (k)

N=-1

2 5Hn)
and )

N=1

NZ HYE)
k=l

N-1
N3 |FE)P
k=g

Table 2.1 Properties of the DHT and the DFT




CHAPTER 3: Bracewell’s Discrete Hartley Transform Algorithm

As explained in chapter 2, the discrete Hartley transform can potentially be
used in the implementation of many digital signal processing algorithms and sys-
tems. The DHT has fast algorithms similar in styie to the FFT, the first of these
proposed by Bracewell [4]. The fundamental principle that all these algorithms are
based upon is that of decomposing the computation of the discrete Hartley
transform of a sequence of length N into successively smaller discrete Hartley
transforms. The manner in which this principle is implemented leads to a variety of
algorithms with different computational efficiencies and error properties.

In this chapter, we shail begin by describing the original decimation-in-time
radix 2 algorithm proposed by Bracewell [4]. As is the case with the FFT, the idea
in Bracewell aigorithm can be extended to radix 4, split radix 4 and decimation-in-
frequency algorithms [6]. Sections 3.1.2, 3.1.3 and 3.2 will review these algorithms.
Wang’s algorithm 5], and a new algorithm for computing the DHT will be covered
in chapters 4 and 5 respectively. Other algorithms such as pﬁme factor algorithm

and Winograd-type Hartley transform algorithm are discussed at length in [6].
3.1. Decimation-in-Time Algorithms

3.1.1. Bracewell’s Original Algorithm
Bracewell has developed a decimation-in-time radix 2 algorithm for performing
the discrete Hartley transform of a data sequence of N real elements in a time pro-

portional to NlogoN [4]. In the remainder of this thesis we shall refer to this
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algorithm as DT1 where DT stands for decimation-in-time. In this section, we will
derive Bracewell's decomposition in two different ways and propose a minor modif-

ication to the DT1 algorithm.
The simplest way of deriving the DT1 algorithm which is very similar to the
FFT commputes H (k) by separating x (n) into two %’--point sequences consisting of

even and odd points in x(n). Thus we obtain,

H(k) = Hi(k) + Hxk) (3.1)
where
N_ _
Hy(k) = 22 x(zn)cas(z""") (3-2a)
n=0
L
Hak) = S 2(2n+1)cas (2 2’;“ ky (3.2b)
n=0 .

Hu(k) can be identified as an -g’--poim DHT. Using the identity

cas(a + B) = cos(B) cas(a) + sin(B) cas( —a) (3.3)
and letting a = 2;21‘ . and B = 21%5 H2(k) of equation (3.2b) can be written as
HAk) = cos (ROHE) + sin(TOHA(G - ENakoclt)  (3.4)
where
-1
Hok) = on(zn +1)cas(2’"’") (3.9)

is an -I;i-point DHT. Thus we have managed to show that an N-point DHT can be
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obtained by computinig two %’—-point DHTs. By repeating the above procedure the
DHT can be decomposed further.

Another way of looking at Bracewell algorithm is through the concept of index
mapping [6], [9]. Index mapping has been used to derive various versions of the
FFT in a systematic fashion [9]. It involves mapping a one-dimensional array of size
N = NWV2 onto a two dimensional array of size N1 by N.. The mapping is done

through the substitution

n =Kini+ Knz (mod N) (3.6a)

k = Ksk1 + Kk2  (mod N) ' (3.6b)
in equation (2.7). This will result in a complicated expression which will not be

reproduced here. When index mapping is used with DFTs, suitable choices of the
constants X through K4 make it possible to save operations by breaking the DFT

into smaller DFTs. In the case of the DHT, the particular map

n =m+ Ln (3.7a)
k =k + Kk2 (3.7b)
KL=N (3.7¢)

proposed by Burrus [6], will be examined. Substituting the above equation in (2.7)
and using the two identities
cas(a + B) = cas(a)cos(B) + cas(— a)sin(B) (3.8a)

cas(—a) = cas(a)—2sin(a) (3.8b)

we obtain the following equation:
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L-1x-1 2un 2n 2mn
Hy+ K= 3 3 x(ny + Ly fear(Cbyean (o2 beas (C712)  (3.9)

2

2mn ‘kz .

7 )sin(

2nn lk 1
N

2
—2sin( “;"“

Jeos( )

. 2mnsky | 2mnuk, 27k,
= 2sin(———)sin(——")eos(——)

2nn Ik 1
N

., 2mnoky .y 2nngky .

—28in(— 7 sn( )

2wnqaky . 2nngk, | 2mmquk,

= 2co8(—— )sin(——)sin(——) |

Choosing L =2 and K=-I;L, the last three terms of the above expression become

zero. Using the identity

cas (a) cas (B) — 2 sin(a) sin(B) = cas(a + B) (3.10)
we get |
4 |
Hky + %k,) = 2'0 go(-l)"*=x(u, + 2n,) cas| 2k (';,‘+2”’“) ] (3.11)

Since we have chosen X = %’- in equation (3.7b), to generate N frequency points

k, we are only concerned about k = 0,1 and ky =0, ..., ﬁ—1. For k5 = 0,

2
equation (3.1i) becomes
-1
H(k) = H(ky) = 22 x(zwm(-z-Lf"i) (3.12a)
ny=0
7 2mky(2n,+1
+ 3 x(2ny+1)cas( il 1(N2+ )) Osk1<%
ny=0

On the other hand, when k5 = 1 we get
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N
-1
HE) = B+ ) = 'S 2 (angeas ZEN2D, (3.12b)
B1‘0
7 Ik
- 'S x(2ny+1)cas (— 1(2"2“)) 0=k <X
nzao N 2

Thus equation (3.12) is essentially the same decomposition shown in equations

Ny
>

(3.1) and (3.2) and (3.9) reduces to (3.1) and (3.2) forL = 2and k =

Conceptually speaking, Braceweil aigorithm consists of two parts: In the first
part the input sequence is rearranged in a bit reversed manner and in the second
part the subsequences are combined in a butterfly-type structure. The butterfly for
the last stage of an N -point DHT is shown in figure 3.1 Although the algorithm can
be implemented in place, unlike the butterflies in the FFT , the radix two version
of Bracewell algorithm requires butterflies with four inputs and outputs. In other
words, four elements should be included in each buttérﬂy in order to assure that no
element which will be needed later is overwritten. The flow graph of the

decimation-in-time version of Braceweil aigorithm for the case N = 16 is shown in

figure 3.2. Note that Cf, and Sj; in figure 3.2 and all the flow graphs in this thesis

Zar 21rr) respectively. The number of real

denote the quantities cos(—M—-) and sm(—b—‘—
multiplies for an N-point sequence using this algorithm is on the order of NlogoV
and the number of real adds is proportional to 3?Nlog2N . This is the same as a real

valued FFT.



Hyk) o i - H (k)

N N
Hl(z k) (2 k>
N
Hy(k) H(S+k)
sin(
N
H:(?—k) H(N k)
2mk X
IELS

Fig. 3.1 Flow graph of the kth butterfly of the last stage of an N-point DHT computation

using the DT1 algorithm
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The operation count can be further reduced if the following observation is

made while computing the butterfly shown in figure 3.1: It is obvious that comput-
. . N N .

ing any four points H (k) , H(-—z-—k), H(-E-+k) and H(N —k) in figure 3.1
requires the computation of the two intermediate quantities:

rik) = Hytkeos () + A -0) yRy0)sn(ETE)  (3.134)

2 7
Yak) = Halk)sin(RE) - Hs«——k))NRN(k)eos(—z"—") (3.130)

More specifically, using figure 3.1 we have

H(k) = Hy(k) + ¥1(k) (3.142)
H(%w) = Hy(k) - Yy(k) (3.14b)
H(E-k) = H (k) + 7o(0) (3.14c)
H(N—k) = Hy(k) - Yok) (3.14d)

Instead of using 4 muitiplies and 2 adds, Y (k) and Y(k) can be computed with

three of each in the following manner:

(k) = [oin (22E) + cos (ZZR ) k) + sin (ZZEY HY(F -0 uRu(®) - H5®) ] (3.150)
P
7o) = [sin(Z22) — cor (2R3 k) - sinZ2Ey A5 - E)gRy(®) = B3E)  (3.150)

The above implementation will be referred to as the MDT1 algorithm where MDT

stands for modified decimation-in-time. The MDT1 algorithm requires on the order

of %N-logzN multiplies and 3—;’—log2N adds. Note that the total operation count for

the original and the modified version of Bracewell algorithm are the same. How-

ever, the error properties of the MDT1 are different from the original one
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proposed by Bracewell. This will be discussed in more detail in future chapters.

3.1.2. Radix 4 Decimation-in-Time (R4DT1) Algorithm

As is the case with the FFT, the idea behind the original radix 2 Bracewell
algorithm can be extended to other radices such as radix 4 or the recently proposed
split radix algorithms [6]-{8]. In this section we shall describe the radix 4
decimation-in-time aigorithm which will be referred to as the R4DT1 aigorithm.
The next section will deal with the split radix algorithm.

The R4DT1 algorithm is obtained by decomposing an N -point DHT into four

%’--point DHTs. Thus equation (2.7) can be written as:

H(k) = Hok) + Hy(k) + Holk) + Hak) (3.16)
where
21
4 .
Hk)= S x(4n+:)m(2—"(-‘35N—+—‘M) (3.17)
n=0
Letting @ = 222X and 8 = 2= iy the identity (3.3) equation (3.17) can be
N4 N ;
written as
Hy (k) = oo ZZEy 1 (( Dpiakwiak) + sin (BN (5 - EidRuia®)  (3.18)
where

N

Ny

H (k)= I x(4u+.-)w(21;'_;f) (3.19)

Another way of arriving at this result would be to choose L =4 and K = —IZ- in the

index mapping equation (3.7) [6]. The kth butterfly of the last stage of an N -point
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DHT using the R4DT1 algorithm is shown in figure 3.3. Figure 3.4 depicts the sig-

nal flow graph of the R4DT1 algorithm for an 16-point transform.

The total muitiplication count for this algorithm is on the order of 3TNlog4N

and the total number of additions are on the order of 1—41-1!10g41v . The operation

count therefore is the same as a real valued radix 4 FFT. Again, the observation
made in equation (3.15) can be used to replace 4 muitiplies and 2 adds with 3 of

each.

Although the operation count for the R4DT1 algorithm is less than that of
the DT1 algorithm, the former is more compiex to implement. Comparison of fig-

ures 3.2 and 3.4 are indicative of this fact.

3.1.3. Spiit Radix Decimation-in-Time (SRDT1) Algarithm

Recently, Duhamel and Hoilmann derived an algorithm called the split radix
FFT (SRFFT) [7]. Burrus developed an indexing scheme which efficiently imple-
ments the Duhamel-Hollmann SRFFT [8]. A similar approach can be taken to
derive split radix DHT algorithms. In particular, the idea behind Bracewell’s origi-
nal radix 2 algorithm (DT1) can be extended to a spiit radix algorithm [6]. We will
refer to this algorithm as the SRDT1 algorithm. The SRDT1 algorithm applies a
radix 2 decomposition to the even indexed samples and a radix 4 decomposition to

the odd indexed samples. Thus using the notation of equation (3.17) we get:

H(k) = [Ho(k) + Hz(k) ] + Hy(k) + H3(k) (3.20)
N

) -point DHT of the even

The first term in the above equation corresponds to the
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Fig. 3.3 Flow graph of the kth butterfly of the last stage of an N-point DHT computation

using the R4DT]1 aigorithm




unpisodje | 1aapy o Jusn vopeindwoo 11 1wi0d-9) ue jo vonsodwoodp sup-apvopewpap oy jo ydess word »'¢ 91d

-

AN A
€0n /”/( N \\\\“p\\
@u //,W V"’«'\ _
WYX EA LA
avnu )‘)‘ "‘ .

onn MW M"NWWM“\\M» \\
WK W57 .

(e V'// N"ONI/M %M'MV &'

S XK Xl KZ

A

.9,
SISAENCKAELSES
o1 EISRRINE 7

LN LRI > . :
) &Mp“\%wm% A/AM”“W W&'V \sw |
o &bﬁ\%&» Z2ANBAN -
©n \\“\\N~\\~N’V"/M V/rl”/ "

/ZN

@n \ >,

M ¢
On .w % B




-32.

points of the original sequence x(n). That is:

N

Ho(k) + Ho(k) = 22 x(zn)cas(z“"" (3.21)

n=0

The second and third term correspond to two T-point DHTs. They can be written

ka

H;(k) = coqz‘"")ﬁ (k) + sin(===)H' (( —k)),_:_R%(k) i=1,3 (3.22)
where
Ny
H'i(k) = 3 x(4n +z)m(21m=) - (3.3)

Thus we have shown that an N-point DHT can be computed via an %-point DHT

and two %-point DHTs. By repeating the above proceduré the DHT can be

decomposed further. This resuit can also be obtained using the index mapping tech-

nique described earlier [6].
The muitiplication count for this algorithm is on the order of %logzN and

the number of additions is on the order of %g-logzN . These are the same as the

operation count for a similar real-valued split radix FFT.

Although the operation count for the split radix algorithm is less than that of
radix 2 or radix 4 algorithms, the SRDT1 algorithm does not progress stage by
stage or in terms of indices does not complete each nested sum in order. This

makes the indexing scheme more complex than that of the fixed radix algorithms.
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3.2. Radix 2 Decimation-in-Frequency (DF1) Algorithm

As is the case with the FFT, the idea behind the DT1 algorithm can be
extended to the decimation-in-frequency algorithm which we will refer to as the
DF1 algorithm.

The DF1 algorithm can be derived using two different approaches. In the first
approach, which is very similar to the FFT, we divide the input sequence into the

first haif and the last haif of the points so that the transform H (k) can be written

as:
H(k) = S x(n)eas (222K + ~ x(n+%)(—1)‘ca:(—2£;£) (3.24)
n=0 n=(

Consider k£ even and k odd separately, with H(2r) and H (2r + 1) representing the

even numbered points and the odd numbered points respectively, so that

N
H(2r) = jgo[x(n) + x(n+-’2!)]m(2;’/'2’) (3.253)
LA
H@Zr+1) = 3 [2(n) —x(n+§)]m(2“"’(;’+1)) (3.25b)
- 2nrn

and 8 = 2™ in iden-

; : . N . . _
Equation (3.25a) is an 2 -point DHT. Letting a = N2 N

tity (3.3) equation (3.25b) can be written as

N

L1

H@r+) = 3 {{x(n) - x(a+ yjoos 228

n=(

+(x(E-n - x((zv—n)),.,n”(n)l:in(%',l)}w(-2;,‘%) (3.26)

which is another %’--point DHT. Thus once again an N-point DHT has been
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decomposed into two %-point DHTSs. By repeating the above procedure the DHT

can be decomposed further.

Another way of deriving the DF1 aigorithm is to substitute the index map

n=ny+ %nz (3.27a)

k=ky+2ky (3.27b)
in equation (2.7) [6].

The kth butterfly of the first stage of the DF1 algorithm is shown in figure 3.5
and the signal flow graph of an 16-point DHT using the DF1 algorithm is shown in
figure 3.6. Figure 3.2 is the transpose of the flow graph in figure 3.6 and can be
obtained by reversing the direction of the signal flow and interchanging the input
and_ the output in figure 3.6. By transposition theorem, the input output charac-

teristics of the two flow graphs are the same.

The operation count for the DF1 algorithm is identical to that of the DT1
algorithm and can be modified by applying equation (3.15) in computing the but-

terflies.

>

Radix 4 and split radix decimation-in-frequency versions of Bracewell’s original
algorithm are very similar to the corresponding decimation-in-time algorithms and

can be derived in a similar manner.
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Fig. 3.5 Flow graph of the kth butterfly of the first stage of an N-point DHT computation

using the DF1 algorithm
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CHAPTER 4: Wang’s Algorithm for the Discrete Hartley Transform

4.1. The Algorithm

Wang has recently proposed a new algorithm for computing the DHT [5]. This
algorithm is based on a systematic factorization of the DHT matrix. An attempt is
made here to explain the intuitive reasoning behind different stages of the matrix

decompositions used to derive the aigorithm.
Throughout this section we assume N is a power of 2 unless otherwise stated.
Let [ . ] denote a square matrix for various discrete transforms with its dimen-

sion represented by a subscript inside the pair of square brackets and its version

number ( as defined in [5] for the discrete cosine or sine transform ) represented by
a superscript. For instance [ CJH] and [ S;J-;] stand for (N +1)-point discrete

cosine transform matrix and (N —1)-point discrete sine transform matrix of the first

kind respectively. These transforms will be referred to DCT1 and DST1 and are

defined as:
©C) = 3 x(n)oos( ) - (4.13)
n=0
N-1
$'k) =3 x(m)sin( ) (4.1b)

The first step in Wang’s algorithm is to divide the problem of finding an N-
point DHT into an (-%’-+ 1)-point DCT1 and an (-’;1—1)-poim DST1. This can be

done by separating the sine and cosine terms in the DHT expression of equation
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(2.7). Thus we get:

N-
27mk) + Ex( )sm(mek)

Exploiting the fact that cosine is an even function and sine is an odd function,

H(E) = 'S x()eo 42

equadon (4.2) can be written as:

H(k) = C_zb_ﬂ(k) + Sé—-l(k) (4.3)
where
v
Ch., (k) = 3 [x(n) + (N - n))~R~(n)1cos<7,5) (4.42)
n=0
¥
Sh, (k) = P (x(n) - I((N-n))NRN(n)]sin(-%) (4.4b)

Equations (4.4a) and (4.4b) can be identified as (%-}- 1)-point DCT1 and
N .
(-2—- 1)-point DST1 of the sequences

xi(n) = x(n) + x((N—n))vRn(n) (4.5a)

xA(n) = x(n) — x((N —n))vRn(n) . (4.5b)
respectively.

In terms of matrices, the decomposition shown in equations (4.2) through

(4.4) can be expressed as [5]:

vz [m] - ]|

o le‘-

[A,;] (4.6)

'“‘I
le—- o

where




'VvZ 0 0 0 ]
0 In, 0 Iy,
adl = 3 2 . 4.7)
=3¥2|l0 o0 Vv2 o
0 In, 0 -Iy_
2 2
[ 1]
I= (4.8)
1

and [HNI , [c_},_ﬂ] and [s&_l] denote the DHT, DCT1 and DST1 matrices
2 2

respectively. Thus equation (4.6) is another way of looking at the decomposition of

an N-point DHT into an ( % + 1 )-point DCT1 and ( % - 1)-poie DST1

The second step in the algorithm is to consider the even and odd frequency

points of equation (4.4a) separately with C4_ (2r) and C} .1 (2r +1) representing
2 2

the even numbered and the odd numbered points respectively so that

N
Cﬁﬁ-i-l (2") = néo[xt(n ) + Il(('g'— n ))NRN(’I )]cas (—3’;—:—) (4.98)
o nn(r+ -1-)
Choy (2 +1) = :§0 [xi(n) — x,((-’;i—n \)nRu(n)lcos (-Trﬁz_) (4.9b)

Equations (4.9a) and (4.9b) denote (%4- 1)-point DCT1 and %’--point DCT3 of

the sequences

fMMmd:ﬁﬁﬁmdimandmimmeiﬂﬁnV%dﬁemMin[ﬁ].

m,mmmammam%dmmammwmm
described in [S].
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xx(n) = 1i(a) + (X n)uRu() (4.100)

xdn) = x1(n) - xl((-‘;'-—n))uxu(n) (4.10b)
respectively where DCT3 and DST3 of an N -point sequence x (n) are defined as:

1
- wn(k+=)
Ci(k) = Nzlx (n )cos(.._..iv_l.) (4.11a)
n=0
1
wn(k —=)
Si(k) = 5"; x(n )sin(.__N_Z._) (4.11b)
n=1
Therefore equation (4.9) can be written as :
LA
4
cgﬂ(b) = C%H(r) = E;;(n )cos(—;r-,-%) (4.12a)
%’"1 nn(r+ —;-) :
Céﬂ 2r+1) = C%(r) = ”2’:0“(,, )cqs(__m_) (4.12b)

Thus we have shown that the (%1- 1)-point DCT1 of equation (4.4a) can be
. N . N . -
decomposed into an (;—+1)-pomt DCT1 and an I-pomt DCT3. A similar

approach can be taken to show that the (%—l) DST1 of equation (4.4b) can be

» e

decomposed into an ({:-—1)-poin: DST1 and an %-point DST3.

In terms of matrices, the second step of the algorithm involves decomposing

[C_.gﬂ] and [S}_,] of equation (4.6) of the first step into the smaller matrices
2

[C%ﬂ] , [C_‘ﬁ_] [S_%_j and [S%.-J in the following manner:




4
= - 4013
el = 2] | o ey pr] o
sk o
4
= - - 4.13b
Bl (el rop | [4] @
where for J odd we have
[1 0 . ..
0. .. .1
otr0.......
[PJ]' 0 . .10 (444)
0...10.. ..
0. .01.0
10 . 10. .
(1, 0 Ty |
1 2 2
[Af] = |0 vz 0 (4.15)
2 2

and [CA?] and [Sﬁ] stand for N -point discrete cosine and sine transforms of the

third kind (DCT3 and DST3 ) defined in equation (4.11).
In the second step of the algorithm we showed that an (%+ 1)-point DCT1

can be decomposed into an ({%+ 1)-point DCT1 and an -i-’--point DCT3. In order

to carry on the recursion further, we have to find a way of computing the DCT3 of
the second step. Therefore the third step of the algorithm is to consider the even

and odd points of the sequence x4(n) in equation (4.12b) of the second step

separately. Thus we get:
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N 1 N 1 1
8 wn(r+<) 8 a(n+S)r+)
c % (r) '2_:0 x (28 Joos(— =) + % x4(2n +1)cos( T ) 4.16)

Again the first and second sum can be identified as %-point DCT3 and DCT4 of

the even and odd points of the sequence x,(n) respectively where DCT4 and DST4

of an N-point sequence x(n) are defined as:

1 1
v- w(n+ 2y + 1)
CiE) = 'S 5 (n Yoos( —— 221 (4.172)
n=Q N
N-t w(n+ 1y +1)
Sdk) = S x(n)sin ZN 2 (4.17v)
n=(

The same approach can be used to decompose the %—point DST3 of the

second part of the algorithm into an %-point DST3 and an %—point DST4.

In terms of matrices, the third step in Wang’s algorithm invoives decomposing

-C&‘ and [s& obtained in equation 4.13 of the second step into [C&] , {Cg,_ ,
4 ) 8

(%
|z

and [s i ] . In matrix notation this can be written as
8

: cy O
c3l| = la2 8 _ p. 1T 4.18a)
(4] = [#4] | o 7es7[4] ‘
[s‘ 0
sy| = |A& %- s A [ea]” (4.18b)
vy vy 0 IS%I ry

where for J even [P,] and [A}] are defired as:




10........ '
........ 1
o10.......
2 D (4.192)
0. 16.
0. .10. ..
0 . 10
1, I,

2 51 (4.19b)

and [C;,‘] and [s,:] are N-point discrete cosine and sine transform matrices of the
forth kind (DCT4 and DST4 ) defined in (4.17).
To summarize, in the first step of the algorithm we decomposed an ~-point

Hartiley transform into an (%4-1) and (%’-—1)-point DCT1 and DST1 respectively. In
the second step the (%+1)-point DCT1 of the first step is decomposed into an
(-‘;i#-l)-point DCT1 and an %-pqint DCT3. A similar procedure was applied to the
DST1 of the first step. In the third step, %’-point DCT3 of the second step is
decomposed into an %-point DCT3 and an %-point DCT4 and the %-point DST3

of the second step is decomposed into an %-point DST3 and an -g-point DST4.
Thus the remaining part of Wang’s algorithm involves finding an efficient way of
computing the DST4 and DCT4.

The DST4 of an N-point real sequence x(n) denoted by S,(k) can be computed

via an DCT4 algorithm in the following manner:




vt n(n+3)k+1)
SIN-k-1) = T (-1 2(w) cot—25

)
Therefore it is sufficient to find an efficient algorithm for one of them only. The

rest of this chapter will describe a way of computing the DCT4 efficiently. The
detailed description of factorizing [c,:] is included in Chen [14] and Wang
[51,(15]. Here we will go over the basic idea behind the matrix factorization
described in the mentioned papers.

The DCT4 of a sequence x(n) described in equation (4.17a) can be written as

31 2+ Ly + 1) sn+ L+l
Cilk) = 22 % (2n )cos( fv 27y + (=1 x (W ~2n —1)sin( i, 2.y (4.20)
n=Q

Let us now consider the even and odd frequency points of C(k) denoted by C(2m)
and C (2m +1) separately. Then we get

N

L

2
Czm) = Z yiln Joos(ZURLLM) _ (5 )gin( 2t lim, (4.21a)
L B
C@m+1) = 3 yy(n)oos( L0 *}}‘"‘ 1)) 4+ y(n)sin( =0t }Jmﬂ ) (4.21b)
> n=( ) o
where
y1(n) = x(2n)cos (ﬂ%)-) + x(N-2n ~1)sin (_‘w_@;le)_) (4.22a)
yan) = x@n)sin(TERELY) £ - 20 - 1)c0s (ZEREL) (4.22b)

After simple algebraic manipulations equations (4.21a) and (4.21b) can be written

as:




N

L

C@2m) = ‘2 bin) + )’1(%+n)(-l)"']cox(ﬂ4w—l)-"—') (4.23a)
n=(

- o) + yaZ+n)(- 1y join (R

N

L

C(Zm +1) = 42 bl(n) + )’1(%‘*‘")("1).'”]608( w(4n +)1v)(m +1)) (4.23b)
n=)

+Dyaln) + ya(Bh+n) (= 1y sin (R D),

The above equations can in turn be decomposed for odd and even values of m. Let
odd and even values of m be denoted by 2r +1 and 2r respectively. Then after sub-

stituting odd and even values of m in equation (4.23) we get a set of four equa-

tions:
%—1

Clar) = 3 ya(mens ) -y yma( Ty (4.242)
%_1 .

Clr+D = 3 ystmoos( T -y fn)in TEREL, (4.240)
%—1

Crsd = 3 vt m(4n -;,1,;(:'4-11) + yg(n)sin( 2L +N1,;(r+1)) (4.24¢c)
%-1 .

Clr ) = 3 yomeon LIS IREE ;g(rﬂ) ) (4.24d)

where

y3(n) = yi(n) + yy(n +7‘:-) (4.25a)

y4(n) = yon) + yon + ) (4.25b)
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ys(n) = Da(m)=yin + oo T 4 pon)-ysto+ lain KB @.250)
yen) = 1(n)=ys(n + F)hein (FERLLy — y m)—y n+ Epjcas(ZEELY)  (4.254)
Comparing equations (4.21) and (4.24) we can see that a problem of size % has
been converted into two problems of size -3’- More specifically equation (4.21a)
has been decomposed into (4.24a) and (4.24b) and equation (4.21b) has been

decomposed into (4.24c) and (4.24d). By repeating the above process we can carry
on the decomposition further. This completes the outline of DCT4 algorithm and

the last step of Wang’s algorithm.
We will be referring to Wang’s algorithm as the DT3 ailgorithm for the

remainder of this thesis. The DT3 aigorithm requires on the order of %IllogzN real

muitiplimtions and Zf'-log,v real additions. Hence its total operation count is the

same as a real-valued radix 2 FFT; however, the indexing scheme is substantiaily

more compiex for the DT3 algorithm than it is for the FFT.



CHAPTER 5: New Discrete Hartley Transform Algorithms

In chapters 3 and 4, we reviewed Bracewell and Wang DHT algorithms. This
chapter is concerned with several new methods for computing the discrete Hartley
transform. We shail begin by describing a new radix 2 decimation-in-time algorithm
which will be referred to as the DT2 algorithm. The idea behind the DT2 algorithm
will then be extended to decimation-in-frequency, radix 4 and split radix algo-
rithms. The second part of this chapter will introduce the chirp Hartley transform
algorithm which is similar to the chirp z-transform algorithm for computing the

DFT [1]. The error properties of these algorithms are explored in future chapters.
5.1. A New Algorithm for Computing the DHT

5.1;1.‘ Radix 2 Decimation-in-Time (DT2) Algorithm_

This section derives a new radix 2 decimation-in-time DHT algorithm which
we will refer to as the DT2 aigorithm. To achieve substandal efficiency in comput-
ing the DHT, it is necessary to decompose it into successively smaller DHT compu-
tations. The principle of the decimation-in-time algorithm is most conveniently illus-
trated by considering the special case of N an integer power of 2; ’i.;e.,

N=2
Since v is even, we can consider computing H (k) by separating x (n) into two 1—;—-
point sequences consisting of the even and odd numbered points in x(n). There-

fore equation (2.7) can be written as
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H(k) = H((k) + Hy(k) 5.1)
where
N-
H (k) = zox (2n) cas (2225, (5.22)
Hal) =S x(2n + Deas (221K, (5.2b)
n=0

H (k) is an %’--point Hartley transform. Using the identity
2 cos(B) cas(a)'cas(a-f- B) + cas(a — B) (5.3)
and letting a M and g = —N— and multiplying both sides of equation

2wk

(5.2b) by cos(—), Hy(k) of equation (5.2b) can be written as:

¥y
-——1——2[:(2”1)“(2"-1)] (-2—"2*-) 0sk<N ;ad
2wk : 2 4
2e0s(=0™ ) (5.4a)
Hyk) = | w_,
S x@a+1)(-1)" k=2
n =0
Halk) = Aok -3 Tsk<w (5.4b)
where

x(-1)=x(N-1)
uation (5.4a) shows that H,(k) can aiso be computed via an ﬂ-point DHT.
Eq 2 >

Therefore we have demonstrateci that an N -point DHT can be obtained by comput-
ing two %-point DHTs. By repeating the above process we can decompose the
DHT further. Computing the DHT of an N-point real sequence can thus be

accomplished with —ZA!-logZN real multiplies and 2Nlog,N real additions.
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Note that equatinn (5.2) is identical to equation (3.2) which was used to
derive Bracewell’s alg:-ithm. The difference between the two algorithms however,

is the identity used in computing H,(k) of equation (5.2b).

The flow graph corresponding to fhe DT2 algorithm for N = 16 is shown in

figure 5.1. Note that the special case of k = -1} in equation (5.4a) is not treated

separately in the diagram for clarity. Conceptually, one can think of the algorithm
as having two major parts: In the rearrangement section the even points of the

subsequences are grouped together and the odd points are added and grouped

together; In the recombination stage the multiplication by ———-1-5-;;— is per-

2 cos (—N-

formed and the subsequences are combined in a butterfly type manner. The kA

butterfly of the last stage of the recombination part of the aigorithm is shown in

figure S.2.
It is interesting to note that aithough the algorithm can be impiemented in

place, in the ith rearrangement stage we need to store 2/ ~! values to accommodate

for the special case of k = % in equation (5.5). This will require

v=2 . N
3 2= -1 (5.5)
i=l 4

additional storage space beyond the N points of the array which is being processed.
In compt_;ﬁng the DFT of an N-point real sequence via FFT, no additional storage

beyond N points is required.
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Fig. 52 Flow graph of the kzh butterfly of the last stage of an N- point DHT computation

using the DT2 aigorithm
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The rearrangemcnt of the odd points of the sequence as shown in equation
(5.4a) can be generalized by multiplying both sides of equation (5.2b) by

cos( 22k ;’” ) and using the identity (5.3) with a = Ml%l and

B = 2mk(2r +1 in the following manner:

N
r I
cm( wkgzr+1)) 2 [x((2n —2r - D)yRy(n) + x((2n+2r +1))yRy(n) ] ca‘(Z-:rlm) - 4
k) = |, 56)
\on(znﬂ)(_l)' k= -gi

where r is an arbitrary integer. We will show in future chapters that by picking
various values of r we can change the distribution of the variance of the error at

the output of the transform.

5.1.2. Radix 4 Decimation-in-time (R4DT2) Algorithm
A radix 4 version of the DT2 algorithm, which we will refer to as the R4DT2
aigorithm, can be easily derived by dividing the original sequence x(n) into 4

subsequences of length %’- Thus A (k) can be written as:

H(k) = Ho(k) + Hy(k) + Holk) + Ha(k) 5.7
where
!
Hi(k) = 'S x(dn+i)cas (—ML) (5.8)
n=0

First we will consider sequences H (k) and H;(k). It can be shown that



-~
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|

2mnk
Ho(k) = 4n (5.9)
k) = 3 x(n)eas ()

Choosing i = 2 in equation (5.8) and multiplying both sides of it by cos(i’;—") and

using identity (5.3) with « = ﬁ’-(“"T*EE and B = ;";E Ho(k) can be written
as:
( iy
—L— 3 G -DpRy)rr(a+Dleas () 0sk <X, gk
| 2= (5.10a)
Ak = | n_,
T x(4n+2) (-1) k= .'8!
Hk) = —H(k+%£) = H(k-!-%’-) = -H(k+ii"-) 0sk < % (5.10b)

Thus Hxk) can be recognized as an %-poin_t DHT. The sum of H,(k) and H,(k)

which corresponds to the DHT of the odd poinrs of.the 6rig;inal sequence can be

written as:
1 N N
;E‘;[Gl(k)‘"Gz(k)] 0sk <-2—,k$-47
BE) + By = g (5.11a)
S x@n+1)-1)* k= 714! ,
n=0
Hyk) + Hy(k) = ~[Hy(k+3) + Ayk+ ] osk <4 (5.11b)
where
Ny
Gy(k) = 3 [x(4n +1) + x((4n —1))yRy(njeas (2Z2E) (5.12a)
n=0 /4

and
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'4 !-l
2 Eez(n)ca:(z;;:f) 0sk <%,k¢%
Ga) = uy (5.12b)
L
2 [x(4n+1) + x(4n +3)](-1)" k= %

g2n) = x(4n+1) + x(4n+3) + x((dn —-1))yRy(n) + x((4n -3))yRy(r) (5.12¢)

N N
T5k<T (5.12d)

Equation (5.12) shows that the sum H (k) + H3(k) can be computed via two

Go(k) = —Gz(k—%’-)

%-point DHTs. Thus the problem of computing an N-point DHT has been

reduced to that of finding four -pomt DHTSs. By repeating the above procedure,

4
DHT can be decomposed further. Clearly, at every stage we need to do N muiti-

plies, '141! real adds for forming new sequences and taking care of the special cases,

and 2N adds for the butterflies in the recombination stage of the algorithm. Thus

the number of muitiplies for a sequence of ¥ numbers is on the order of Nlog,¥

and the number of adds is on the order of _1%1!10& N.

The kth butterfly of the last stage of the DF1 algorithm for an N point
sequence and the signal flow graph of the algorithm for an 16-point sequence are
shown in figures 5.3 and 5.4 respectively. It is important to bear in mind that
aithough the operation count is lower for the radix four algorithm than it is for the
radix two algorithm, the former is more complex to implement; This has to do with
the relative complexity of the basic unit of computation for the two algorithms

shown in figures 5.1 and 5.3.
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Gl(k) o= -
1
2wk
2eas(=5)
Gz(k) = a— _—— > -
1 - 1
4k .
Zeos(—5~ Zsm(z;:',—Jt

Fig. 5.3 Flow graph of the kth butterfly of the last stage of an N- point DHT computation

using the R4DT2 algorithm
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5.1.3. Split Radix Decimation-in-Time (SRDT2) Algorithm

A Split radix version of the DT2 algorithm which we will refer to as the
SRDT2 aigorithm, is obtained by applying a radix two decomposition to the even
indexed samples and a radix four decomposition to the odd indexed samples of the

input sequence. Following the notation introduced in equation (5.8) we get :

H(k) = [Ho(k) + Hy(k)] + [H(k) + H3(k)] (5.13)

The second sum which corresponds to two %--point DHTSs can be evaluate< using

equations (5.11) and (5.12) of the previous section. The first sum can be written as

N_
Ho(k) + Hk) = 22 x(2n) cas(z;/;k) (5.14).
n=0

which can be identified as another -Izi—point DHT. Thus we have reduced the

problem of finding one N-point DHT to one % and two %--point DHTs. This

process can be repeated in order to decompose the DHT further.

The split radix algorithm presented here does not progress stage by stage or in
terms of indices, does not complete each nested sum in order. This makes the
indexing structure much more complex than the fixed radix algorithms described

earlier.

5.1.4. Radix 2 Decimation-in-Frequency (DF2) Algorithm

The decimation-in-time algorithm was based upon the DHT computation by
forming smaller and smaller subsequences of the input sequence, x(n). Alterna-

tively, we can consider dividing the output sequence, H (k) into smaller and smaller
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subsequences in the same manner. In the decimation-in-frequency version of the
DT2 algorithm which we will refer to as the DF2 algorithm, we can first divide the

input sequence into the first half and the last haif of the points so that

H(k) = Hy(k) + Hofk) (5.15)
where
N_
Hyk) = 22 x(n)cw(hT"k) (5.16a)
n=0
-1
Hyk) = 'S x(n-f-%) (—1)km(-2’;—"") (5.16b)
n=0

Let us now consider k¥ even and k odd separately, with H(2r) and H(2r +1)

representing the even and odd numbered points of H (k) respectively, so that

N_
2 N 2mnr
H(2r) = x(n) + x(=+n)] cas (= (5.17a)
(@) = 3 [a() + x(+m)]cas(220)
L1
H@r+D) = 3 (x(n) - e(Fen) cas(ZREZED (5.170)

N,

5 -point DHT; Multiplying and dividing

Equation (5.17a) can be recognized as an

2mn

) and using the identity (5.3)

the right hand side of equation (5.17b) by cos(

with a = m%landﬁ=-%7"wegetz

H@r+1) = 1Y () - 2 ZD 1+ 60) + G+ DwnRuatn)  (519)

where
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L x(n) - x(n+-liv-)

2 2nnr
Gr)= 3 cas (22 .10
II*-Z

G(r) is also an %’--point DHT . Therefore once again an N-point DHT has

been decomposed into two -gl-point DHTs. Repeating the above process decom-

poses the DHT further. The arithmetic count as well as the storage requirements
for decimation-in-frequency algorithm are identical to that of the decimation-in-
time version. The kzh butterfly of the first stage of an N-point transform using the
DF2 algorithm is shown in figure 5.5. The flow graph corresponding to this algo-
rithm for an 16-point sequence is shown in figure 5.6. Comparing figures 5.1 and
5.6 we see that the rearrangement and butterfly computations are distinctly dif-
ferent for the two classes of the DHT algorithms. However, we also notice. some
similarity between their basic structures. Indeed, figure 5.1 can be obtained from

figure 5.6 by reversing the direction of signal flow and interchanging the input and

output. ( Note that in figures 5.1 and 5.6 the special cases k=-IZ- for decimation-

in-time and n= %’- for decimation-in-frequency which require separate computa-

tions are not treated separately in the diagram for clarity). Consequently, by the
transposition theorem the input-output characteristics of the two flow graphs must

be the same.

As mentioned in earlier chapters, in order to perform an inverse FFT, the

transmittance of all the branches in the flow graph of the forward FFT has to be




x(n) - xin)

x(—gl-b-n) xxAn)

Fig. 5.5 Flow graph of the nth butterfly of the first stage of an N.poiat DHT computation

using the DF2 aigorithm
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2wk . 2mk
J——-— - am—
conjugated. This corresponds to using powers of e ¥ instead of powersof e = ¥

or rearranging the sequence in order to be able to use the same flow graph for for-
ward and inverse FFT. For the DHT on the other hand the flow graph is the same

for forward and inverse transforms and no rearrangement is necessary.

The radix 4 and split radix version of the DF2 algorithm discussed here, can

be derived in a similar manner to the corresponding decimation-in-time aigorithms.

5.2. Chirp Hartley Transform (CHT) Algorithm

The DHT may be computed using an algorithm similar to the chirp z-
transform (CZT), a method which is suitable for implementation via acoustic sur-
face wave devices or charge coupled devices (CCD) as weil as other forms of

transversal filters.

The CZT aigorithm was first proposed in 1968 [16]. It was directed toward
computation of samples of the z-transform on a spiral contour equally spaced in
angle over some portion of the unit circle. More specifically, let x(n) denote an
N-point sequence with X (z) representing its z-transform. Using the CZT algo-
rithm, X (z) can be computed at the points z; given by

7y = Age! (W oe/ Pyt k=0,1,...M -1 (5.20)
The parameter W controls the rate at which the contour spirals; These samples are
located along the spiral contour with an angular spacing of ¢q. Since the DFT of an

N -point sequence is equally spaced samples of its z-transform on the unit circle, by

2n

choosing 0¢g=0, Ag=1, Wo=1, M =N and ¢g= N

, in equation (5.20) and com-
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puting X (z;), we have effectively calculated the DFT of the sequence. It can be

shown [1] that using the CZT algorithm the DFT of an N -point sequence F (k) can

be written as:
E v 2 _G=a)
Fk)=w?2 3 (z(s)W?2]w 2 (5.21)
n=0
where
-2
W=e ¥~ (5-22)

The summation in equation (5.21) can be recognized as the convolution of the

n?
sequence x(n)W 2 with the sequence W 2. The computation of the equation

(5.21) is depicted in figure 5.7. Implementing the compilex arithmetic convolution
of equation (5.21) with real hardware requires the use of four convoivers. This is
shown more clearty in figure 5.7. The incoming signal is muitiplied by the real and

,.z .
imaginary part of W 2 and combined in pairs to drive the inputs of four chirp con-

voivers. The convoiver outputs are combined in pairs and muitiplied by the real
and imaginary components of the postmuitiplier-chirp and combined again to pro-
vide.the real and imaginary components of the output.

The discrete Hartley transform can be computed in a similar fashion to the

chirp transform for the DFT. Let W,.(m) and W;(m) denote the real and unagmary

m3
part of W 2 . Thus we have:

W,(m) = eos(l‘;','—z) (5-23a)
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2 .
Wi(m) = —sin(5=) (5.23b)
Then equation (5.21) becomes

F@E) = W0 M S 200, )+ @I, (=)= Wi =] (520
Since from chapter 2 we know that the DHT of a sequence is the difference
between the real and imaginary part of its DFT, using equation (5.24) the DHT of

x(n) denoted by H (k) can be written as:

H(k) = Hy(k) + Hx(k) + Ha(k) (5.25)

Hyk) = cas (- ) x(a)cas(B0) * cas (- T) | (5260)

N
wk2 . ﬁnz ., na®
Hyk) = 00!("5,—)[ 2 z(n)sin(—) * Sln(—;,-)] (5.26b)
. k2 wn2 wnt
Hs(k) = Sm(T)[Zx('I)OOS( > ) * coy( N )| (5.26¢)

where * stands for the convolution. The computation of the above equation is dep-
icted in figure 5.83. DHT can thus be impiemented using three convolvers as

opposed to four which is needed for the DFT.

. This chapter concludes our discussion of the existing and the new DHT aigo-
rithms. A list of all the algorithms discussed in chapters 3, 4 and S5 and the key
used for each algorithm is shown in table 5.1. In the remainder of this thesis we

will investigate the statistical error properties of some of these algorithms theoreti-

cally and experimentally.
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Key Full name of the algorithm Section
DT1 Bracewell’s original radix 2 decimation in time aigorithm 3.1.1
MDT1 Modified version of Braceweil’s original radix 2 decimation in time algorithm | 3.1.1
R4DT1 | Radix 4 decimation in time version of Braceweil’s aigorithm 3.1.2
SRDT1 | Split radix decimation in time version of Braceweil’s aigorithm 3.1.3
DF1 Radix 2 decimation in frequency of Bracewell’s algorithm 32
DT3 Wang’s aigorithm 4
D12 - Radix 2 decimation in time version of the aew DHT algorithm 5.1.1
R4DT2 Radix 4 deciamtion in time version of the new DHT aigorithm 5.1.2
SRDT2 Split radix decimation in time version of the new DHT aigorithm 5.1.3
DF2 Radideedmﬁonin&eqnmyv&sionofthemDHTalgoﬁthm 5.1.4
CHT C!nrpHardeyﬂanﬂormalgcmthm 52

Table 5.1 List of the various DHT algorithms




CHAPTER 6: Theoretical Noise Analysis For the DT1, MDT1, DF1 Algorithms

In this chapter, the effects of floating-point and fixed-point roundoff errors in
computing the DHT algo:iithms of chapter 3 will be explored. The error properties
of the algorithms presentec in chapter S5 will be described in chapter 7. Error is
caused when the result of ¢ auitiplication or an addition must be rounded to a
word length smaller than that needed to represent the exact resuit. One approach
to quantifying the amount of the error would be to derive deterministic bounds on
the noise of the transformed sequence. The major drawback of these bounds is that
they are very pessimistic in comparison with the results of experiments. A second
approach is to model the error sources statistically, with expcﬁments used to test

their validity. In this thesis the second approach is taken.

‘ In general effects of quantization on impiementation of the DHT algorithms
are sources of two kinds of error; errors due to coefficient quantization and errors
due to rounding in computation. In this thesis we are only concerned with errors
due to rounding in computation. Section 6.1 will discuss the roundoff error
models. In section 6.2 we will derive the statistical error properties of the DHT
algorithms of chapter 3. In chapter 7, the error characteristics of the algorithms
described in chapter § will be derived and chapter 8 includes the experimental

verification of the error properties derived in chapters 6 and 7.
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6.1. Roundoff Error Models

6.1.1. Fixed-Point Error Models

In fixed-point arithmetic, rounding errors occur only when multiplications are
performed. Fixed-point additions are basically free of errors provided no overflows

occur.

In fixed-point arithmetic the manner in which additions are done is indepen-
dent of the location of the binary point. For multiplication purposes, with no loss
of generality, we can assume that all the numbers are fractions. Thus we will con-
sider fixed-point numbers to be represented as (b + 1)-bit binary fractions, with the
binary point just to the right of the highest order bit. We will also assume that
two’s complement is used as a way of representing the negative numbers. Thus one
bit ;f the b +1 bits used in representing a fixed-point numbers is used to indicate
its sign.

When two fixed-point b-bit numbers are muitiplied, it is necessary to approxi-
mate the 2b-bit product by a b-bit resuit. With fractional arithmetic this can be
aocou}p}ished by truncat{ng or rounding the most significant b bits. The range of
values which the resulting error can take on, depends on exactly how the product is
reduced from double precision to single precision. If the product is rounded to the

nearest single precision fraction then the error denoted by E; will be in the range
(1]
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) 1,-
=327 <Ep = 32 b (6.1)
If the product is truncated, assuming two’s complement is used, then the error Er

is always negative and is in the range [1]:

-2 <Eps=s0 (6.2)

This implies that truncation introduces some bias in fhe error and therefore it
results in larger mean square error than rounding does. Although truncation can
usuaily be implemented more simply and in less time, our analysis is primari’y con-

cerned with the roundoff noise.

Let us now define the statistical mode! we will use for fixed-point rounding
errors. Since the quantization width is 22, it is plausible to assume the rounding
errors to have a probability density function which is uniform in the interval

(_%2-0 , %Z'b) with variance of o2 = -112-2'2". Furthermore, we will assume

that the roundoff error due to muitiplications are uncorrelated with each other and
with the input. With these assumptions in mind we can associate noise source gen-
erators for every multiplier that appears in the flow graph of a specific algorithm

and then analyze the effects of the noise sources on the output.

6.1.2. Floating-Point Error Models

In the most common floating-point representation, a positive number F is

presented as F = 2°M where M, the mantissa, is a fraction, such that:

1
— <
st 1

and e, the exponent can be either positive or negative. When M is in the above
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range, the floating-point number is said to be normalized. When two floating-point
numbers are multiplied, the mantissas are multiplied as fixed-point fractions and

the exponents are added together. The product of mantissas is a 2b-bit number and

has to be rounded to b bits. Since the product of the mantissas is between i—- and

1, it might also be necessary to renormalize the product. When adding two
floating-point numbers, the mantissa of the smaller number is shifted to the right
.until their exponents become equai. Then the mantissas are added together. Again
the resuit has to be normalized and rounded. Thus in flcating-point arithmetic,
unlike fixed-point arithmetic, the results of additions as well as muitiplications
must be rounded and normalized. Furthermore, the cxpected ma@.itude of a
floating-point roundoff error depends on the magnitude of the signal. Therefore
when dealing with floating-point numbers, we are only concerned about relative
errors as opposed to absolute errors. Thus, in order t.o perform a statistical analysis
of noise in DHT algorithms, we must assume a statistical model for the signal, as
well as for the roundoff variables. In this thesis, we will assume our signais to be
white. It turns out that this assumption not only simplifies the analysis to a great

extent, but also gives us good insight about other types of signals such as sinusoids.

We shall consider floating-point numbers with mantissas represented as
(b +1)-bit binary fractions. Let x be the exact resuit of an addition or multiplica-

tion and Q (x) represent the truncated or rounded value of x. Then

Q(x)=x(1+¢) (6.3)

where ¢ is the relative error. For the case of two’s complement rounding we get
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[1]:
-270<es27? (6.4)

and for two’s complement truncation we get [1]:

-2.27%<ex0 x>0 (6.5a)

0ses2.27 x<0 (6.5b)
Thus for two’s complement truncation, the sign of the error is correlated with the

sign of the resuit. Clearly, this is in contradiction with the assumption we made ear-
lier about the independence of signal and the error. In this thesis we will primarily

be concerned with rounding two’s complement numbers.

Our model for rounding is as follows: By analogy with our fixed-point model,
we will assume that e is uniformly distributed in the interval (—=2~% ,27?) with

1
3

variance —2~ 2. Experiments have shown that the variance of error due to muiti-
plications and additions are slightly different from each other and that the distribu-
tion for e is not quite uniform [13]. However, the variance of the error has been
verified [13] to be proportional to 2~2. Since in most cases we are interested in
finding the variance of error as a function of the transform size, our general
approach will be to express variance as a variable in the form represented by
_ ol =a2"2

where a is a constant for a given algorithm which depends on the number of muiti-
plies and additions and the order in which they are performed in that algbrithm.

The factor a can be determined by matching the theoretical and experimental noise

to signal ratio curves. In effect, the value of a represents an empirical average of
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o2 for ali the multiplications and additions used in computing the DHT using a
specific algorithm. Our general approach in this chapter is to derive the theoretical
output noise variance in terms of the parameter c2. We then use the empirical
value for « ( from chapter 8 ) in order to obtain a numerical value for the output
noise variance.

We will also assume that the noise sources due to multiplications and additions
are uncorrelated with each other. Furthermore, we will assume that when the result
of additions or multiplications lies equally between two quantization levels ( that is
the first extra bit of the mantissa is 1, and all remaining extra bits are zero ), a ran-
dom choice is made as to whether to round up or down. This situation occurs fre-
quently when we add floating numbers of the same order of magnitude. Always
rounding up ( or down ) rather than randomly up or down in this situation would

introduce a correlation between roundoff error and signal sign.
6.2. Error Analysis of the DT1, MDT1 and DF1 Algorithms
6.2.1. Roundoff Noise in the DT1 Algorithm

6.2.1.1. Roundoff Noise Analysis of the DT1 Algorithm Using Fixed-Point Arith-

metic

In this section we analyze the effects of roundoff errors for output noise-to-
signal ratio of the DT1 algorithm described in section 3.1.1. At first we ignore the
overflow constraint and derive the output noise variance analytically. Then,

dynamic range issues will be considered.
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Recall our approach to the analysis of fixed-point roundoff noise introduced
in the previous section. We insert additive, signal independent, white noise sources
after each multipiier in the signal flow graph of the algorithm. There are two ways
of finding the output noise variance for Bracewell’s DHT algorithm. The first one
resuits in a closed form expression and provides us with more insight into the aigo-
rithm. The second method on the other hand, predicts the output noise variance

more accurately.

Our approach in estimating output noise variance using the first method is to
identify all the noise sources and their associated variances in the algorithm and
investigate the way in which these errors propagate to the output. As mentioned in
earlier chapters, Bracewell’s algorithm consists of two major parts. In the first part
the.input signal is bit reversed and in the second part, the algorithm passes through
arrays of N real numbers, generating a new array of N real numbers while perform-
ing butterfly-type computations. The basic numerical computation at the nth stage
invoives operating on the (n —1)sz array in order to generate the nz2 array. The
vth array is the desired DHT output where v = logo¥N and N is the transform size.
Clea;ly no error is introduced in the bit reversing section of the algorithm. To
quantify the amount of error in the butterfly section of the algorithm, consider a

typical butterfly shown in figure 6.1 defined by:

Xart() = %) + oA B2, () + sin(BR)X, (1) (6.60)
Xa1() = Xa () = oA ZPIX, ) - sin(ER)x, (1) (6.6b)

where p is an integer related to n, i, j and /. Fortunately our analysis is not tied




unpuodpe 110
oy Susn vopendwoo Ag1opng e uy ssjou yopunos yutod-poxy 10j [Ppow EINSHEIS §°9 andyg

ﬂ? . W 4 (X
(77"
015 4 (Dx — s 4 (N°X
N
ANMMYB

x4+ (DX

LX2d

'y, A..V.TN



-76 -

to the specific way in which p varies. Also the relationships between n, i, j and /
are not important for the analysis. At each stage, % separate butterfly computa-

tions like equation (6.6) are carried out. The error at the cutput of the butterflies
of a given stage, is due to the error inherent in the input of the butterflies and the

error due to the computations of that stage. In other words
27p .2
) = %0 T X OO(HE) g () F o+ g (6.72)

Xy ul) = X,0) T ‘x.U)ms(z—;r,z) - ex,(z)sm(z—}:,z) —a - (6T
where ey, () denotes the error at the meh point of the kzh array of the algorithm.
e; denotes the roundoff error due to fixed-point multiplications. Its variance
denoted by o2 was defined in section 6.1.1. Using induction we can show that the
variance of error is the same for all the inputs to a given stage of butterflies. This
implies that the variance of ey (; ). , €x,(j) and ey (;) are equal to each other. Using
induction, we can also show that the errors in the input of a given buttertly are
uncorrelated with each other. In other words we have

d Elex e, = Elexmexol = Elex,gyex, il = 0 (6.8)
From equations (6.7) and (6.8) we can conclude that the variance of error at the
output of a given butterfly due to the error in its input is simply twice the variance
of the error at the input. Since there are two multiplications involved in computing
a given butterfly, the variance of the error at the output of a given butterfly due to
computations at that butterfly is 20,2. ( we are taking advantage of the assumption

that the noise sources ¢; and e; are uncorrelated with each other and with the sig-
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nal). Thus the total variance of error at the output of the butterfly is given by

Var(ex, ) = 2 Var(eg) + 202 (6.9)
where Var(ey ) denotes the variance of ‘error at the nth stage of the algorithm.
Var(ex ) is the output noise variance for a sequence of N = 2¥ points. Since the
butterflies at the first and second stage use only additions, they are essentiaily
error free. That is:

Var(ex) = Var(ex,) = 0 . (6.10)

For n > 2, we apply equation (6.9) in order to find a general expression for the
output noise variance of an N = 2" point sequence:

Var(ex) = (2""! - 2) o} (6.11)

Using o?(N ,k) to denote the variance of error at the k#h point of an N-point

transform, equation (6.11)can be written as

N
oHN k) = (3-2) ol (6.12)
Equation (6.12) is the basic resuit we have been seeking for output noise variance
of Bracewell algorithm. It says that the variance of the output noise is uniform
across the output array ( i.e. it is independent of k ), an;i for large values of N' the

effect of doubling N or adding another stage is to double the output noise variance.

Equation (6.12) can be derived in a more intuitive way; The variance of error
in the (m +1)sz array due to the roundoff noise of the butterflies in the meh stage
of the algoﬁthﬁ is 202 and doubles as we move from one stage to the next. Thus
the variance of error at the output of the DHT ( vrh array ) due to the errors

introduced at the mth stage is 2°~™*lo2. Since the noise source generators of
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different stages are assumed to bz independent of each other, summing up the
effect of the noise due to various stages at the output of the DHT, and taking into

account the fact that the first two stages of the algorithm are error free, we get:

PN k) = 322 = 2071 - 2)0? (6.13)

m=3

which is the same resuit as equation (6.12).

In order to simpiify the analysis leading to equation (6.12), we have neglected
the fact that multiplications by unity can be performed noiselessly. If we assume, in
the analysis that these multiplications are noiseless, the output noise variance will
no longer be uniform over the entire array ( For example the zeroth output pbint
would be noiseless. ). The average variance over the output array will be somewhat
lower than the result in equation (6.12). In order to take into account the special
caso;c mentioned above, an altefnau've way of finding the output noise variance is

suggested. Recall from chapter 3 that the idea behind Bracewell algorithm is to
decompose the problem of finding an ¥ -point DHT into computing two %-point
DHTs. This is demonstrated more clearly in equations (3.1) through (3.5). Pictori-
yaﬂy, this can be shown in figure 6.2; x(n) denotes an N—point input sequence
which we wish to transform. The DHT of its even and odd points, X (k) and
Xy(k), are combined in a manner shown in figure 6.2 to form X (k). Let ex )

denote the the error in X; (k). Then by inspection of figure 6.2 we have

2wk . 2wk
€xk) = ex,x) T exz(k)COS(—N ) + exz(‘_v__k)sm(—-; ) + & + €y (6.14a)
2
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2mk 2wk
€x, k) ~ ex,(zz)coti(—“'-) ~ oy sn(=7") — € e (6.14b)
2

where ¢; denotes the roundoff error due to muitiplications by sine and cosine. If

€ N
X&+2)

we know the output noise variance distribution for %’--point sequences, using

equation (6.14) we can find it for N-point sequences. This way we can find the
distribution of variance of error for arbitrarily long sequences in a recursive

manner. More specifically, if we denote the variance of error at the &z& point of an

N -point sequence by o?(N ,k) by inspection of figure 6.2 we get:

(
02(%,1:)+eo32(2"")02( k) + 0<k<92’-,k¢%’-
XN k) = (2"" )crz(—z-,;—k) + 202 (6.15a)
=0 X
AN k) = a-z(N,k—-%l- | % sk <N (6.15b)
N N 3N . .
Note that for k= 0,— 124 the coefficients of the butterflies of figure 6.2

become 0 or 1. By taking care of these special cases, we have incorporated the
noiselessness of these multipliers in our theoretical predictions.

Having discussed the output noise variance in detail, we now address the
dynamic range considerations. We would like to obtain a formula for cutput noise
to signal ratio, by considering the overflow constraint in conjunction with our noise
analysis. We mn ensure against overflow in Bracewell algorithm by keeping the
input x(n) sufficiently small so that no element of the intermediate arrays or the

output array exceeds unity. Our approach here is to find a relationship between the
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maximum magnitude of elements of any two §ucceeding arrays in the algorithimn.
Let us denote the maximum magnitude of the input sequence by |X;, | max and the
maximum magnitude of the elements of the ith array by |X;|ms,. Then using
equation (6.6) we get:

Ixn+1|m s (1 + \/i) 'Xn lm
Since there are v stages of butterfly computations, the maximum magnitude of the

output array is given by

| X o | max < (1 + V2)"|Xin | max
Therefore, in order to guarantee that there will be no overflows at any stage of the

algorithm ( i.e. no intermediate quantity exceeds one) we should choose the input

as follows:

1
| Xin | max = avay - (6.16)

To obtain an explicit expression for output signal variance, we assume x(n) to be

. . . . 1 1 .

hite and uniformly distributed in (- ————=— , + ————). Thus th -

v Y Cvay T v °
. . 1 .

ance of the input will be 30+ Vo and therefore the variance of the output

*

signal denoted by o2, can be written as:

2 2"
Tow = 31+ V)&

The upper bound on the maximum magnitude of the input shown in equation

(6.17)

(6.16) can be tightened using a numerical technique which is described in appendix
A. The second column of table 6.1 shows this tighter upper bound as a function of

the transform size. For large values of N, doubling the transform size scales down



Transform size Maximum input | Variance of output

N X | N IA;.-. |

8 1.0 x 1071 2.9 x 1072

16 4.5 x 1072 1.1 x 1072

32 1.9 x 1072 3.8 x 1072

64 8.0 x 1073 1.4 x 1073

128 3.4 x 107} 49 x 10~
256 1.4 x 103 1.7 x 10~

512 6.0 x 10™* 6.2 x 10~3
1024 2.5 x 10~ 2.2 x 1073

Table 6.1 Theupperboundonmaximuthagnimdeoftheinputtoenmre
against overflow in fixed point implementation of the DT1 aigorithm.
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the maximum magnitude of the input by a factor of 2.365. As it is mentioned in
appendix A, the numerical technique used to generate table 6.1 results in the suffi-
cient but not the necessary condition for the input to prevent overflows. The third
column of table 6.1 shows the output signal variance provided the input is white
and uniformly distributed in the range specified by the upper bound in the second

column.

In figure 6.3 the average output noise to signal ratio using equations (6.12)
and (6.15) and table 6.1 as a function of transform size is plotted. Equation (6.15)
results in lower average output noise variance as we predicted earlier. The distribu-.
tion of output noise variance using equation (6.15) among the frequexicy points of
256-point sequences is shown in figure 6.4. In chapter 8 the experimental resuits

confirming the theoretical predictions of figures 6.3 and 6.4 will be presented.

6.2.1.2. Roundoff Noise Analysis of the DT1 Algorithm Using Floating-Point

Arithmetic

The roundoff noise analysis of the DT1 algorithm using floating-point arith-
metic is similar to that of fixed-point arithmetic. We shall insert multiplicative, sig-
nal independent white noise sources after each ﬁ\ﬂﬁpﬁer or adder in the signal
flow graph. Postulating that all roundoffs are independent of each other, we assume
that all the noise sources injected at the various nodes are mutually uncorrelated
with the signal. In floating-point arithmetic we. deal with relative errors as opposed

to absolute errors. We will assume that the input signal is white with variance of
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o2. There are again two different methods of carrying out the statistical error
analysis. The first one results in a closed form expression for output noise variance
and provides us with more insight into the algorithm. The second method on the
other hand is more accurate in predicting the error and therefore is in bett;:r
agreement with the experimental resuits.

Our approach in estimating output noise variance in the first method is to
identify all the noise sources and their associated variances in the algorithm and
investigate the way in which these errors propagate to the output. The basic numer-
ical computation at the mth stage operates on the (m —1)sz array to generate the
mth array. The vth array is the desired DHT output where v = log;N . Since our
input is assumed to be white with variance o, the bit reversing operation does not
change its whiteness or its variance. Passing through the butterfly section of the
algorithm however, changes the variance of the signal. To express this more quan-
titatively, consider figure 6.5 where a typical butterfly is shown. The outputs of the

butterfly are related to its input in the following manner:

Xt = Xa (D) + Xa()oos(Z22) + X, (Dsin(222)] (6.18a)
X)) = Xa(l) = KaU)oos(222) + X, (1)sin(222)] (6.18b)

It can be shown ( using induction ) that the signal at the inputs to the butterflies
of all stages of the algorithm retains its whiteness and its variance doubles as we
move from one stage to the next. Thus the variance of the signal at the input to the

butterflies of the mth stage is simply 2™ ~!o2. That is
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 Var[Xy(i)] = Var (X, (j)] = Var[Xn(1)] = 2" "0}, (6.19)

Figure 6.6 shows the butterfly of figure 6.5 with the white noise source generators
indicating the roundoff error due to each addition and multiplication. By inspection

of figure 6.6 we have:

Eet@) = {x,..(i) + [Za(loos(ZR) (1 + &) + (6.20a)

Easin(2TR)(1 + &) [ (1 + es)}(x + e

Xm 1) = {x,..(i) - (X oo BB) (1 + &) + (6.200)

Easin(Z2)(1 + ) ] (1 + ea)}(l + e3)

where

Xp(k) = Xp(k) + ex ) o (6.21)

ex,(x) denotes the error accumuiated in computing X,(k) and ¢; in equation
(6.20) represents the error associated with the addition or muitiplication of two
floating-point numbers. Variance of ¢; is denoted by 02 and was defined in section
6.1.2. As mentioned earlier we are assuming the injected noise sources ¢; to be
independent of each other and of the signal. Using induction we can show that the
variance of error for all the inputs to the butterflies of any given stage is the same.
In terms of the quantities in equation (6.20) this implies that

Var[ex, )] = Var[ex, )] = Var[ex_ )] (6.22)
Also the error at the three inputs of a given butterfly are uncorrelated with each

other. That is
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Elex i ex.h ] = Elexmy a1 = Elexipexn1=0  (6.23)
Using equations (6.23), (6.22) and (6.20) and the fact that the variance of the sig-
nal doubles at every stage of the butterflies we can conclude that

Varley . ] =2Var{eg ] + 2. 2+l gl

Since the input to the fist stage of butterflies is error free, we get:
Var [e Xo] =0
Solving the above difference equation the output noise variance for a white
sequence of length N = 2" can be written as:
Var(ex] = Var[ex ] =2.v 2V02 ol (6.24)
Using o%(NV ,k) to denote the output noise variance at the kth point of an N -point
white sequence, and 0-3,,, to denote the output signal variance, the noise to signal

ratio can be written as

o*(N k
403;—1 =2va? (6.25)

Equation (6.25) is the basic resuit we have been seeking . It states that the output
noise to signal ratio for a white sequence is uniformly distributed among the fre-
quency points and is independent of the variance of the input signal. Furthermore,

as we double the transform size from 2" to 2"*!, the output noise to signal variance

is multiplied by L.

v

An alternative way of deriving equation (6.24) is as follows: The variance of
error in the (m +1)st array due to the roundoff noise of the butterflies in the mth
stage of the algorithm is 402 times the variance of input to that butterfly ( this can

easily be verified by considering equation (6.20) ). Since the input signal is white
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with variance o2, and the signal variance doubles as we move from stage to stage,
the variance of the signal at the meh array is 2™ o2. Therefore, the variance of the
error in the (m +1)sz array due to the roundoff noise of the butterflies in the mth
stage is 402 2" o2 and doubles as we move from stage to stage. Thus the variance
of error at the output ( vth array ) due to the errors introduced at the meh stage is
4g22ma2 2" ™" = 2N o2 o2. Since this expression is independent of m, we
can conclude that all stages of the algorithm contribute equaily to the output noise
variance. Since there are v stages, the total variance of error at the output is simply

v N 02 o2 which is the same result as equation (6.24).

In order to simplify the analysis leading to equation (6.24), we have neglected
some details. First, we have associated equal variance noise sources with ail muiti-
pliers, including when the coefficients are zero or one. If we Aasmme, in the analysis
that these multiplicati-ons are noiseless, the output noiSe variance will no longer be
uniform over the entire array . The average variance over the output array will be
somewhat lower than the resuit in equation (6.24). In order to take care of the.

special cases mentioned above an aiternative way of finding the output noise vari-

ance is suggested. Recall that an N-pointDHrmbedecomposedintotwo%-

point DHTs as shown in figure 6.7. Let o?(N ,k) denote the variance of error at
the kA point of an N -point white sequence. By inspection of figure 6.7, the out-

put noise for the kzk point of an N-point transform denoted by ex(;) can be writ-

ten in terms of ex ), ¢x,) and e . Since X (k) and X(k) are %’--point

x,(%—t)
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DHTs of white sequences, the variance of ex ) and ey, ) is given by o-z(-ii,k)

and the variance of €y __ is given by 02(2-, Y-~ k). Therefore if we know the
X2(?-k) 2 2

output noise variance distribution for %’--point white sequences, we can easily find

it for N-point white sequences. This way we can find the distribution of variance

of error for arbitrarily long sequences in a recursive marner. More specificaily, by

inspection of figure 6.7 we get:
( N 2k N N N
TE 2L N N
oH( S k) + coH(EE) (T k) + 0<k< S k*2
N k) = | s 2o X L _g) + W oo  (6.26a)
202X k) +N ool k=0, X
2 4
) = W k- o Xskcw (6.26b)

3N

Note that for k= 0,%’-,%’-,—4- the coefficients of the butterflies of figure 6.7

become 0 or 1. By taking care of these special cases, we have incorporated the
noiselessness of these multipliers in our theoretical predicﬁon;.‘ The distribution of
the output noise variance of 256-point white sequences using equation (6.26) is
shown in figure 6.8. Figure 6.9 shows the average output noise to signal ratio using
the simplified analysis of equation (6.25) and the more complicated analysis shown
in equation (6.26). Equation (6.26) results in lower noise to signal ratio as was
predicted earlier. In chapter 8 the experimental results confirming the theoretical

predictions of figures 6.8 and 6.9 will be presented.
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6.2.2. Roundoff Noise in the MDT1 Algorithm

6.2.2.1. Roundoff Noise Analysis of the MDT1 Algorithm Using Fixed-Point
Arithmetic

MDT1 aigorithm was introduced in section 3.1.1. Although the basic idea
behind it is the same as the DT1 algorithm, its error properties are essentially dif-
ferent. Because of the way the butterflies are computed in this aigorithm, the error
at the inputs of a given butterfly are correlated with each other. Thus the simplified
analysis of section 6.2.1 which resuited in a closed form expression can not be
applied for this algorithm. In this section the output noise variance of the MDT1
Algorithm using fixed-point arithmetic will be derived. Section 6.1.2.2 will deal
with the error analysis of the floating-point implementation of the MDT1 algo-
nthm Note that the dynamic range considerations related to the MDT1 algorithm
are identical to that of the DT1 algorithm.

Recall from chapter 3 that in the MDT]1 aigorithm, we decompose the problem

LA

> point DHTs. This is shown pic-

of finding an N-point DHT into computing two

torially in figure 6.10. x(n) is the N-point sequence which we wish to transform.

N

X(k) and Xy(k) are the 2

point DHTs of the even and odd points of x(n)

respectively. The computed values of wi(k) and wy(k) the two intermediate quan-

tities shown in figure 6.10 are given by

71(k) =loos(2ZE) + sin(ZZE) X k) + ex) + o (6.27a)
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+an( BB @G-k + ¢ w ) - KBV e ]+ @
2
k) = s 2E) - ot ERNXAT -0 + ¢ )+ (6.27b)

. 2wk N
- sm(%—)[ X5 k) + ex,(‘—;—-t)) - (Xok)+ex ) | — €
where ¢; denotes the roundoff error due to fixed-point muitipiications. Its variance
denoted by o2 was defined in section 6.1.1. ey ;) represents the total amount of

N

2 point DHT of a white sequence,

error in computing X; (k). Since X;(k) is an
the variance of ex ) is az(-%,-,k). Using equation (6.27) and figure 6.10 we can

conclude that:

202+ mz(%!")vz(%#) + 02(%,1:) + 0<l:<%’-
. ) ky o . dm
AN k) = | (220 X X i) + in(FEycov (T 4) (6.28a)
N N
2y ot 2Tk 2NN _ . o N N_ N LN
2"( ‘wsz(N)a-(zsz k)+0"(2,2 k)+ 0<k<4’k$8
(220502 X k) - sin(HE) cov (1)
2= 1, N2 N 2 (6.28b)
9’ 3 2N N-_ 2,1 2N .\ ’ =N )
cov,(—’z‘l,k)
N &) = 2N k- X Lsk<v (628

where

cov (N k) = E[exqyexv-ty,)

The special cases of &k =0,-ﬁ£ in the above equation are indicative of the fact that
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mulitiplications by zero and one are essentially error free. Also for k= %L,

(sin(z—;’i) - cos(-g%i)) in equation (6.27b) becomes zero and therefore no

error occurs in the : process of subtracting zero from

., 2wk N
sin(==)( Xo(k) — Xo(5-—k) |-
cov (N ,k) of equation (6.28) which is the covariance of error between tl;e kth

and (N —k)th points of X (k) can be found recursively in terms of covl(%,-,k) and

q-’-(%,k). By inspection of figure 6.10 we get

[ 2mk.. 2wk s N N_,\_ oN N, N
ws(—N—)&n(—N—)[‘rz(?,? k) -o(TKH ]+ 0<k< 2 %5*3

km%%%kw4§¢)+c3

cov (N k) = ' (6.29a)
: 234 %) . k=0
=N
\0 k n
. N N _ N
ov (N k) = cav‘(N,?—k) = con(N,-z--*k) = cov (N N —k) 0=k = T (6.29b)

From equations (6.28) and (6.29) we can conclude that o2(N k), the output

noise variance of an N-point DHT and cov (N ,k), the covariance of error between
. . 2 N N
its kth and (N —k)th point can be computed from a'z(-i-,k) and cov (7). The
recursion is now complete.

The correlation between the errors at the kth and (N —k)th point of the

transform is due to the fact that the product [ X (k) - Xz(-%’-—k) ] sin(zL;)

shown in figure 6.10 is used to compute both X(k) and xz(i;’-—k). This is not the
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case in the DT1 algorithm. In fact comparing equations (6.28) and (6.15), we find
that except for this covariance term, the noise variance expressions for these two
algorithms are fairly snmxlar .

Figure 6.11 shows the distribution of output noise variance among the fre-
ﬁuency points for 256-point input sequences. This distribution is slightly different
from that of figure 6.4 as we expected. Figure 6.12 shows the signal to noise ratio
as a function of transform size for the MDT1 and DT1 algorithms. Although the
number of multiplies in the MDT1 is two third of the number of multiplies in the
DT1, their noise to signal ratio is almost identical. The experimental resuits con-

firming figures 6.11 and 6.12 will be shown in chapter 8.

6.2.2.2. Roundoff Noise Analysis of the MDT1 Using Floating-Point Arithmetic
The roundoff noise analysis using ﬂoating-point' arithmetic is very similar to
that of fixed-point arithmetic. We shail assume that the input signal is white with
variance of o2 and insert muitiplicative, signal independent white noise sources
after each multiplier and adder. Figure 6.13 shows the decomposition used for an
N -point sequence x(n) with the noise sources injected for the muitipliers and the

adders. Referring to figure 6.13, the following expressions for w(k) and wy(k)

can be obtained:
Fk) = (1+€) { [oos(ZRE) + sin(ZTE) [ X)k) + exy 1 (1 + &) +

(1+¢)(1+e)sin(ZTE) (X F-0) + ¢

)~ (K8 + ex)] }
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W1 +e)—

k) = (1 + ¢5) [ sn Tty - cos Bl K XA T 00 + €,

2wk

(1+ &) (1+ o) s BB (X -0+ ¢y ) (xz(")*‘!x,(k))]}

Since X,(k) and X,(k) are -]zi-point DHTs of white sequences, the variance of e, )
and ey 4 is simply a'z(-%’-,k). By inspection of figure 6.13 the variance of error for
N-point sequence is given by

(127 +~§n(2L‘)(m(l’E)'+ zsin(&’i))]uza.z + o<k<X

4
(1+ o2 2B 4y + and 200y ¥ XKy +

oA N k) = Sn(-N—)COV.(?»k) . (6.30a)
| 20'2(!21,1:) + Nole? k=0
N 2 = 1
kz‘rl(-z--,zg) + 25N cX? k=3
[ﬂV+Na'n(—2lk-)(Zsin(-th)-cos(2“k))];’-3,4- 0<k<%,k¢%
. (1+o(2y) 2 F T -6) + (6.300
XN, 5—k) = .
2 (22 o3 k) - sin(2TE) cov (Tb)
N N 1 N N
\1.5 0'2(3",-2-—&) + 2 c'z(—z-,k) + 2N o',zo',%-cov‘(-z—,k) k = ry
gy = W k=) Nse<wn (6.30¢)

where cov (N k) denotes the covariance of error between the k& and (W —k)4 point

of the DHT of an ~N-point white sequence. Note that the special cases of

k =0, %’-, % in equation (6.30) take care of noiseless multiplications by ones or
. . W, N
zeros. Equation (6.30) states that o*¥ k) can be obtained from 0'2(-2-,1:) and

cov,(%,k). In order to complete the recursion we have to be able to obtain cov (N k)
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from al(-g-',k) and covJ%’-,k). This can be done by finding the error in X (k) and

X (N -k) and evaluating the expected value of their products. The final result is :

( 2mk, . 2mk NN _,\_ 2N N, .N
MT)M(T)IO%T,? k) 02(2.1:)]*' 0<k<4.k¢8
cov (N k) = 2 cosz(z%) cov‘(-g-,k)-i- 2N smz(z—;-li) ool (6.31a)
2 cov,(%k) - N o} k= -3’-
N N N
cov (N k) = cov, N,?-—k) = cov‘(N,?-l-k) = cov (N N —k) 0<ks ry (6.31b)

Note that cov (N k) for k = 0, % is not shown in equation (6.31) because of the

fact that these quantities are not used in computing equation (6.30). Therefore we
have shown that the output noise variance of an N-point DHT of a white sequence

o%(N k), and its covariance of error between its kh and (N —k)th point

' N N ‘ .
cov (N ,k), can be computed from o—z(?,k) and cav‘(?,k). The recursion is now
compiete.

The reason for cov (N ,k) being non zero is the fact that the error sources e,
and e of figure 6.13 both contribute to the error at the kzk and (N —k)th output

points. This is clearty not the case in the DT1 algorithm. In fact, ignoring the

cov‘(g-,k) term, equations (6.26) and (6.30) look somewhat similar.

Figure 6.14 shows the distribution of output noise variance for 256-point
white sequences using the MDT1 algorithm. It is clearly different from figure 6.8
where the distribution for the DT1 algorithm is shown. Figure 6.15 shows the

noise to signal ratio of the DHTs of white sequences using the MDT1 and the DT1
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-

algorithms. Although DT1 requires more muitiplications than MDT], its noise to
signal ratio is lower than the MDT1. The experimental resuits supporting the

theoretical predictions in figures 6.14 and 6.15 are included in chapter 8.
6.2.3. Roundoff Noise in the DF1 Algorithm

6.2.3.1. Roundoff Noise Analysis of the DF1 Algorithm Using Fixed-Point Arith-

metic

The theoretical analysis for the DF1 algorithm is very similar to that of the
DT1 algorithm. We shall insert additive, signal independent white noise after each
multiplication in the signal flow graph of the algorithm and find their effects at the
output of the transform.

- The simplified way df deriving the output noise variance for this algorithm is
as follows: The variance of error in the (m +1)sz array due to the roundoff noise of
the butterflies in the meh stage of the algorithm is 202 and doubles as we move
from one stage to the next. Thus the variance of error at the output of the DHT (
vth array ) due to the errors introduced at the meh stage is 2"""+152 Since the
noise source generators of different stages are assumed to be independent of each
other, summing up the effect of the noise due to various stages at the output of the
DHT and taking into account that the last two stages of the algorithm are error
free we get:

W) = T 2l = (27 - B (6:32)

m=1

Equation (6.32) states that the output noise variance is uniformly distributed
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among all frequency points and double; ( for large values of N ) as the transform
size is doubied.

The simplified analyses which have led us to equations (6.32) and (6.13) sug-

gest that the output noise variance for an N-point sequence is proportional to -1;1

for the decimation-in-time algorithm and 2 N for the decimation-in-frequency algo-
rithm. This might sound puzzling at first. However, it can be explained intuitively
in the following manner; Recall that the butterflies with zero and one coefficients
form the first two stages in the decimation-in-time implementation and the last two
stages in the decimation-in-frequency implementation. Theret'o;e in the
decimation-in-time algorithm the presence or absence of these stages do not affect
the output noise variance at all. However, in the decimation-in-frequency impie-
mentation, the variance of error due to the first (v—2) stages of the algorithm dou-
ble as they go through each of these two stages. This is the reason why the output
noise variance for the DF1 algorithm is predicted to be four times that of the DT1
algorithm.

In order to simplify the analysis leading to equation (6.32) we have neglected
some details; We have associated equal variance noise sources with all multipliers,
including when the coefficients are zero or one ( Note that in the simplified
analysis we only took care of these butterflies which appeared in the last two stages.
Other stages except the last two ones also have butterflies of this kind). The out-
put noise variance will be less than the result in equation (6.32) if these cases are

taken into account. To improve the accuracy of our analysis, an alternative way of




- 110 -
finding the output noise vari;mce is suggested. Recall from chapter 3 that the idea
behind the decimation-in-frequency algorithm is to decompose the problem of find-
ing an N-point DHT into computing two -Ig--point DHTs. This is demonstrated
more clearly in equations (3.25) and (3.26). Pictorially, this can be shown in figure
6.16; x(n) denotes the N-point input sequence which we wish to transform. It is
decomposed into two I—;—-point sequences x(n) and x5(n) as shown in figure 6.16.
The DHT of x(n) denoted by X (k) constitutes the even points of X (k) and the
DHT of x,(n) denoted by X,(k) constitutes the odd points of X (k). Let ¢, )

denote the error in x;(n) . By inspection of figure 6.16 we have:

exn) = 0 (6.33a)
€, T €, 0<n<-1;—r,n$%
€rn) = N (6.33b)
0 n =0, Y

where ¢, denotes the roundoff error due to muitiplications in fixed-point arith-
metic. Its variance is denoted by o'f and was defined in section 6.1.1. The variance

of error at the input of x5(n) is given by

2.02 0<n<%,n$%
Var (e, (n)] = _
™2 1o n=0,

If e, (,) Was the only source of error in Xo(k) ( i.e. the %-point DHT was done

with infinite precision ), the output noise variance at X(k) due to the error in the

input would have been given by
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N

-1

: 2 2mrkn
Var'legq)l = 3 Var[egmlcas (oot = (N —4)0? (6.34)
n=0 N /2)

The error in X5(k) can be considered to be due to error in x5(n) and due to the

N,

errors introduced in the >

point DHT computation of x5(n). The variance of

error due to the noise in x5(n) is shown in equation (6.34) and the variance of

N

error due to computations in the >

point DHT is simply al(-gi,k). Since these
two errors are independent of each other, in order to find the variance of ex ;) we

can simply add these two variances. That is

N
Var[ex,)] = VW -4)02 + 02(5-,1:) (6.35a)
Since no error has been introduced in computing x(n), the variance of ey ;) is
only due to the %-point DHT computation and therefore we get:

N
Var [ex, )] = 02(?,1«:) (6.35b)
At the output of the algorithm we have:

€x(2k) = €x,(k) (6.36a)
€X(2k+1) = €Xy(k) (6.36b)
Combining equations (6.35) and (6.36) we get:

0'2(%!'#) k even

oX(N k) = (6.37)

oi(g-,k) + (N-4)o2 k odd
Figure 6.17 shows the distribution of the variance of error for 256-point

sequences using equation (6.37).
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If we average o(N ,k) of equation (6.37) over the frequency points, we can
find a closed form expression for the average output noise variance of an N =2V

sequence by solving the following difference equation

< a2 k) > = < A2 k) > + %(2"—4) (6.38)
where <.> is used to show averaging over frequency points. Since 2 and 4-point
DHT's are essentially error free, we get:

< o¥(2k)> =< d*4k)>=0
Solving equation (6.38) for v > 2, we obtain the following closed form expression
for the mean noise variance:
<oX2"k)> = (2" -2v)a? (6.39)
Therefore the more accurate analysis which led us to equation (6.39) suggests that
the-output noise variance of an N -point sequence is proportional to N as opposed

to 2N which was derived in our simpiified analysis.

Figure 6.18 shows the average output noise variance of the decimation-in-time
and frequency algorithms using equations (6.15) and (6.39). For large values of ¥
" the output noise variance for the decimation-in-time algdrithm is double the
corresponding quantity for the decimation-in-frequency algorithm. Equations (6.13)
and (6.39) could have led us to same conclusion. These resuits will be verified
experimentally in chapter 8.

Having discussed the output noise variance in detail, we now address the
dynamic range considerations. We would like to obtain a formula for the output

noise to signal ratio, by considering the overflow constraint in conjunction with our
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noise analysis. Our approach heic ic o find a relationship between the maximum
magnitude of elements of any two succeeding arrays in the algorithm. Let us
denote the maximum magnitude of the input sequence by |X,, |mx and the max-
imum magnitude of the elements of the ith array by |X; | mex- Since a typical but-

terfly at the nzh stage of the aigorithm is given by

X:H-l(i) = Xu(i) + Xn(P+i)
Xpst(i+p) = [Xa(i) — Xo(i +p) Jeos(%-‘d ¥ [(Xa(p—i) - Xy (2 —1) bin(%)

we get

anH.lmx =2. \/i |Xn lm
Since there are v stages of butterfly computations in an N = 2" point transform, we
get

| Xou | max < (2. V2)" | Xin | mma
Therefore, in order to guarantee that there will be no overflows at any stage of the

algorithm ( i.e. no intermediate quantity exceeds unity ) we should choose the

input as follows:

1
x. < S ——
To obtain an explicit expression for output signal variance, we assume x(n) to be

1 1 .
(Z V3’ (z‘ﬁ)v).ﬁusthevanance

white and uniformly distributed in (—

i

of the input will be

32 lﬁ)zv and the variance of the output signal can be

written as:
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o2, = ——t
3(2.V2)»

The upper bound on maximum magnitude of input shown in equation (6.40)

(6.41)

can be tightened further using a numerical approach described in appendix A. This
tighter upper bound is shown in the second column of table 6.2. For large values of
N, doubling the transform size scales down the maximum magnitude of the input
by a factor of 2.553. As it is mentioned in appendix A, the numerical technique
used to generate table 6.2 resuits in the sufficient but not the necessary condition
for the input to prevent overflow. The third column of table 6.2 shows the output
signal variance provided the input is chosen to be white and uniformly distributed

in the range specified by the upper bound in the second column.

Comparing tables 6.1 and 6.2 we see that maximum magnitude of the input
which guarantees no overflows, is larger for the decimation- in-time algorithm than |
it is for the decimation-in-frequency algorithm. The same conclusion wouid have
been reached, if we had used thé resuits from equations (6.41) and (6.17). Thus
for the decimation-in-frequency implementation, not only is the output noise vari-
ance higher, the dynamic range of the input signal which results in no overflows is
less than that of the decimation-in-time algorithms. Figure 6.19 shows the average
noise to signal ratio for the decimation-in-time and frequency algorithms DTZ and
DF2 using equations (6.39) and (6.15) and tables 6.1 and 6.2. As it is expected the
decimation-in-tihe algorithm has a more favorable error properties than the

decimation-in-frequency implementations. Figures 6.17 and 6.19 will be verified

experimentally in chapter 8.




A

Transform size Maximum input | Variance of output

: N |Xa |2=

N | X | mm —
8 1.0 x 10~! 2.9 x 102
16 4.1 x 1072 9.0 x 10~}
32 1.6 x 1072 2.7 x 1073
64 6.3 x 1073 8.4 x 10~
128 2.5 x 1073 2.6 x 10~
256 9.6 x 10~ | 7.9 x 10~*
512 3.8 x 10~ 2.4 x 10~5
1024 1.5 x 10~ 7.5 x 10°%

Table 6.2 The upper bound on maximum magnitude of the input to ensure
against overflow in fixed point implementation of the DF1 algorithm.
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6.2.3.2. Roundoff Noise Analysis of the DF1 Algorithm Using Floating-Point
Arithmetic

The roundoff noise analysis of the DF1 algorithm using floating-point arith-
metic is similar to that of the DT1 algorithm. There are two ways of finding the
output noise variance. The approach taken in the first method which is more intui-
tive and resuits in a closed form expression is very similar to the intuitive approach
described in section 6.2.1.2 for the decimation-in-time aigorithm. Using this
approach the output noise to signal ratio for an N =2" point white input ‘sequence
can be shown to be 2vo?. The second method which is more accurate, is slightly

different from the one discussed in section 6.2.1.2 and will be presented here.

We will assume that our input signal is zero mean white with variance od.

As usual we will be inserting white noise sources a.ftey each ﬁlultiplict and adder in
the signal flow graph. Figure 6.20 shows the decomposition used in compuring an
N-point Hartley transform using the decimation-in-frequency algorithm after the
noise sources have been injected. Using the notation introduced earlier, the error

in the nth term of the sequences x1(n) and x,(n) are given by

&) =[x(n) + x(g-+n) 1A+ ¢,)
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(

2

[x(F-n) - xv-m) Jin(Zy 1 + ) (1 + e.)}(l +e)

€r,m) =

[x) - x(F+m) 1 (1+ &)

[2(F=n) =2V =n) ] (1 + &)

sz ©

\

where ¢, denotes the roundoff error due to floating-point muitiplications or addi-
tions. Its variance is denoted by o2 and was defined in section 6.1.2. The variance

of error at the input of x;(n) and x4(n) is given by

Var [e; ()] = 2 o2 ol (6.42a)
6 a2 o 0<n<-1-;,-,n¢%’-
Var [e,z(,,)] = 5 5 N (6.42b)
205 of n =0,
4
If the %-point DHTs of xi(n) and x5(n) were computcd with infinite precision,

the variance of error at X (k) and X,(k) due to the errors to the input sequences

wouid have been given by

, N
Var'lex,m)l = 5 Var(es @) = N o of (6.43a)
2! 2mwnk
Var '[G.xz(k)] = 20 Var[e,z(,,)] Casz( N ) = (3N - 8)0-3‘ 0‘2 (6.43'))
n=
Indeed th: %’--point DHT computations shown in figure 6.20 are not error free and

they also contribute to the error in X (k) and X,(k). Let 0'2(%,14:) denote the out-

put noise variance of the kzh point of an -zh-r--point white sequence with variance of

o2. Since xy(n) and x,(n) are white sequences with variance of 2 ¢2, the

{[x(n)-x(-’}+n)1eos(2—;-"-)(1+e.,) 1+ e)+ o<a<¥ ,x X

4
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variance of error due to -Izi-point DHT computations at X (k) and X (k) are sim-
ply 2 o-z(-z’!,k). In order to find the total noise variance at X;(k) and X,(k) we

add the variance of error due to the %—point DHT computations to the variance of

error due to the input noise which was derived in equation (6.43). ( Note that we
are taking advantage of the fact that these two errors are statistically independent

of each other). Thus we get:
2 .2 N
Var(ex,a)l = N oz ol + 2 0'2(?,1:) (6.44a)
Var[ex,e)) = (N -8) o2 a2 + 2 0'2(%*) (6.44b)
Since X (k) and X (k) constitute the even and odd points of X (k), the distribution
of output noise variance for N -point white sequences is given by

2 o'z(%,k) + N o2 o2 k even

o*(N k) = (6.45)

2 cz(%,k) +ON-8) ool  kodd
The distribution of the variance of error for 256-point white sequences using equa- |
Wtion (6.45) is shown in figure 6.21. It is clearly different from figure 6.8 where the
distribution for the decimation-in-time algorithm is shown.

If o?(N k) of equation (6.45) is averaged over the frequency points, we can
find a closed form expression for the mean output noise variance of an N = 2*

sequence by solving the following difference equation

<2k)>=2<clk)> + 2" -4 (6.46)



‘wyuodfe 14q 9y Jo vonwuawsjdun yurod-Juneoy 1oy saouanbas
aym jujod-9gcz Jo dueuea Isiou ndino oy jo uonnquisiy JT°9 ndyy

siniod LHuanbogy

6se 261 a2t v9 _ 0

- J0 SN U1 (¥'967),0 3oueLrea 3stou jndino




-125.

where <.> is used to show averaging over frequency points. Since a 4-point

DHT only involves additions and subtractions, we g;t:
< o%(4,k) > = 8 02 o

Solving equation (6.46) the closed form expression for the mean output noise vari-
ance for v > 2 is given by

< o*2°k)> =(2vN - 3N + 4)o2 (6.47)
Thus the more accurate anaiysis which led us to equation (6.47) is slightly different
from the simplified one and their difference becomes negligible for large values of
N.

The output noise to signal ratio for the decimation-in-time and frequency algo-
rithms as a function of transform size are shown in figure 6.22. Although the distri-
bution of variance of error among the frequency points of these two algorithms are
different, their average output noise to signal ratio is almost identical. This is in
contrast with the fixed-point case where the output noise to signal ratio for the
decimation-in-time and frequency aigorithms were different from each other. The
experimental resuits verifying the theoretical predictions in figures 6.21 and 6.22

will be shown in chapter 8.
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CHAPTER 7: Theoretical Noise Analysis of the DT2 and DF2 Algorithms

In chapter 6, we analyzed the statistical error properties of the DHT algo-
rithms of chapter 3. This chapter discusses the effects of floating-point and fixed-
point roundoff errors in the algorithms presented in chapter 5. More specificalily,
sections 7.1 and 7.2 will describe the error characteristics of the DT2 and DF2 algo-
rithms respectively. Our approach in this chapter is very similar to that of chapter
6; we will assume that the roundoff error due to multiplications and additions are
uncorrelated with each other and with the input. We then associate noise source
generators for every muitiplier and adder that appears in the flow graph of the
specific algorithm under investigation and analyze their effects on the output. In
chapter 8, the experimental resuits supporting the theoretical derivations of this

chapter and chapter 6 will be presented.
7.1. Roundoff Noise in the DT2 Algorithm

7.1.1. Roundoff Noise Analysis of the DT2 Algorithm Using Fixed-Point Arith-

metic

]

In this section we will analyze the effects of roundoff errors due to fixed-point
implementation of the DT2 algoriﬁun described in section S.1.1. At first we
ignore the overflow constraint and derive the output noise variance analytically.
Then the dynamic range issues will be considered.

We will insert additive, signal independent, white noise sources after each mul-

tiplier in the signal flow graph of the algorithm. Our approach in finding the output
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noise variance is again a recursive one. Recall that using the DT2 algorithm, the

problem of finding an N-point DHT is decomposed into that of finding two %’--

point DHTs. This is shown pictorially in figure 7.1 where x(n) an N-point

sequence is decomposed into two %-point sequences xi(n) and x,(n). From

equations (5.2) and (5.4) we can conclude that x(n) is related to x1(n) and x5(n)

in the foilowing manner:

21(n) = x(21) 0sk < % (7.1a)
24n) = x(2n+1) + x(2n-1) 0sk < % (7.1b)

where

x(—1) = x(N-1)
Since additions in fixed-point arithmetic are error free, no error is introduced in

the process of forming the two subsequences x;(n) and x4(n) from x(n). X (k),
the desired DHT of x(n) is computed from X (k) and X,(k) the transforms of the

subsequences x{(n) and x3(n) in the following manner:

(

Xy(k) + ‘__li;;"xz(k) 0s k <N,k # %,k * 24@’..
2cos(——
X(k) = 9 —N-—], N (7.2)
2 S N 3N
Xy(k) + T x(2n+1)(-1) k= o
n=0

Using the above equation we can find the output noise variance of the N-point

sequence x(n) from the output noise variance of the %-point sequences x(n) and

x4(n). More specifically, by inspection of figure 7.1 the error in X (k) denoted by
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€x(x) can be written as:

(
1 N 3N
k) T T o, k) T e O0sk<N,k# iy
‘ N (1.3)
X = N 3N
exl(k) - T’ —4—-
where ¢; denotes the error due to the multiplication of X,(k) with 1 in
2wk
2cos(=™)

equation (7.2). Its variance o2 was defined in section 6.1.1. Using equation (7.3)
the variance of error at the kzk point of an N-point DHT denoted by (N ,k) can

be written as:

( 1 N N N
[1+ ——— %X k) + o2 0<k<¥ 2 X
| 2(2;k 2 2 :
XN k) = J[ 1+ L 12X k) + 07502 k=0 (7.4a)
I 2( 2;1:) 2
N =N
L"Z(?’k) k=%
XN k) = o'z(N,k—%) —2’! <k <N (7.4b)

Note that for k = 0, X4(k) of equation (7.2) is going to “be muitiplied by -;-
When a fixed-point number of b bits is multiplied by -%- the magnitude of error is

either zero or %2"’ depending upon whether the number is even or odd. Thus

for the special case of k = 0 , the error model of section 6.1.1 has to be slightly

modified. Therefore the variance of error due to multiplication by -;- is going to

be %03 where o2 is defined in section 6.1.1.
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Equation (7.4) is the result we were looking for. It says that the output noise

variance distribution for N-point sequences can be obtained from the output noise

L

variance fo 2

point sequences. The distribution of error for the DHT of 256-

point sequences using equation (7.4) is shown in figure 7.2. There are two peaks at

k=ﬁ=1 andk=§—)y-=l.‘1'hisisductothefactthat—-1——-attainsits
4 4 5 [Zwk)
N
. N 3N .
highest value at these values of £ ( Note that k = -;,—“-arethespeaalmand

are treated separately as shown in equation (7.2)). Thus, whatever error that has
been accumulated in computing X4(k) gets multiplied by a relatively large factor in

the last stage of the algorithm, causing peaks in the output noise variance.

Having discussed the output noise variance, let us now consider the dynamic
range issues. Numerical techniques shown in appendix A were used to find an
upper bound on the magnitude of the input signal in order to prevent overflow.
These bounds are shown in the second column of table 7.1. For large values of N,
doubling the transform size scales down the maximum magnitude of the input by a
factor of 4.0. As it is mentioned in appendix A, the numerical technique used to
generate table 7.1 results in the sufficient but not the necessary condition for the
input to prevent overflows. The third column of table 7.1 indicates the variance of
output signal given that the input is white and uniformly distributed in the range
specified by the upper bound shown in the second column. The values at the third
column together with equation (7.4) can be used to find the output noise to signal

variance for the DT2 algorithm as a function of N. The noise to signal ratio for the
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Transform size Mannnmm Variance of output

N |Xin | max T i s lx;" ES

8 1.0 x 10°! 2.9 x 1072

16 5.0 x 1072 1.3 x 1072

32 1.2 x 1072 1.6 x 10™3

64 2.7 x 1073 1.5 x 104
128 6.4 x 10~¢ 1.8 x 1073

- 256 1.5 x 10~* 2.0 x 1078
512 3.8 x 1073 2.5 x 1077
1024 9.5 x 1078 3.1 x 1078

Tabile 7.1 The upper bound on maximum magnitude of the in
. . bot put to ensure:
aganst overflow in fixed point implementation of the DT2 algorithm.
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DT1 and DT2 algorithms are shown in figure 7.3. The theoretical results of figures

7.2 and 7.3 will be verified experimentally in chapter 8.

7.1.2. Roundoff Noise Analysis of the DT2 Algorithm Using Floating-Point Arith-
metic

The roundoff noise analysis using floating-point arithmetic is somewhat similar
to that of the fixed-point arithmetic. We shall assume that the input signal is white
with variance of o2 and insert multiplicative, signal independent white noise
sources after each muitiplier and adder. Our approach in finding the output noise
variance is a recursive one. |

The decomposition used for computing the N-point DHT of a white sequence
x(n) wlth variance of o2 is shown in figure 7.4. Using equation (7.2) and figure |

7.4, X (k) the DHT of x(n) can be written as:

1+ [Xk) + ]+(1+e‘xz{k)+€x2{n 0<sk <N k$i3_N.
@) [ Xy x, &) k) 21:1:) Ry
N
X(k) = ) | (7.5)
Ny Ny .
n+ﬂ 2 N 3N
A+ )| [ X&) + ey ] + Sx@a+1)(-1) ¥ [[(Q+¢) p= X
k { n=0 i=n

where ¢; and ¢, denote the roundoff error due to fixed-point additions or muitipli-

cations. Their variance is denoted by o2 and was defined in section 6.1.2. ey )

denotes the error in computation of X; (k). Let o-z(g-,k) denote the output noise
variance at the krzh point of an -%r--point white sequence with variance 2. Since

x1(n) is the even points of x(n), it is white and its variance is c2. Thus the
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variance of error at X (k) is given by

N
Var [ex,a)] = 0’2(7,15 ) (7.6a)
The sequence xy(n) is given by equation (7.1b). Therefore the variance of error at
Iz(n) is
€x,(n) = 2 0’,% Gez

and the variance of error at Xy(k) due to noise in x5(n) ( i.e. ignoring the noise

due to %’--point DHT computation of X4(k) ) is

Var'[ ex,q) ] = N o o

Since the total error in X,(k) is due to the noise in x5(n) and due to roundoff

N

error introduced in >

point DHT computation of X(k), we get

Var( exy | = N ok o2 + o' X5 k) (7.6b)
where a’z(-%,-,k) denotes the variance of error at the &4 point of the DHT of an
%’—-point sequence with similar statistical characteristics to xy(n), i.e. sequences for
which the variance of each point is given by 202 and the covariance between any

two adjacent points is ¢2. In other words

E [x5(n) xo(n+1) ] = 02 0sn<—

where
N
x(3) = x2(0)
Using equations (7.5) and (7.6) the variance of error at the kzh point of the

white sequence x(n) can be easily found in terms of cr'z(%,k) and crz(%,k) in
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the following manner:

,

%No,%af + 0-2(%,1:) + 0<k< %, k#:I-Z-
;;jz-;;-)—[ N oho? + o (X i)
oX(N k) = {NoZol + 02( k) + k=0 (7.73)
W[w oZal + 0’2(%,.&)
Noga?+ XSy + [ XA + - 1)02e? k= %
XN k) = a-z(N,k—g-) i;- <k<N (7.7v)

oz(N ,0) is considered separately in the above equation because for k =0 ,

, the factor by which X,(k) is muitiplied becomes equal to % Since in

floating-point arithmetic multiplication by % corresponds to decrementing the
exponent by 1, it is basically error free. Also k = ‘—Z— is the special case in our algo-

rithm which is computed in a different manner from the rest of the points as shown

in equation (7.2).
Equation (7.7) shows the way a?(N ,k) can be found in terms of crz(%’-,k) and
o-’z(ﬁ-,k). To complete the recursion we have to find a way of expressing o'2(N ,k)

in terms of o-z(ﬁ-,k) and o-’z(g-,k). To obtain ¢'%(N k) consider an N -point

white sequence y(n) with variance 2 o2 and the covariance between its adjacent
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points ¢Z. By definition, the ouiput noise variance for Y (k) is o'%(N k). We are

interested in finding o'2(N k) in terms of c'z(’—;’-,k) and 02(%,1:) ( the output

noise variance of an %-point white sequence with variance o2 ). In order to

LA

> point sequences y(n) and y,(n) in

compute Y (k), we will split y(n) into tw
a manner shown in equation (7.1). Although y(n) is not white, because of its spe-
cal structure, yi(n) which consists of the even points of y(n) is white with vari-
ance 2c02. Thus the output noise variance for Y (k) is 20-2(-12!,10 . The sequence
y2(n) is given by:

y2or) = [y(2n+1) + y(2n-1) (1 + ¢, ) 0=n< =
where

y(-1)=yWN-1)
and e, is the roundoff error due to floating-point addition. The variance of y,(n)

is 402 and the covariance between its neighboring points is 20-,%,. Thus by defini-

tion the variance of output error at Y (k) only due to %’--point DHT computation

of Y5(k) is given by 20'2(%,1:). Similarly, the variance of error at Y,(k) only due

to the error in forming y,(n) is given by 2N o202. Since these two sources of

errors are independent of each other, the total variance of error at Y,(k) denoted

by ey x) is:

a2, N
Var[ey )] = 20 2(--2-,1.:) +2Nalad
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Using the fact that ¥ (k) and Y5(k) can be recombined to form ¥ (k) and tak-

ing into account that:

Var{Y(k)] = 4N cosz(—-) c?
Var(y (k)] = N o

Var(Yyk)] = 4 cof(22E) o2

the variance of error for Y (k) denoted by o’'(N k) can be easily written in terms

of o3 k) and (T :

G ANyt N v
(¥ oZo? (4 o ZE) + 1] + 2035 Tyt “ 0<k <N k*55
Zcosz( L
“'2((%*))5_ +N
k) = | W (R a2a? + 204(F k) k=0
’ c 2z, (7.8)
W oy oot v (i + (& + 20007 kAW
7 +74

Equations (7.7) and (7.8) show the way to compute o2(¥ k) and o’'%N ,k) in
terms of &z(%,k) and o"z{-g,—,k). The recursion is now complete and the distribu-

tion of the output noise variance for arbitrarily long sequences can be found recur-

sively. The output noise variance for the DHT of 256-point white sequences is

shown in figure 7.5. There are two peaks at k = %’-:1 and k = %\!—:1. The rea-

son for these peaks is explained in section 7.1.1. Figure 7.6 shows the output noise
to signal ratio for white sequences as a function of their lengths for the DT2 and

DT1 algorithms. The experimental resuits verifying the theoretical predictions of
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Figure 7.6 Theoretical noise to signal ratio for floating-point realization of DT2 and DT1
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this section will be presented in chapter 8.
7.2. Roundoff Noise in the DF2 Algorithm

7.2.1. Roundoff Noise Analysis of the DF2 algorithm Using Fixed-Point Arith-
metic

In this section we will analyze the effects of roundoff errors due to fixed-point
impiementation of the DF2 algorithm described in section 5.1.4. At first we ignore
the overflow constraint and derive the output noise variance analytically. Then the
dynamic range issues will be considered.

We will insert additive, signal independent, white noise sources aftér each mul-
tiplier in the signal flow graph of the aigorithm. Our approach in finding the output
noise variance is again a recursive one. Recall that using the DF2 algorithm, the
problem of finding an -point DHT is decomposed into that of finding two —’;1
point DHTs. This is shown pictorially in figure 7.7 where x(n) is the N-point

sequence which is going to be transformed. x;(n) and x5(n) denote the two %’--

point1 subsequences that x (n) is decomposed into. From Jequations (5.15) through
(5.19) we can conclude that x(n) is related to x;(n) and x,(n) in the following

manner:

xy(n) = x(n) + x(-’} + 1) 0osk<X (7.92)
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the DF2 algorithm
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N
x(n)—x(? +n) N N
~mn 0sa<Jm*T
] Zcos(T) (7.9b)
xxn) =
0 n = -IZ-

\

Since additions in fixed-point arithmetic are error free, no error is occurred in the
process of forming x(n). Let xo(n) denote the computed value of x5(n). Then we
get:

xxn) = x9o(n) + ¢,
where ¢, denotes the roundoff error due to the muitiplications in forming the nzh

point of x5(n). Its variance for most values of n is o2 which was defined in section

6.1.1. The variance of ¢, is not quite the same for ail vaiues of n. For exampie ey
4

is zero becmxsexz(%’-) is defined to be zero in equadon (7.9b). ‘Also for n =0 the
factor by which (x(n) ~ x(n +-‘2!) of equation (7.9b) gets muitiplied by becomes

%. As mentioned in earlier sections, the error due to muitiplication of fixed-point

numbers by -;- has a different probability distribution from what we have assumed
in section 6.1.1. In short, the variance of error at x4(n) can be written as:

(4 N _N

aoq 0<n<—2-,n#~a-
E{e2]= {1502 n=0 (7.10)
0 n=1—z-

\




- 146 -

On the other hand, X (k), the desired DHT of x(n) is computed from X (k)

and X,(k) the transforms of the subsequences x;(n) and x5(n) in the following

manner:

X(2k) = X,(k) 0sk < % (7.11a)
X@+1) = X0) + X+ + GO ) -2 Z) 0=k <k (7.11b)
where

XAZ) = 2,0)

Using the above equation we can find the output noise variance of the N -point
sequence x(n) from the output noise variance of the -gi-point sequences x(n) and

x2(n). More specificaily, by inspection of figure 7.7 the error in X (k) denoted by

€x(r)-<an be written as:

N .

€X(2%) = €x,(k) 0sk < EX (7.12a)
N

€X(2k+1) = €x,(k) T eXy(k+1) 0sk < 3 (7.12b)

where ey, ;) denotes the error in computing X; (k). From (7.,9a) we can conclude

that

N
Var{ex,a)] = 0'1(7,1‘) (7.13a)
The error in Xo(k) is due to the error in forming x4(n) from x(n) and due to the

error in —g’--point DHT computation of X(k). Thus using equation (7.10) the totai

variance of ey ;) + ex,x+1) can be written as:
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N N
Var[ex.q) + ex,x+1)] = 0-2(7,1:) + 02(-2-,/6*'1) + (7.13b)

X
2
3 £ (] (e (G0 + cas PILED) 2

Note that the summation in equation (7.13b) is the contribution of the error in

forming x5(n) to ex,x) + ex,x+1) and the first two terms in equation (7.13b) are

N,

due to the roundoff errors involved in 2

point DHT computation of
Xz(k) + Xz(k + 1).

Using the equations (7.12) and (7.13) the variance of error at X (k) denoted

by o(N ,k) can be written as:

,,2(1\(,21‘)3,,-2(:2!,1‘) 0sk <§- (7.14a)
A 2 +1) = ) + A gy + | | (7.14b)

N

¥

2 2mnk 2mn(k+1) N
EOE[%](CGJ(—N/Z)"'M( N2 ) ¥ 0=k <3
Equation (7.14) is the basic result we have been looking for. It says that the

output noise variance of an N-point sequence, a>(N ,k) can be easily obtained from
02(-1}}). The distribution of the output error variance of 256-point sequences

using the DF2 algorithm is shown in figure 7.8. As it is seen there are no major
peaks similar to the ones in figure 7.2 which shows the distribution of output noise

variance for the DT2 algorithm. Recall that the peaks at k = lv—:1 3N

3 , TII for

DT2 are due to the fact that in the last stage of the butterflies, the (%z 1)st and

(;TN*'- 1)st elements of the (v—1)st array are multiplied by the largest coefficient
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of the entire algorithm ( i.e. ). In the DF2 algorithm, since multiplica-

2sin(2T)

) appear in the first stage of the
. 2w
Zsm(——-N)

tions by the largest coefficient ( i.e.
algorithm, their effect is somewhat reduced. Besides, since the input to the first
stage of the algorithm is error free, muitiplication by large factors can not magnify
any error. Figure 7.9 shows the output noise variance of the DT2 and DF2 algo-

rithms as a function of the transform size.

Having found the output noise variance, we should now consider the dynamic
range issues. The maximum allowable input to ensure against overflow was found
numerically using the technique discussed in appeadix A. The second column of
table 7.2 shows the maximum input as a function of transform size. For large
values of N, doubling the transform size scales down the maximum magnitude. of
the input by a factor of 3.46. As it is mentioned in appendix A, the numerical
technique used to generate table 7.2, resuits in the sufficient but not the necessary
condition for the input to prevent overflows. The third column of the table 7.2
shows the variance of the output signél provided the input is a white sequence
with probability density function of each point uniformly distributed between its
maximum allowable range. Comparing tables 7.1 and 7.2 we can see that the max-
imum magnitude of the input which guarantees no overflows, is larger for the
decimation-in-frequency algorithm than it is for the decimatioﬁ-in—time algorithm.

Figure 7.10 shows the average noise to signal ratio for the DF2 and DT2 algo-
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Mean output noise variance in units of 2~%

1N-1

S oX(N k)
k=0

N

2-2b

1000

100} -

10

0.01

v = lopN

Figure 7.9 Output noise variance for fixed-point realization of DT2 and DF2 algorithms
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Transform size | Maximum input | Variance of output

N | Xin | max L T e 'X;'" £

8 10x 107! | 2.9 x 10~2

16 3.3 x 1072 5.9 x 10™3

32 1.0 x 1072 1.2 x 1073

64 3.1 x 1073 2.0 x 10™¢

128 8.9 x 10~* 3.4 x 1073

256 2.7 x 107+ 6.3 x 1079

512 7.4 x 1073 9.5 x 1077
1024 2.2 x 1073 1.6 x 1077

Table 7.2 The upper bound on maximum magnitude of the input to ensure
against overflow in fixed point impiementation of the DF2 aigorithm.
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rithms. The experimental results verifying the theoretical curves of figures 7.8 and

7.10 will be presented in chapter 8.

7.2.2. Roundoff Noise Analysis of the DF2 Using Floating-Point Arithmetic

Our approach to roundoff noise analysis of the DF2 algorithm using floating-
point arithmetic is a recursive one. However, as we will see, it will be slightly dif-

ferent from the previous cases.

Consider an %’--point zero mean sequence w(n) with all its points statisticaily

independent with variance of the nth point denoted by o’ ,-,,(%,n). Suppose we

have an algorithm which given o' ( %,n) computes the variance of error at W (k)

the DHT of w(n). Consider another N-point zero mean sequence x (n) with all its
pomts statistically independent and the variance of its nzk point given 'by
cZ(N,n). We will show that given an algorithm to compute the variance of error
for W (k), we can find a way to compute the variance of error for X (k) the DHT
of x(n )’.

Recall from section 5.1.4 that using the decimation-in-frequency aigorithm of
section 5.1.4 an N-point DHT can be decomposed into two %-point DHTSs. This is
shown in figure 7.11 and equation (7.9). where the N-point sequence x(n) is
decomposed into x1(n) and x,(n). Using equation (7.12) and figure 7.11 X (k)
and X,(k), the DHTs of xi(n) and x,(n) are combined in order to form X (k).

Having inserted the signal independent noise generators after each multiplier and
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adder in the signal flow graph of the algorithm, the computed values of x;(n) and

24(n) denoted by ¥,(n) and Za(n) can be written as:

HORIEORECSDUNEETN (7.152)
z(n) - x(-&-wl)
22 [1+e,,2][1+¢,,’] 0$n<%,n¢%’-
I 2008(<57) (7.15b)
Ton) = N
Lo =l

where ¢, denotes the roundoff error due to floating-point muitiplication and addi-
tions for computing the ntk term of x1(n) or xx(n).
The error in computing various points of x(n) are uncorrelated with each

other and the variance of the error at x(n) is given by |
N
Var [631()!) ] = Uez [ G%(N!n) + O’,%(N,Il +—2-) ]
If the —I;L-point DHT of x,(n) were to be computed with infinite precision, the only

source of error at X (k) wouid have been due to the error in x1(n). That is

N

-1

Var '[ex,x) = 22 [cZW.a) + "'u.(Nﬂ"'-) ] 6482( zm'k (7.16)

n'

Recall that x((n) is an —z-fpoint zero mean sequence with all its points statistically
independent and the variance of its nh point given by o2(N ,8) + oA (N +%).
Therefore we can use our assumed algorithm in order to find Var '’ (ex,)) the vari-
ance of error at X (k) only due to th %’--point DHT computational errors . Thus

the total variance of error at X (k) is given by
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Var [exi(,,)] = Var"[exl(,,)] + Var'[ex‘(k)] (7173)

A similar argument can be used to show that the variance of error at X,(k) is
given by

Var [ex,x)] = Var'[ex,q)] + Var’'[ex,q)] (7.17b)
where

I oia) + o a+d

Var lex gyl = o 3

AT s

is the variance of error at X,(k) only due to the error in forming x42) and

2mrnk
cas¥( )

Var''[ex o] is the variance of error at X,(k) only due to the -I;Lpoint DHT computa-

tion of ¥y(k). Var'/{ exy)] can be obtained via our assumed algorithm which uses

N a) + iV a +§)

=

the-variance of z4(n) ( i.e ) as input.

Now let us see how the quantities that we have found can be used to find the
output noise variance for x(n). Referring to figure 7.11, the computed vaiue of
X(2k) and X (2k +1) can be written as:

X(2k) = Xy(k) + ex g (7.18a)
TZ+) ={1+¢ ] { [(X2k) + exg)) + (Xk+1) + ex i) [ [1 + & ]+ (7.18b)
N N
SaCEOREIS S RN )}
where ¢, denotes the error due to floating-point muitiplication and addition for

computing X (2k +1)-and ey, is the error which has been accumulated in computing




- 157 -

X,(k). From equation (7.18) the variance of error at the k& point of the output of

the N-point DHT denoted by o*(¥ k) can be written as:

oHN 2k) = Var [ ex ) | . (7.19a)

N2k +1) = E [ (exy +:ex,a+n)2] + o { 2E[(Xgk) + Xok+1) 2] + (7.19b)
E[(X@+1) P] + a2, ) + cé.(N.%)}

Note that o*(¥,2k) of equation (7.19a) has aiready been computed in equation

(7.17a). We now have to show ways of obtaining the terms in equation (7.19b).
The first term in equation (7.19b) is given by

E [ ( Gx’(k) + ‘x,(k-l) )2] = Vdr{ﬁx:(*)] + Vdf{!xt(k.,,ul +

N‘k

VoW a)+oiVa +%’-)

—— m(ank)m(an(k-bl))
2es {5y

N2 N2

2q2
L

a4

A®

NP

The summation in the above equation is due to the error in computing z,(») which
causes some correlation between the error at the output points X,(k) and X,k +1).
Similarly, Var{ ez )] and Var{ exg.y] Of the above equation can be found from
equation (7;1‘7b).

The second term in equation (7.19b) invoives computing £{ ( X (2k +1) )*] and
E[(.xz(k) + Xk +1) }*] which are given by

el 2mnk
E[(X(Zk+1) ] = 3 od(¥ n)cas¥(=7=)
A=)




- 158 -

Ny 2 2 N

2 oaV.a)+ o (N, S+n)
E[(Xyk)+ Xfk+1) )= 3T — 2 [“(2;/?)*-6“(2“’;\[(,/‘;1))]2
n-o,nﬂ% 4“2(7)

The recursion is now complete. We have shown that all the terms in equations

(7.19a) and (7.19b) can be computed using our assumed algorithm.
To summarize, we started off with an aigorithm which couid compute the out-
put noise variance of an %’-—point zero mean sequence of uncorrelated input points.

Then we showed that the using this algorithm we can find the output noise vari-
ance of an N-point sequence with uncorrelated input points. Thus we can recur-
sively find the output noise variance of arbitrarily long white sequences.

Figure 7.12 shows the distribution of the variance of error as a function of fre-
quency for 256-point white sequences. Figure 7.13 shows the average output noise
lo signal ratio of white sequences using the DF2 and DT2 algorithms. As it is
expected the average output noise to signai variance for the decimation-in-
frequency aigorithm is roughiy the same as the decimadon-in-ime version. Com-
paring figures 7.13, 7.6 and 6.22 we can conclude that overall Bracewell’s algorithm
has more desirable error properties than the new algorithm. The experimental
resuits ve_rifying the theoretical predictions of this section will be presented in

chapter 8.
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CHAPTER 8: Experimental Results

In chapters 6 and 7, we investigated the theoretical error pr;)perﬁa of some of
the algorithms in chapters 3, 4 and S. In this chapter, the experimental results
regarding the roundoff noise in these algorithms will be examined. Section 8.1 con-
tains the detailed description of the experimental procedure which was used. Sec-
tions 8.2 and 8.3 will report on the experimental error properties of the DHT aigo-
rithms. In chapter 9 we will compare various aigorithms discussed throughout the

thesis in terms of their computational efficiencies and error properties.

8.1. The Experimental Procedure

The experiments for roundoff noise analysis consisted of two parts; In the first
part, zero mean white input sequences were generated using a random number
generator routine. The probability density function (pdf ) for each point of these
sequences was uniformly distributed around the origin. Clearly, the width of this
pdf does not affect the noise to signai ratio for floating-point impiementations.
However, in the case of fixed-point arithmetic, the width was chosen in such a way
to guarantee no overflows in the output or in intermediate computations.

Having generated the test sequences, they were then transformed three times;
once using rounded ﬁxcd-point arithmetic with word length of 15 bits ( excluding
the sign bit ); the second time using floating-point arithmetic with 23 bits of
mantissa ( excluding the hidden bit and the sign bit ) and the third time using dou-

ble precision floating-point arithmetic with S5 bits of mantissa ( excluding the sign
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bit and the hidden bit ). The double precision computation was assumed to be
exact in comparison with the other two. Thus the roundoff error due to fixed-
point implementation is the difference between the third and first computations
and the error due to floating-point implementation is the difference between the
third and second computations.

The above procedure was repeated with 1000 independent input sequences in
order to find a stable estimate of the variance of error for each frequency point of

an N -point transform. The estimator used is of the form

‘2(N,k) = 1 1Um[ (N,k) - m (N,k) I 8.1a
g ey E € me
Me & .

where (N k) and ¢°(N k) denote the estimated mean and variance of error in
the kzh point of an N -point transform. Similarty, e (N ;k) of equation (8.1) denotes
the ith experimental value of the error at the k2@ frequency point of an N -point
transform. The reason behind choosing 1000 as the aumber of experiments and the
. characteristics of the estimator shown in equation (8.1) are dxscnsed in appendix
B. |

In order to find an estimate of the mean output noise variance we have to

average G (N ,k) over the frequency points k& . That is

6r = - 3 &V k) (8.2)
Since the input signal is zero mean and white and its pdf is uniformiy distributed

we can easily find the output signal variance. Thus using equation (8.2) we can
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obtain an estimate of noise to signal ratio for the algorithms under investigation.

Recall from section 6.1.2 that in our theoretical analyses we used the parame-
ter 02 to denote the variance of error due to floating-point muitiplications and
additions i.e

Q@xy) =y (1 +¢)
Qx +y)=(x +y)1+¢

Var{e] = ol

For floating-point implementation with b bits of mantissa, if we assume that « is
uniformly distributed in the range (=2-*,+2-*) then o? = -;-2-2*. Experiments
have shown that the variance of error due to muitiplications. and additions are
slightty differeat from each other and that the distribution for ¢ is aot quite uni-
- form ‘[13]., ( Note that in fixed-point implementation, uniform distribution for « in
the range (;--%-2",+%2'°) has been verified experin;lentaﬂy [13] ). However, the

variance of roundoff error in floating-point arithmetic has been verified to be pro-

portional to 2~% [13]. That is

gl= a2
where a is a constant for a given algorithm which depends on the number of multi-
plies and adds and the order in which they are performed in that algorithm. There-
fore, for the resuits related to floating-point implementations, we will use an empir-
ical value for @ obtained by matching the theoretical and experimental noise to sig-

nal ratio curves.
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To clarify the experimental procedure used, we should define carefully the
convention used to round the resuits of floating-point additions and multiplications.
The resuits were rounded to the closest binary number ( for a b-bit mantissa ) and
if a result of an addition or a muitiplication was midway between two binary
aumbers, a random choice was made as to whether to round up or down. It turns
out that in floating-point addition of two numbers of the -ame order of magnitude
where the unrounded mantissas are very often only. one bit longer than the
rounded mantissas, this situation occurs quite frequently. Always rounding up ( or
down ) rather than randomly up or down in this situation introduces a correiation
between roundoff error and signal sign. This contradicts the assumption that round-
off errors are signai independent. For instance, as we will see, in impiementing the
algorithms of chapter 3, if one merely rounds up in situations where the mantissa is
exactly between two binary numbers, the experimentai noise to signal ratios will be

significantly higher than the theoretical predictions.
8.2. Experimental Resuits
8.2.1. Experimental Verification of the Theoretical Resuits

8.2.1.1. Fixed-point Impiementation Resuits

In this section the experimental results verifying the theoretical analyses of
chapter 6 will be presented. Figure 8.1 shows the experimental and the theoretical
noise to signal ratio for fixed-point realization of the DT1 and DF1 algorithms.

There seems to be an excellent agreement between the predicted and actual vaiues
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of noise to signal ratio. Equations (6.15) and (6.37) were used in order to find the

theoretical mean output noise variance given by

of = <a*N k)> = %’,—:Z:ZOJ(N,k):
The output signal variance o2 was obtained by assuming that the input signal is
white and that the pdf for each point is uniformly distributed around the origin.
The width of this pdf was determined by the maximum magnitude of the input that
would guarantee no overflows for the particular aigorithm under investigation. The
upper bound for the maximum magnitude of input for DT1 and DF1 are shown in
tables 6.1 and 6.2 respectively. Not only is the output noise variance for the DF1
algorithm larger than that of the DT1 algorithm ( see figure 6.18 ), but aiso the
dynamic range constraint on the input signal is more severe for the DF1 aigorithm.
This expiains the gap between the two curves shown in figure 8.1. We can fit the

following equations to the data shown in figure 8.1:

A/ ?%F = 0.20 N1 DT1 (8.32)
as

A /;%_. Z_” = 0.24 N8 DF1 (8.3b)
[

Although the multiplication count for the MDT]1 aigorithm is % of DT1, as it is

shown in figure 8.1, the noise to signal ratio for the two algorithms are almost
identical. As explained in section 6.2.2.1, this is due to the fact that the errors at
the input to a given butterfly in the MDT1 aigorithm are correlated with each

other.
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Figure 8.2 shows the output noise to signal ratio for the DT2 and DF2 algo-
rithms. Again, There is excellent agreement between the predicted and actual
values. Although the output noise variance for DT2 and DF2 are fairly close to
each other, comparing tables 7.1 and 7.2 we realize that the overflow constraints,
allow a larger output signal variance for the decimation-in-frequency algorithm.
Indeed, this is one of the reasons why the noise to signal ratio of the DF2 algo-
rithm is increasing at a lower than that of the DT2 algorithm in figure 8.2. We can

fit the following equations to the data shown in figure 8.2:

\/ ;—2-"—2— 3,,, = 0.0057 N2% DT2 (8.42)
o .
\/ ;Z‘-’-g—_-z,— = 0.10 N'* DT2 (8.4b)

Figures 8.3 through 8.7 show the theoretical and experimental distribution of
output noise variance as a function of frequency for 256-point sequences. Again
the theoretical results seem to be in good agreement with the experiments; As men-

tioned in chapter 7, the peaks in figure 8.6 at frequency points k = }—Z-: i, 241!::1

are due to the fact that in the last stage of the algorithm, the error which has been
1

accumulated in the (v—1)s¢ array is muitiplied by ————=—— which attains its
2cos(2ﬂk)
N
highest value ( ie. ———— ) at k = X+1, 3 41 This highest value
. 2w 4 4

1

———— is also the largest coefficient of all the butterflies in the entire algo-
2sn( 25

rithm.
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Figure 8.4 Distribution of the output noise variance for 256-point sequences
for fixed.point realization of MDT1: (a) experimental; (b) theoretical.
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On the other hand, for the decimation-in-frequency algorithm DF2, the largest
coefficients in the butterflies appear at the very first stage of the algorithm. There-
fore their effect is somewhat reduced by the time the signal is passed by the last
array of the algorithm. As shown in figure 8.7, there are no peaks similar to figure
8.6 among the frequency points of the decimation-in-frequency algorithm. The
wide fluctuations of output noise variance in the neighboring points of figure 8.7
can be associated with the fact that the even and odd frequency points are com-
puted separately. |

Recall from section 5.1.1 that a more generalized version of the decomposition
used for the DT1 aigorithm is given by equation (5.6). The originalrdecomposi-

tion shown in equation (5.4) can be considered a special case of the generalized

1

zcos(z‘rrk@;-i- 1))

one with » = 0. The quantity in equation (5.6) attains its

largest value for

1 +
k= z—(—z;Ti-)—[N(Zm + 1)x4]

where m is any integer which makes k of the above equation an integer in the
range 0 to N—1 (Note that there are only four values of m which result in such
values). Therefore, we would expect the distribution of error for the generalized
version to have peaks at these frequency points. This has been verified experimen-
tally for r=0,1,2,3 and the resulting output noise variance for 256-point

sequences are shown in figure 8.8.
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8.2.1.2. - Floating-point Implementation Resuits

The corresponding resuits for the floating-point implementations of the algo-
rithms of the previous section are shown in figures 8.9 and 8.10. As explained in
section 8.1 the variance of roundoff error due to muitiplications and additions in
floating-point implementation with b bits of mantissa is given by

gz al™®
The parameter a which is determined by matching the theoretical and experimental
noise to signal ratio curves for a specific algorithm, is shown in figures 8.9 and
8.10. The value of a represents essentiaily an empirical average o2 for ail the muiti-
‘plications and additions used in computing the DHT of white noise sequénces.

Recall from section 6.1.2 and 8.1 that in order to make the signal and error
uncorrelated with each other, randomized rounding has to be used when the result
of muitiplication or addition lies 'equany between two quantization leveis. This
situation occurs frequently when we add floating numbers of the same order of
magnitude. The experimental resuits using randomized ‘rounding and non random-
ized roundmg for decimation-in-time and frequency version of Bracewell’s algo-
rithm using ﬂoating-point arithmetic is shown in figure 8.9. As it is expected, the
theoretical m match the experimental resuits only if randomized rounding is
used.

We can fit the following equations to the data shown in figure 8.9:

of

SL 2B = 40v - .53 DT1 (8.53)
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?2'0%-_2" = 40v - .58 DF1 (8.5b)

ok
TL 2B =0.59v - 1.09 MDT1 (8.5¢)

of
Toe 272
o
ol 272
Note that unlike the fixed-point case the noise to signal ratio for the MDT]1 aigo-

= 0.044 N2 DT2 (8.6a)

= 0.043 N\ DF?2 (8.6b)

rithm shown in figure 8.9 is higher than that of the DT1 aigorithm. As explained in
section 6.2.2.1 this is due to the correlations between the error at the inputs of the
butterflies. As is shown in figure 8.9, the resuits for the DF1 algorithm are almost
identical to that of the DT1 algorithm; Unlike the fixed-point case the dynamic
range issues do not exist in floating-point impiementations. Therefore as it is seen
in figures 8.9 and 8.10 and equations 8.2 and 8.3, the floating-point implementa-
tions of the decimation-in-time and frequency algorith‘ms have similar error charac-
teristics.

The theoretical and experimental distribution of variance of error for DT1,
MDT1, DF1 and DF2 aigorithms shown in figures 8.11 through 8.15 are in good

agreement with each other.

8.2.2. Experimental Resuits for the R4DT1 and R4DT2 aigorithms

The error properties of radix 4 versions of all the algorithms discussed in previ-
ous sections are very similar to that of radix 2 versions. Figures 8.16 and 8.17 show
the experimental noise to signal ratio for DT1, R4DT1, DT2, R4DT2 algorithms.

The distribution of roundoff noise due to fixed-point implementation for 256-point




‘eanasoays (q) ‘e
-vownadxd (v) :wnpuodie 11.q oy jo vopejuswadun yujod-Juneoy 10 sausnbas
Am yujod-9¢z Jo souepea asiou ndino Yy jJo vonnquisiq §I°g 2andyg

sjuoyd fouonbosy
€6ee 26t L 14} \4:] ee
................................................................................................................ ]
b e ]
Aﬁv e A MAAMAMAMMAAR A kv £
J
suoyd Louonboy
11 {1} L 24} Y9 0
7 0
....................................................... ’
AQV o] €
; L ) v

r-C J0 SImm a1 (¥'957)0

ousuRa WA dino eoRocY ]

«-7 0 Smn a1 (¥'967), 0




“Jeanaz09y) (q) ‘jerudw
-padxa (&) :wypsodfe LA 2P Jo vonejudwsduy yulod-Supeoy 10§ ssousanbas
Mym jyujod-9¢z jJo 2ousuea sou ndino sy jJo vopnquisiq Zi'g andg

siuopd £ouanbay
1 14 26! 02! v9 0

@)

snuoyd Louanboy

gsz 111 02s 1) 0

(®)

-7 J0 STm T (¥'95T).0

soueLreA 3100 INdino eonaIcAq]

-7 Jo simn W (1'957),0

sousueA 300 Mdino reyuswuadxy



| €2

‘Teana109y) (q) ‘je)
-uowpadxa (e) :wiyuodpe §4q Y Jo uonwuawsjdun yuod-Supeoy 10 saousnbas
anym jutod-9gz Jo uepwa ssjou ndino- oY) Jo uvopnquisig €§°g dndyy

swoyd f>uonboy

g2 261 L[4 v9 0

(@)
)
sinopd Aousnbay
92 261 ] 9 )

M v 0

“

|
................................................................................................................................................................................................. 2

!

@ |- WP NPT KO N T | v

|
H I 9

w-T 30 ssmn a1 (1'957).0
ndino reogaucsyy

@~ Jo [imm ut (1'967), 2



(@)

(®)

“feona109y) (q) ‘el
-udwpadxd (&) wppodie g oy jo vopeyuswsydan yuod-uneoy 10) saouanbas

AYMm jujod-9¢z Jo uepea asiou Indino sy Jo vonnguisyy pI-g dindyg

suoid auao..v.oa
-1 26l 1]

siuoyd fouonboy
gge 261 1 24}

002

-2 Jo simm a1 (¥'957)0

r-T J0 S o (1'957),0




&

“feanasoay) (q) ‘rey
-wdwpadxd (e) :wyqiuodfe 4q s Jo voneuswsyduwy yuod-Funeoy 10§ saovanbas
Am yutod-9¢z jo voueuea asiou ndino oYy jo uonnquusiy s°g 2andyyg

sivoyd fouonboy)
s92 261 14} . v9 0
] . . S _ 10
02
| N ih H ; # W, i i
i g1 ] ! ! | : \ ! [ ) {!
T ,.,A_.v,,:l, ti AA < i N F Aw Ti,ﬁ T W,..,ﬂ".,,,ﬁi‘ 0y
! 1 (11 : I RIUR ¥ : | : AEE T
A | | ! ‘
...... - h EDITRR e s
@
09
swwoyd Aruonbayy
€62 28! (14 14 0
g b 4 >4 -3 °

(®)

-0 SN a1 (1957),0
[enaiosy],

oueueA 35100 Indino

-2 o Imm 0 (7'957),0



. ‘Tavy ‘aid ‘11ary
.—,—h:o=c__a~__a2:._ca,eoncueozﬁ_a:wvc.8_9..:&:Oe_.aoh._u_,.—

N8o| = a

et ot ] 9 y e

( Tox-T
L D

S TLAKY FEmampadey x
7 uaEemwpadeyy

s 1.1ary muowpadry K
4 11Q musmpadry

! . 000008

«-2 JO sirum ut ol [eudss o1 9s10u jndino arenbs wesw 100y




\ ¢,

-Z1avd ‘7id ‘11ard

‘114 Jo vonezyeas yujod-Juneoy 10j oper [eudm o) asiou Inding  L§°g 34nBid

2

]}

zﬂuo- = A

Lary Ewswpadrg
1 rewswpady
LLary Ewowsadry
1.LA rewdwpadryg

1°0

F
tPw-T
0

0001

-2 JO SITun Ut ones [eudss o3 3siou Jnding




- 187 -

sequences using the R4DT2 algorithm is shown in figure 8.18. As is expected, the

peaks in the radix 2 version also appear in the radix 4 implementation.

8.3. Comparison of Error Properties of DHT Algorithms

Figures 8.19 and 8.20 show the noise to signal ratio curves for DT1, MDT]1,
DF1, DT2, DF2, DT3 algorithms using fixed and floating-point arithmetic. The
main conclusion which can be drawn from figures 8.19 and 8.20 is that the aigo-
rithms of chapter 5 ( i.e. DT2 and DF2 ) and chapter 3 ( DT1 and DF1) have the
highest and lowest noise to signal ratios respectively. The noise characteristics of

Wang’s algorithm ( DT3) lies somewhere in between these two class of algorithms.

The total operation count for ail the algorithms discussed in this thesis is
shown in table 8.1. Notice that the total number of arithmetic operations is identi-
cal for all the algorithms. However, DT2 and DF2 algorithms use the least number
of muitiplies and DT1 and DF1 need the most number of muitiplies. Thefefore, in
applications where the muitiplication cost ( e.g. time ) is roughly the same as the
yldition cost, DT1 and DF1 algorithms will obviously outperform DT2 and DF2.
However, in applications where the multiplication is significantly more costly than
additions, there is a tradeoff between cost and accuracy depending upon which
algorithm is used.

Of course, speed and accuracy are not the only issues involved in comparing
algorithms. Complexity, the amount of overhead, storage and other factors are

often equally as important. For instance, the DT3 algorithm is by far the most com-
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Algorithm | # of Muitiplies | # of Adds | Total Operation Count
om NlogaN ég—’-logziv -Szﬁiogzlv
DF1 NlogN %Izlog;N -izlzlogzN
wor | Mgy | Diogy | Higgy
D13 Elilogzlv Zy-logzN S—NiogzN
4 4 2
N v) %’-logzN N logaN izllog:N
DF2 %’-logzN 2NlogV -S%V-bgyv

Table 8.1 Operation count for various radix 2 DHT algorithms.
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plex one discussed in this thesis. The complexity of DT2 ( or DF2 ) and DT1 ( or
DT1 ) algorithms are roughly the same. However, because of the special cases
shown in equation (5.4) the overhead is slightly higher for DT2 than it is for the

DT algorithm,
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CHAPTER 9: Conclusion and Suggestions For Future Research

9.1. Conclusions

In this thesis, the error properties of various discrete Hartley transform algo-
rithms were investigated theoretically and experimentally. More specificaily, we
analyzed the arithmetic roundoff error characteristics of DHT algorithms proposed

by Bracewell and Wang in addition to a new DHT algorithm.

Statistical models for roundoff errors and linear sysiem noise theory were
empioyed to estimate the output noise variance in various DHT algorithms for fixed
and floating-point arithmetic. By considering the overflow constraint in conjunction
with these noise analyses, output noise to signal ratios were derived. We used
experimental noise measurements to support the predictions obtained via the
mo&els. Empirical resuits shown in chapter 7 were found to be in excellent agree-

ment with the theoretical predictions based on the statistical models.

Having verified our analytical resuits, we then compared the 'DHT algorithms
of chapters 3, 4 and 5 in terms of their error properties as well as their computa-
tional efficiencies. For both fixed and floating-point implementations, Bracewell’s
algorithm and the new algorithm exhibited the lowest and highest noise to signal
ratios respectively.

For a given radix, the. total operation count for N -point real sequences was
found to be the same using any of the DHT algorithms described in this thesis.

However the new algorithm ( DT2 and DF2 )and Bracewell algorithm ( DT1 and
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DF1 ) required the least and most number of multiplications respectively. Speed
and efficiencies of these algorithms are also influenced by other factors such as
complexity of implementation, storage requirements and the amount of overhead.
In fact, in some applications, the data management costs exceed that of the arith-
metic operations. Of the three algorithms mentioned above, Wang’s algorithm was
found to be the most complex one to implement. On the other hand, Bracewell’s
algorithm which in many ways resembies the FFT, was found to be the most
straightgforward one to implement. Realization of the new algorithm of chapter 5,

was somewhat complicated by having to take care of the special cases.

9.2. Suggestions for Future Research

The finite register length in DHT computations affects the output noise via
two‘ different mechanisms: coefficient quantization and arithmetic roundoff error.
In this thesis, we have only been concerned with the error due to fixed or floating-
point computations. Our approach has been to assume that the DHT coefficients
are known with enough precision so that the primary source of error at the output
is due to the roundoff arithmetic noise. A possible area of Mer research would
be to ﬁnd out the way in which coefficient quantization affects the output for dif-

ferent DHT algorithms.

Another possible extension involves handling of overflows. Recall that in
fixed-point implementations of various algorithms, we had to scale down the input
signal so that we are guaranteed of no overflows. Another way to prevent overflow

would be to attenuate the input signal by some factor at every stage of an
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algorithm. In the case of the FFT, this results in a considerable improvement in the
output noise ratio. Another approach to avoid overflow in the FFT ,which could
potentially be applied to the DHT algorithms, is the use of block floating-point. In
this procedure, the original array is normalized to the far left of the computer word
with the restriction that the maximum magnitude of the input signal is less than
one. The computation proceeds in a fixed-point mannei, except that after every
addition, there is an overflow test. If overflow is detected, the entire array is
divided by 2 and the computation continues. The number of necessary shifts are
counted to determine a scale factor or exponent for the entire final array. The out-
put noise to signal ratio depends strongly on how many overflows occur and at what
stage of the computations they occur. The position and timing of the overflows are
determined by ‘the signal being transformed and thus in order to analyze the noise
to signal ratio in a block floating-point implementatioﬁ, one needs to know the pro-
perties of the input signal. For the case of the FFT, this problem of finding the out-
put noise to signal ratio for white inputs has been anaiyzed theoreticaily [13]. It
would be interesting to apply this idea to the DHT algorithms and find out the

amount of improvement that can be achieved in the noise to signal ratio.5

Finally, throughout this thesis we assumed the input signals to be white. This
simplified our analysis to a great extent. In the case of the FFT, the output noise to
signal ratios for sinusoid type signals have been found to be within 15 percent of
that of white signal. It would be worthwhile, to examine the error proﬁerﬁes of the

DHT algorithms using other types of input signals such as the sinusoids.
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Appendix A : A Numerical Technique to Determine
the Overflow Constraint

As we mentioned in chapter 6, dynamic range issues become important in
fixed-point realization of DHT algorithms. In particuiar, in order to obtain output
noise to signal ratio, we have to consider the overflow constraint in conjunction
with our noise analysis. For a given aigorithm, we can ensure against overflow by
keeping the input x(n) sufficiently smail so that no element of the intermediate or
the output array exceeds unity. In this appendix we will describe a way of obtaining
upper bounds on the maximum magnitude of input signal in order to prevent over-

flows.

Suppose we would like to find the overflow constraint for N-point input
sequences to a given aigorithm A. Consider another algorithm B which is exactly
identical to A except that at every stage signals and the coefficients of butterflies
are replaced with their absoiute values and minus signs are replaced with pius signs
and subtractions with additions. Now let us pass an N -point sequence of all ones
thro;lgh algorithm B ( using floating-point arithmetic so that we are guaranteed of
no overflows) and find the maximum magnitude of the output array |Xoe |me
numerically.

Because of the way algorithm B is constructed, as we move from one stage to

the next the maximum magnitude of the elements of arrays increases. That is

lxn |m < |Xu+l|m (A.l)
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where |X; |ma denotes the maximum magnitude of the elements of the ith array of
the algorithm. This implies that if no overflows occur in the final array ( output ),
we are guaranteed of no overflows in the intermediate stages. Therefore if we

chose the maximum magnitude of the input signal |Xa |—= to be

1

IXa- |nlx

we can ensure against overflows in the entire algorithm B.

| Xin | o < (A.2)

So far, we have only been concerned with the overflow constraint for algo-
rithm B. Examining the way we constructed algorithm B from A, we realize that
the maximum magnitude of all the intermediate quantities in B are larger than the
corresponding quantities in A. Therefore, the constraint shown in eqﬁaﬁon (A.2)
also applies to algorithm A. It is important to note that for algorithm A, the above
bound is a'sufficient but not a necessary condition on the input to prevent over-

flows.

To summarize, we constructed a new aigorithm B which was identical to aigo-
rithm A except that at every stage signals and coefficients of butterflies were
replaced with their absolute values and subtractions were replaced by additions.
Then we found the maximum magnitude of the output of algorithm B, IX.,.. -
with a sequence of all ones as its input. The overflow constraint for algorithm A is

then given by equation (A.2).




Appendix B : Estimating the Qutput Noise Variance
From the Experimental Data

Recall from our experimental procedure described in chapter 7 that in order to
find a stable estimate of the output noise variance for each frequency point of a
given transform size, we used 1000 experimental values for error. In this appendix
we will characterize the estimator used in predicting the output noise variance, and
state the reason behind choosing 1000 as the number of experimental values of

€rTor.

The estimator used is basically of the form

6N k) = %'ﬁl( (N ) = mdN k) P (B.1a)
AN k) = %'ioﬁ N k) (B.1b)

where e: (N ,k) denotes the ith experimental value of the error at the kzh frequency
point of an N-point transform, n is the number of experiments and m«(N ,k) and
rj’z(N k) denote the estimates for the mean and variance of error at the kth fre-

quency point of an N-point transform. The mean and variance of (N ,k) are

given by
E [mN.k)] = mdN k) (B.2a)
Var [e] = ‘—’3’-:—"1 (B.2b)

Thus (N ,k) is an unbiased and consistent estimate of m¢(N ,k). This implies that

no matter what the probability distribution for (N ,k) is, (N ,k) is a good esti-
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mate c.)f m«N ,k). Moreover, if we assume that ¢(N ,k) is a nornial random variable
with mean mN k) and variance o*(N ,k), then MmN ,k) is the maximum likeli-
hood estimator and is efficient and sufficient.

On the othe? hand, the expected vaiue of &2(N k) of equation (B.1a) is given

by

n

E &0V k) ] = 2L k) (B.3)
Thus 6°(V k) is biased. Furthermore, if we assume that (N k) is a normal ran-
dom variable with mean m (N ,k) and variance o(N k), (N k) of equation
(B.1a) is the maximum likelihood estimator and is consistent. In this case the pro-

bability distribution for 6 (N ,k) is given by

2
nag SN ,k! ~ 2 .
2N ) XA (B:4)

where x? denotes the chi square distribution with n degrees of freedom defined by

£r0) = Faom ™ e (B.5)

Since the variance of a random variable with chi square distribution of degree n is
2n, using equation (B.4) we get
‘ 4
Var [¢°(V 4)] = 22004) (B.6)
In order to obtain a stable estimate of &Z(N k) we would like its standard deviation

to be much smaller that its mean. That is

\/ 2w k) << 2L iy ®7)
Thus by choosing # to be 1000, the standard deviation of 6°(N ,k) becomes about 3

percent of its mean.
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