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Abstract

In this thesis, the error properties of various discrete Hartley transform (DHT)
algorithms are investigated theoretically and experimentally. More specifically, we
analyze the arithmetic roundoff error characteristics of DHT algorithms proposed
by Bracewell and Wang and develop and analyze a new DHT algorithm.

Statistical models for roundoff errors and linear system noise theory are
employed to estimate output noise variance for these DHT algorithms. By consider-
ing the overflow constraint in conjunction with these noise analyses, output noise to
signal ratios are derived for both fixed and floating-point arithmetic. Experiments
are used to support the theoretical predictions obtained via the statistical models.
The empirical results are found to be in excellent agreement with the predictions
based on the models.

Comparing Bracewell's, Wang's and the new algorithm in terms of their error
properties, we find that Bracewell's algorithm exhibits the most desirable error
characteristics. These results were found to hold for both decimation-in-time and
frequency and for a variety of different radices. For a given radix, the total opera-
tion count for all the algorithms investigated in this thesis are found to be identical.
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CHAPTER 1: Introduction

The continuous-time Hartley transform was first proposed by R. V. Hartley [2]

in 1942 in the context of transmission problems. Many of the concepts behind

Fourier theory such as discrete and continuous-time Fourier series and transforms

can be directly applied to the Hartley domain. In particular, Bracewell has recently

proposed the discrete Hartley transform (DHT) which is essentially the counterpart

of the discrete Fourier tranform (DFT).

The real and imainary parts of the DFr can be obtained from the even and

odd parts of the DHT. Therefore discrete Hartley and Fourier transforms can be

easily computed from each other. In addition, as we will see in chapter 2, for every

property of the DFT, there is a corresponding one for the DHT. However the

DHT has two important characteristics that are different from those of the DFT;

since it is a real transform it uses only real arithmetic. Second the inverse DHT is

identical to the forward DHT ( within a scale factor ). These characteristics make

the DHT an attractive substitute for the DFT in many signal processing applications

such as spectral analysis and convolutions. For example, the power spectra can be

obtained from the DHT without first calating the real and ima parts of the

DFT as in the usual way of calculating the power spectra.

The DHT has fast algorithms simdlar in style to the FFT, the first of these pro-

posed by BraceweR [4]. Some of these DHT algorithms can be used to compute the

DFT more efficiently that the FF1. The fundamental principle that all these algo-

rithms are based upon is that of decomposing the computation of the discrete
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Hartley transform of a sequence of length N into successively smaller discrete

Hartley transfonns as is also the case with the FFT. The manner in which this prin-

ciple is implemented leads to a variety of algorithm with different computational

efficiencies and error properties. In this thesis we will analyze the arithmetic round-

off error characteristics of DHT algorithms proposed by Bracewell and Wang in

addition to a new DHT algorithm.

Chapter 3 reviews the basic idea behind Bracewell's original decimation-in-

time radix 2 algorithm. Decimation-in-frequency, radix 4 and split radix implemen-

tations of Braceweil's algorithm, proposed by Burrus [6], are also described in

chapter 3. In chapter 4, we will review Wang's algorithm. Chapter 5 describes the

new algorithm we have developed for computing the DHT with decimation-in-time

andc frequency, radix 2, radix 4 and split radix realizations. In addition, a chirp

Hartley transform (CHT) algorithm similar to the chirp z-transform (CZT) aigo-

rithm is described in chapter 5.

The effects of quantization on fixed-point and floating-point implementations

of the algorithms described in chapters 3 through 5 are studied in some detail in

chapters 6 and 7. In general, effects of quantization on implementation of the DHT

algorithms are sources of two kinds of error. errors due to coefficient quantization

and errors due to rounding in computation. In this thesis we are only concerned

with errors due to rounding in computation. In chapter 6, statistical models for

roundoff errors and linear system noise theory are employed to estimate output

noise variance in various DHT algorithms. By considering the overflow constraint
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in conjunction with these noise analc s, output noise to signal ratios are derived.

Noise to signal ratio analyses are carried out for both fixed and floating pint arith-

metic.

The statistical models used in our noise analysis can not in general be verified

theoretically and thus one must resort to xperimental noise measurements to sup-

port the predictions obtained via the models. The expermental results are

presented in chapter 8 and are found to be in excellent agreement with the teoret-

ical predictions based on the statistical modeh In chapter 8, all the DHT algo-

rithms of the previous chapters are compared in terms of their error properties and

their computational efficiencies. Chapter 9 concludes this thesis with suggestions for

future research.



CHAPTER 2: The Discrete Hartley Transform: Definition and Properties

In this chapter, we will begin by defining the continuous and discrete Hartley

transforms and exploring their relationships with the Fourier transform. Then the

propertis of the discrete Hartley transform (DHT) are described in detail. As we

will see, since the Hartley and Fourier transforms are related to each other, their

properties are somewhat similar. In addition, the DHT hs fast algorithms simnilar in

style to the FFT, the first of these proposed by BracewelL These characteristics

make the DHT an attractive substitute for the discrete Fourier transform (DFT) in

many signal processing applications such as spectral analysis and linear filtering.

2.1. The Hartley transform

The Hartley transform was first proposed by R. V. Hartley [2] in 1942 in the

context of transient and steady state transmission problems. The Hartley transform

H () of a real function x (t) is defined as:

+ac

H(w) = fx(t) [cos (w) + sin (t) ] dt (2.1)

Comparing the definition of the Hartley transform with that of the Fourier

transform given by

+ac

F () = x (t) [ cos (,) - j sin (t) ] dt (2.2)

we see that the two transforms are closely related to each other to a great extent.

In fact, since cosine is an even function and sine is an odd function, the even part

of the Hartley transform corresponds to the real part of the Fourier transform and
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the odd part of the Hartley transform corresponds to the negative of the imaginary

part of the Fourier transform. Moreover, the even and odd parts of H (o)

correspond to the even and odd parts of x (t) respectively; i.e.

F(O) H(W) + H(-) = [X(t) + x(-t) ]= fx(t)os (,,)dt (2.3a)
2 2 

-F,( H(W) - H(-) HT [ x(t) - x(-t) f x(t)sin ()d (2.3b)2 2

where FR (o) and F () denote the real and imaginary parts of he Fourier

transform respectively and HT stands for the continuous-time Hartley transform.

Using equation (2.3), the relationship between the Hartley and Fourier transforms

can be summarized as:

H () = FR ()-F (). (2.4a)

.()_( + - (2.4b)
2 2

One of the differences between the Fourier and Hartley transform is the fact that

the Hartley transform is its own inverse. That is, the original time function can be

obtained by taking the Hartley transform of H (W).

x (t) = 2-1 H() cas (t)dt (2.5)

where cas (0) as originally defined by Hartley is:

cas ( e) cos(e) + sin(e)

In a completely analogous manner to the Fourier transform, the continuous-

time Hartley transform can be used to derive, the continuous-time Hartley series,

the discrete-time Hartley transform (DTHT), the discrete Hartley series (DHS) and

the discrete Hartley transform (DHT). As shown in [1], there are a number of
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points of view that can be taken toward the derivation and interpretation of the

DFT presentation of finite duration sequences. As we will see, this is also the case

for the DHT. More speifically, one approach in deriving the DHT of an N-point

real sequence x (n) is to view the DHT as one period of the discrete Hartley series

representation of a periodic sequence for which each period is identical to the finite

length sequence x(n). Another approach is to consider the DHT to be equally

spaced samples of the discrete-time Hartley transform. That is, if we define the

discrete-time Hartley transform of x (n ) to be

N-i
H(.) = 7, x(n) cas(on ) (2.6)

n -0

2irk
then the DHT of x (n) can be obtained by sampling H () at X = 2N . i.e.

N--1

()[ co + O(k SN-1 (2.7)

1H(k) ( H(w) 3X,0 2s = O otherwise

The extension of the continuoustime Hartley transform to the DHT was originally

proposed by Bracewell [3]. Comparing equation (2.7) with the definition of the

DFT given by

(N1 2lnk 2rnk
x(n)[ cos( ) - j sn( N) ] OskSN-1

F( ) . = to0 otherwise

we see that the DHT and the DFT are closely related to each other. In fact, simi-

lar to the continuous-time case, the even and odd parts of the DHT correspond to

the real and negative of the imaginary parts of the DFT. Moreover, the even and

odd parts of H (k ) also correspond to the even and odd parts of x (n ). That is:
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N-I

F(k ) = H(k) + H(N-k) = DT [ x(n) + x(N-n) = 2n)k
2 2 -0

N-I
-Fz(k) H(k) - (N-k) = DlT [ x(n) - x(N-n) 1 = x(n)sin(-2 nk (2.8b)

2 2 o N

where

H(N) - N(0) (2.8c)

x(N) - x(O) (2.8d)

and FR (k) and Fl (k) denote the real and imaginary parts of the Fourier transform.

Using equation (2.8) the relationship between the DFT and the DHT can be sum-

marized as:

H(k) = FR(k) - F,(k) (2.9a)

F(k) H(k) + H(N-k) H(k) - H(N-k) (2.9b)
2 -J2

where H (N) is defined in equation (2.8c). One major difference between the DFT

and the DHT is the fact that the inverse DHT is identical to the forward DHT.

That is, the original sequence can be obtained by taing the DHT of H(k) and

scaling it by a factor of N:

1N-' 21rnkH(k)cas ( ) n <N (2.10)
x -0 N (2.10)

x(n) 0 otherwise

The above result can be obtained by using the orthogonality of the cas (.) function.

We shall now state some of the notation to be used in the remainder of this

thesis t. The notation x((n))N is used to denote the periodic replication of x(n)

with period N. i.e.,

t lmbe aan u in this thes is baily that dei-ed- in section 3.6 O hm a Shafer [1].
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x((n))N = x( n + rN ) (2.11)
r =-a

The original finite duration sequence x(n) is obtained from x((N))Nby extracting

one period; i.e.,

x (n) = ((n ))NRN(n) (2.12)

where RN (n) is used to denote the rectangular sequence given by:

RN(n) = to otwise (2.13)

2.2. Properties of the Discrete Hartley Transform

For every property of the DFT, there is a corresponding one for the DHT.

There are basically two ways of deriving the properties shown in this chapter. The

first approach is to use the properties of the DFT and the relationship between the

DFT and the DHT. The second approach is to derive the properties directly. Since

most of the derivations are straightforward, we will merely state the theorems and

the properties. Let Hl(k), H 2(k), H(k), Fl(k), F 2 (k) and F(k) denote the

discrete Hartley and Fourier transform of the sequences x (n), x 2(n) and x(n)

respectively. The following observations can be made:

2.2.1. Linearity Property

This property is shared by both the Hartley and Fourier transforms; if two real

sequences x l(n ) and x 2(n) are linearly combined as in:

x(n) = axl(n) + bx2(n) (2.14)

Then the DHT of x (n) is

I
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H(k) = aHl(k) + bH2(k ) (2.15)

Clearly if xl(n) has duration N 1 and x 2(n) has duration N 2, then the max-

imum duration of x(n) will be N = max [N1, NN2]. Thus in general N-point

DHTs must be computed for equation (2.15) to hold.

2.2.2. Circular Shift Property

Using the notation introduced earlier, if we have:

xl(n) = x((n +m))NRN(n) (2.16)

then

2lrmk 27rmk
Hl(k) = H(k)cos - H((N-k))NRN(k) sin N (2.17)

N N

Because of duality between the time and frequency domains, a similar result

holds when a circular shift is applied to the DHT coefficients.

2.2.3. Symmetry Properties

If we define the even part of the real sequence x (n) by:

[x(n) + x((-n))NIRN(n)
xep (n) 2 (2.18)

and its odd part by

[x(n) - x((-n))NIRN(n)x~(n) =2 (2.19)
2

then DFT of xep (n) is real and its DHT denoted by Hep (k) is even, i.e,

Hep (k) = Hp ((N -k))NRN (k) (2.20)

Also DFT of x 0p (n) is purely imaginary and its DHT denoted by Hop (k) is odd:

Hop(k) = - H((N-k))NRN(k) (2.21)
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This property was also mentioned in the first part of this chapter. It states that

the DHT of an even sequence is even and the DHT of an odd sequence is odd.

2.2.4. Convolution Property

Let x (n) and x 2(n) be N 1 and Nrpoint sequences respectively and their con-

volution be an ( N 1 + N 2 - 1 )-point sequence given by

x(n) = xl(n) * x 2(n) (2.22)

The DHT can be used to perform linear convolution. More specifically, the

(N 1 + N 2 - 1)-point discrete Hartley transform of the sequences

x (n), xl(n), x 2(n ) are related as follows:

H(k) = H(k)H~2(k) + HI((N-k))NRN(k) H2,(k) (2.23)

where

H 2(k) + H2((N -k))NRN(k)
H 2 (k) 2 (2.24)2

H2(k) - ((N-k))NR(k)
H2, (v (= (2.25)

2

Note that the reason behind choosing the size of the DHTs to be

(N 1 + N 2 - 1 ) is completely analogous to the DFT case described in [1]. The

convolution property is by far one of the most important properties of the DHT. In

many applications such as linear filtering, one can bypass the Fourier domain alto-

gether and perform the convolution in the Hartley domain. This is particularly

attractive in applications such as image processing where the impulse response of

the filters used are usually symmetric. In this case H20 becomes zero and equation

(2.23) becomes

-"
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H(k) = Hl(k) H 2(k) (2.26)

which is similar to what we would have obtained had we used the DFT to perform

convolution.

2.2.5. Reciprocal Property

To perform inverse DFT using a forward DFT algorithm, we would have to

rearrange the sequence. This is not necessary for the discrete Hartley transform

since it is its own inverse. This is shown in equations (2.7) and (2.10).

2.2.6. Reversal Property

Let

xl(n) = x ((N-n))NRN () (2.27)

Then

H(k) = H ((N -k))NRN(k) (2.28)

Note that the symmetry properties can be derived using the reversal property in a

straightforward manner.

2.2.7. Product theorem

If

x(n) = xl(n) x2(n) (2.29)

Then

H(k) = ~ H(t ) H ((N-k + ))NR~(I ) + Hi((- ))N H2 ,((k-l))NRN(t) (2.30)

where H2e (k) and H2o (k) are defined in equations (2.24) and (2.25) respectively.

The product theorem stated above is the dual of the convolution theorem described
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earlier.

2.2.8. Parseval's Theorem

For an N-point real sequence x(n) we have

N-I N-i
X x2(n) = N Z H 2(k) (2.31)

n-0 k-0

The cross correlation, autocorrelation, initial value, sum of sequence, similarity

and packing theorems are identical for the DFT and DHT [31,[171.

For comparison purposes the DHT and DFT properties are shown in table 2.1.
.4
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Squence DHT DFT

r() H(k) F,(k)

X2(n) ; (k) F2 (k)

at() ) ) f,(k) + i2()k) (k) + F(k)

r((+m))#Rv(x) H(k; . F(k

- H((N-,)),((k(- N )

.:.~(,)..:.:(,) f(kf,(k) -- H((N-k))n,(k),a(k) Fr(kt)r(k)

s ( - N ((*)~LZ(11 m H,(LNM(R)k

z:(,-m))s' (a) H z(,-k())(,-) r (,-) k),R(k)

-I Nr-! n-1
2zn,) NH 2 (k) N IF(k)12

r,(rri , , 

Table 2.1 Properties of the DHT and the DFT



CHAPTER 3: Bracewell's Discrete Hartley Transform Algorithm

As explained in chapter 2, the discrete Hartley transform can potentially be

used in the implementation of many digital signal processing algorithms and sys-

tems. The DHT has fast algorithms similar in style to the FFT, the first of these

proposed by Bracewell [4]. The fundamental principle that all these algorithms are

based upon is that of decomposing the computation of the discrete Hartley

transform of a sequence of length N into successively smaller discrete Hartley

transforms. The manner in which this principle is implemented leads to a variety of

algorithms with different computational efficiencies and error properties.

In this chapter, we shall begin by describing the original decimation-in-time

radix 2 algorithm proposed by Bracewell [4]. As is the case with the FFT, the idea

in Bracewefl algorithm can be extended to radix 4, split radix 4 and decimation-in-

frequency algorithms [6]. Sections 3.1.2, 3.1.3 and 3.2 will review these algorithms.

Wang's algorithm [51, and a new algorithm for computing the DHT will be covered

in chapters 4 and 5 respectively. Other algorithms such as prime factor algorithm

and Winmograd-type Hartley transform algorithm are discussed at length in [6].

3.1. Decimation-in-Time Algorithms

3.1.1. Bracewell's Original Algorithm

Bracewell has developed a decimation-in-time radix 2 algorithm for performing

the discrete Hartley transform of a data sequence of N real elements in a time pro-

portional to NlogV2 [4]. In the remainder of this thesis we shall refer to this
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algorithm as DT1 where DT stands for decimation-in-time. In this section, we will

derive Bracewell's decomposition in two different ways and propose a minor modif-

ication to the DT1 algorithm.

The simplest way of deriving the DT1 algorithm which is very similar to the

FFT computes H (k) by separating x (n) into two -point2
sequences consisting of

even and odd points in x (n). Thus we obtain,

H(k) = Hl(k) + H2(k)

where

NN-- 1
2 2,rnk

Hi(k) = 0 x(2n)cas(- N 
N/2

N

N T(k) 2= Rx(2s2w(2n + )k
Hz(k) = x(2n + )cas( N

,i 0

(3.1)

(3.2a)

(3.2b)

nidentified as an -point DHT. Using the identity

cas(a + 3) = cos(s) cas(a) + sin(3) cas( -a)

and letting a =
2'nnk
N/2

and = , H(k) of equation (3.2b) can be written asN'

Hz(k) = cos(2 -)H3(k) + sin( )H3((- -k)) NRN(k)
~N 2 2 (3.4)

where

N
2

H3(k) = E x(2n
a "0

2nrnk
N12

(3.5)

Nis an -point DHT. Thus we have managed to show that an N-point DHT can be

Ht(k) can be

(3.3)

: , a
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obtained by computing two N--point DHTs. By repeating the above procedure the

DHT can be decomposed further.

Another way of looking at Bracewell algorithm is through the concept of index

mapping [6], [9]. Index mapping has been used to derive various versions of the

FFT in a systematic fashion [9]. It involves mapping a one-dimensional array of size

N = NV onto a two dimensional array of size Nt by N2. The mapping is done

through the substitution

n = Klnl + R2n2 (mod N) (3.6a)

k = 3kl + K:k2 (mod N) (3.6b)

in equation (2.7). This will result in a complicated expression which will not be

reproduced here. When index mapping is used with DFTs, suitable choices of the

constants K through 4 make it possible to save operations by breaking the DFT

into smaller DFTs. In the case of the DHT, the particular map

n = t + Lnz (3.7a)

k = ki + Kk (3.7b)

L = N (3.7c)

proposed by Burrus [6], will be examined. Substituting the above equation in (2.7)

and using the two identities

cas(a + ) = cas(a)cos(3) + cas(- a)sin(3) (3.8a)

cas(-a) = cas(a)-2sin(a) (3.8b)

we obtain the following equation:
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L-IK-l
H(k + k 2 )- Z x(n,

nt,(42 -

2rn k I 2vn2k 2wn lk2
+ Ln2 [a ( ~N )cas (-F)ca ( )

-2sinmk )CO( )sin( 2n k)

, 2irn2 k 1 2rnk 2 2nlk( )a L ) N 2nl 2nlk2 2nlk1

-2sin( K )sin( L )s )

2nmk ! 2in k 2 2nk !1

Choosing L = 2 and R=N--
2'

the last three terms of the above expression become

zero. Using the identity

cas(a) cas(P) - 2 sn(a) sin(,) = cs( + 5)

(k +HHk + Tkj =

H-1
1t 2 -T~2-irk 1, (n 1+2n?)

I (-1) 2 x(n + 2n) cas [ 
,Io Iao

(3.10)

(3.11)

N 
Since we have chosen K = - n equation (3.7b), to generate N frequency points

2

k, we are only concerned about k 2 = 0, 1 and k = 0, For k 2 = O,

equation (3.11) becomes

H(k) = H(k =

N

(2n2)cas( N
shl0

NI
2 2irk (2n2 + 1)

+ , x(2n2+1)cas( N

On the other hand, when k 2 = 1 we get

(3.9)

we get

N
' 2 .

(3.12a)

N
2
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N 

N - 2?rkl(2a2)
H(k) = H (kl+ ) = x (2)c ( ) (3.12b)

N
-I

2 2rrk1(2n 2+ 1) N
- , x(2n2+l)cas( N ) s k < 2R-202

Thus equation (3.12) is essentially the same decomposition shown in equations

(3.1) and (3.2) and (3.9) reduces to (3.1) and (3.2) for L = 2 and k = 
2'

Conceptually speaking, Bracewell algorithm consists of two parts: In the first

part the input sequence is rearranged in a bit reversed manner and in the second

part the subsequences are combined in a butterfly-type structure. The butterfly for

the last stage of an N-point DHT is shown in figure 3.1 Although the algorithm can

be implemented in place, unlike the butterflies in the FFT, the radix two version

of Bracewell algorithm requires butterflies with four inputs and outputs. In other

words, four elements should be included in each butterfly in order to assure that no

element which will be needed later is overwritten. The flow graph of the

decimation-in-time version of Bracewell algorithm for the case N = 16 is shown in

figure 3.2. Note that C& and Sj in figure 3.2 and all the flow graphs in this thesis

2irr 2r ,''
denote the quantities cos(-M ) and sin(-M ) respectively. The number of real

multiplies for an N-point sequence using this algorithm is on the order of Nlog 2N

and the number of real adds is proportional to 32N og 2N . This is the same as a real
2

valued FFT.
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The operation count can be further reduced if the following observation is

made while computing the butterfly shown in figure 3.1: It is obvious that comput-

ing any four points H(k) , H( -k), H( +k) and H(N-k) in figure 3.1

requires the computation of the two intermediate quantities:

Yj(k) = H 3(k)cos( ) +H3(( -k)) NRN(k)sin( (3.13a)
2 2

Y 2(k) = H3(k)sin( -) - H 3(( -k))NRN(k)cos( ) (3.13b)
2 2

More specifically, using figure 3.1 we have

H(k) = H 1(k) + Y(k) (3.14a)

H(-2+k) = H(k) - Yl(k) (3.14b)

H( -k) = H1(k) + Y 2(k) (3.14c)

H(N-k) = Ht(k) - Y 2(k) (3.14d)

Instead of using 4 multiplies and 2 adds, Yl(k) and Y 2(k) can be computed with

three of each in the following manner:

Y,(k) = [.in(2k) + cos( - )H(k)+ sin( )[ H3((-k)),RN(k)- H3(k)] (3.15a)
2 2

2rk c~,(
2

wk~1u~k. k)L ) _Y 2(k) [si(cin(-)-c(N )IH-3) - ,N N)[ 23(( -))R (k) - 3(k)I (3.15b)
N 2

The above implementation will be referred to as the MDT1 algorithm where MDT

stands for modified decimation-in-time. The MT1 algorithm requires on the order

of N log2 N multiplies and 3Nlog2N adds Note that the total operation count for4 2

the original and the modified version of Bracewell algorithm are the same. How-

ever, the error properties of the MDT1 are different from the original one
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proposed by Bracewell. This will be discussed in more detail in future chapters.

3.1.2. Radix 4 Decimation-in-Time (R4DT1) Algorithm

As is the case with the FFT, the idea behind the original radix 2 Bracewell

algorithm can be extended to other radices such as radix 4 or the recently proposed

split radix algorithms [6j-[8]. In this section we shall describe the radix 4

decimation-in-time algorithm which will be referred to as the R4DT1 algorithm.

The next section will deal with the split radix algorithm.

The R4DT1 algorithm is obtained by decomposing an N-point DHT into four

N-point DHTs. Thus equation (2.7) can be written as:

H(k) = H o (k) + Hl(k) + H 2(k) + H3(k) (3.16)

where

H(k)x(+i)c 2r(4n +i)k (3.17)
Hi(k) , x(4n+i)cas( N

n=O
2ink 2irik

Letting = / and , = in the identity (3.3) equation (3.17) can be

written as

Hi (k) o 2i )i ((k ))NRN(k) + ( )H' (( -k ))N,,R4(k) (3.18)

where

~N-I ~NH ',() )- ~ x(+ ). s 2 4rnk ' (3.19)

Another way of arriving at this result would be to choose L =4 and K N-- in the
4

index mapping equation (3.7) [6]. The kth butterfly of the last stage of an N-point
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DHT using the R4DT1 algorithm is shown in figure 3.3. Figure 3.4 depicts the sig-

nal flow graph of the R4DT1 algorithm for an 16-point transform.

The total multiplication count for this algorithm is on the order of 3- logV

and the total number of additions are on the order of -log 4N. The operation

count therefore is the same as a real valued radix 4 FFT. Again, the observation

made in equation (3.15) can be used to replace 4 multiplies and 2 adds with 3 of

each.

Although the operation count for the R4DT1 algorithm is less than that of

the DT1 algorithm, the former is more complex to implement. Comparison of fig-

ures 3.2 and 3.4 are indicative of this fact.

3.1.3. Split Radix Decimation-in-Time (SRDTI) Algorithm

Recently, Duhamel and Hollmann derived an algorithm called the split radix

FFT (SRFFr) [7]. Burrus developed an indexing scheme which efficiently imple-

ments the Duhamel-Hollmann SRFFr [8]. A similar approach can be taken to

derive split radix DHT algorithms. In particular, the idea behind Bracewell's origi-

nal radix 2 algorithm (DT1) can be extended to a split radix algorithm [6]. We will

refer to this algorithm as the SRDT1 algorithm. The SRDT1 algorithm applies a

radix 2 decomposition to the even indexed samples and a radix 4 decomposition to

the odd indexed samples. Thus using the notation of equation (3.17) we get:

H(k) = [Ho(k) + Hz(k) ] + Hl(k) + H 3(k) (3.20)

The first term in the above equation corresponds to the -- point DHT of the even
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points of the original sequence x (n). That is:

NI

T 2 nk (3.21)H 0(k) + H 2(k) = x(2n)c( N )21)

The second and third term correspond to two -- point DHTs. They can be written

as

H,(k) co 2ik)H'i(k) + sin(2 -)H'((N-k))NRN(k) i 1, 3 (3.22)
IVNiv '4

where

2i 2rnk3)
H ',i (k) (4 + )ca (.23)

-0I NN

Thus we have shown that an N-point DHT can be computed via an 2--point DHT

N
and two -- point DHTs. By repeating the above procedure the DHT can be

decomposed hrther. This result can also be obtained using the index mapping tech-

nique described earlier [6].

2N
The multiplication count for this algorithm is on the order of -- log2N and

4N
the number of additions is on the order of loog2N. These are the same as the

operation count for a similar real-valued split radix FFT.

Although the operation count for the split radix algorithm is less than that of

radix 2 or radix 4 algorithms, the SRDT1 algorithm does not progress stage by

stage or in terms of indices does not complete each nested sum in order. This

makes the indexing scheme more complex than that of the fixed radix algorithms.
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3.2. Radix 2 Decimation-in-Frequency (DF1) Algorithm

As is the case with the FFT, the idea behind the DT1 algorithm can be

extended to the decimation-in-frequency algorithm which we will refer to as the

DF1 algorithm.

The DF1 algorithm can be derived using two different approaches. In the first

approach, which is very similar to the FFT, we divide the input sequence into the

first half and the last half of the points so that the transform H (k) can be written

as:

N N 1

2 Zirnk 2 2'lnk (3.24)
H(k) = 2 x(n)cas( ) + x(n+ )(- ca

Consider k even and k odd separately, with H (2r) and H(2r + 1) representing the

even numbered points and the odd numbered points respectively, so that

N-1
2 N 2irn r (3.25a)

H(2r) = [x(n) + x(n+ ))]c( )

H (2r+) - -(n) - xr(nV N2'r 2r+1 ) (3.2b)

whN a2 ndr 2irn
Equation (3.25a) is an --- point DHT. Letting a and in iden-

tity (3.3) equation (3.25b) can be written as

2 ( N 2n
H(2r+1)- E x(,) x( N

-0 2 N

N 2rn} 2rnr (3.26)
+ [x(-n) - x((N-n))NRN(n)l(in() ca (-3)

N
which is another -point DHT. Thus once again an N-point DHT has been2
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decomposed into two -- point DHTs. By repeating the above procedure the DHT

can be decomposed further.

Another way of deriving the DF1 algorithm is to substitute the index map

n = nl + - nZ (3.27a)

k kl + 2k 2 (3.27b)

in equation (2.7) [61.

The kth butterfly of the first stage of the DF1 algorithm is shown in figure 3.5

and the signal flow graph of an 16-point DHT using the DF1 algorithm is shown in

figure 3.6. Figure 3.2 is the transpose of the flow graph in figure 3.6 and can be

obtained by reversing the direction of the signal flow and interchanging the input

and the output in figure 3.6. By transposition theorem, the input output charac-

teristics of the two flow graphs are the same.

The operation count for the DF1 algorithm is identical to that of the DT1

algorithm and can be modified by applying equation (3.15) in computing the but-

terflies.

Radix 4 and split radix decimation-in-frequency versions of Bracewell's original

algorithm are very similar to the corresponding decimation-in-time algorithms and

can be derived in a similar manner.
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CHAPTER 4: Wang's Algorithm for the Discrete Hartley Transform

4.1. The Algorithm

Wang has recently proposed a new algorithm for computing the DHT [5]. This

algorithm is based on a systematic factorization of the DHT matrix. An attempt is

made here to explain the intuitive reasoning behind different stages of the matrix

decompositions used to derive the algorithm.

Throughout this section we assume N is a power of 2 unless otherwise stated.

Let [ . denote a square matrix for various discrete transforms with its dimen-

sion represented by a subscript inside the pair of square brackets and its version

number ( as defined in [5] for the discrete cosine or sine transform ) represented by

a superscript. For instance [ C4+,] and [ S4-t] stand for (N + 1)-point discrete

cosine transform matrix and (N - 1)-point discrete sine transform matrix of the first

kind respectively. These transforms will be referred to DCT1 and DST1 and are

defined as:

irnk
- Ct(k) - x(n)cos( N) (4.1a)

n -0

S'(k) = , x(n)sin( N (4.1b)
n-I

The first step in Wang's algorithm is to divide the problem of finding an N-

point DHT into an ( N + 1)-point DCr1 and an ( N -1)-point DST. This can be2 2

done by separating the sine and cosine terms in the DHT expression of equation
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(2.7). Thus we get:

N-1 27rnk
R(k) = x(n)NCOS( 

n-O 

N-1 2Tnk
+ , x (n )in( n)

A =0 

Exploiting the fact that cosine is an even function and sine is an odd function,
.A

equadon (4.2) can be written as:

H(k) = Ck+l(k) + Sk_,(k)
2 2

ck, (k) =
2

sI, (k) =
2

N

, [x(n)
n 30

N

Z [x(n)
-- 1

+ x ((N -n))NR(n ) cos( N )N/2

-r(nk
- x ((N -n))NR (n )si (-)

N/2

Equations (4.4a) and (4.4b) can be identified as ( + l)-point
2

DCI1 and

( - l)-point DSMl of the sequences
2

xi(n) = x(n) + x((N-n))NR(n )

x2(n ) = x(n) - x((N-n))NRN(n)

(4.5a)

(4.5b)

espectively.

In terms of matrices, the decomposition shown in equations (4.2) through

(4.4) can be xpressed as [51:

H - [A ]

cktC+

2
0

0

T

(4.2)

where

(4.3)

(4.4a)

(4.4b)

where

.4

(4.6)

I
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I =

and [HN] [ Ck+1] and [S2-]

0
0 IN_1

2

0 0
0 IV 1

2

1

1

o 0
0 IN-

2

V2_0
0 - 1N_O -I-

(4.7)

(4.8)

denote the DHT, DCTl and DSTl matrices

respectively. Thus equation (4.6) is another way of looking at the decomposion of

an N-point DHT into an ( + 1 )-point DC1 and ( - 1 )-point DSn g

The second step in the algorithm is to consider the even and odd frequency

points of equation (4.4a) separately with C t, (2r) and Ck t1 (2r + 1)
2 2

representing

the even numbered and the odd numbered points respectively so that

Ck+, (2r) 
2

N

N ) nnC [xt(n) + i(( ))NR~(n)Icos( )
fl 2343

(4.9a)

Ck,, (2r + 1) =
f

(n)-1

xO(n) -
A-0

1
N 'rn(r+ +)

xt(( -n))NRv(n)co,( -N4 )2 N14~

Equations (4.9a) and (4.9b) denote (N+ 1)-point DCI1 and -point DCT3 of
4 4

the sequences

t Noe that our cdlniotin of me and ai m are within a the om ud in [5].

ymiardy, our definitiou the DHr i within I t ditio cte die Wan tm

dirbed in (S.

(4.9b)

--------------·----·------- --

rV2

A4 - I 
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x3(n) = xl(n) + xl(( 2-n))NRN(n) (4.10a)

N
x4n) = xi(n) - x((-2 n))NRN(n) (4.10b)

resp vely where DCI3 and DS13 of an N-point sequence x (n ) are defined as:

1
N-1 rn (k + )

C,(k) = x (n)cos( )s N
N -0 (k>Z2)

S(k) x(n)s2n(- N
s,(k) = I (n)in( )

n-1

Therefore equation (4.9) can be written as:

Ck_,( 2 r) = Ck ,(r)
C T (+) )4

ck., (2r + 1) = C(r) 
2 4

N

a w4(n)C0s( N1
- 2

N/4
it 0

Thus we have shown that the ( +1)-point DC1 of equation (4.4a) can be

decomposed into an ( + 1)-point4
DCT1 and Nan -point

4
DCI3. A simiiar

approach can be taken to show that the ( -1) DST1 of equation (4.4b) can be

N N
decomposed into an ( -1)-point DST and an -point DSI.4 4

In terms of matrices, the second step of the algorithm involves decomposing

[cA,l ] and [SAl_ ]
2 2

of equation (4.6) of the first step into the smaller matrices

[CA+] , [C] [ ] and [L 1 ] in the following manner.
4 4 4 44

(4.11a)

(4.11b)

(4.12a)

(4.12b)

�_ _ _ __
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sk]O = I sRI Ai [ ,A-]

where for J odd we have

1 0
O .......

J 1 ,

v 010]o ..... oJ.... -IJ-t 0 -

2 . 2

and [S] stand for N-point discrete cosine a

(DCT3 and DS3 ) defined in equation (4.11).

(4.14)

(4.15)

nd sine transforms of the

In the second step of the algorithm we showed that an ( + 1)-point DCT1

can be decomposed into an ( + 1)-point DCl and an -point DCT3. In order

to carry on the recursion further, we have to find a way of computing the DCT3 of

the second step. Therefore the third step of the algorithm is to consider the even

and odd points of the sequence x 4(n) in equation (4.12b) of the second step

separately. Thus we get:

(4.13a)

(4.13b)

and [ci]

third kind

_ � _�
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N
8 itn (r + )

C (r) - x4(2n)co( )
-0 N/8

N
8

+ x 4(2n +1)cos(
-0

Again the first and second sum can be identified as -point DCI3 and DCI4 of

the even and odd points of the sequence x4(n) respectively where DCT4 and DST4

of an N-point sequence x(n ) are defined as:

.V-I

cN 4k) - x(n)co

N-1

S4(k) Zx(n)sin(
n-0

IT 1 1.r(n + )( + )
2 2

N

,(n + )(k + )
2 2
N

The same approach can be used to decompose the -point DST3 of the

second part of the algorithm into an -point DST3 and an 8-point DST4.

In terms of matrices, the third step in Wang's algorithm involves decomposing

obtained in equation 4.13 of the second step into [C1| [CNj
8 ]·[ 

S 3 and [s . In matrix notation this can be written as

C3

[C3I [2 

SN
[S 3 . [ 2 

0

TC4 r [PvJ

0

IS3T

r

iT

are defined as:even [ 

wQ,
·r( + )(r+ )

N/8
(4.16)

(4.17a)

(4.17b)

[ 
4

and s 3
4

(4.18a)

(4.18b)

and A 2where for J
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and []

forth kind

1 0 . . . .10
o0i

[p] 0 .1 0 (4.19a)
0.... 10..
O. 10 ....
0...10....

[AJ d 2 (4.19b)

and [] are N-point discrete coine and ine transfonn matrices of the

(DCT4 and DST4 ) defined in (4.17).

To summarize, in the first step of the algorithm we decomposed an N-point

Hartley transform into an ( +1) and (- 1)-point DCI1 and DS rpetively. In2 2

the second step the (+1)-point DCT1 of the first step is decomposed into an

( +1)-point DCIT1 and an -point DCT3. A simila procedure was applied to the

DST of the first step. In the third step, N-point DC3 of the second step is

decomposed into an 8-point DCI3 and an Npoint DCT4 and the 4-point DST38 8 4

of the second step is decomposed into an 8-point DS3 lqnd an 8-pint DST4.7- 8

Thus the remaining part of Wang's algorithm involves finding an efficient way of

computing the DST4 and DCT4.

The DST4 of an N-point real sequence x(n) denoted by S,(k) can be computed

via an DCT4 algorithm in the following manner:.

�___�______II______�_____I
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N-1 ',(n + )(+ -)
S4(N-k-1) = , (-1)' x(n) coN( )

Therefore it is sufficient to find an efficient algorithm for one of them only. The

rest of this chapter will describe a way of computing the DCT4 efficiently. The

detailed description of factorizing [J is included in Chen [141 and Wang

[5],[15]. Here we will go over the basic idea behind the matrix factorization

described in the mentioned papers.

The DCT4 of a sequence x(n) described in equation (4.17a) can be written as

2 m(2n+ )( + ) (2n+ )(k +
CN4 (k) x(2n) 2 2 + (-)x(N-2n-)sn2 2 ) (4.20)

i-O N N

Let us now consider the even and odd frequency points of C4(k) denoted by C (2m)

and C(2m +1) separately. Then we get

-- 1

C (2m) , ylI(n)cos (4n + )m - Y(n)in( sr(4n + )m) (4.21a)

C (2m + 1) y (n)cos( r(4 + )(m + 1) )r(4n + 1)(m + 1) (4.21b)
· . N N

where

yl=) x r(2n )cos( 't(4 1 )) + x(N-2n-l)mun(" N 1- ) (4.22a)

y2(n) - x(2n)s( (4n +1) ) x(N-2n-)os( r(4n +1)) (4.22b)4N 4N

After simple algebraic manipulations equations (4.21a) and (4.21b) can be written

as:

1 _
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N-1

C(2m) - yli(n) + y( +n)(-lr1)lcos ( r(4)m
-0 N

- [2(n) + y2( +)(-l]Si( ( 4+ l)m )
4 ~N

CN(2m+) -[y1 Q) + !y (T+ l r+co a 
C(2 +) y(n) + y( )(-4+ +l))

m.0 N

+b(n ) + y2( n )(-1)'+'sin ( L4 + l)(m + 1))
4 N

The above equations can in turn be decomposed for odd and even values of m. Let

odd and even values of m be denoted by 2r + 1 and 2r respectively. Then after sub-

stituting odd and even values of m in equation (4.23) we get a set of four equa-

tions:

N _0 N2
(4.24a)

(4.24b)

(4.24c)

N- 1

C T(4r+) y irn )co( 4 + )r ) _(4. + 1)r )C(4r+1) = y(4n)a) - yd(n)s*
f-0 N/2a

C(4r+2) - y5(n3co( N12 + 6()D( N12 )

N -_

iC(4r + 1)(r + 1) + 4( )( (4 + )(r + 1)
C(4r+3) y + (n in()

0 NN2 N2

whene

(4.24d)

(4.25a)y3() - Y(n) + y 1(n+ )

y
Y4(n) y(n) + y2(n +N) (4.25b)

(4.23a)

(4.23b)
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y-n) Lvb()-yi(n+ M)l m+x) + Y(.)-Y2(.+ )n( (4 N1 )

r yfA-)- 1 IF -YA- -i \

(4.25c)

Y6(n) LV(n)-y(n +4 )sn( N ' "1 ) - [yz(n)-y 2(n + )lcos( nF L) (4.25d)4 N 4 N

Comparing equations (4.21) and (4.24) we can see that a problem of size N has
2

been converted into two problems of size More specifically equation (4.21a)

has been decomposed into (4.24a) and (4.24b) and equation (4.21b) has been

decomposed into (4.24c) and (4.24d). By repeating the above process we can carry

on the decomposition further. This completes the outline of DCI4 algorithm and

the last step of Wang's algorithm.

We will be referring to Wang's algorithm as the DT3 algorithm for the

remainder of this thesis. The DT3 algorithm requires on the order of 3N logm real4

multiplications and 7Nog2 real additions. Hence its total operation count is the

same as a real-valued radix 2 FFT; however, the indexing scheme is substantially

more complex for the DT3 algorithm than it is for the FFT.

.4



CHAPTER 5: New Discrete Hartley Transform Algorithms

In chapters 3 and 4, we reviewed Bracewell and Wang DHT algorithms. This

chapter is concerned with several new methods for computing the discrete Hartley

transform. We shall begin by describing a new radix 2 decimation-in-time algorithm

which will be referred to as the DT2 algorithm. The idea behind the DT2 algorithm

will then be extended to decimation-in-frequency, radix 4 and split radix algo-

rithms. The second part of this chapter will introduce the chirp Hartley transform

algorithm which is similar to the chirp z-transform algorithm for computing the

DFT [1]. The error properties of these algorithms are explored in future chapters.

5.1. A New Algorithm for Computing the DHT

5.11.. Radix 2 Decimation-in-Time (DT2) Algorithm

This section derives a new radix 2 decimation-in-time DHT algorithm which

we will refer to as the DT2 algorithm. To achieve substantial efficiency in comput-

ing the DHT, it is necessary to decompose it into successively smaller DHT compu-

tations. The principle of the decimation-in-time algorithm is most conveniently illus-

trated by considering the special case of N an integer power of 2; i.e.,

N =2'

Since v is even, we can consider computing H (k) by separating x (n) into two N

point sequences consisting of the even and odd numbered points in x (n). There-

fore equation (2.7) can be written as
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H(k) = Hl(k) + H 2(k)

NV-i 2lrnk
Hl(k) = x(2n) cas ( )

n =0
N1 2r(2n + 1)k

H 2(k) = x(2n + )cas( ,
n=0 LV

N -point Hartley transform. Using the identity
2

2 cos() cas (a) = cas (a + ) + cas(a - 3)

and letting a = 2n(2n + 1)k and3
N

2nk
- - and multiplying both

(5.3)

sides of equation

(5.2b) by cos( ), 2() of equation (k.2b) can be(5.2b) by cos(-), H 2(k) of equation (5.2b) can be
N'

written as:

1 2

2k E [x(2n+1)
2c-s(-) -0

N

Z (2n +1) ( -1 )'
i -0

+ x(2n-1) ]cas( 2rnk
N/2

H(k ) = -H(k - )
2

where

x( -1)in x(N-1)

Equation (5.4a) shows that H 2(k) can also be computed via N
an -point DHT.

Therefore we have demonstrated that an N-point DHT can be obtained by comput-

N DHTs. By 
ing two -point DHTs. By repeating the above process

DHT further.

we can decompose the

Computing the DHT of an N-point real sequence can thus be

Naccomplished with og 2N real multiplies and 2Nlog 2N real additions.2

where

(5.1)

Hj(k) is an

(5.2a)

(5.2b)

H2(k) =

N N,0= -< -,2t 42 4

(5.4a)

4

N k N
2 (5.4b)
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Note that equation (5.2) is identical to equation (3.2) which was used to

derive Bracewell's alg.rithm. The difference between the two algorithms however,

is the identity used in computing H 2(k) of equation (5.2b).

The flow graph corresponding to the DT2 algorithm for N = 16 is shown in

figure 5.1. Note that the special case of k = - in equation (5.4a) is not treated

separately in the diagram for clarity. Conceptually, one can think of the algorithm

as having two major parts: In the rearrangement section the even points of the

subsequences are grouped together and the odd points are added and grouped

together; In the recombination stage the multiplication by k is per-
2 cos( )

formed and the subsequences are combined in a butterfly type manner. The kth

butterfly of the last stage of the recombination part of the algorithm is shown in

figure 5.2.

It is interesting to note that although the algorithm can be implemented in

place, in the ith rearrangement stage we need to store 2 -1 values to accommodate

N.
for the special case of k = in equation (5.5). This will require

v-2 = N 1 (5
2. , 1 (s.5)

i-1

additional storage space beyond the N points of the array which is being processed.

In computing the DFT of an N-point real sequence via FFT, no additional storage

beyond N points is required.
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The rearrangenicnt of the odd points of the sequence as shown in equation

(5.4a) can be generalized by multiplying both sides of equation (5.2b) by

cos(2t(2 r+)) and using the 'dentity (5.3) with a = and
N N

2 ak (2r +1) n the following manner:

r Nt N-
T2

2 [ x((2n -2r-1))vR(n) + x((2n +2r + l))N, (n ) cas( ) k * -
c2 rk(2r +1 ) ) ,,2 4

1H2(k) - N (5.6)

x(2n + 1)(-1)" k= 
r. -o

where r is an arbitrary integer. We will show in future chapters that by picking

various values of r we can change the distribution of the variance of the error at

the output of the transform.

5.1.2. Radix 4 Decimation-in-time (R4DT2) Algorithm

A radix 4 version of the DT2 algorithm, which we will refer to as the R4D12

algorithm, can be easily derived by dividing the original sequence x(n) into 4

subsequences of length --. Thus H (k) can be written as:

H(k) = Ho(k ) + H (k) + H2 (k) + H 3(k) (5.7)

where

(5.8)
H(k) = x(4n+i)cas( (5.8)

First we will consider sequences Ho(k) and H 2(k). It can be shown that
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-- 1

Ho(k) = , x(4)cw( N4 )x -0 ~~3/4

Choosing i =
4nk

2 in equation (5.8) and multiplying both sides of it by cos(-) andN

using identity 2_(4n+2) ad = 4ntk
(5.3) with 2 (4+2) and = 4 , H 2(k) canN N be written

as:

1 2rnk
41_k I [x((4a -2))NRN(n)+x(4n +2)jca,( 2 .)

2oos( ) .- o
N

4-1

Z x(4 +2) (-1p
X O

H(k) -H(k+ ) H(k+ 2 ) -H(k+ )4 2 4

oak < v NO < , k* 8
4' 8

(s.loa)

k - N
8

(5.lOb)OSk < N
4

can be recognized as an -point DHT. The sum of Hi(k) and H 3(k)4

which corresponds to the DHT of the odd points of.the original sequence can be

written as:

1
I2w [ G(k) + G 2(k) 

2ad I )
N

2
Z x(2 +)(-1

n-,

05k < ,k*
2 4

(5.11a)
k, N 

4

H1(k) + H() -H(k+ ) + 3(+ ')

where

( 2rnk
G 1(k) - [x(4n+1) + x((4n-1))NRN(n)Jcaj( -)

and

(5.9)

Thus H2(k)

H1(k) + 3(k) -'

05 k < N
2 (5.llb)

(5.12a)
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G2k) =

Equation

1 24nk N N
47k g2(n )cas( mk 0 k< -kTk*

1) kk' N / 4 8
2c - ) i.-O

N

N-I ~N
I[x(4n + 1) + x(4n +3)j(-1) k 

n-.0 8

g2 (n) x(4n +1) + x(4n +3) + x(( 4 n-1))NRN(n) + x(( 4 n - 3))NRN(n)

G2(k) -G 2 (k4 ) < N4 4 2

(5.12) shows that the sum H 1 (k) + H 3(k) can be computed

(5.12b)

(5.12c)

(5.12d)

via two

T-point DHTs. Thus the problem of computing an N-point DHT has been

reduced to that of finding four --point DHTs. By repeating the above procedure,

DHT can be decomposed further. Clearly, at every stage we need to do N multi-

7N
pies, 7N real adds for forming new sequences and taking care of the special cases,

and 2 adds for the butterflies in the recombination stage of the algorithm. Thus

the number of multiplies for a sequence of N numbers is on the order of Nlog4V

15N
and the number of adds is on the order of -Ntog4 N.

The kth butterfly of the' last stage of the DF1 algorithm for an N point

sequence and the signal flow graph of the algorithm for an 16-point sequence are

shown in figures 5.3 and 5.4 respectively. It is important to bear in mind that

although the operation count is lower for the radix four algorithm than it is for the

radix two algorithm, the former is more complex to implement; This has to do with

the relative complexity of the basic unit of computation for the two algorithms

shown in figures 5.1 and 5.3.
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5.1.3. Split Radix Decimation-in-Time (SRDT2) Algorithm

A Split radix version of the DT2 algorithm which we will refer to as the

SRDT2 algorithm, is obtained by applying a radix two decomposition to the even

indexed samples and a radix four decomposition to the odd indexed samples of the

input sequence. Following the notation introduced in equation (5.8) we get :

H(k) = [H(k) + H 2(k)] + [H1(k) + H 3(k) (5.13)

The second sum which corresponds to two --point DHTs can be evaluate. using

equations (5.11) and (5.12) of the previous section. The first sum can be written as

N-I
2 Zirnk (5.14)H o(k) + H 2(k) = x(2n) cas( N )

which can be identified as another -- point DHT. Thus we have reduced the

N N
problem of finding one N-point DHT to one - and two -- point DHTs. This

process can be repeated in order to decompose the DHT further.

The split radix algorithm presented here does not progress stage by stage or in

terms of indices, does not complete each nested sum in order. This makes the

indexing structure much more complex than the fixed radix algorithms described

earlier.

5.1.4. Radix 2 Decimation-in-Frequency (DF2) Algorithm

The decimation-in-time algorithm was based upon the DHT computation by

forming smaller and smaller subsequences of the input sequence, x(n). Alterna-

tively, we can consider dividing the output sequence, H (k) into smaller and smaller
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subsequences in the same manner. In the decimation-in-frequency version of the

DT2 algorithm which we will refer to as the DF2 algorithm, we can first divide the

input sequence into the first half and the last half of the points so that

H(k) = HI(k) + H 2(k) (5.15)

where

N-I

2 2='s.nk
HI(k) C= (n)c( 

x -0
(5.16a)

N- 1

22k N=2k 2rnk) (5.16b)H2(k) = , x(n + ) (-1)(cas)(
=0 2 

Let us now consider k even and k odd separately, with H(2r) and H(2r +1)

representing the even and odd numbered points of H (k) respectively, so that

H(2r) = [x(n) + x( 2 n)].cas(N12 )

N-- 1

u(2r 1) [x(n) - x( -+n)] cas

Equation (5.17a) can be recognized as an N-point DHT; Multiplying
2

(5.17a)

(5.17b)

and dividing

the right hand side of equation (5.17b) by cos( 2N ) and using the identity (5.3)

withx at 2,wn (2r + 1) and i = rn
N Nw eget:

IV 3NH(2r + 1) = (-1)' [x( ) - x (--) + G(r) + G((r +))N/2RN(n )

where

(5.18)

.'
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2 (n) - x(n+ ) 2

G (r) 2I cs (2n
2cos()

N N
4

G (r) is also an -- point DHT . Therefore once agnen an N-point DHT has

Nbeen decomposed into two -point DHTs. Repeating the above process decom-

poses the DHT further. The arithmetic count as well as the storage requirements

for decimation-in-frequency algorithm are identical to that of the decimation-in-

time version. The kRh butterfly of the first stage of an N-point transform using the

DF2 algorithm is shown in figure 5.5. The flow graph corresponding to this algo-

rithm for an 16-point sequence is shown in figure 5.6. Comparing figures 5.1 and

5.6 we see that the rearrangement and butterfly computations are distinctly dif-

ferent for the two classes of the DHT algorithms. However, we also notice. some

similarity between their basic structures. Indeed, figure 5.1 can be obtained from

figure 5.6 by reversing the direction of signal flow and interchanging the input and

output. ( Note that in figures 5.1 and 5.6 the special cases k = N- for decimation-

Nin-time and n = for decimation-in-frequency which require separate computa-

tions are not treated separately in the diagram for clarity). Consequently, by the

transposition theorem the input-output characteristics of the two flow graphs must

be the same.

As mentioned in earlier chapters, in order to perform an inverse FFT, the

transmittance of all the branches in the flow graph of the forward FFT has to be

�
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.2wk .2'rk

conjugated. This corresponds to using powers of e N instead of powers of c N

or rearranging the sequence in order to be able to use the same flow graph for for-

ward and inverse FFT. For the DHT on the other hand the flow graph is the same

for forward and inverse transforms and no rearrangement is necessary.

The radix 4 and split radix version of the DF2 algorithm discussed here, can

be derived in a similar manner to the corresponding decimation-in-time algorithms.

5.2. Chirp Hartley Transform (CHT) Algorithm

The DHT may be computed using an algorithm similar to the chirp z-

transform (CZT), a method which is suitable for implementation via acoustic sur-

face wave devices or charge coupled devices (CCD) as well as other forms of

transversal filters.

The CZT algorithm was first proposed in 1968 [16]. It was directed toward

computation of samples of the z-transform on a spiral contour equally spaced in

angle over some portion of the unit circle. More specifically, let x(n) denote an

N-point sequence with X (z) representing its z-transform. Using the CZT algo-

rithm, X (z) can be computed at the points zk given by

zt = AOieJo(Woej 4))k k =0,1,...,M - 1 (5.20)

The parameter W 0 controls the rate at which the contour spirals; These samples are

located along the spiral contour with an angular spacing of 0. Since the DFT of an

N-point sequence is equally spaced samples of its z-transform on the unit circle, by

choosing 00=0, Ao=l, Wo=l, M=N and (00= 2 in equation (5.20) and com-

1
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puting X(zk), we have effectively callated the DFr of the sequence. It can be

shown [1] that using the CZ algoithm the DFT of an N-point sequence F (k) can

be written as:

M N-1
F(k) W 2 [x(n) t] W 2 (5.21)

where

·2W

W j- 7 (5.22)
The srmmation in (5.21) can b recognized as the convolution of the

32 t2

sequence x(n)W 2 with the sequence W 2 . The computation of the equation

(5.21) is depcted in figure 5.7. Implemnting the complex arithmetic convolution

of equation (5.21) with rea h eare requires the use of four convoives. This is

shown more clearly in figure 5.7. The incoming signal is multiplied by the real and

imaginr7 part of W 2 and combined in pain to drive the inputs of four chirp con-

vovers. The convolver outputs are combined in pairs and multiplied by the real

and imaginay components of the posultiplier-chirp and combined again to pro-

vide the real and imaginary campoents of the output.

The discrete Harey transfom can be computed in a imilar fashion to the

chirp transonn for the DFT. Let W, (m) and Wi (m ) denote the real and imainary

part of W 2. Thus we have:

W,(m) CWos(n (.23a)
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Wi(m) -sin( (5.23b)

Then equation (5.21) becomes

N-I
F(k) [W,(k)+jWi(k)] I x(n)[W,(n)+jW(n)[W,(n -k)-JWi(n -k)l (5.24)

x -0

Since from chapter 2 we know that the DHT of a sequence is the difference

between the real and imaginary part of its DFT, using equation (5.24) the DHT of

x (n) denoted by H (k) can be written as

H(k) = H 1 (k) + H 2(k) + H 3(k) (5.25)

where

irk2 ( wn 2 2
Hl(k) = c(- )[ x(n)c-( * )' ca (- ) ] (5.26a)

t'k 2 ~r A2 '
H1(k) co( )[ 2 x(n)n(N ) * sntN ) ] (5.26b)

2 N 2 (5.26c)H3(k)= a951(N )[ 2~( ) 2 ) cos( Nsn1c(5.26)
where 'stands for the convolution. The computation of the above equation is dep-

icted in figure 5.8. DHT can thus be implemented using three convolvers as

opposed to four which is needed for the DFI.

Thiis c concludes our dismoi of the existing and the new DHT algo-

rithms. A list of all the algorithms disssed in chnpters 3, 4 and 5 and the key

used for each algorithm is shown in table 5.1. In the remainder of this thesis we

will investigate the statistical error properties of some of these algorithms theoreti-

cally and experimentally.
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Key Full nme of the agoithm Section

DT1 lraswd's origina radix 2 d ion n i me algithm 3.1.1

MDT1 Modified verion of Braiwe's orina radi 2 eion time algithm 3.1.1

R4DT1 Radix 4 dedmtion in tam verson of Brawe's agorithm 3.1.2

SR[U Split rdix dedmtion in time version of Brae-wel's algorithm 3.1.3

DFI Radix 2 decimation in frequenay of Bracewel's algorithm 3.2

DI3 Wang's agorithm 4

I2 - Radix 2 demation in time version of the ncw DHT algoritm 5.1.1

R4=12 Radix 4 deamtion in im version of the iew DHT algorithm 5.1.2

SRDT2 Split radix dedmation in time verion of the ew DHT agorithm 5.1.3

DF2 Radix 2 ddmaton in frqucy version of the new DHT algorithm 5.1.4

CH Cirp Har tley tadrm agorithm 5.2
i ml ii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Lig of the vario DHT algrithmsTabke 5.1



CHAPTER 6: Theoretical Noise Analysis For the DT1, MDT1, DF1 Algorithms

In this chapter, the effects of floating-point and fixed-point roundoff errors in

computing the DHT algorithms of chapter 3 will be explored. The error properties

of the algorithms presentee' at chapter 5 will be described in chapter 7. Error is

caused when the result of autltiplication or an addition must be rounded to a

word length smaller than that needed to represent the exact result. One approach

to quantifying the amount of the error would be to derive deterministic bounds on

the noise of the transformed sequence. The major drawback of these bounds is that

they are very pessimistic in comparison with the results of experiments. A second

approach is to model the error sources statistically, with experiments used to test

their validity. In this thesis the second approach is taken.

In general effects of quantization on implementation of the DHT algorithms

are sources of two kinds of error; errors due to coefficient quantization and errors

due to rounding in computation. In this thesis we are only concerned with errors

due to rounding in computation. Section 6.1 will discuss the roundoff error

models. In section 6.2 we will derive the statistical error properties of the DHT

algorithms of chapter 3. In chapter 7, the error characteristics of the algorithms

described in chapter 5 will be derived and chapter 8 includes the experimental

verification of the error properties derived in chapters 6 and 7.
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6.1. Roundoff Error Models

6.1.1. Fixed-Point Error Models

In fixed-point arithmetic, rounding errors occur only when multiplications are

performed. Fixed-point additions are basically free of errors provided no overflows

occur.

In fixed-point arithmetic the manner in which additions are done is indepen-

dent of the location of the binary point. For multiplication purposes , with no loss

of generality, we can assume that all the numbers are fractions. Thus we will con-

sider fixed-point numbers to be represented as (b + 1)-bit binary fractions, with the

binary point just to the right of the highest order bit. We will also assume that

two's complement is used as a way of representing the negative numbers. Thus one

bit of the b + 1 bits used in representing a fixed-point numbers is used to indicate

its sign.

When two fixed-point b-bit numbers are multiplied, it is necessary to approxi-

mate the 2b-bit product by a b-bit result. With fractional arithmetic this can be

accomplished by truncating or rounding the most significant b bits. The range of

values which the resulting error can take on, depends on exactly how the product is

reduced from double precision to single precision. If the product is rounded to the

nearest single precision fraction then the error denoted by ER will be in the range

[1]:
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-1 2-b < ER ; 2-b (6.1)

If the product is truncated, assuming two's complement is used, then the error ET

is always negative and is in the range [1]:

- 2 -b < Er S 0 (6.2)

This implies that truncation introduces some bias in the error and therefore it

results in larger mean square error than rounding does. Although truncation can

usually be implemented more simply and in less time, our analysis is primariy con-

cerned with the roundoff noise.

Let us now define the statistical model we will use for fixed-point rounding

errors. Since the quantization width is 2b, it is plausible to assume the rounding

errors to have a probability density function which is uniform in the interval

(- 2, 1 22- ) with variance of o2 = I-2 - . Furthermore, we will assume2 '2 12

that the roundoff error due to multiplications are uncorrelated with each other and

with the input. With these assumptions in mind we can associate noise source gen-

erators for every multiplier that appears in the flow graph of a specific algorithm

and then analyze the effects of the noise sources on the output.

6.1.2. Floating-Point Error Models

In the most common floating-point representation, a positive number F is

presented as F = 2CM where M, the mantissa, is a fraction, such that:

1

and e, the exponent can be either positive or negative. When M is in the above
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range, the floating-point number is said to be normalized. When two floating-point

numbers are multiplied, the mantissas are multiplied as fixed-point fraitions and

the exponents are added together. The product of mantissas is a 2b-bit number and

1
has to be rounded to b bits. Since the product of the mantissas is between - and

1, it might also be necessary to renormalize the product. When adding two

floating-point numbers, the mantissa of the smaller number is shifted to the right

until their exponents become equal. Then the mantissas are added together. Again

the result has to be normalized and rounded. Thus in ficating-point arithmetic,

unlike fixed-point arithmetic, the results of additions as well as multiplications

must be rounded and normalized. Furthermore, the expected magnitude of a

floating-point roundoff error depends on the magnitude of the signal. Therefore

when dealing with floating-point numbers, we are only concerned about relative

errors as opposed to absolute errors. Thus, in order to perform a statistical analysis

of noise in DHT algorithms, we must assume a statistical model for the signal, as

well as for the roundoff variables. In this thesis, we will assume our signals to be

white. It turns out that this assumption not only simplifies the analysis to a great

extent, but also gives us good insight about other types of signals such as sinusoids.

We shall consider floating-point numbers with mantissas represented as

(b + 1)-bit binary fractions. Let x be the exact result of an addition or multiplica-

tion and Q (x) represent the truncated or rounded value of x. Then

Q(x) = x (1+ ) (6.3)
where e is the relative error. For the case of two's complement rounding we get
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[1]:

-2 - b <e52- b (6.4)
and for two's complement truncation we get [1]:

-2 .2 -b<e'sO x>O (6.5a)

0 e 2 . 2 b x<O (6.5b)

Thus for two's complement truncation, the sign of the error is correlated with the

sign of the result. Clearly, this is in contradiction with the assumption we made ear-

lier about the independence of signal and the error. In this thesis we will primarily

be concerned with rounding two's complement numbers.

Our model for rounding is as follows: By analogy with our fixed-point model,

we will assume that e is uniformly distributed in the interval (-2 - b , 2 - ) with

variance 2-2. Experiments have shown that the variance of error due to multi-

plications and additions are slightly different from each other and that the distribu-

tion for e is not quite uniform [131. However, the variance of the error has been

verified [13] to be proportional to 2 - 2b. Since in most cases we are interested in

finding the variance of error as a function of the transform size, our general

approach will be to express variance as a variable in the form represented by

cr2 = a2-2b

where a is a constant for a given algorithm which depends on the number of multi-

plies and additions and the order in which they are performed in that algorithm.

The factor a can be determined by matching the theoretical and experimental noise

to signal ratio curves. In effect, the value of a represents an empirical average of
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r,2 for all the multiplications and additions used in computing the DHT using a

specific algorithm. Our general approach in this chapter is to derive the theoretical

output noise variance in terms of the parameter cr2. We then use the empirical

value for a ( from chapter 8 ) in order to obtain a numerical value for the output

noise variance.

We will also assume that the noise sources due to multiplications and additions

are uncorrelated with each other. Furthermore, we will assume that when the result

of additions or multiplications lies equally between two quantization levels ( that is

the first extra bit of the mantissa is 1, and all remaining extra bits are zero ), a ran-

dom choice is made as to whether to round up or down. This situation occurs fre-

quently when we add floating numbers of the same order of magnitude. Always

rounding up ( or down ) rather than randomly up or down in this situation would

introduce a correlation between roundoff error and signal sign.

6.2. Error Analysis of the DT1, MDT1 and DF1 Algorithms

6.2.1. Roundoff Noise in the DT1 Algorithm

6.2.1.1. Roundoff Noise Analysis of the DT1 Algorithm Using Fixed-Point Arith-

metic

In this section we analyze the effects of roundoff errors for output noise-to-

signal ratio of the DT1 algorithm described in section 3,.1.1. At first we ignore the

overflow constraint and derive the output noise variance analytically. Then,

dynamic range issues will be considered.
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Recall our approach to the analysis of fixed-point roundoff noise introduced

in the previous section. We insert additive, signal independent, white noise sources

after each multiplier in the signal flow graph of the algorithm. There are two ways

of finding the output noise variance for Bracewell's DHT algorithm. The first one

results in a closed form expression and provides us with more insight into the algo-

rithm. The second method on the other hand, predicts the output noise variance

more accurately.

Our approach in estimating output noise variance using the first method is to

identify all the noise sources and their associated variances in the algorithm and

investigate the way in which these errors propagate to the output. As mentioned in

earlier chapters, Braceweil's algorithm consists of two major parts. In the first part

the.input signal is bit reversed and in the second part, the algorithm passes through

arrays of N real numbers, generating a new array of N real numbers while perform-

ing butterfly-type computations. The basic numerical computation at the nth stage

involves operating on the (n- 1)st array in order to generate the nth array. The

vth array is the desired DHT output where v = log2N and N is the transform size.

Clearly no error is introduced in the bit reversing section of the algorithm To

quantify the amount of error in the butterfly section of the algorithm, consider a

typical butterfly shown in figure 6.1 defined by:

X.+i(i) = X.(i) + cos( )Xn(J) + sin( )X (I) (6.6a)N~N .N

Xn+ 1U). = Xn(i) - os(N )(j) - sin( )X,(I) (6.6b)

where p is an integer related to n, i, j and 1. Fortunately our analysis is not tied
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to the specific way in which p varies. Also the relationships between n, i, j and I

are not important for the analysis. At each stage, - separate butterfly computa-

tions like equation (6.6) are carried out. The error at the output of the butterflies

of a given stage, is due to the error inherent in the input of the butterflies and the

error due to the computations of that stage. In other words

EX,+l(i)= eX,(i) + e()cOS( N ) + Xex(l)S() N ) + e l + 2 (6.7a)

ex ,+ 1u) EX(, i) - eX, S)' N - Ex.()sin(N ) -el 2 (6.7b)

where ex (in) denotes the error at the mth point of the kth array of the algorithm.

ei denotes the roundoff error due to fixed-point multiplications. Its variance

denoted by ' ,2 was defined in section 6.1.1. Using induction we can show that the

variance of error is the same for all the inputs to a given stage of butterflies. This

implies that the variance of ex,(i) , ex,) and Ex,(l) are equal to each other. Using

induction, we can also show that the errors in the input of a given butterfly are

uncorrelated with each other. In other words we have

E[x.( )x(ix)l = E[rx,()x,(,)] = E[ex.()ex.(,)] = oD (6.8)

From equations (6.7) and (6.8) we can conclude that the variance of error at the

output of a given butterfly due to the error in its input is simply twice the variance 4

of the error at the input. Since there are two multiplications involved in computing

a given butterfly, the variance of the error at the output of a given butterfly due to

computations at that butterfly is 2a 2. ( we are taking advantage of the assumption

that the noise sources e and e2 are uncorrelated with each other and with the sig-

I
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nal). Thus the total variance of error at the output of the butterfly is given by

Var(x,) = 2 Var(ex.) + 2au (6.9)

where Var (e7x) denotes the variance of'error at the nth stage of the algorithm.

Var (ex) is the output noise variance for a sequence of N = 2 points. Since the

butterflies at the first and second stage use only additions, they are essentially

error free. That is:

Var(ex,) = Var (ex) = o (6.10)

For n > 2, we apply equation (6.9) in order to find a general expression for the

output noise variance of an N = 2 point sequence:

ar(ex) = ( 2 - - 2) a2 (6.11)

Using o2(N,k) to denote the variance of error at the kh point of an N-point

transform, equation (6.11)can be written as

a-2(N,k) = ( -2) 2 (6.12)22> os" (6.12)

Equation (6.12) is the basic result we have been seeking for output noise variance

of Bracewell algorithm. It says that the variance of the output noise is uniform

across the output array ( i.e. it is independent of k ), and for large values of N the

effect of doubling N or adding another stage is to double the output noise variance.

Equation (6.12) can be derived in a more intuitive way; The variance of error

in the (m + 1)st array due to the roundoff noise of the butterflies in the mth stage

of the algorithm is 2 2 and doubles as we move from one stage to the next. Thus

the variance of error at the output of the DHT ( vth array ) due to the errors

introduced at the mth stage is 2 -m+lot2 . Since the noise source generators of
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different stages are assumed to be independent of each other, summing up the

effect of the noise due to various stages at the output of the DHIT, and taking into

account the fact that the first two stages of the algorithm are error free, we get:

r2(Nk) = 2-"1'c 2 = (2w- ' - 2)o 2 (6.13)
n-3

which is the same result as equation (6.12).

In order to simplify the analysis leading to equation (6.12), we have neglected

the fact that multiplications by unity can be performed noiselessly. If we assume, in

the analysis that these multiplications are noiseless, the output noise variance will

no longer be uniform over the entire array ( For example the zeroth output point

would be noiseless. ). The average variance over the output array will be somewhat

lower than the resut in equation (6.12). In order to take into account the special

cases mentioned above, an alternative way of finding the output noise variance is

suggested. Recall from chapter 3 that the idea behind Bracewell algorithm is to

decompose the problem of finding an N-point DHT into computing two - -point

DHTs. This is demonstrated more clearty in equations (3.1) through (3.5). Pictori-

ally, this can be shown in figure 6.2; x(n) denotes an N-point input sequence

which we wish to transform. The DHT of its even and odd points, Xl(k) and

X 2(k), are combined in a manner shown in figure 6.2 to form X(k). Let X(k)

denote the the error in Xi (k). Then by inspection of figure 6.2 we have

2X() =rk 2rk (6.14a)
eX(k) = eX,(k) + eX 2(k)O (-') + ¢ N s.-( ) + e + e 2 (6.14a)x,(j--k) Nv
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e N = E(X,(k) - X()c N i-- e - e2 (6.14b)
2 T

where ei denotes the roundoff error due to multiplications by sine and cosine. If

we know the output noise variance distribution for N--point sequences, using

equation (6.14) we can find it for N-point sequences. This way we can find the

distribution of variance of error for arbitrarily long sequences in a recursive

manner. More specifically, if we denote the variance of error at the k point of an

N-point sequence by r2(N,k) by inspection of figure 6.2 we get:

a2(N,k) =

2( N k) + ( 2(Nk ) )( N) N N
2 N 2 2 4

.n 2( 2k )a2( N N k) + 2 (6.15a)
N 22'2

22(k ) k =O,

a 2 (N,k) = a 2 (N,k-) k < N (6.15b)
2 2
N N 3N

Note that for k = 0 T2 3N the coefficients of the butterflies of figure 6.2

become 0 or 1. By taking care of these special cases, we have incorporated the

noiselessness of these multipliers in our theoretical predictions.

Having discussed the output noise variance in detail, we now address the

dynamic range considerations. We would like to obtain a formula for output noise

to signal ratio, by considering the overflow constraint in conjunction with our noise

analysis. We can ensure against overflow in Bracewell algorithm by keeping the

input x(n) sufficiently small so that no element of the intermediate arrays or the

output array exceeds unity. Our approach here is to find a relationship between the
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maximum magnitude of elements of any two succeeding arrays in the algorithm.

Let us denote the maximum magnitude of the input sequence by IXi, I-mu and the

maximum magnitude of the elements of the ith array by IXi Ima, Then using

equation (6.6) we get:

Ixm+llm (1 + V2) IXx Imu
Since there are v stages of butterfly computations, the maximum magnitude of the

output array is given by

Ix,O Imx < (1 + Vf)[Xi, Ia.
Therefore, in order to guarantee that there will be no overflows at any stage of the

algorithm ( i.e. no intermediate quantity exceeds one) we should choose the input

as follows:

Ixl I=~ (+v . (6.16)

To obtain an explicit expression for output signal variance, we assume x(n) to be

white and uniformly distributed in (- 1 + 1 ) . Thus the vari-
(1+ V'-)v (1+ V)Y

ance of the input will be 1 and therefore the variance of the output
3 (1+ +f):'

signal denoted by r2 can be written as:

2 3 (1 <2' (6.17).3 (1 + V2-)2 '

The upper bound on the maimum magnitude of the input shown in equation

(6.16) can be tightened using a numerical technique which is described in appendix

A. The second column of table 6.1 shows this tighter upper bound as a function of

the transform size. For large values of N, doubling the transform size scales down



Traonmm size Maximum input Variance of output

N IX 12
N j IxI 33

8 1.0 x 10'- 2.9 x 10-2

16 4.5 x 10- 2 1.1 x 10'-

32 1.9 x 10- 2 3.8 x 10- 3

64 8.0 x 10- 3 1.4 X 10 - 3

128 3.4 x 10- 3 4.9 x 10-

256 1.4 x 10- 3 1.7 x 10

512 6.0 x 10' 6.2 x 10- 5

1024 2.5 x 10 2.2 x 10-5

Table 6.1 The upper bound on mamum magnitude of the input to ensure
aginst overflow in fixed point implentation of the DT algorithm.
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the maximum magnitude of the input by a factor of 2.365. As it is mentioned in

appendix A, the numerical technique used to generate table 6.1 results in the suffi-

cient but not the necessary condition for the input to prevent overflows. The third

column of table 6.1 shows the output signal variance provided the input is white

and uniformly distributed in the range specified by the upper bound in the second

column.

In figure 6.3 the average output noise to signal ratio using equations (6.12)

and (6.15) and table 6.1 as a function of transform size is plotted. Equation (6.15)

results in lower average output noise variance as we predicted earlier. The distribu-

tion of output noise variance using equation (6.15) among the frequency points of

256-point sequences is shown in figure 6.4. In chapter 8 the experimental results

confirming the theoretical predictions of figures 6.3 and 6.4 will be presented.

6.2.1.2. Roundoff Noise Analysis of the DT1 Algorithm Using Floating-Point

Arithmetic

The roundoff noise analysis of the DT1 algorithm using floating-point arith-

metic is similar to that of fixed-point arithmetic. We shall insert multiplicative, sig-

nal independent white noise sources after each multiplier or adder in the signal

flow graph. Postulating that all roundoffs are independent of each other, we assume

that all the noise sources injected at the various nodes are mutually uncorrelated

with the signal. In floating-point arithmetic we deal with relative errors as opposed

to absolute errors. We will assume that the input signal is white with variance of



oa
0

( 0.q,4Z )

S Ia!'3 u 0t' o. m 

oF· ~ sro rm Iar~ lo

"a

o

I
b

0

oa

o

o01P'I.4I0

.

8

uj

14

1.

: al

II

To
oo
i

o

0

a

II I 

I .. ......... ... ............ I........ . .... .... ..... ........

...

··· I----



- U m¶I

m I

-

- I

-I.

-

- i = =m . _. . . . . . .. .. . .. . . .. . . . . .

- ~~~~~~~~~~~~~~~~~~~~~~~~~~......
. . . . . . .. . . .. . .. . . . . .

-~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . ... .....

..l . . . . .

a

qiZZ JO SMn U! (_r9z)e IUi o ndno

(a
ioI'('

cm

CD0,
M

C
8

M'S

U.

~ui
C

cM

C
uz
F

-c(0

t)

: -- -- ----
Ut o



-86 -

ao2. There are again two different methods of carrying out the statistical error

analysis. The first one results in a closed form expression for output noise variance

and provides us with more insight into the algorithm. The second method on the

other hand is more accurate in predicting the error and therefore is in better

agreement with the experimental results.

Our approach in estimating output noise variance in the first method is to

identify all the noise sources and their assoiated variances in the algorithm and

investigate the way in which these errors propagate to the output. The basic numer-

ical computation at the mth stage operates on the (m- 1)st array to generate the

mth array. The vth array is the desired DHT output where v = log2N. Since our

input is assumed to be white with variance ai2, the bit reversing operation does not

change its whiteness or its variance. Passing through the butterfly section of the

algorithm however, changes the variance of the signal. To express this more quan-

titatively, consider figure 6.5 where a typical butterfly is shown. The outputs of the

butterfly are related to its input in the following manner.

X.,+(i) -X.(i) + [X.U)cOs(2 ) + X.()sin(6)1 (6.18a)N N

X+,,(l) X.(i) - [XJ) 2) + x.()sin(2) (6.18b)

It can be shown ( using induction ) that the signal at the inputs to the butterflies

of all stages of the algorithm retains its whiteness and its variance doubles as we

move from one stage to the next. Thus the variance of the signal at the input to the

butterflies of the mth stage is simply 2"" -a 2 . That is
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Var[Xm(i)] = Var[xm(j)] = Var[X,(l)] = 2"- ,, (6.19)

Figure 6.6 shows the butterfly of figure 6.5 with the white noise source generators

indicating the roundoff error due to each addition and multiplication. By inspection

of figure 6.6 we have:

Xm +(i) = {X(i) + [Xm(j)cs( N ) (1 + e + (6.20a)

X (l)sin( 2t )(1 + e) ] (1 + e 3)}(1 + 4)

Xm+iL(j) = {X(i)- [Xm()cos( N) (1 + el) (6.20b)

si(N )(1 + 2) 1(1 + 3)}(1 + e)

where

X,(k) Xn(k) + ex(k) (6.21)

ex (k) denotes the error accumulated in computing X,,(k) and ei in equation

(6.20) represents the error associated with the addition or multiplication of two

floating-point numbers. Variance of ei is denoted by 0 2 and was defined in section

6.1.2. As mentioned earlier we are assuming the injected noise sources ei to be

independent of each other and of the signal. Using induction we can show that the

variance of error for all the inputs to the butterflies of any given stage is the same.

In terms of the quantities in equation (6.20) this implies that

Var[ex i)] = Var[ex ()] = Var [ex(] (6.22)

Also the error at the three inputs of a given butterfly are uncorrelated with each

other. That is
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E[ ex., ex.C) ] = E[ x.(i) eX.() ] = E[ E .X ) EX.X() ] = 0 (6.23)

Using equations (6.23), (6.22) and (6.20) and the fact that the variance of the sig-

nal doubles at every stage of the butterflies we can conclude that

Var [(X,] = 2 Var[X] + 2 . 2m+I 2cr2

Since the input to the fist stage of butterflies is error free, we get:

Var [xj = 0

Solving the above difference equation the output noise variance for a white

sequence of length N = 2' can be written as:

var [x = Var [ex.] = 2 ,T 2 (6.24)

Using 2(N ,k) to denote the output noise variance at the kth point of an N-point

white sequence, and a2 to denote the output signal variance, the noise to signal

ratio can be written as

=2(Nk = 2 v2 (6.25)2

Equation (6.25) is the basic result we have been seeking . It states that the output

noise to signal ratio for a white sequence is uniformly distributed among the fre-

quency points and is independent of the variance of the input signal. Furthermore,

as we double the transform size from 2v to 2+'1, the output noise to signal variance

v+l
is multiplied by v

An alternative way of deriving equation (6.24) is as follows: The variance of

error in the (m + 1)st array due to the roundoff noise of the butterflies in the mth

stage of the algorithm is 4cr 2 times the variance of input to that butterfly ( this can

easily be verified by considering equation (6.20) ). Since the input signal is white
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with variance cai, and the signal variance doubles as we move from stage to stage,

the variance of the signal at the mt array is 2ar 2. Therefore, the variance of the

error in the (m + )st aray due to the roundoff noise of the butterflies in the mth

stage is 4oa2 2' cr and doubles as we move from stage to stage. Thus the variance

of error at the output ( th array ) due to the errors introduced at the mth stage is

4 r2 2"a 2v-1 = 2 N in a SiC this xprCss is independent of m, we

can conclude that all stages of the algorithm contribute equally to the output noise

variance. Since there are v stages, the total variance of error at the output is simply

v N a2 au which is the same result as equatio (6.24).

In order to simplify the analysis leading to equation (6.24), we have neglected

some details. Fit, we have assoated equal variance noise sources with all multi-

pier, including when the coeffients are zero or one. If we assume, in the analysis

that these multiplications are noiseless, the output noise variance will no longer be

uniform over the entire array .The average variance over the output array will be

somewhat lower thaan the result in equation (6.24). In order to take care of the

special cases mentioned above an alternative way of finding the output noise vari-

ance is suggested. Recall that an N-point DHT can be decomposed into two -

point DHTs as shown in figure 6.7. Let o2(Nk) denote the variance of error at

the kth point of an N-point white sequence. By inspection of figure 6.7, the out-

put noise for the kth point of an N-point transform denoted by ex(k) can be writ-

ten in terms of ex,(k), ex,(k) and e . Since X(k) and X 2(k) are -point
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DHTs of white sequences, the variance of ex,(k) and ex2(k) is given by o-2( ,k)

and the variance of e N is given by a2( N X 2 -k). Therefore if we know the
X 2( -k)

output noise variance distribution for N-point white sequences, we can easily find
2

it for N-point white sequences. This way we can find the distribution of variance

of error for arbitrarily long sequences in a recursive marner. More specifically, by

inspection of figure 6.7 we get:

)+ C+ 0 < N N
2 N '2 2 4

dn2 2k-r2(N N-k) + 21V or i (6.26a)
N 2 '2 

2a2QN,k)+N cr; , I
2 '4

ca-.(Nk) -a a-(Nk-2 2 k < N (6.26b)

Note that for k= 0, N , 3N the coefficients of the butterflies of figure 6.7

become 0 or 1. By taking care of these special cases, we have incorporated the

noiselessness of these multipliersin our theoretical predictions. The distribution of

the output noise variance of 256-point white sequences using equation (6.26) is

shown in figure 6.8. Figure 6.9 shows the average output noise to signal ratio using

the simplified analysis of equation (6.25) and the more complicated analysis shown

in equation (6.26). Equation (6.26) results in lower noise to signal ratio as was

predicted earlier. In chapter 8 the experimental results confirming the theoretical

predictions of figures 6.8 and 6.9 will be presented.

a2(~k = 
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6.2.2. Roundoff Noise in the MDT1 Algorithm

6.2.2.1. Roundoff Noise Analysis of the MDT1 Algorithm Using Fixed-Point

Arithmetic

MDT1 algorithm was introduced in section 3.1.1. Although the basic idea

behind it is the same as the DT1 algorithm, its error properties are essentially dif-

ferent. Because of the way the butterflies are computed in this algorithm, the error

at the inputs of a given butterfly are correlated with each other. Thus the simplified

analysis of section 6.2.1 which resulted in a closed form expression can not be

applied for this algorithm. In this section the output noise variance of the MDT1

Algorithm using fixed-point arithmetic will be derived. Section 6.1.2.2 will deal

with the error analysis of the floating-point implementation of the MDT1 algo-

rithm. Note that the dynamic range considerations related to the MDT1 algorithm

are identical to that of the DT1 algorithm.

Recall from chapter 3 that in the MDT1 algorithm, we decompose the problem

of finding an N-point DHT into computing two 2-Point DHTs. This is shown pic-

torially in figure 6.10. x(n) is the N-point sequence which we wish to transform.

Xt(k) and X 2(k) are the -point DHTs of the even and odd points of x(n)

respectively. The computed values of wl(k) and w 2(k) the two intermediate quan-

tities shown in figure 6.10 are given by

wi(k) -[cs(N ) + in(2 k)I[x2(k) + eX2(kJ + 1 (6.27a)
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+ sin( 2 k)[(X2( -k)+e N )
N 2 X'(2

i k) = [sin( )N

- (X 2(k)+Xek) ] + 2

- os(N )][X(N -k) + N.)] + 3N 2 X4-k)

-s n(2H)[ (X(2-k) + eX-d))
IN 2 X4(·2

- (X 2 (k)+xk)) I - 2

where ei denotes the roundoff error due to fixed-point multiplications. Its variance

denoted by a,2 was defined in section 6.1.1. ¢ (k) represents the total amount of

error in computing Xi (k). Since Xi (k) is
Nan -point
2

DHT of a white sequence,

the variance of e,(k) is a2( 2 - k).

conclude that:

a(Nkr) -

Using equation (6.27) and figure 6.10 we can

22 - Cos 2k ),2( N N3 N 2'2

3,-2( N. k) + 7 2 + 
2 2 2 2

¢o,.(yk

k) + 'ZzN NVk) +
2 2

N2 ) 

N2k <N2a(Nk) = r 2(N - )

where

(6.28c)

coV(N,k) E[~x(kx((-),]

The special cases of k =o0, in the above equation are indicative of the fact that'4

(6.27b)

2 a + cos( N2r )a 2k)

2rk NNM 4irk N
_'-) N -(_ -- k) + sin(-)cove(T k)

N 2'2 N 

20 N
2

o<L < 4
4

(6.28a)

k 0, N'4

r2(N, ,- k) 

N N
4 8

N
8

(6.28b)

+ G_; 'k) 
2
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multiplicatic

( sin( )N

by zero and one are essentially error

- cos( N ))

free. Also for k=8
8'

in equation (6.27b) becomes zero and therefore no

error occurs in the process of subtracting zero from

- X2(N-k ) ].
2

cov,(N,k) of equation (6.28) which is the covariance of error between the krh

and (N-k)th points of X(k) can be found rer sively in

°2(2'k k). By inspection of figure 6.10 we get2

2wrk. 2xrk N N
* s--)-a-N (N -k)M IV 2 

, N- (T-k)] 0< k < NkN
4 8

covt(N k) 

2cos( 2A=k)Cov(N k)
N 2

,k)
2

cov,(Nk) cov,(N, -- k) cov,(N, -+k ) cIV(N-) O s k 4 (6.29b)2 2 we oca ,Ncon4

From equations (6.28) and (6.29) we can conclude that oa2(Nk), the output

noise variance of an N-point DHT and cov.(N ,k), the covariance of error between

its kth and (N-k)th point can be computed from 2,k) and cov.(Tk). The

recursion is now complete.

The correlation between the errors at the kth and (N-k)th point of the

transform is due to the fact that the product [X2(k) - X 2(' -k)
2 sin( N )

shown in figure 6.10 is used to compute both X 2(k) and X 2( -k). This is not the

N
terms of cov, d T ) and

+ 2

k =0
(6.29a)

k= 4
4

sin( N X2(k)
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case in the DT1 algorithm. In fact comparing equations (6.28) and (6.15), we find

that except for this covariance term, the noise variance expressions for these two

algorithms are fairly similar.

Figure 6.11 shows the distribution of output noise variance among the fre-

quency points for 256-point input sequences. This distribution is slightly different

from that of figure 6.4 as we expected. Figure 6.12 shows the signal to noise ratio

as a function of transform size for the MDT1 and DT1 algorithms. Although the

number of multiplies in the MDT1 is two third of the number of multiplies in the

DT1, their noise to signal ratio is almost identical The experimental results con-

firming figures 6.11 and 6.12 will be shown in chapter 8.

6.2.2.2. Roundoff Noise Analysis of the MDT1 Using Floating-Point Arithmetic

The roundoff noise analysis using floating-point arithmetic is very similar to

that of fixed-point arithmetic. We shall assume that the input signal is white with

variance of ar2 and insert multiplicative, signal independent white noise sources

after each multiplier and adder. Figure 6.13 shows the decomposition used for an

N-point sequence x (n) with the noise sources injected for the multipliers and the

adders. Referring to figure 6.13,. the following expressions for wl(k) and w 2(k)

can be obtained:

()(1 + - C1 ~27rk ) + *n(21rk)[X2(k)+ Xk) 1(1 + l)+

(1+ t3)(1 + 2 )sin( } )[(X2-k) + ) (k) + Ex)N 2 X 
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i(k) = ( 1 + 5 ) i [sin(N)N
- cos( 2k ) ]( X 2( -k) + N_) )(

(1 + e3)(1 + P 2)s*2N))[(X 2N-) N 2 N ) (X,(r-k)
X,(k) + ',(k) }

Since X 1(k) and X2 (k) are Lpoint DHTs of white sequences, the variance of ax,(k)

and x() is simply c-2(-,k). By inspection of figure 6.13 the variance of error for

an N-point sequence is given by

+ N 2k 2rk +
2N + N s* ) -N N

(1 + cos2( 2N ) a2 ' )
N 2

4kr N
sin( ,)cov ., )N 2

22-Nk) + Nat2t

2af 2k) + 2.5 N cr2a ,

[2N + N sin(- ) ( 2 si( 2rk
N N

2 i 2k ) I ra22. +N A

+ si( rk ) 2( N, ) +
N 2'2

(6.30a)

k = 

k N
4

- Co, 2-k ) ) lt'f +
N

(1+ co( 2r )(2 -k)+
N - ) '-

2 k)- sin( 2,( k)IV 2 N 2

1.S T2 2-k)
2'2

+ 1 2(2,N) +
2 2

2 N ,2 -cov,( k)cr. 2

= rNN,k-V) N :k <N
2

where cov,(N,) denotes the covariance of error between the kh and (N-k)th point

of the DHT of an N-point white sequence. Note that the special

k =0, N in equation (6.30) take care of noiseless multiplications by ones or
4' 8

zeros. Equation (6.30) states that o2(N,) can be obtained from 2(N2,k) and2

COV,(- k). In order to complete the recursion we have to be able to obtain cov,(Nk)

a,(Nk) =

0< k <N
4

2N,2--T) 

N
4 , k * v88

(6.30b)

k N-
8

(6.30c)

cases of
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from ao2(N,k) and cov,(k-,). This can be done by finding the error in x(k) and

X (N-k) and evaluating the expected value of their products. The final result is:

2Nk )sin( ) ,-k)-cR2(,k) + O < < ,* N
N N 2'2 2 4 8

cov,(N,k) 2 cos2(rk cov,(Nk)+ 2N in 2rk a2 (6.31a)( 2 - (6.31a)

2 cov( k) -N cr2r km N
2 4

cov(N ,) c Ov(N, -k) - cov.(N, +k) cov,(NNV-k) 0 <k s (6.31b)

N
Note that cov(Nk) for k 0, - is not shown in equation (6.31) because of the

fact that these quantities are not used in computing equation (6.30). Therefore we

have shown that the output noise variance of an N-point DHT of a white sequence

A(Nk), and its covariance of error between its kth and (N-k)th point

cov,(N,k), can be computed from a2( 2 k) and cov,( -,k). The recursion is now

complete.

The reason for cov (N,k) being non zero is the fact that the error sources e2

and 3 of figure 6.13 both contribute to the error at the kth and (N- k)th output

points. This is clearly not the case in the DT1 algorithm. In fact, ignoring the

cov2,( k) term, equations (6.26) and (6.30) look somewhat similar.

Figure 6.14 shows the distribution of output noise variance for 256-point

white sequences using the MD1 algorithm. It is clearly different from figure 6.8

where the distribution for the DT1 algorithm is shown. Figure 6.15 shows the

noise to signal ratio of the DHTs of white sequences using the MDT1 and the DT1
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algorithms. Although DT1 requires more multiplications than MDT1, its noise to

signal ratio is lower than the MDT1. The experimental results supporting the

theoretical predictions in figures 6.14 and 6.15 are included in chapter 8.

6.2.3. Roundoff Noise in the DF1 Algorithm

6.2.3.1. Roundoff Noise Analysis of the DF1 Algorithm Using Fixed-Point Arith-

metic

The theoretical analysis for the DF1 algorithm is very similar to that of the

DT1 algorithm. We shall insert additive, signal independent white noise after each

multiplication in the signal flow graph of the algorithm and find their effects at the

output of the transform.

-The simplified way of deriving the output noise variance for this algorithm is

as follows: The variance of error in the (m + 1)st array due to the roundoff noise of

the butterflies in the mth stage of the algorithm is 2cr2 and doubles as we move

from one stage to the next. Thus the variance of error at the output of the DHT (

vth array ) due to the errors introduced at the mth stage is 2-m +lr2. Since the

noise source generators of different stages are assumed to be independent of each

other, summing up the effect of the noise due to various stages at the output of the

DHT and taling into account that the last two stages of the algorithm are error

free we get:

a 2(N,k) = v2 2m+1la2 = (2v#1 - 8)2 (6.32)
m-l

Equation (6.32) states that the output noise variance is uniformly distributed
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among all frequency points and doubles ( for large values of N ) as the transform

size is doubled.

The simplified analyses which have led us to equations (6.32) and (6.13) sug-

gest that the output noise variance for an N-point sequence is proportional to N
2

for the decimation-in-time algorithm and 2 N for the decimation-infrequency algo-

rithm. This might sound puzling at first. However, it can be explained intuitively

in the following manner, Recall that the butterflies with zero and one coefficients

form the first two stages in the decimation-in-time implementation and the last two

stages in the decimation-in-frequency implementation. Therefore in the

decimation-in-time algorithm the presence or absence of these stages do not affect

the output noise variance at all. However, in the decimation-in-frequency imple-

mentation, the variance of error due to the fist (v-2) stages of the algorithm dou-

ble as they go through each of these two stages. This is the reason why the output

noise variance for the DF1 algorithm is predicted to be four times that of the DT1

algorithm.

In order to simplify the analysis leading to equation (6.32) we have neglected

some details; We have associated equal variance noise sources with all multipliers,

including when the coefficients are zero or one ( Note that in the simplified

analysis we only took care of these butterflies which appeared in the last two stages.

Other stages except the last two ones also have butterflies of this kind). The out-

put noise variance will be less than the result in equation (6.32) if these cases are

taken into account. To improve the accuracy of our analysis, an alternative way of

____
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finding the output noise variance is suggested. Recall from chapter 3 that the idea

behind the decimation-in-frequency algorithm is to decompose the problem of find-

N
ing an N-point DHT into computing two 2-pomint DHTs. This is demonstrated

more clearly in equations (3.25) and (3.26). Pictorially, this can be shown in figure

6.16; x(n) denotes the N-point input sequence which we wish to transform. It is

N
decomposed into two 2 --point sequences xt(n) and x 2(n) as shown in figure 6.16.

The DHT of x (n) denoted by X (k) constitutes the even points of X (k) and the

DHT of x 2(n) denoted by X 2(k) constitutes the odd points of X(k). Let et,(,)

denote the error in xi (n) . By inspection of figure 6.16 we have:

.x(n) = 0 (6.33a)

e, + 0< < n < , n : 
(6.33b)

0 n =0,-

where e, denotes the roundoff error due to multiplications in fixed-point arith-

metic. Its variance is denoted by a 2 and was defined in section 6.1.1. The variance

of error at the input of x 2 (n ) is given by

N NO2 .< n < n* N

Var[Ex ] ln = 0, 

N
If x2(n) was the only source of error in X 2(k) ( i.e. the 2--point DHT was done

with infinite precision ), the output noise variance at X 2(k) due to the error in the

input would have been given by

I
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N 1

Var '[X(k)] = Var [e 2()]cas 2( 2)(N 4)2
13-0 N-2)

(6.34)

The error in X 2(k) can be considered to be due to error in x 2(n) and due to the

N
errors introduced in the -point DHT computation of x 2(n). The variance of

error due to the noise in x 2(n) is shown in equation (6.34) and the variance of

N error due to computations in the -point DHT issmply 2( 2k). Since these
2

two errors are independent of each other, in order to find the variance of ex2(k) we

can simply add these two variances. That is

Var [ex2(k)] = (N-4)2 + a2( k)2k (6.35a)

Since no error has been introduced in computing x (n), the variance of ex,(k) is

N
only due to the -- point DHT computation and therefore we get:

Var ([X,(k)] = a2(,k )

At the output of the algorithm we have:

Ex(2k) = ex,(k)

(6.35b)

(6.36a)

(6.36b)· X(2k +t) = X2(k)

Combining equations (6.35) and (6.36) we get:

k even

a2(N,k) =
2

a2(N ,k) + (N-4)a2
2 F

(6.37)
k odd

Figure 6.17 shows the distribution of the variance of error for 256-point

sequences using equation (6.37).
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If we average o2(Nk) of equation (6.37) over the frequency points, we can

find a closed form expression for the average output noise variance of an N=2V

sequence by solving the following difference equation

< 2(2",k) > = < 2 (2- 1 ,k) > + (2-4) (6.38)

where <.> is used to show averaging over frequency points. Since 2 and 4-point

DHTs are essentially error free, we get:

< 2(2,) > = < 2(4,k) > = 0

Solving equation (6.38) for v > 2, we obtain the following closed form expression

for the mean noise variance:

< a2(2vk) > = ( 2 - 2 v )r2 (6.39)

Therefore the more accurate analysis which led us to equation (6.39) suggests that

the-output noise variance of an N-point sequence is proportional to N as opposed

to 2N which was derived in our simplified analysis.

Figure 6.18 shows the average output noise variance of the decimation-in-time

and frequency algorithms using equations (6.15) and (6.39). For large values of N

the output noise variance for the decimation-in-time arithm is double the

corresponding quantity for the decimtion-in-frequency algorithm. Equations (6.13)

and (6.39) could have led us to same conclusion. These results will be verified

experimentally in chapter 8.

Having discussed the output noise variance in detail, we now address the

dynamic range considerations. We would like to obtain a formula for the output

noise to signal ratio, by considering the overflow constraint in conjunction with our
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noise analysis. Our approach hemc " to find a relationship between the maximum

magnitude of elements of any two succeeding arrays in the algorithm. Let us

denote the maximum magnitude of the input sequence by IX, I and the max-

imum magnitude of the elements of the ith array by Xi Im. Since a typical but-

terfly at the nth stage of the algorithm is given by

X,,+(i) = X,(i) + X,(p +i)

x,, +(i +p) [ X,,(i) - X,,(i +p) ]Co ri ) + [ X,,(p-i) - X,,(2p-i) ]sin 2ri

we get

Ix.+lim s 2. I I.
Since there are v stages of butterfly computations in an N = 2" point transform, we

get

Ix.. Ima < ( 2 * v I Ima
Therefore, in order to guarantee that there will be no overflows at any stage of the

algorithm ( i.e. no intermediate quantity exceeds unity ) we should choose the

input as follows:

Ixi (2 < (6.40)
( 2. V)(.

To obtain an explicit expression for output signal variance, we assume x(n) to be

white and uniformly distn'buted in (- us the variance
(2.f ( i). Thu the 2varance 

of the input will be3(2.V) 2 and the variance of the output signal can be
3 ( 2. V2-2v a

written as:

C· I_
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O2 3 ( 2. V(6.41)

The upper bound on maximum magnitude of input shown in equation (6.40)

can be tightened further using a numerical approach described in appendix A. This

tighter upper bound is shown in the second column of table 6.2. For large values of

N, doubling the transform size scales down the maximum magnitude of the input

by a factor of 2.553. As it is mentioned in appendix A, the numerical technique

used to generate table 6.2 results in the sufficient but not the necessary condition

for the input to prevent overflow. The third cohumn of table 6.2 shows the output

signal variance provided the input is chosen to be white and uniformly distributed

in the range specified by the upper bound in the second column.

Comparing tables 6.1 and 6.2 we see that maximum magnitude of the input

which guarantees no overflows, is larger for the decimation- in-time algorithm than

it is for the decimation-in-frequency algorithm. The same conclusion would have

been reached, if we had used the results from equations (6.41) and (6.17). Thus

for the decimation-in-frequency implementation, not only is the output noise vari-

ance higher, the dynamic range of the input signal which results in no overflows is

less than that of the decmation-time algorithms. Figure 6.19 shows the average

noise to signal ratio for the decimation-in-time and frequency algorithms DT2 and

DF2 using equations (6.39) and (6.15) and tables 6.1 and 6.2. As it is expected the

decimation-in-time algorithm has a more favorable error properties than the

declmation-in-frequency implementations. Figures 6.17 and 6.19 will be verified

experimentally in chapter 8.

���_



Trandor sie Maimu input Variance of output

N ~~~N IXJ ||
3

8 1.0 x 10-' 2.9 x 10- 2

16 4.1 x 10- z 9.0 x 10- 3

32 1.6 x 10 - 2 2.7 x 10 - 3

64 6.3 x 10- 3 8.4 x 10-

128 2.5 x 10- 3 2.6 x 10-

256 9.6 x 10-4 7.9 x 10-5

512 3.8 x 10- 2.4 x 10-5

1024 1.5 x 10- 4 7.5 x 10

'IO

Table 6.2 The upper bound on maimum magnitude of the input to ensure
against overflow in fixed point implementation of the DF1 algorithm.

- --- -- --- -
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6.2.3.2. Roundoff Noise Analysis of the DFI Algorithm Using Floating-Point

Arithmetic

The roundoff noise analysis of the DF1 algorithm using floating-point arith-

metic is imilar to that of the DTI algorithm. There are two ways of finding the

output noise variance. The approach taken in the first method which is more intui-

tive and results in a closed form expression is very similar to the intuitive approach

described in section 6.2.1.2 for the decimation-in-dme algorithm. Using this

approach the output noise to signal ratio for an N = 2' point white input sequence

can be shown to be 2vc, 2. The second method which is more accurate, is slightly

different from the one discussed in section 6.2.1.2 and will be presented here.

We will assume that our input signal is zero mean white with variance 2.

As usual we will be inserting white noise sources after each multiplier and adder in

the signal flow graph. Figure 6.20 shows the decomposition used in computing an

V-point Hartley transform using the decimation-in-frequency algorithm after the

noise sources have been injected. Using the notation introduced earlier, the error

in the nth term of the sequences x (n ) and x 2(n ) are given by

xs(.) = [x(n) + x( 2 +n) ](1 + .)

.4
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([x(n) - x(+n) cos2 ) (1 + ( + + <n < N,n* N
2 N +2 4

24) N

E2() = [x(n) - x( +n)( 1 + ,) : =o

[X(N--n) - x(N-n)(1 + ) n 4

where e, denotes the roundoff error due to floating-point multiplications or addi-

tions. Its variance is denoted by r,2 and was defined in section 6.1.2. The variance

of error at the input of xl(n) and x 2(n ) is given by

Var l[x(n)] = 2 crj a2r (6.42a)

varle[()] 22 ' a2 n = . 4 (6.42b)
4

N .
If the -- point DHTs of xl(n) and x 2(n) were computed with infinite precision,

the variance of error at X (k) and X 2(k) due to the errors to the input sequences

would have been given by

VaT [ k) 2 Var(,] = N a2r ar2 (6.43a)

N

13-Var,[t~>]~ - 0 =/2 ) = (3At - 8)a a 2 (6.43b)
N

Indeed the -point DHT computations shown in figure 6.20 are not error free and2

they also contribute to the error in X 1(k) and X 2(k). Let 2( 2,k) denote the out-

N
put noise variance of the kth point of an --point white sequence with variance of

a. Since xl(n) and x 2(n) are white sequences with variance of 2 cr, the

4

d
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N
variance of error due to 2--point DHT computations at Xl(k) and X 2(k) are sim-

ply 2 2(2,k). In order to find the total noise variance at Xl(k) and X 2(k) we

add the variance of error due to the -- point DHT computations to the variance of

error due to the input noise which was derived in equation (6.43). ( Note that we

are taking advantage of the fact that these two errors are statistically independent

of each other). Thus we get:

Var [x(k)] = N 2 7a2 + 2 a2(N k) (6.44a)

Var (ex2()] = (3N-8) a2 2+2 ( 2 o(,k) In . 2 (6.44b)

Since X l(k) and X 2(k) constitute the even and odd points of X (k), the distribution

of output noise variance for N-point white sequences is given by

r2 22 ,k) + N a cr 2 k even

ao~~~~~ 2 (Nk ) = N(6.45)
2 a2( ,k) + (3N-8) ar cr2 k odd

The distribution of the variance of error for 256-point white sequences using equa-

tion (6.45) is shown in figure 6.21. It is dearly different from figure 6.8 where the

distribution for the decimation-in-time algorithm is shown.

If 2(N k) of equation (6.45) is averaged over the frequency points, we can

find a dosed form expression for the mean output noise variance of an N = 2'

sequence by solving the following difference equation

< 2(2v,k) > = 2 < o 2(2'-,k) > + 2` +t - 4 (6.46)
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where <.> is used to show averaging over frequency points. Since a 4-point

DHT only involves additions and subtractions, we get:

< a2(4,) > = 8 a2

Solving equation (6.46) the dosed form expresson for the mean output noise vari-

ance for v > 2 is given by

< o 2 (2k) > = (2vN - 3N + 4)a2 (6.47)

Thus the more accurate analysis which led us to equation (6.47) is slightly different

from the simplified one and their difference becomes negligible for large values of

N.

The output noise to signal ratio for the decimation-in-time and frequency algo-

rithms as a function of transform size are shown in figure 6.22. Although the distri-

bution of variance of error among the frequency points of these two algorithms are

different, their average output noise to signal ratio is almost identical. This is in

contrast with the fixed-point case where the output noise to signal ratio for the

decmation-in-time and frequency aigorithms were different from each other. The

experimental results verifying the theoretical predictions in figures 6.21 and 6.22

will be shown in chapter 8.
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CHAPTER 7: Theoretical Noise Analysis of the DT2 and DF2 Algorithms

In chapter 6, we analyzed the statistical error properties of the DHT algo-

rithms of chapter 3. This chapter discusses the effects of floating-point and fixed-

point roundoff errors in the algorithms presented in chapter 5. More specifically,

sections 7.1 and 7.2 will describe the error characteristics of the DT2 and DF2 algo-

rithms respectively. Our approach in this chapter is very similar to that of chapter

6; we will assume that the roundoff error due to multiplications and additions are

uncorrelated with each other and with the input. We then associate noise source

generators for every multiplier and adder that appears in the flow graph of the

specific algorithm under investigation and analyze their effects on the output. In

chapter 8, the experimental results supporting the theoretical derivations of this

chapter and chapter 6 will be presented.

7.1. Roundoff Noise in the DT2 Algorithm

7.1.1. Roundoff Noise Analysis of the DT2 Algorithm Using Fixed-Point Arith-

metic

In this section we will analyze the effects of roundoff errors due to fixed-point

implementation of the DT2 algorithm desnibed in section 5.1.1. At first we

ignore the overflow constraint and derive the output noise variance analytically.

Then the dynamic range issues will be considered.

We will insert additive, signal independent, white noise sources after each mul-

tiplier in the signal flow graph of the algorithm. Our approach in finding the output
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noise variance is again a recursive one. Recall that using the DTZ algorithm, the

problem of finding an N-point DHT is decomposed into that of finding two N-

point DHTs. This is shown pictorially in figure 7.1 where x(n) an N-point

sequence is decomposed into two -- point sequences x (n)

equations (5.2) and (5.4) we can conclude that x (n ) is related

in the following manner:

xl(n) = x(2n)

x 2(n) = x(2n + 1) + x(2n-1)

and x 2(n). From

to x(n) and x 2(n)

(7.1a)

(7.1b)

N
2

N
2

x(-1) x(N-1)

Since additions in fixed-point arithmetic are error free, no error is introduced in

the process of forming the two subsequences xl(n) and x 2(n) from x(n). X(k),

the desired DHT of x (n) is computed from X (k) and X 2(k) the transfonns of the

subsequences x l(n ) and x 2(n ) in the following manner:

1 xN
Xl(k 1 2(k) + 0 k <N, k * , k2rk 4

2cos(2k)

Not Q-N (7.2)
'-I 4-N
2 ,+ In N 3N

Xt(k) + x(2n+1)(-1) 2 k = - 4
aoo 4 ' 4

above equation we can find the output noise variance of the N-point

3N
4

N
sequence x (n) from the output noise variance of the -point sequences x (n ) and

x 2(n). More specifically, by inspection of figure 7.1 the error in X(k) denoted by

where

X(k) =

Using the
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ex(k) can be written as:

1
eXX(k) + 2 eXrk 2(k) + l

2cos(- )

EX 1(k)

O0k <N,k N 4,

N 3N
4' 4

1
where el denotes the error due to the multiplication of X 2(k) with in

2cos(-) N

equation (7.2). Its variance a.2 was defined in section 6.1.1. Using equation (7.3)

the variance of error at the kth point of an N-point DHT denoted by A2(N ,k) can

be written as:

1

[1 + 1

4cos( N )

a(2 )
2

I cr2(N 2 t)
2

] a( 2,k)2

NO<k<- k
2

+ 0.75 2 k = (7.4a)

N
4

a2(Nk) = N(Nk - )
N
2

Note that for k = 0, X 2(k) of equation (7.2) is going to be multiplied

(7.4b)

1
by-. 2 '

1
When a fixed-point number of b bits is multiplied by -, the magmtude of error is

either zero or 2-b depending upon whether the number is even or odd. Thus

for the special case of k = 0 , the error model of section 6.1.1 has to be slightly

Therefore the variance of error due to 1 multiplication by is going to

be 3 cr where cr is defined in section 6.1.1.4

eX(k) =

3N
4
(7.3)

2 (~N ,k )

N
4

modified.

.4



- 131 -

Equation (7.4) is the result we were looking for. It says that the output noise

variance distribution for N-point sequences can be obtained from the output noise

variance for -- point sequences. The distribution of error for the DHT of 256-
2

point sequences using equation (7.4) is shown in figure 7.2. There are two peaks at

N 3N 1
k = - 1 and k = 3 1. T his is due to the fact that 2 attains its

~~~~~~~~4 4 ~ 2cos(2.)

N 3N
highest value at these values of k ( Note that k = - are the special cases and

are treated separately as shown in equation (7.2)). Thus, whatever error that has

been accumulated in computing X 2(k) gets multiplied by a relatively large factor in

the last stage of the algorithm, ing peaks in the output noise variance.

Having discussed the output noise variance, let us now consider the dynamic

range issues. Numerical techniques shown in appendix A were used to find an

upper bound on the magnitude of the input signal in order to prevent overflow.

These bounds are shown in the second column of table 7.1. For large values of N,

doubling the transform size scales down the m magnitude of the input by a

factor of 4.0. As it is mentioned in appendix A, the numerical technique used to

generate table 7.1 results in the sufficient but not the necessary condition for the

input to prevent overflows. The third column of table 7.1 indicates the variance of

output signal given that the input is white and uniformly distributed in the range

specified by the upper bound shown in the second column. The values at the third

column together with equation (7.4) can be used to find the output noise to signal

variance for the DT2 algorithm as a function of N. The noise to signal ratio for the
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Table 7.1 The upper bound on mmum magnitude of the input to ense.against overflow in fixed point implementation of the DT2 algorithm.
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DT1 and DT2 algorithms are shown in figure 7.3. The theoretical results of figures

7.2 and 7.3 will be verified experimentally in chapter 8.

7.1.2. Roundoff Noise Analysis of the DT2 Algorithm Using Floating-Point Arith-

metic

The roundoff noise analysis using floating-point arithmetic is somewhat similar

to that of the fixed-point arithmetic. We shall assume that the input signal is white

with variance of Ar2 and insert multiplicative, signal independent white noise

sources after each multiplier and adder. Our approach in finding the output noise

variance is a recursive one.

The decomposition used for computing the N-point DHT of a white sequence

x(n) with variance of a is shown in figure 7.4. Using equation (7.2) and figure

7.4, X (k) the DHT of x (n ) can be written as:

( + ) ) [X 1() + XX(k) + (1+ e 2) 2 EXk) O k < N , k* 4 3N

X(k) (7.5)

I2 ~-N ' 3N
(1 + k) [( k) + x,k)] + x (2n+)(-1) > I ( + e) ' - 4

,,-0 i-n 

where ei and e, denote the roundoff error due to fixed-point additions or multipli-

cations. Their variance is denoted by 2 and was defined in section 6.1.2. ex4(k)

denotes the error in computation of Xi(k). Let r2 ( 2 ,k) denote the output noise

N.
variance at the kth point of an -point white sequence with variance a 2 . Since

x(n) is the even points of x(n), it is white and its variance is a 2 . Thus the
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variance of error at X l(k) is given by

Var [ex 1(k)] = a 2( k) (7.6a)

The sequence x 2(n) is given by equation (7.lb). Therefore the variance of error at

x 2(n) is

e 2(n) = 2 a a2

and the variance of error at X 2(k) due to noise in x 2(n) ( i.e. ignoring the noise

due to 2 -point DHT computation of X 2(k) ) is

Var'[ eX2(k) = N a7 a 2

Since the total error in X 2(k) is due to the noise in x 2(n) and due to roundoff

N
error introduced in -- point DHT computation of X 2(k), we get2

Vafex2,(k) ] =N i+ '.2(Nk)Var ( eX a; T2 (7.6b)

where a'2( 2,k) denotes the variance of error at the kh point of the DHT of an

N
2 -point sequence with similar statistical characteristics to x 2(n), i.e. sequences for

which the variance of each point is given by 2ar7 and the covariance between any

two adjacent points is a;. In other words

E [ x2(n) 2(n + ) ] = 2 0 n < N
2

where

X2( ) = X2(0)

Jsing equations (7.5) and (7.6) the variance of error at the kth point of the

can be easily found in termnns of a'2( ,k) and a2( N ,) in
2white sequence x (n )
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the following manner:

3 Na 2 +
2 a2(- 2k) +2

N N
O<k< ,k*-

2 4

1 2 
2,k [NV inF2

4cos2( - )

Ncars + cr2( ,k) +

1 2N
2i[N = =

+ .'2(N k)

k = 0 (7.7a)

+ r'2(N,k )2

Na a2 + 2( ,k)in c .r

a2(N,k) = or2(N,k - 2)

+ 1)- lrr 22us ]P/E0'

N
2

is considered separately in the above equation because for

1

2cos(-N)

1ithe factor by which X 2(k) is multiplied becomes equal to Since inthe fator bywhichX 2 .Snce i

floating-point arithmetic multiplication by
1
- corresponds to decrementing the2

exponent by 1, it is basically error free. Also k = is the special case in our algo-4

rithm which is computed in a different manner from the rest of the points as shown

in equation (7.2).

Equation (7.7) shows the way 2(N ,k) can be found in terms of 2( N ,k) and

2(2 ,k). To complete the reon we hav to find a way of epresg '(Nko'( N (k). To complete the recursion we have to find a way of expresng o #(N,k)
2

in terms of a2(2,k) and a,2( ,k). To obtain a' 2 (N,k) consider an N-point

white sequence y (n ) with variance 2 ar and the covariance between its adjacent

a2(N k) =

2(N ,0)

N
4

(7.7b)

k= .

.4

4 2
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points ra. By definition, the output noise variance for Y(k) is o'2 (N,k). We are

interested in finding '2 (N,k) in terms of cr2( 2,k) and 2( ,k) ( the output

noise variance of an --point white sequence with variance cr2 ). In order to

compute Y(k), we will split y (n ) into two -- point sequences yl(n) and y2(n) in

a manner shown in equation (7.1). Although y (n) is not white, because of its spe-

cial structure, yl(n) which consists of the even points of y(n) is white with vari-

ance 2a 2 . Thus the output noise variance for Y 1(k) is 22(2 ,k) . The sequence

y2(n ) is given by:

2(n) = [ y(2n + 1) + y(2n - ) ( 1 + <, ) O , < N

where

y(-l) y(N-1)

and e, is the roundoff error due to floating-point addition. The variance of y 2(n)

is 4r 2 and the covariance between its neighboring points is 2cr2. Thus by defini-

tion the variance of output error at Y 2(k) only due to -- point DHT computation
2

of Y 2(k) is given by 2a'2(Nk). Similarly, the variance of error at Y 2(k) only due

to the error in forming y2(n) is given by 2 N 2a . Since these two sources of

errors are independent of each other, the total variance of error at Y 2(k) denoted

by ey2 (k) is:

Var [ey2(k)] = 2'2(2 ,k) + 2 N o2 r2
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Using the fact that Yl(k) and Y 2(k) can be recombined to form Y(k) and tak-

ing into account that:

Var[Y (k) 4N cos2( k c

VarLYl(k)] = N a2

Var[Y2(k)] = 4 cos2( ) a

the vaniance of error for Y(k) denoted by o"2(Nk) can be easily written in terms

of a2( Nk) and !2( N ):
2 2

N r 2r [4 wf N() + 1] + 22(( k))n +

o Nc/))r + N

2N '2 
4+ 2 2c 2+ 1)

+ 2a2k(k )), N
IV 2) + (T)) +[ ( + 1)-2 :cr22 2 2TX

O<k < N,k* 4 , N
4'4

k 
(7.8)

k 4' 34
4 4

Equations (7.7) and (7.8) show the way to compute o 2 (N,k) and o'2 (N ,k) in

terms of2( ,k) and '2t. k). The recursion is now complete and the distribu-
2 2

tion of the output noise variance for arbitrarily long sequences can be found recur-

sively. The output noise variance for the DHT of 256-point white sequences is

N 3Nshown in figure 7.5. There are two peaks at k = - 1 and k = - 1. The rea-
4- 4

son for these peaks is explained in section 7.1.1. Figure 7.6 shows the output noise

to signal ratio for white sequences as a function of their lengths for the DT2 and

DT1 algorithms. The experimental results verifying the theoretical predictions of

cr'2 (Nk ) -

"4
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this section will be presented in chapter 8:

7.2. Roundoff Noise in the DF2 Algorithm

7.2.1. Roundoff Noise Analysis of the DF2 algorithm Using Fixed-Point Arith-

metic

In this section we will analyze the effects of roundoff errors due to fixed-point

implementation of the DF2 algorithm described in section 5.1.4. At first we ignore

the overflow constraint and derive the output noise variance analytically. Then the

dynamic range issues will be considered.

We will insert additive, signal independent, white noise sources after each mul-

tiplier in the signal flow graph of. the algorithm. Our approach in finding the output

noise variance is again a recursive one. Recall that using the DF2 algorithm, the

problem of finding an N-point DHT is decomposed into that of finding two -
2

point DHTs. This is shown pictorially in figure 7.7 where x(n) is the N-point

sequence which is going to be transformed. x(n) and x2(n) denote the two

point subsequences that x(n) is decomposed into. From equations (5.15) through

(5.19) we can conclude that x(n) is related to x(n) and x 2(n) in the following

manner:

xi(n) = x(n) + x(2 + n) O 0 k < 2 (7.9a)
~~~2 2
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N
x (n) -x( + n)

20( rn

O

N NO-n < ,n A
2 4

= -
4

Since additions in fixed-point arithmetic are error free, no error is occurred in the

process of forming x l(n ). Let x2(n ) denote the computed value of x 2(n). Then we

get:

x 2 (n) = x 2(n) + .

where e, denotes the roundoff error due to the multiplications in forming the nth

point of x 2(n). Its variance for most values of n is ,2 which was defined in section

6.1.1. The variance of ,, is aot quite the same for all values of n. For example e N

is zero because x2( ) is defined to be zero in equation (7.9b). Also for n =0 the

factor by which (x (n) - (n + ) of equation (7.9b) gets multiplied by becomes
2

1
. As mentioned in earier sections, the

1numbers by has a different probability

error due to multiplication of fixed-point

distribution from what we have assumed

in section 6.1.1. In short, the variance of error at x 2(n) can be written as:

E[E,21] 

2

1.5 ra

0

N N
< < ,n,*N

2 4
n =0

N
4

x 2 (n) =

(7.9b)

(7.10)

__ _
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On the other hand, X (k), the desired DHT of x (n) is computed from Xl(k)

and X 2(k) the transforms of the subsequences xl(n) and x 2(n) in the following

manner:

X(2k) - X 1(k) OS < N
2

X(2k+1) X 2(k) + X2(k+1) + (-1) k [x(-) -

where

3N
x O 2k<2

(7.11a)

(7.11b)

X4N) - X(0)

Using the above equation we can find the output noise variance of the N-point

sequence x (n ) from the output noise variance of the N sequences () and
-- point sequences x (n) and

x 2(n). More specifically, by inspection of figure 7.7 the error in X(k) denoted by

ex(k) can be written as:

ex(2k) = eOX(k)

eX(2k.1) = eX2(k) + eX2(k+.)

where (k) denotes the er

NOsk < 
2

N
2

ror in computing Xi(k). From (7;9a) we can conclude

that

YVar [t(k)] - 2A )
The error in X 2 (k) is due to the error in forming x 2(n) from x (n) and due to the

N
error in - point DHT computation of X 2(k). Thus using equation (7.10) the total

variance of ex2(k) + ex2(k +l) can be written as:

(7.12a)

(7.12b)

(7.13a)

____ _��__ __
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Var [ex2(k) + X2(k+l)] = 2( (, k+ 1) + (7.13b)

2 E[ 2 n )+ casn 2Nn (k + 1) )2
2; E [~1(( 2nk 2a )r +k+ )
n-0

Note that the summation in equation (7.13b) is the contribution of the error in

forming x2(n) to ex2(k) + ex 2(k+l) and the first two terms in equation (7.13b) are

N.
due to the roundoff errors involved in -- point DHT computation of

X 2(k) + X 2(k+ 1).

Using the equations (7.12) and (7.13) the variance of error at X(k) denoted

by a2(N ,k) can be written as:

-(N,U2) _ -(N2k) 0 s k <N (7.14a)
2 <2

cArN,2k+1) = A( ,k) + u2- .,k+1) + (7.14b)2

,2irnk. 2rn(k + 1) )2 N
naE O ,( A2 ) + m,0 2 k < N

Equation (7.14) is the basic result we have been looking for. It says that the

output noise variance of an N-point sequence, a2(N ,k) can be easily obtained from

a2(~ Nk). The distribution of the output error variance of 256-point sequences

using the DF2 algorithm is shown in figure 7.8. As it is seen there are no major

peaks imilar to the ones in figure 7.2 which shows the distribution of output noise

variance for the DT2 algorithm. Recall that the peaks at k = 3 1 for

4

DT2 are due to the fact that in the last stage of the butterflies, the (--_ l)st and

3N(3 1)st elements of the (v- 1)st array are multiplied by the largest coefficient± 1)s
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of the entire algorithm ( i.e. ). In the DF2 algorithm, since multiplica-
2sin(- )

1
tions by the largest coefficient ( i.e. 2 ) appear in the first stage of the

2sin(

algorithm, their effect is somewhat reduced. Besides, since the input to the first

stage of the algorithm is error free, multiplication by large factors can not magnify

any error. Figure 7.9 shows the output noise variance of the DT2 and DF2 algo-

rithms as a function of the transform size.

Having found the output noise variance, we should now consider the dynamic

range issues. The maximum allowable input to ensure against overflow was found

numerically using the technique discussed in appendix A. The second column of

table 7.2 shows the maximum input as a function of transform size. For large

values of N, doubling the transform size scales down the maximum magnitude of

the input by a factor of 3.46. As it is mentioned in appendix A, the numerical

technique used to generate table 7.2, results in the sufficient but not the necessary

condition for the input to prevent overflows. The third cumn of the table 7.2

shows the variance of the output signal provided the input is a white sequence

with probability density function of each point uniformly distributed between its

maximum allowable range. Comparing tables 7.1 and 7.2 we can see that the max-

imum magnitude of the input which guarantees no overflows, is larger for the

decimation-in-frequency algorithm than it is for the decimation-in-time algorithm.

Figure 7.10 shows the average noise to signal ratio for the DF2 and DT2 algo-
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J c

Transform siz MaXmm ipt Varianc of outpt

N IX , 1 2
3

8 1.0 x lo-' 2.9 x 10-2

16 3.3 x 10- 2 5.9 x 10-3

32 1.0 x 10-2 1.2 x 10- 3

64 3.1 x 10- 3 2.0 x 10- 4

128 8.9. x 10-4 3.4 x 10-

2S6 7 x 10- 6.3 x 10- 6

512 7.4 x 10- 5 9.5 x 10- "

1024 2.2 x 10- 5 1.6 x 10-7

Table 7.2 The upper bound on matimum magnitude of the input to ensure
against overflow in ixed point impe tation of the DF2 agorithm.
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rithms. The experimental results verifying the theoretical curves of figures 7.8 and

7.10 will be presented in chapter 8.

7.2.2. Roundoff Noise Analysis of the DF2 Using Floating-Point Arithmetic

Our approach to roundoff noise analysis of the DF2 algorithm using floating-

point arithmetic is a recursive one. However, as we will see, it will be slightly dif-

ferent from the previous cases.

Consider an 2-point zero mean sequence w (n) with all its points statistically

independent with variance of the nth point denoted by a( 2 ,n). Suppose we

have an algorithm which given a ' (2 ,n ) computes the variance of error at W (k)

the DHT of w (n). Consider another N-point zero mean sequence x (n) with all its

points statistically independent and the variance of its nth point given by

i 2 (N,n). We will show that given an algorithm to compute the variance of error

for W(k), we can find a way to compute the variance of error for X (k) the DHT

of x(n).

Recall from section 5.1.4 that using the decimation-in-frequency algorithm of

Nsection 5.1.4 an N-point DHT can be decomposed into two -- point DHTs. This is

shown in figure 7.11 and equation (7.9). where the N-point sequence x(n) is

decomposed into x(n) and x 2(n). Using equation (7.12) and figure 7.11 Xl(k)

and X 2(k), the DHTs of x(n) and x 2(n) are combined in order to form X(k).

Having inserted the signal independent noise generators after each multiplier and
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adder in the signal flow graph of the algorithm, the computed values of x 1(n ) and

x 2(n) denoted by xl(n) and i 2(n) can be written as:

(7.15a)
rl(n) - [ x(n) + x2 +) [ 1 + , l

x(n )- x( 2N+u)
2N

N

n N N

N

where , denotes the roundoff error due to floating-point multiplication and addi-

tions for computing the nth term of x 1(n) or x 2(n).

The error in computing various points of xl(n) are uncorrelated with each

other and the variance of the error at .Ft(n) is given by

Var [e,() ] = .2 [ r (N,n) + 2 (Nn ) 

If the -- point DHI of x l(n) were to be computed with infinite precision, the only

source of error at X l(k ) would have been due to the error in x I(n ). That is

Vart'[x,(k) = a2

N-I

a' -O
[oa-(Nn,)+ +ruv 2 )] cas2( 2n ) (7.16)

Recall that x l(n) is an -:point zero mean sequence with all its points satistically

independent and the variance of its nth point given by cr (Nn) + a2 (N + 2 )

Therefore we can use our assumcd algorithm in order to find Var "(ex,(k)) the vari-

N
ance of error at X (k) only due to the 7-point DHT computational errors. Thus

the total variance of error at X (k ) is given by

0

(7.15b)[ 1+ e.1 + 
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Var[ex,(k)] = Var"[ex,()] + Var'[ex,(k)] (7.17a)

A similar argument can be used to show that the variance of error at X 2(k) is

given by

Var (x(k)] = Var [x 2(k)] + Var teX2(k)] (7.17b)

where

N2-, "I .,,(Nu)+ (N,+ )
v~u~kxttx -a 2~ C2 cl=t )

is the variance of error at X2 (k) only due to the error in forming xn) and

var"[%ex24 is the variance of error at X 2(k) only due to the 2-point DHTr computa-

tion of X,(k). var"I t.e,)] can be obtained via our assunmed algorithm which uses

2(N,,) + ,(N, + )

the-variance of r,(n) ( i.e ) as input.
4 (-)

Now let us see how the quantities that we have found can be used to find the

output noise variance for (n). Referring to figure 7.11, the computed value of

x(2k) and X(2k+1) can be written as:

X(2k) X1 (k) + 'x,) (7.18a)

1(2k+1) [1 + ,] { [(Xz(k) + ) + (X 2 (k+l) + 'x , (k+)) l [ 1 + , + (7.18b)

(- ) x(N) _ x(3N) + )4 44

where ek denotes the error due to floating-point multiplication and addition for

computing x(2 +1) and 'x,(k) is the error which has been accumulated in computing

_ __ __ __ _�_
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xI(k). From equation (7.18) the variance of error at the kh point of the output of

the N-point DHT denoted by 2N,k) can be written as:

2(N ,2) Var [ x,(k)] (7.19a)

2(Nc,2 l) [(+ 1 ) - E (L+ e 2 + a.2 2 E[ (X(k) + X(C + 1) )2] + (7.19b)

E[ (X(2k+1))2 + 2(N.N) + (N, .)}

Note that a(N,2k) of equation (7.19a) has already been computed in equation

(7.17a). We now have to show ways of obtaining the terms in equation (7.19b).

The first term in equation (7.19b) is given by

E [ (x,k) + X(k.1) )2] Var[# + Var,) ' f,,, +

N

The rammaion in the above equarion is duc to thc error in computing r(n) which

causes some correlation between the error at the output points X2k) and xz(k +1).

Similary, v{ar e)1] and var[ tx+Ol)] Of the above equation can be found from

equation (7.17b).

The second term in equation (7.19b) involves computing E ( X(2 + 1) ) and

E[( X)) + X(t + 1 ) which am given by

,-I
E [(X(2k+1))2 ] -2 N)N
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(Nn)+ ctr N, +n)
E [ (X 2(k) + X2(k+)) 2 i + X((k +1) )2 , ( 

4oNa 2rn N/2
4 N

The recursion is now complete. We have shown that all the terms in equations

(7.19a) and (7.19b) can be computed using our assumed algorithm.

To summarize, we starred off with an algorithm which could compute the out-

put noise variance of an 2-point zero mean sequence of uncorrelated input points.

Then we showed that the using this algorithm we can find the output noise vari-

ance of an N-point sequence with uncorrelated input points. Thus we can recur-

sively find the output noise variance of arbitrarily long white sequences.

Figure 7.12 shows the distribution of the variance of error as a function of fre-

quency for 256-point white sequences. Figure 7.13 shows the average output noise

to signal ratio of white sequences using the DF2 and DT2 algorithms. As it is

expected the average output noise to signal variance for the dcmation-in-

frequency algorithm is roughly the same as the decimation-in-time version. Com-

paring figures 7.13, 7.6 and 6.22 we can conclude that overall Bracewell's algorithm

has more desirable error propeties than the new algorithm. The experimental

results verifying the theoretical predictions of this section will be presented in

chapter 8.
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CHAPTER 8: Experimental Results

In chapters 6 and 7, we investigated the theoretical error properties of some of

the algorithms in chapters 3, 4 and 5. In this chapter, the experimental results

regarding the roundoff noise in these algorithms will be examned. Section 8.1 con-

tains the detailed description of the experimental procedure wtich was used. Sec-

tions 8.2 and 8.3 will report on the expemental error prperies of the DHT algo-

rithms. In chapter 9 we will compare various algothms discussed throughout the

thesis in terms of their computational efficiencies and error properties.

8.1. The Experimental Procedure

The expeiments for roundoff noise analysis consisted of two parts; In the first

part, zero mean white input sequences were generated using a random number

generator routine. The probability density function (pdf ) for each point of these

sequences was uniformly distributed around the origin. Clearly, the width of this

pdf does not affect the noise to signal ratio for floating-point implementations.

However, in the case of fixed-point arithmetic, the width was chosen in such a way

to guarantee no overflows in the output or in intermediate computations.

Having generated the test sequences, they were then transformed three times;

once using rounded fixed-point arithmetic with word length of 15 bits ( excuding

the sign bit ); the second time using floating-point arithmetic with 23 bits of

mantissa ( excluding the hidden bit and the sign bit ) and the third time using dou-

ble precision floating-point arithmetic with 55 bits of mantissa ( excluding the sign
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bit and the hidden bit ). The double precision computation was assumed to be

exact in comparison with the other two. Thus the roundoff error due to fixed-

point implementation is the difference between the third and first computations

and the error due to floating-point implementation is the difference between the

third and second computations.

The above procedure was repeated with 1000 independent input sequences in

order to find a stable. estimate of the variance of error for each frequency point of

an N-point transform. The estimator used is of the form

er'(2k) - 1 lt00
&(Nk) 1000 - [ e(N k) - i.(Nk ) (8.la)

1 

A. (N, ) =000 Z e(N ) (8.lb)
=0

where 1i,(Nk) and &2(N,k) denote the estimated mean and variance of error in

the k point of an N-point transform. Similarly, (N ;k) of equation (8.1) denotes

the ith experimental value of the error at the kh frequency point of an N-point

transform. The reason behind choosing 1000 as the number of experiments and the

charactexics of the estimator shown in equation (8.1) are discussed in appendix

B.

In order to find an estimate of the mean output noise variance we iave to

averap &2(N ,) over the frequency points k . That is

.2 1 N 2
a = NW (aNk) (8.2)

k-0

Since the input signal is zero mean and white and its pdf is uniformly distributed

we can easily find the output signal variance. Thus using equation (8.2) we can
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obtain an estimate of noise to signal ratio for the algorithms under investigation.

Recall from section 6.1.2 that in our theoretical analyses we used the parame-

ter cr2 to denote the variance of error due to floating-point multiplications and

additions i.e

Q(xy) xY (1 + e)

Q(x + y) (x + y)(1 + e)

var e ] a'

For floating-point implementation with b bits of mantissa if we assame that e is

uniformly distributed in the range (-2-,+2- ) then ar2 - 3 2-z. Experiments

have shown that the variance of error due to multiplications. and additions are

slightly different from each other and that the distribution for e is not quite uni-

form [13]. ( Note that in fixed-point implementation, uniform distribution for e in

the range (- 2,+ 1 2-) has been verified experimentally [13] ). However, the

variance of roundoff error in floating-point arithmetic has been verified to be pro-

portional to 2- 2 [131. That is

. = a 2 -'

where a is a constant for a given algorithm which depends on the number of multi-

plies and adds and the order in which they are performed in that algorithm. There-

fore, for the results related to floating-point imlementations, we will use an empir-

ical value for a obtained by matching the theoretical and experimental noise to sig-

nal ratio curves.
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To clarify the experimental procedure used, we should define carefully the

convention used to round the results of floating-point additions and multiplications.

The results were rounded to the closest binary number ( for a b-bit mantissa ) and

if a result of an addition or a multiplication was midway between two binary

numbers, a random choice was made as to whether to round up or down. It tuns

out that in floating-point addition of two numbers of the ame order of magnitude

where the unrounded mantissas are very often only. one bit longer than the

rounded mantissas, this stuation occurs quite frequently. Always rounding up ( or

down ) rather than randomly up or down in this situation introduces a correlation

between roundoff error and signal sign. This contradicts the assumption that round-

off errors are signal independent. For instance, as we will see, in implementing the

algorithms of chapter 3, if one merely rounds up in situations where the mantissa is

exactly between two binary numbers, the experimental noise to signal ratios will be

significantly bigher than the theoretical predictions.

8.2. Experimental Results

8.2.1. Experimental Verification of the Theoretical Results

8.2.1.1. Fixed-point Implementation Results

In this section the experimental results verifying the theoretical analyses of

chapter 6 will be presented. Figure 8.1 shows the experimental and the theoretical

noise to signal ratio for fixed-point realization of the DT1 and DF1 algorithms.

There seems to be an excellent agreement between the predicted and actual values



du

"a~~

0c
0 *

11 9I
lCC

_ ~ 4. 
U

o ;2be*~~~~~~1II

.:
CaI I.3
a

0 a~~ ·4.0

"a
N~~~

qCz Jo saTn Um opu jug oi goU ndno gonbs uBum ooU

vg( Z~q-Z 
IZ-0



- 166 -

of noise to signal ratio. Equations (6.15) and (6.37) were used in order to find the

theoretical mean output noise variance given by

1 N-
oi = <(Nk)> = N a(Nk)

k -O

The output signal variance was obtained by assuming that the input signal is

white and that the pdf for each point is uniformly distnrbuted around the origin.

The width of this pdf was determined by the maximum magnitude of the input that

would guarantee no overflows for the particular algorithm under investigation. The

upper bound for the maxmum magnitude of input for DT1 and DF1 are shown in

tables 6.1 and 6.2 respectively. Not only is the output noise variance for the DF1

algorithm larger than that of the DT1 algorithm ( see figure 6.18 ), but also the

dynamic range constraint on the input signal is more severe for the DF1 algorithm

This explains the gap between the two curves shown in figure 8.1. We can fit the

following equations to the data shown in figure 8.1:

= 0.20 N20 DT1 (8.3a)
Ca 2-

2. 2 0.24 N' 3 DF 1 (8.3b)

2
Although the multiplication count for the MDTl algorithm is 3 of DT1, as it is

shown in figure 8.1, the noise to signal ratio for the two algorithms are almost

identical. As explained in section 6.2.2.1, this is due to the fact that the errors at

the input to a given butterfly in the MDT1 algorithm are correlated with each

other.
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Figure 8.2 shows the output noise to signal ratio for the DT2 and DF2 algo-

rithms. Again, There is excellent agreement between the predicted and actual

values. Although the output noise variance for DT2 and DF2 are fairly close to

each other, comparing tables 7.1 and 7.2 we realize that the overflow constraints,

allow a larger output signal variance for the decimation-in-frequency algorithm.

Indeed, this is one of the reasons why the noise to signal ratio of the DF2 algo-

rithm is increasing at a lower than that of the DT2 algorithm in figure 8.2. We can

fit the following equations to the data shown in figure 8.2:

=0.0057 N2 DT2 (8.4a)

V r~. 2 0.10 N't DT2 (8.4b)

Figures 8.3 through 8.7 show the theoretical and experimental distribution of

output noise variance as a function of frequency for 256-point sequences. Again

the theoretical results seem to be in good agreement with the experiments. As men-

N 3Ntioned in chapter 7, the peaks in figure 8.6 at frequency points k =- - 1, 3 1
4 4

are due to the fact that in the last stage of the algorithm, the error which has been

accumulated in the (v-1)st array is multiplied by 12 which attains its
2 cos( -)

highest value ( i.e. ) at k = -- 1, 3 1. This highest value
2sin(--) 4

1 ~ ~

is also the largest coefficient of all the butterflies in the entire algo-
2san(--)

N

rithm.
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On the other hand, for the decimation-in-frequency algorithm DF2, the largest

coefficients in the butterflies appear at the very first stage of the algorithm. There-

fore their effect is somewhat reduced by the time the signal is passed by the last

array of the algorithm. As shown in figure 8.7, there are no peaks similar to figure

8.6 among the frequency points of the dedmation-in-frequency algorithm. The

wide fluctuations of output noise variance in the neighboring points of figure 8.7

can be assocated with the fact that the even and odd frequency points are com-

puted separately.

Recall from section 5.1.1 that a more generalized version of the decomposition

used for the DT1 algorithm is given by equation (5.6). The original decomposi-

tion shown in equation (5.4) can be considered a special case of the generalized

one with r = . 'Me quantity 2irk(2r + ) in equation (5.6) attains its
2 cos( 

largest value for

k ( + ) N (2m + 1)±4
4 (2 + 1)

where m is any integer which makes k of the above equation an integer in the

range 0 to N- 1 (Note that there are only four values of m which result in such

values). Therefore, we would expect the distribution of error for the generalized

version to have peaks at these frequency points. This has been verified experimen-

tally for r =0, 1, 2, 3 and the resulting output noise variance for 256-point

sequences are shown in figure 8.8.
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8.2.1.2. Floating-point Implementation Results

The coresponding results for the floating-point implementations of the algo.

rithms of the previous section are shown in figures 8.9 and 8.10. As explained in

section 8.1 the variance of roundoff error due to multiplications and additions in

floatin gpoint implementation with b bits of mantissa is given by

a2 = a 2-2

The parameter a which is detemind by matching the theoretical and experimental

noise to signal ratio curves for a specific algorithm, is shown in figures 8.9 and

8.10. The value of a represents essenally an empirical average a2 for all the multi-

plications and additions used in computing the DIHT of white noise sequences.

Recall from section 6.1.2 and 8.1 that in order to make the signal and error

uncorrelated with each other, randomized rounding has to be used when the result

of multiplication or addition lies equally between two quantization levels. This

situation occurs frequently when we add floating numbers of the same order of

magnitude. The experimental results using randomized rounding and non random-

ized rounding for deimaion-in-time and frequency version of Bracewell's algo-

rithm using floating-point arithmetic is shown in figure 8.9. As it is expected, the

theoretical curves match the experimental results only if randomized rounding is

used.

We can fit the following equations to the data shown in figure 8.9:

2 - = .40 v - .53 DT1 (8.5a)r 2 2-l

1 _ _ __ _ _
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2_ -- = .40 v - .58 DF1 (8.5b)acr2 2-2

Cri 0.59 v - 1.09 MDT1 (8.5c)
o'7 -2

(Ti
" 0.044 NU DT2 (8.6a)

2- -' 0.043 NLZ DF2 (8.6b)

Note that unlike the fixed-point case the noise to signal ratio for the Mll algo-

rithm shown in figure 8.9 is higher tan that of the DT1 algorithm. As explained in

section 6.2.2.1 this is due to the correlations betwen the error at the inputs of the

butterflies. As is shown in figure 8.9, the results for the DF1 algorithm are almost

identical to that of the DT1 algorithm; Unlike the fixed-point case the dynamic

range issues do not exist in floating-point implementations. Therefore as it is seen

in figures 8.9 and 8.10 and equations 8.2 and 8.3, the floating-point implementa-

tions of the deimation-in-time and frequency algorithms have similar error charac-

teristic.

The theoretical and eperimetal distribution of variance of error for DT1,

MDI1, DF1 and DF2 agorithms shown in figures 8.11 through 8.15 are in good

agreement with each other.

8.22. Experimental Results for the R4DT1 ad R4DT2 algorithms

The error properties of radix 4 versions of all the algorithms discussed in previ-

ous sections are very similar to that of radix 2 versions. Figures 8.16 and 8.17 show

the experimental noise to signal ratio for DT1, R4DT1, DT2, R4DT2 algorithms.

The distnribution of roundoff noise due to fixed-point implementation for 256-point



v�o

�I.

m

oa.

a

_ o
0

j 

sn*~~~*

0

. ~

e I'CaU _

e £

c
c~ c

jp-U cX *! ^o

_ c t.

C c

_ ·

' ° 2 

qgz JO smn m (I9rZ) v
=Ug ZgM -d I r Ui d

qZ Jo sPM W1 (Yn9oZ)D
OWU3A am mndao ID traixL

VI cm

................... . .. . . ..................

.................. 1·.. -- " ��·-·

7li�.

................ ...................................



a

*0 f" em ' 0

S

a
a

a

I.

0

S~S

4.-

'V 

~o
''-S

0 .-

a= 0

3.3u

U4 .

0 i 

qgZ Jo awn U (9 
=Dp" o=W jPd squaw

,_ Jo Wun m. ( 9m):
URUu roa uhmdmo uoacL

....... ..... ...... ........

: -=:�i

..........

--

t

.. .. . . . . . . . . .. . . .. . . . .

4



a a

a I

cm
a

q.T 

tM

eq

' i ':

w_ o

0o Z_c S 

To 

~-* *~* :o

,el~

QI ~I 3 UC O

_ E

- U-e

0~~
.C - __

_ .

a._

_

o~~o 

U,_Z JO 5 10 (:d9 jIUC tWO Z a ( ti p
Dougu ?Iai mdino 12d" IDqg-Z;0 Mln lcapl -t9qL

-- --



'

l a0
0 a*L 0 1

(b Y)~~~~~~~~~~~~~~~~~~1

0t

U

(L:

ao

0

cu- 

U'

8 cfA. ~ ~ .

_2 Q0 c

*_

_S ,, -o~ .,f
U-

c 4_

3 0C~r 

C U

0 
.= 

qz-ZJO p = m (?9o)U v-=z o nmn m ( rgsz)U
2OUR3ZA 2~xoa mo .urnd m.. (:C9~)~.

0 a a a

--

A~

I



UAwk
a

a
Wa
cm

cma

_ a
-

a.m mmm
mm m ~

C.

I

q-z o rm m (
m &wp m wh o wduno Puow -dx

cm

a

mmm. ..Ommm 4 

- I

a
mmmmmm

qt.z Jo sU m (9T)f
=UEuA aiUA mo amo J1 U

Wt
In

`r

.o

.2

I
4.

i 

30
*0

o m
_N *- E

C .·I -

*!w,23 Q

*0 Q

3O
A ,:

C

3
' Y"

am b.~

u
o2P Q

3 8
. " 

To 8 

.4



C)

c0
N

2 1
e

hi

0
O

a

.:

Is

w 

X

- Jo smu! m o Ius 01 on m. u midlo mbs uwm oo

~~-;·· ~ ~ ~

(

c
4:
cw

VI( ZAC-Z 

479.



0
0a
0

Iz
e.
c

t

0

C.

; .

Z C -Z

zD

figZ Ios as u! ow mAd~ oi sou indno

I
IiC
w



- 187 -

sequences using the R4DT2 algorithm is shown in figure 8.18. As is expected, the

peaks in the radix 2 version also appear in the radix 4 implementation.

8.3. Comparison of Error Properties of DHT Algorithms

Figures 8.19 and 8.20 show the noise to signal ratio curves for DT1, MDT1,

DF1, D2, DF2, DT3 algorithms using fixed and floating-point arithmetic. The

main conclusion which can be drawn from figures 8.19 and 8.20 is that the algo-

rithms of chapter 5 ( i.e. D21Z and DF2 ) and chapter 3 ( DT1 and DF1) have the

highest and lowest noise to signal ratios respectively. The noise characteristics of

Wang's algorithm ( DI3) lies somewhere in between these two class of algorithms.

The total operation count for all the algorithms discussed in this thesis is

shown in table 8.1. Notice that the total number of arithmetic operations is identi-

cal for all the algorithms. However, DT2 and DF2 algorithms use the least number

of multiplies and DT1 and DF1 need the most number of multiplies. Therefore, in

applications where the multiplication cost ( e.g. time ) is roughly the same as the

addition cost, DT1 and DF1 algorithms will obviously outperform DT2 and DF2.

However, in applications where the multiplication is significantly more costly than

additions, there is a tradeoff between cost and accuracy depending upon which

algorithm is used.

Of course, speed and accuracy are not the only issues involved in comparing

algorithms. Complexity, the amount of overhead, storage and other factors are

often equally as important. For instance, the DT3 algorithm is by far the most com-

�1_1
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Table 8.1 Operadion count for various radix 2 DHT algorims.

Algorithm #of ifpli of Adds Total Opraion Coun 

D I IN I0rj2V SN DT1 NogN 1og2V -oVm'2 ~-to~vlo~ 2

3N I 3N 5N

Dr NV loN IogzN logN
2 3N N SN2 2

2 12
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plex one discussed in this thesis. The complexity of DT2 ( or DF2 ) and DT1 ( or

DT ) algrithms are roughly the same. However, because of the special cases

shown in equation (5.4) the overhead is slightly higher for Day than it is for the

DT1 algorithm.



CHAPTER 9: Conclusion and Suggestions For Future Research

9.1. Conclusions

In this thesis, the error properties of various discrete Hartley transform algo-

rithms were investigated theoretically and experimentally. More specifically, we

analyzed the arithmetic roundoff error characteristics of DHT algorithms proposed

by Bracewell and Wang in addition to a new DHT algorithm.

Statistical models for roundoff errors and linear system noise theory were

employed to estimate the output noise variance in various DHT algorithms for fixed

and floating-point arithmetic. By considering the overflow constraint in conjunction

with these noise analyses, output noise to signal ratios were derived. We used

experimental noise measurements to support the predictions obtained via the

models. Empiricai results shown in chapter 7 were found to be in excellent agree-

ment with the theoretical predictions based on the statistical models.

Having verified our analytical results, we then compared the DHT algorithms

of chapters 3, 4 and 5 in terms of their error properties as well as their computa-

tional efficiencies. For both fixed and floating-point implementations, Bracewell's

algorithm and the new algorithm exhibited the lowest and highest noise to signal

ratios respectively.

For a given radix, the total operation count for N-point real sequences was

found to be the same using any of the DHT algorithms described in this thesis.

However the new algorithm ( D2Z and DF2 )and Bracewell algorithm ( DT1 and
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DF1 ) required the least and most number of multiplications respectively. Speed

and efficiencies of these algorithms are also influenced by other factors such as

complexity of implementation, storage requirements and the amount of overhead.

In fact, in some applications, the data management costs exceed that of the arith-

metic operations. Of the three algorithms mentioned above, Wang's algorithm was

found to be the most complex one to implement. On the other hand, Bracewell's

algorithm which in many ways resembles the FFT, was found to be the most

straightforward one to implement. Realization of the new algorithm of chapter 5,

was somewhat complicated by having to take care of the special cases.

9.2. Suggestions for Future Research

The finite register length in DHT computations affects the output noise via

two different mechanisms: coefficient quantization and arithmetic roundoff error.

In this thesis, we have only been concerned with the error due to fixed or floating-

point computations. Our approach has been to assume that the DHT coefficients

are known with enough precision so that the primary source of error at the output

is due to the roundoff arithmetic noise. A possible area of further research would

be to find out the way in which coefficient quantization affects the output for dif-

ferent DHT algorithms.

Another possible extension involves handling of overflows. Recall that in

fixed-point implementations of various algorithms, we had to scale down the input

signal so that we are guaranteed of no overflows. Another way to prevent overflow

would be to attenuate the input signal by some factor at every stage of an
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algorithm. In the case of the FFT, this results in a considerable improvement in the

output noise ratio. Another approach to avoid overflow in the FFT which could

potentially be applied to the DHT algorithms, is the use of block floating-point. In

this procedure, the original array is normalized to the far left of the computer word

with the restriction that the maximum magnitude of the input signal is less than

one. The computation proceeds in a fixed-point manne-, except that after every

addition, there is an overflow test. If overflow is detected, the entire array is

divided by 2 and the computation continues. The number of necessary shifts are

counted to determine a scale factor or exponent for the entire final array. The out-

put noise to signal ratio depends strongly on how many overflows occur and at what

stage of the computations they occur. The position and timing of the overflows are

determined by the signal being transformed and thus in order to analyze the noise

to signal ratio in a block floating-point implementation, one needs to know the pro-

perties of the input signal. For the case of the FFT, this problem of finding the out-

put noise to signal ratio for white inputs has been analyzed theoretically 13]. It

would be interesting to apply this idea to the DHT algorithms and find out the

amount of improvement that can be achieved in the noise to signal ratio.5

Finally, throughout this thesis we assumed the input signals to be white. This

simplified our analysis to a great extent. In the case of the FFT, the output noise to

signal ratios for sinusoid type signals have been found to be within 15 percent of

that of white signal. It would be worthwhile, to examine the error properties of the

DHT algorithms using other types of input signals such as the sinusoids.
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Appendix A: A Numerical Technique to Determine

the Overflow Constraint

As we mentioned in chapter 6, dynamic range issues become important in

fixed-point realization of DHT algorithms. In particular, in order to obtain output

noise to signal ratio, we have to consider the overflow constraint in conjunction

with our noise analysis. For a given algorithm, we can ensure against overflow by

keeping the input x (n) sufficiently small so that no element of the intermediate or

the output array exceeds unity. In this appendix we will describe a way of obtaining

upper bounds on the maximum magnitude of input signal in order to prevent over-

flows.

Suppose we would like to find the overflow constraint for N-point input

sequences to a given algorithm A. Consider another' algorithm B which is exactly

identical to A except that at every stage signals and the coefficients of butterflies

are replaced with their absolute values and minus signs are replaced with plus signs

and subtractions with additions. Now let us pass an N-point sequence of all ones

through algorithm B ( using floating-point arithmetic so that we are guaranteed of

no overflows) and find the maximum magnitude of the output array IXa I .

numerically.

Because of the way algorithm B is constructed, as we move from one stage to

the next the maximum magnitude of the elements of arrays increases. That is

(A.1)

�

Ix. Im < IX-+t 1m
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where Xi . denotes the maximum magnitude of the elements of the ith array of

the algorithm. This implies that if no overflows occur in the final array ( output ),

we are guaranteed of no overflows in the intermediate stages. Therefore if we

chose the maximum magnitude of the input signal Xi., 1 to be

IXw c1 < I (A.2)

we can ensure a oinst overflows in the entire algorithm B.

So far, we have only been concerned with the overflow constraint for algo-

rithm B. Examining the way we constructed algorithm B from A, we realize that

the maximum magnitude of all the intermediate quantities in B are larger than the

corresponding quantities in A. Therefore, the constraint shown in equation (A.2)

also applies to algorithm A. It is important to note that for algorithm A, the above

bound is a sufficient but not a necessary condition on the input to prevent over-

flows.

To summarize, we constructed a new algorithm B which was identical to algo

rithm A except that at every stage signals and coefficients of butterflies were

replaced with their absolute values and subtractions were replaced by additions.

Then we found the maximum magnitude of the output of algorithm B, IX, .,

with a sequence of all ones as its input. The overflow constraint for algorithm A is

then given by equation (A.2).

------- -



Appendix B : Estimating the Output Noise Variance

From the Experimental Data

Recall from our experimental procedure described in chapter 7 that in order to

find a stable estimate of the output noise variance for each frequency point of a

given transform size, we used 1000 experimental values for error. In this appendix

we will characterize the estimator used in predicting the output noise variance, and

state the reason behind choosing 1000 as the number of experimental values of

error.

The estimator used is basically of the form

2(Nk) = ( e (N ,k ) - (Nk) )2 (B.la)

73.

i(N ,k ) = ! c,(N ,k ) (B.lb)
i=0

where ei (N ,k) denotes the ith experimental value of the error at the kth frequency

point of an N-point transform, n is the number of experiments and ni,(Nk) and

&2(N,k) denote the estimates for the mean and variance of error at the kth fre-

quency point of an N-point transform. The mean and variance of ii.(Nk) are

given by

E [ ,(Nk) ] = m.(N,k) (B.2a)

Va [ ia ] = (N,k) (B.2b)

Thus mi,(N,k) is an unbiased and consistent estimate of m,(N,k). This implies that

no matter what the probability distribution for e(N,k) is, nri,(N,k) is a good esti-
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mate of m.(N ,k). Moreover, if we assume that e(N,k) is a normial random variable

with mean m,(N,k) and variance a2(N,k), then iA(Nk) is the maimum likeli-

hood estimator and is efficient and sufficient.

On the other hand, the expected value of 2(N ,k) of equation (B.la) is given

[ (Nk ) c] = t- (B.3)

Thus &2(N,k) is biased. Furthermore, if we assume that ei(N,) is a normal ran-

dom variable with mean m.(N,k) and variance cr2(N,k), 2(Nk) of equation

(B.la) is the maximum likelihood estimator and is consistent. In this case the pro-

bability distribution for dc&(N,k) is given by

n &N, ) = Xnt (B:4)
(Y(N ,k )

where X2 denotes the chi square distribution with n degrees of freedom defined by

fr(Y) 2a(n) Y-l e,12 (B.5)

Since the variance of a random variable with chi square distribution of degree n is

2n, Wsing equation (B.4) we get

Var [ 2(N,k )] 2a (N , ) (B.6)

In order to obtain a stable estimate of k2(N k ) we would like its standard deviation

to be much smaller that its mean. That is

; aN k) << n -1 (N k) (B.7)

Thus by choosing n to be 1000, the standard deviation of 62(N ,k) becomes about 3

percent of its mean.
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