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Abstract

It has been shown theoretically that under mild conditions multidimensional signals can
be recovered from one-level crossings (e.g. zero crossings). However, the accuracy with which
locations of the one-level crossings need to be specified is large enough to limit the applicability
of such a method in many practical situations. In this thesis, we will propose two major
sampling strategies for reconstruction of signals from multiple-level crossings.

In our first approach, we extend new theoretical results in multivariate polynomial interpo-
lation theory, in order to define a variety of semi-implicit sampling strategies. These strategies,
which provide sufficient conditions for recovery of multidimensional signals from non-uniform
samples on lines of rational slope, are ultimately applied to the problem of reconstruction from
multiple-level crossings. Although these semi-implicit results are general enough to be used
for recovery from signal crossings with arbitrary functions, they do not provide conditions for
reconstruction of signals from an arbitrarily small number of thresholds. -In order to circumvent
this difficulty, we propose a second approach which is implicit, and uses algebraic geometric con-
cepts to find conditions under which a signal is almost always reconstructible from its multilevel
threshold crossings.

A problem distinct from that of uniquely specifying signals with level crossings is that of
developing specific algorithms for recovering them from level crossing information, once it is
known that the signals satisfy the appropriate constraints. We propose a variety of reconstruc-
tion algorithms for each of our two approaches, and demonstrate results for several images.
Having proposed a variety of sampling and reconstruction strategies, we then present a prelim-
inary investigation of their quantization characteristics. In doing so, we find that the dynamic
range and bandwidth requirements for representation of signals via multiple level threshold
crossings lie in between those of Nyquist and zero crossing representation. Moreover, under
certain circumstances, our semi-implicit and implicit sampling strategies become identical to
Nyquist sampling. This will bridge the gap between explicit, semi-implicit, and implicit sam-
pling strategies, unify seemingly unrelated sampling schemes, and provide us with a spectrum
of sampling schemes for multidimensional signals.

Thesis Supervisor: Alan V. Oppenheim
Title: Professor of Electrical Engineering, MIT.
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Chapter 1

Introduction

Signal reconstruction from partial information has been an active area of research for many

years. Previous work in this area has involved developing conditions under which both one-

dimensional and two-dimensional signals are uniquely specified with Fourier transform magni-

tude, phase, or signed-magnitude information 13,4,5,6,71. Recently, Curtis et.al. considered the

problem of signal reconstruction from Fourier transform sign information for multidimensional

signals [8]. By exploiting the duality between space and frequency domains, they applied their

result to the problem of reconstruction from zero-crossing information [9]. These zero crossing

results are much less restrictive and more broadly applicable than the earlier ones based on

two-dimensional extensions of one-dimensional results.

Representing signals with their zero crossings has important practical and theoretical im-

plications. From a practical point of view, the zero-crossing results have applications in image

processing and vision, where the information contained in the edges of objects is considered

to be important [10]. Also, in situations where an image is clipped or otherwise distorted in

such a way as to preserve zero-crcssing or level-crossing information, it is possible, at least in

principle, to recover the signal from its distorted version.

From a theoretical point of view, reconstruction from zero crossings is an example of implicit
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sampling. Representation of a function by its samples or derivatives taken at preselected instants

of time has received extensive attention in theory as well as in engineering practice. Sampling

methods based on prespecified sampling times are referred to as explicit, in order to distinguish

them from implicit methods of sampling, in which a representation is sought in terms of the

instants in which the function assumes predetermined values. The idea of implicit sampling was

introduced by Bond and Cahn [11], who considered representation and manipulation of one-

dimensional signals by means of their real and complex zeros. Extensive work on this topic has

been done by Voelcker [12], and computer simulation of these results has been reported by Sekey

[13]. In addition, Bar-David [141 considered the important case of one-dimensional implicit

sampling in terms of real variables alone. These results have been used to overcome distortions

that are incurred either by intentional nonlinear processing or by inadvertent nonlinearities.

Such nonlinearities might arise in single side-band systems, where the audio signals are typically

hardlimited in order to decrease their dynamic range. Also, in magnetic tape recording, a strong

higher frequency bias tone is usually added onto the signal to ensure fidelity in the presence of

inherent material nonlinearity.

The majority of the research in implicit sampling has been restricted to one-dimensional

problems. Indeed, the zero crossings results of Rotem and Zeevi [15] and Curtis et.al. [8,9]

are the only examples of implicit sampling for multidimensional signals. Rotem and Zeevi's

results are an extension of Logan's [16] one-dimensional result, which only deals with bandpass

signals. The results due to Curtis et.al. however, are truly two-dimensional, since they take

advantage of the fact that, in contrast to the one-dimensional case, the zero crossing contours in

two or higher dimensions contain infinitely many points. These results are much less restrictive

and more general than those based on the extension of one-dimensional results. However, the

9



accuracy with which the locations of the zero crossings need to be specified is large enough

to limit their applicability in many practical situations. In effect, by representing the two-

dimensional signal with zero crossings or threshold crossings, the amplitude information of the

original signal is embedded in the exact location of the threshold crossings. Consequently, while

the original signal can be sampled at the Nyquist rate, the threshold crossing representation

may require a considerably higher, possibly infinite sampling rate to preserve the threshold

crossing locations adequately. Thus, the total number of bits or the bandwidth required in the

threshold crossing representation, is much higher than that required by sampling and quantizing

the original signal. Therefore, the results on signal reconstruction from threshold crossings are

more useful in applications in which the exact threshold crossing points are available.

It is possible, however, to view the representation of signals with threshold crossings as a

trade-off between bandwidth and dynamic range, in the sense that if the available bandwidth is

sufficient to preserve the threshold crossings accurately, then the dynamic range requirements

are significantly reduced. On the other hand, representation of signals via their samples at the

Nyquist rate can be considered as requiring minimal bandwidth and infinite dynamic range.

This is because exact recovery of signals via Nyquist sampling, requires amplitude information

at prespecified points, to infinite precision. Thus, the natural question which arises is whether

or not there are intermediate sampling and reconstruction schemes, whose characteristics lie

between these two extremes. Our objective in this thesis has been to derive sampling schemes

which bridge the gap between Nyquist sampling and zero-crossing representations by enabling

us to recover signals from multiple level threshold crossings. To this end, we have proposed a

variety of semi-implicit and implicit sampling strategies in Chapters 2 and 4 respectively. Semi-

implicit samples of a multidimensional signal are defined to be points whose coordinates are

10



mathematically related to each other. As we will see, some of our results on reconstruction from

level crossings are general enough to be used for recovery of signals from their crossings with

arbitrary functions. Possible applications of these results are for conversion of half tone images

to continuous tone ones [17]. In addition, our results can also be applied to the more general

problem of reconstruction from non-uniformly spaced samples. Reconstruction of functions from

their samples on nonuniformly distributed locations is an important task in many applications

such as machine vision [18,19], radio astronomy [20], and computed tomography 21], as well

as natural sciences such as geology, meteorology, and oceanography. Several techniques based

on non-harmonic Fourier series have been proposed 22,23] for reconstruction of bandlimited,

one-dimensional functions, sampled at irregular intervals. These methods, however, are limited

to sample sequences which have only minor deviations from uniform. Methods that have been

used to perform such reconstructions for multidimensional functions include nearest-neighbor

and bilinear interpolation, surface functional minimization by relaxation or gradient descent

methods, and Gaussian smearing resampling. However, these methods either do not result in a

minimum possible reconstruction error, or they require a priori knowledge about the form of the

function. In fact, the only exact reconstruction strategy for the multidimensional case, proposed

by Clark [24], is somewhat restrictive and its corresponding algorithm is rather heuristic. As

we will see, part of our results on reconstruction from level crossings are general enough for

recovery of signals from their non-uniform samples.

In summary, our objective in this thesis has been to derive semi-implicit and implicit sam-

pling schemes, whose characteristics lie in between the Nyquist and zero-crossing representa-

tions. These strategies result in methods of reconstructing multidimensional signals from their

multiple level threshold crossings, thus, providing a bridge between Nyquist reconstruction from

11



explicit samples at prespecified points and reconstruction via one-level crossings. As it turns

out, some of these sampling techniques are general enough to be used in problems, such as

reconstruction from crossings with arbitrary functions or from non-uniformly spaced samples.

The outline of this thesis is as follows. We shall begin by briefly reviewing related re-

search on reconstruction from zero-crossings and formulating the problem of reconstruction

from multi-level threshold crossings. In Chapter 2 we develop new results in bivariate polyno-

mial interpolation theory which are ultimately used to derive semi-implicit sampling strategies

for bandlimited, periodic (BLP) signals. Chapter 3 describes various reconstruction algorithms

for the sampling strategies of Chapter 2. In Chapter 4, we propose a second strategy for re-

construction from multiple level threshold crossings. Although the semi-implicit approach of

Chapter 2 can be applied to more general problems such as reconstruction from non-uniformly

spaced samples or reconstruction from arbitrary function crossings, the results in Chapter 4

are less restrictive in the sense that they enable us to reconstruct signals from their crossings

with arbitrary number of thresholds. In Chapter 5, we will present the results of a prelim-

inary investigation of the quantization properties of the various sampling and reconstruction

strategies described throughout the thesis. More specifically, we will show how quantization

characteristics of reconstruction from multiple level crossings vary as a function of the number

of thresholds. As we will see, the representation of two-dimensional signals, via their amplitude

quantized explicit samples, is intimately related to their position quantized implicit or semi-

implicit samples. Indeed, sampling and reconstruction from multiple level crossings, together

with Nyquist and zero crossing sampling, provide us with a wide spectrum of signal representa-

tion with different bandwidth and dynamic range requirements. Finally, conclusions and future

directions of research are included in Chapter 6.

12



In the remaining part of this chapter, we will briefly review the existing results on recon-

struction from one-level crossings, and formulate the problem of reconstruction from multiple

level threshold crossings.

1.1 Previous Results and Problem Formulation

There has been a great deal of interest in the zero crossing representation of signals in recent

years. Most of the results on the unique specification of one-dimensional signals are based upon

the fact that a bandlimited function is entire and is, thus, uniquely specified by its real and

complex zeros to within a constant and exponential factor. An arbitrary bandlimited function

is uniquely specified by its real zero crossings, if all of its zeros are real. Thus, a number of

previous research efforts concentrated on identifying the conditions under which signals have

only real zeros and on developing methods for modifying a signal so that all of its zeros become

real [14]. Despite this, most one-dimensional, bandlimited signals encountered in practice, do

not satisfy the constraints associated with these results. They are not uniquely specified by

their zero crossings unless they satisfy some additional constraints, which effectively guarantee

that they contain a sufficient number of zero crossings.

* Although a considerable amount of theoretical work has been devoted to the problem of

reconstruction of one-dimensional signals from zero crossings, much less work has been devoted

to the corresponding two-dimensional problem. Logan's result has been extended to two dimen-

sions [10,15] by requiring a one-dimensional signal derived from the original two-dimensional

one to satisfy the constraints of Logan's theorem. However, the two-dimensional problem is fun-

damentally different from the one-dimensional one, since, in two dimensions, the zero crossings

are, in general, contours rather than isolated points. Curtis and Oppenheim [9] were first to take

13



advantage of this fact; their main result states that for a BLP signal with a (2N + 1) x (2N + 1)

region of support in the Fourier domain, 16N 2 + 1 or more samples of the zero crossings are

sufficient to reconstruct the signal to within a scale factor.

As shown in 19], in carrying out the above reconstruction, the locations of the zero crossings

need to be specified accurate to 16 digits. Less accurate specification of the crossings results

in unsuccessful reconstruction. Thus, by representing the two-dimensional signal with zero

crossings or threshold crossings, the amplitude information in the original signal is embedded

in the exact location of the threshold crossings. Consequently, while the original signal can be

sampled at the Nyquist rate with many bits for amplitude specification, the threshold crossing

representation requires a considerably higher sampling rate to preserve the threshold crossing

locations adequately. Thus, it is possible to view the representation of signals with threshold

crossings as a trade-off between bandwidth and dynamic range, in the sense that if the available

bandwidth is sufficient to preserve the threshold crossings accurately, then the dynamic range

requirements are significantly reduced. On the other hand, representation of signals via their

samples at the Nyquist rate can be considered as one which requires minimal bandwidth and

large dynamic range. Our main goal in this thesis is to develop intermediate sampling schemes

for reconstruction from multiple level threshold crossings, so that their bandwidth and dynamic

range requirements lie in between Nyquist and one-level crossing representation.

Our approach to the above problem has been to represent BLP signals in terms of polyno-

mials. The reasons for doing so are twofold. First, BLP signals, which represent a fairly large

and general class of signals, can be written as polynomials, via their Fourier series expansions.

Second, since reconstruction from multiple level crossings is a special case of reconstruction

from non-uniform samples, we hope to be able to use a variety of mathematical results on

14



polynomial interpolation theory. Consider a BLP signal

N N

f(X, Y) = Z E F(ki, k2)ej 2*(kz + k2Y)
kI=-N k=-N

The polynomial representation of the above signal is given by:

g(W, W 2) = f(z,y)W W2N

2N 2N

= Z E F(ki - N,k2 - N)W1W22
kl=O k2=O

where

(1.1)

(1.2)

W1 = e2rz

W2 = ej2ry

Since reconstruction of f(z, y) is equivalent to finding the coefficients of the polynomial g(Wl, W2),

results from multivariate polynomial interpolation theory can be applied directly to a variety

of multidimensional reconstruction problems.

Unlike the univariate case, interpolation with multivariate polynomials is a non-trivial task.

Whereas n arbitrary samples of an univariate (one-dimensional) polynomial of degree n - 1 are

sufficient to find its coefficients, the analogous result in dimensions higher than one does not

hold, primarily because there are no Chebychef systems in R a for s > 2. Chebychef systems are

important in interpolation theory, and have been studied extensively by many people including

Karlin [26j, Karlin and Studen [27], and Krein [28]. The definition is as follows:

Definition 1.1 A linearly independent set of continuous functions {uo(x),..., un(x)} defined
on [a, b] is a Chebychef system if for any a < xo < ... < z,n < b and yo, ... ,y E R, there is a

unique linear combination
n

u(X) = E auj()
j=O

satisfying
U(i) = i

15
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Clearly, the set of n continuous functions consisting of the powers of z form a Chebychef

system. Another example of a Chebychef system is

ui(x) = ei i = , 1,...,n

where Ai are distinct and z E (-oo,+oo) [29]. Chebychef systems are helpful for studying

univariate interpolation. Unfortunately, as soon as we turn to multivariate interpolation, we

must leave them behind, since there is no set of n universal functions which can be used for

interpolation at any n distinct points. An implication of this result is that powers of z or y

do not form a Chebychef system in R 2, and thus, bivariate polynomials are not, in general,

uniquely reconstructible from their samples at arbitrary locations. Indeed, if arbitrary samples

of a bivariate polynomial uniquely specified its coefficients, the problem of reconstruction from

multiple level threshold crossings would have been trivial. This is because samples of our

threshold contours could then be used to find the the coefficients of g(Wi, W 2) or equivalently

f(X, y).

There are two ways out of this dilemma. One would be to study conditionally regular

interpolation methods. An interpolation method is called regular, if it is uniquely solvable

for any selection of the points of interpolation. Conditionally regular interpolation methods

are not solvable for all selection of points, but only for most of them [31]. Roughly speaking,

they are uniquely solvable with probability 1. For methods of this type, if one has a concrete

problem and selects the interpolation points at random, it will be extremely unlikely that the

problem will be unsolvable. We will take this approach to find the sufficient conditions for

reconstruction from multilevel threshold crossings in Chapter 4. The second approach is to

impose certain restrictions on the locations of the interpolation points. These conditions will

16
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guarantee that the resulting interpolation problem has a unique solution. Our approach in

Chapter 2 consists of developing a series of conditions under which bivariate polynomials, or

equivalently, two-dimensional signals can be uniquely recovered.

17
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Chapter 2

Semi-Implicit Sampling Approach
to Reconstruction

As we saw in secton (1.1), the polynomial representation of multidimensional signals sug-

gests that a wide variety of multidimensional reconstruction problems can be approached via

results from multivariate polynomial interpolation theory. In addition, we saw that the inherent

difficulty in multivariate interpolation is the lack of existence of Chebychef systems in dimen-

sions higher than one. In Chapter 4, we will propose conditionally regular interpolation as a

possible way to circumvent this difficulty. In this chapter, however, our approach is to derive

a number of theoretical results on multivariate polynomial interpolation theory by imposing

constraints on the location of interpolation points. These results will ultimately be used to

develop a spectrum of sampling strategies for reconstruction of multidimensional signals from

non-uniformly spaced samples in general, and multiple level crossings in particular.

We will begin this chapter with a brief review of existing results in bivariate polynomial

interpolation. In section (2.2), we will derive three results in multivariate interpolation theory,

which become progressively more general. Utilizing polynomial representation of BLP signals,

as described in the previous chapter, we apply our new theoretical results on multivariate inter-

polation to derive a variety of semi-implicit sampling strategies for the reconstruction of signals

18
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from their non-uniformly spaced samples on lines of rational slope. As we will see in section

(2.3), these semi-implicit sampling schemes can be applied to the problem of reconstruction

from level crossings and to a variety of other problems such as reconstruction from crossings

with arbitrary functions and reconstruction from projections.

2.1 Review of Bivariate Polynomial Interpolation Theory

In this section, we will review some of the existing results from bivariate polynomial interpo-

lation theory. We will be concerned primarily with interpolation using only a function's values

as opposed to its derivatives. As we mentioned earlier, our approach in this chapter involves

constraining the locations of the interpolation points, in order to guarantee unique recovery of

the polynomials and their associated BLP signals.

Bivariate polynomial interpolation can be done either in IIn, the space of polynomials with

total degree less than or equal to n, or in Il(n,,), the space of polynomials p(w, z) with maximum

degree n in w and m in z. The total degree of a polynomial p(w, z) is defined to be the

degree of the one-dimensional polynomial p(w, w). The regions of support of the coefficients

of polynomials in r12 and 11(2,2) are illustrated in figure (2.1). The most general result on

interpolation in fIn was derived by Gasca and Maeztu [361 in 1982. The basic idea behind

their results is to choose a set of straight lines ri in R 2, each of which is associated with a

polynomial of first degree in w and z. With each line ri, we consider a set of straight lines

r(i) in such a way that the intersections determined by r(i) on ri are the points at which the

interpolation data will be given. The lines ri and/or r i) may appear with multiplicity greater

than one, leading to derivative values as interpolation data. In general, the formulation with

derivatives results in the Hermite interpolation problem, although the simplest case reduces to

19
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Lagrange interpolation which only uses the sample values. In any case, products of lines ri and

r) are constructed in order to obtain a set of polynomials spanning the vector space in which

the interpolation problem has a unique solution [36]. The most important consequence of the

theoretical developments of Gasca and Maetzu can be stated as follows:

Theorem 2.1 (Gasca and Maetzu [36]) Consider the distinct lines o, ... ,In with the set of
distinct points

{Wj Z~) = 0,1,.. i}

on li. If none of the interpolation points (' i), z')) are on the intersection of any two lines from
lo, ..., In, then for any data set

{t i ) I j -= O,...,i; i = 0,1,...,n)

there is a unique bivariate polynomial p E IIn such that

pw= t(i) 0 < j < i, < j < n

The proof is included in [36,29,301, and an example of the geometric distribution of the

sampling points required by this theorem for n = 2 is shown in figure (2.2). A special case of

the above theorem was proposed earlier by Stenger [35] and Chung [32]. Their results primarily

deal with the case where the interpolation points are chosen on parallel lines. The proof for the

case where the interpolation lines are chosen parallel to the x axis is rather straightforward,

and can be briefly outlined in the following manner. Let us denote the points on the ith line

parallel to the z axis by

{(Wj, zi) I = 0,1,...,i}

We can rewrite the polynomial p(w, z) as:

p(w,z) = qn(z) + wqn-1 (z) + ... + w'-lql(z) (2.1)
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Figure 2.2: Geometric distribution of the sampling points of
Theorem (2.1) for n=2.

where qk(z) is a polynomial of degree k - 1 in z. In the first stage, we substitute the n +1 points

on I, into the above equation in order to find qk(z,,) for 1 < k < n. Since q(z) is a constant,

its value can be determined by ql(z,). In the second stage, the n points on l-1l are used to

specify qk(zn,-) uniquely for 2 < k < n. Using the value of q2(zn) from the first stage and

q2(zn-l) from the second stage, we can uniquely specify the two coefficients of the polynomial

q2(z). Similarly in the ith stage we first use the points on the (n + 1 - i)th line to find qk(z)

for 1 < k < i - 1, and then use qi(z) for n + 1 - i < I < n in order to find the i coefficients of

qj(z). Repeating this procedure, we can uniquely determine the polynomial qj(z) for 1 < i < n,

so that p(w, z) becomes completely and uniquely determined.

Most of the results in bivariate polynomial interpolation theory deal with interpolation in
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Hn, the space of polynomials of total degree less than or equal to n. The only existing result

on interpolation in l(n,m,), the space of polynomials p(w, z) of maximum degree n in w and m

in z, deals with the case where the interpolation points are on a nonuniform rectangular grid

and can be stated as follows:

Theorem 2.2 (Non-uniform Rectangular Sampling [29,32,33,34]) Given a set of points

{(wi, zj)li = O,...,n; j= O,..., m; )

and data
(tiji = O,...,n; j = O,...,m; }

there eists a unique bivariate polynomial
n m

p(w,z) = Z a(i, j)iw z
i=o j=O

such that
p(wi, zj) = tij i = O, ... , n; j = 0,.:., m;

The proof is straightforward and is given in many references including [29,32,33,34]. In-

tuitively, for a fixed value of j = jo, the points (wo, zj,,), ...,(wn, zj,,) can be used to find the

coefficients a(O, jo),..., a(n,jo). Repeating this procedure, we can find all the coefficients of

p(w, z). An example of the geometric distribution of the sampling points required by this the-

orem for n = 2 and m = 1 is shown in figure (2.3). Applying the above theorem to equations

(1.2) and (1.1), we conclude that samples of a two-dimensional BLP signal on a non-uniform

rectangular grid shown in figure (2.3) can be used to reconstruct it uniquely.

2.2 Results in Bivariate Polynomial Interpolation Theory

As we saw in Theorem (2.1) of the previous section, one way to interpolate in ln, the

space of polynomials of total degree n, is to choose n + 1 distinct lines o, ..., In, and select the
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Figure 2.3: Geometric distribution of the sampling points of
Theorem (2.2) for n = 2 and m = 1 .

interpolation points from these lines. More specifically, if we choose i + 1 points on li, the ith

line, then the interpolation problem is guaranteed to have a unique solution. Since in most signal

processing applications, the support regions of the Fourier coefficients of the two-dimensional

signals under consideration are rectangular, we are primarily interested in interpolation in

the space of polynomials whose coefficients have rectangular rather than triangular region of

support. Thus, it seems natural to extend the theorems of the previous section from l,I, the

space of polynomials of maximum degree n in w and z, to 1I(n), the space of polynomials

of maximum degree n in w and maximum degree n in z. As we will see in this section,

generalization of Theorem (2.1) provides us with a spectrum of powerful sampling schemes

for two-dimensional BLP signals. More specifically, the extension of Theorem (2.1) in section
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(2.2.1) implies that if we choose N distinct lines of slope 1 in an image with a N x N region of

support in the Fourier domain, then 2i + 1 arbitrary samples on the ith line are sufficient for

reconstruction of the image. In section (2.2.2), we generalize this result to the case where all the

sampling lines have fixed positive integer slopes. Finally, in section (2.2.3) we will use a modified

version of Bezout's theorem to generalize the results of section (2.2.2) to the case where our

sampling lines have different rational slopes. Unlike the constructive proofs of sections (2.2.1)

and (2.2.2), the algebraic geometric approach of section (2.2.3) will not provide an algorithmic

procedure for the actual reconstructions.

The theoretical results of this section are applied to the problem of reconstruction from

threshold and sine-wave crossings and a variety of other reconstruction problems in section

(2.3). The actual reconstruction algorithms and their numerical properties are discussed at

length in Chapters 3 and 5.

2.2.1 Sampling Signals on Lines of Slope 1

In this section, we will extend Theorem (2.1) of section (2.1) to the case where the inter-

polation is done in I(,,n), the space of polynomials of maximum degree n in z and maximum

degree n in y. This is because, in most signal processing applications, we are usually interested

in images with square support in the Fourier domain. While Theorem (2.1) can be applied to

these signals, since many of the coefficients which correspond to a triangular support are zero,

the required number of interpolation points exceeds the number of unknown Fourier coefficients.

Our first result on interpolation in 11(n,n) enables us to choose the interpolation points on

lines which pass through the origin. It can be stated in the following manner:
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Theorem 2.3 Let lo, ...,I, be distinct lines with li, the ith line, defined by

Z = iW ai 0 (2.2)

and consider arbitrary distinct points on li given by

{(w5I), z(i)) 0, ... , 2i} (2.3)

where the ordering of the lines is arbitrary. If none of the interpolation points is equal to (0,0),

the common intersection of all lines, then for any data set

{t) I 0 < j < 2i; 0 < i < n} (2.4)

there is a unique bivariate polynomial of the form

n n

p(w,z) = E a(i,j)wiz' (2.5)
i=o j=o

such that

p(w'i),z')) = t') 0 < j < 2i; 0 < i < n (2.6)

Proof: Substituting the equation of the kth line, k into p(w, z) we get

n n

p(w, ark) = .a(i, j)w'(ckw)j

i=o j=O (2.7)

: E bik w
i=O

where
i

a(i- m, m)am < i< n
b(k) m=o (2.8)

a(i-m,m)cem n < i < 2n
m=i-n

For an arbitrary integer s > -1, we can split the summation in equation (2.7) in the following manner:

2n-s-1 1 2n

bw = p(w,aw)- b )w - b(k) wi (2.9)
i=s+1 i=O i=2n-s

Setting s = -1, using the 2n + 1 points of In, we can uniquely determine b n) for 0 < i < 2n. In
particular, considering equation (2.8), the values of b(n ) and b (n enable us to determine a(0, 0), a(n, n),

and b'n) for 0 < j < n - 1. This is because, from equation (2.8), we have:

b'k) = a(0,0) (2.10)

b =k) a(n, n)cn (2.11)2nk
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Similarly, by setting s = 0 in equation (2.9) and using the 2n - 1 points on In-l, we can uniquely specify
b'n-lI for 1 < i < 2n - 1. This can be done because the determinant

0 X2 . . .2n-

Xi: :2 . a 2n-I

(2.12)

X
:
2n-2 X:2 2 2n- 1

22n-2 2n-2 2n-2

is non-zero as long as the xz's are different from each other and from zero. Now we can utilize the
values of bini and b n - 1 ) together with equation (2.8) to find a(O, 1) and a(1, 0). More specifically, from
equation (2.8) we have:

bk) = aka(O,1) + a(1, (2.13)

Letting k = n, n- 1 in the above equation, we can uniquely specify a(O, 1), a(1,0) and hence bk for
0<k<n-2.

In a similar manner, the values of b2n} 1 and b . 1 can be used to find a(n, n - 1) and a(n - 1, n)

and hence b(k . More specifically from equation (2.8) we get:

b(k) = aka(n-1,n) + ak -la(n, n- 1) (2.14)

The determinant of the above system of equations for k = n, n - 1 is given by

n an-1 _a,. n- 1 na1 An-1 (2.15)
- n-1 n

Taking into account that ak 0, the above determinant is guaranteed to be non zero. Thus the
coefficients a(n, n - 1) and a(n - 1, n) can be specified uniquely.

Repeating the above procedure for s = 1, ..., 2n - 1, we can find all the coefficients a(i, j). More

specifically, at the sth stage, we know b ank) d b) for < k < n and using the 2(n

the line In-1, we can find b ) for s + 1 < i < 2n - s - 1. These values will enable us to uniquely
specify the coefficients

a(i,j) i + j = s+ 1,2n- s -1}

and hence b2n), and b for < k < n- s - 2. Consequently we can completely and uniquely

determine all the coefficients of p(w, z). O

Thus, our proof not only shows that the appropriate set of interpolation points on lines

passing through the origin results in a unique solution, but also provides us with a recursive

method to find the coefficients. The geometrical distribution of the interpolation points required

by this theorem for n = 2 is shown in figure (2.4).

We will now use Theorem (2.3) to define a sampling strategy for BLP signals of the form

given by equation (1.1). Since g(W1 , W 2 ) of equation (1.2) is a bivariate polynomial of maximum

degree 2N in W1 and maximum degree 2N in W2, invoking Theorem (2.3), we can reconstruct
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Figure 2.4: Geometric distribution of the sampling points of
Theorem (2.3) for n = 2.

it by choosing our sampling points along 2N + 1 distinct lines given by:

W2 = oriW 1 O < i < 2N (2.16)

where

W1 = ej 2 z

W2 = 2~y

If we let

c = d 2-r

then the lines in the W1 - W 2 plane, given by equation (2.16), will correspond to lines of the
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form

y = x+#i (2.17)

in the x - y plane. Putting all of this together, we get:

Corollary 2.1 Consider a bandlimited, continuous time, periodic signal f(z, y) with period one
in the z and y directions and Fourier series representation

N N

f(z,y) = E E F(nn2),22n ej2n2 (2.18)
nl=-N n2=-N

Let lo, ... ,12N be distinct lines in the z - y plane with li, the ith line, given by

Y = z + i (2.19)

and the set of arbitrary distinct samples on li given by

(x,)) I 0 < j < 2i} (2.20)

Then, for any data set

{t i) o < j < 2i; 0 i < 2N} (2.21)

we can reconstruct f(x, y) uniquely.

An example of the geometric distribution of the sampling points required by this theorem

for N = 1 is shown in figure (2.5). Figure (2.5a) shows three sampling lines of unit slope in

the periodically extended version of a BLP signal, and figure (2.5b) shows how sampling lines

"wrap around" one period of the signal. From Corollary (2.1) we can conclude that the set of

points on lines of slope one given by:

{( (i)(i)) ) = + (), 0 < i <2, 0 < j < 2i}

are sufficient to guarantee the unique reconstruction of the signal.

As we will see in section (2.3), Corollary (2.1) can be applied to the problem of reconstruction

of multidimensional signals from threshold crossings by choosing the interpolation points to be

the intersections of level crossings and the sampling lines.

29



Y

2
A

1 /

/

l0//

1~
0

Y
A

1
(a)

10
, ,?

/1

10' 2

O/

r/ /

K/l'i

X

2

(b)

Figure 2.5: Geometric distribution of the sampling points of Corollary (2.1) for N = 1. (a)

The sampling lines are shown in the periodically extended version of the BLP signal; (b) The

sampling lines are shown to wrap around one period of the signal.
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2.2.2 Sampling Signals on Lines of Positive Integral Slope

In this section, we will generalize Theorem (2.3) to the case where our interpolation points

are chosen on curves of the form z = awm as opposed to straight lines passing through origin.

Thus the results in the previous section become a special case of the ones we will derive in this

section. A generalized version of Theorem (2.3), can be stated in the following manner:

Theorem 2.4 Let co,...,cp be distinct curves with ci, the th curve given by

= tiwm cai 0

where m < n is an arbitrary positive integer, p is an integer satisfying

p

Z[(m+ 1)n-2mi+ 1] > (n+ 1)2
i=O

and
{(w5i), z(i))Ij = O, ..., (m + 1)n - 2mi; } (2.22)

is a set of distinct points on li. If none of the interpolation points defined by (2.22) are equal
to (0, 0), the common intersection of all the curves, then for any data set

t')lj = 0,...,(m+ 1)n-2mi; i= 0,...,p;)

there is a unique bivariate polynomial of the form

n n

p(w, Z) = _ 2a(i,j)wiz

i=o j=o

such that
P( Wi )O)= ) =0,...,(m+1)n-2mi i=0,...,n

The proof is included in Appendix (A). The proof not only shows that interpolation points

on curves of the form z = CiWm result in a unique solution, but also provides a recursive

method to find the coefficients. It is worthwhile to mention that unlike Theorem (2.3), the

number of interpolation points used by Theorem (2.4) might be larger than the number of

unknown coefficients. More specifically, it can be shown that the number of sampling curves,
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Figure 2.6: Geometric distribution of the sampling points of
Theorem (2.4) for n = 2 and m = 2 .

p + 1, is given by

p +1= n+l
m

where k] is defined to be the smallest integer equal to or larger than k. Thus, the number

of interpolation points is equal to the number of coefficients only when n + 1 is divisible by

m. The geometrical distribution of the interpolation points required by the above theorem for

n = 2, m = 2 is shown in figure (2.6).

We will now use Theorem (2.4) to define a generalized sampling strategy for BLP signals of

the form given by equation (1.1). Since g(W 1, W2) in equation (1.2) is a bivariate polynomial of

maximum degree 2N in W 1 and maximum degree 2N in W2, invoking Theorem (2.4), we can
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reconstruct it by choosing our sampling points along 2N + 1 distinct lines given by

W2 = ai W O < i < 2N (2.23)

where

W1 = e2z

W2 = eJ2ri

If we let

a = ej 2 p

then the lines in the W1 - W 2 plane given by equation (2.i6) will correspond to lines of the

form

= mx+'i (2.24)

in the x - y plane. Putting all of this together, we get:

Corollary 2.2 Consider a bandlimited, continuous time, periodic signal f(z, y) with period one
in the x and y coordinates and Fourier series representation

N N

f(z,y)= E 
nl=-N n2=-N

F(nI, n2 )e j 22Tznl e 2 ry n 2

Let lo,...,lp be distinct lines in the z - y plane with li, the ith line, given by

y = m + 

where m < 2N is an arbitrary positive integer, p is an integer satisfying

p

2N(m + 1) - 2mi + 11 > (2N + 1)2
i=O

and the set of arbitrary distinct samples on li is given by

{(zi),y(i)) O < j < 2(m+ 1)N - 2mi}

Then, for any data set

{t)10 < j < 2(m+ 1)N-2mi; < i < p}

we can reconstruct f(z, y) uniquely.
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Two examples of the geometric distribution of the sampling points required by this result

for N = 1 are shown in figure (2.7). In the first example, the slope of the sampling lines is 1,

and the distribution of the points is identical to that of Corollary (2.1). In the second example,

the slope of the sampling lines is 2, and the number of interpolation points exceeds the number

of Fourier coefficients. In general, the distribution of samples required by Corollary (2.2) varies

as a function of the slope of the sampling lines, providing us with a spectrum of sampling

techniques. For instance, if our signal has 5 x 5 region of support in the Fourier domain, any

one of the following sampling sets can be used to reconstruct it uniquely.

1. The set of 25 points on lines of slope one given by

{(z i),yi)) y(j) = + (), 0< i <5, < j < 4N + 1 - 2i}

2. The set of 29 points on lines of slope two given by

{(x(i),yi)) (i) = 2 (i) + (i), O < i < 2, 0 < < 6N-4i+1}

3. The set of 28 points on lines of slope three given by

((i) y(i)) y(i) = 3 + ,0<<1, 0 < j < 8N - 6i + 1}

4. The set of 34 points on lines of slope four given by

{((i),y()) y = 4 i ) + ( i) , < j < 10N-8i+ 1}

5. The set of 25 points on a line of slope 5 given by

{((i) i) i) 5 (i) + j('), i = 0, 0 < j < 12N - 10i + 1}, Y~ ) Y~ = 

34
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Figure 2.7: Geometric distribution of the sampling points of Corollary (2.2) for N = 1 and:
(a)m = 1; (b)m = 2.
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Note that for cases (1) and (5), the nmber of unknown Fourier coefficients is equal to the

number of interpolation points whereas, for cases (2), (3) and (4), we need more samples than

coefficients. As we will see in section (2.3), the results derived in this section can be applied

to the problem of reconstruction from level crossings by choosing the intersection of sampling

lines and threshold contours as our interpolation points.

2.2.3 Sampling Signals on Lines of Rational Slope

In the previous two sections, we found sufficient conditions for reconstruction of multidi-

mensional BLP signals from their samples on lines with fixed positive integer slopes. In this

section, we use a modified version of Bezout's theorem to derive a more general result on bi-

variate interpolation. This result is then applied to find the sufficient conditions for sampling

BLP signals along lines with different rational slopes. Furthermore, our algebraic geometric ap-

proach enables us to determine the sampling conditions under which the reconstruction problem

is guaranteed to have infinitely many solutions.

As we will see, the theoretical results developed in this section are more general than the

ones in the previous sections. In fact, one can show that all the theorems of sections (2.2.1)

and (2.2.2) are special cases of the results in this section. However, unlike the constructive

proofs of the previous sections, the algebraic geometric approach does not provide us with an

algorithmic procedure for the actual reconstructions.

Let us begin with the important concept of irreducibility. A bivariate polynomial is said to

be irreducible over complex numbers, if it cannot be factored into polynomials of smaller degree

with complex coefficients. Thus, two irreducible polynomials have no common factors unless the
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one with smaller total degree is a factor of the other one. Bezout's theorem is concerned with

the number of common zeros of two bivariate polynomials and can be stated in the following

manner:

Theorem 2.5 (Bezout [37,38]) If two bivariate polynomials of total degree r and s given by:

r r-i

p(x, y) = E Ea(i, j)zy
i=o j=o

S -i

q(z, y) = E E b(i, j)iy
i=o j=o

have no common factors of degree greater than zero, then they have at most rs common zeros.

In this theorem, the total degree of a polynomial in two variables is defined in terms of

the sum of the degrees in each variable. That is, the total degree of the two-dimensional

polynomial p(x, y) is equivalent to the degree of the one-dimensional polynomial p(x, x). Since

we are primarily interested in signals with rectangular Fourier domain support, we need to

modify Bezout's theorem in order to find a tighter upper bound on the number of common

zeros of two polynomials whose coefficients have rectangular regions of support. The modified

Bezout's theorem originally derived by Zakhor and Izraelivitz [39] can be stated in the following

way:

Theorem 2.6 (Modified Bezout's Theorem [39]) Consider two bivariate polynomials p(x, y) E

II(N.,N) and q(, y) E fI(M 1,M,) of the form

N, Ny

p(zy) = Z , a(i, j)'iy
i=O j=O

M My

q(x, y) = , b(i,j)z 'iyj
i=o j=o

If p and q have no common factors of degree greater than zero, then they have at most NzMy + M 2N,
common zeros.
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The proof is included in Appendix (B). Theorem (2.6) implies that if a polynomial p(x, y) E

(N,,N.,) with maximum degrees Nz in z and Ny in y, has more than N,My + MzNy common

zeros with an irreducible polynomial q(z, y) E rI(MO,M,) with maximum degrees M, in x and

Mv in y, then q(x, y) must be a factor of p(x, y). This consequence of Theorem (2.6) can be

used to derive the most general theorem of this chapter:

Theorem 2.7 Let co,c l ,...,cp be distinct bivariate irreducible polynomials with ate maximum
degrees of ci in w and z given by m(i) and m(i) and p being an integer satisfying either of the
following two conditions:

P
n < E W m~i)(2.29)

i=O

P
nz < E (i) (2.30)

i=O

Define Ai to be the set of

i-1 i-i

S(i) = m(')(n, - E m)) + m)(n, - Zm M?)) + 1
k=O k=O

points on ci given by

A, = {(4'),.') ci(w'),')) = 0, o < j < S(i)} (2.31)

If none of the interpolation points given by (2.31) are on the intersections of two or more of
the ci 's, then for any data set

{ti) 0 < i <p, 0 < j<S(i)

there is a unique bivariate polynomial of the form

n nz

p(w,z) = E E a(i,j)wi'zj
i=o j=o

such that
p(ui'), z')) = < i < p, < < S(i)} (2.32)

Proof: To show that there is a unique polynomial which satisfies (2.32), we have to show that
there are no polynomials in II(nn,,.) which vanish at all the interpolation points UAi. Suppose, on the
contrary, that there is a polynomial q(w, z) e II( nn,) which vanishes at all the interpolation points.
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Since q has m °n, + nml + 1 common zeros with co, by the modified version of Bezout's theorem,
co must be a factor of q(w, z). That is

q(w,z) = co(w,z)q()}(w, z)

where q(g) (w, z) is a polynomial of maximum degree n - m,, in w and n - mr) in z. Furthermore,
since by hypothesis, none of the interpolation points on c are on co and q(w,z) has 1 + mn (nw -
mnO }) + m,(nz - mO)) common zeros with c, it must be true that the same number of common
zeros with cl. Taking into account the irreducibility of cl, by modified version of Bezout's theorem, cl
must be a factor of q1) (w, z) and hence q(w, z)

Repeating the above argument for c2 ,..., c,- 1, we get:

q(w, z) = c((w, ) ... C,. (w, z) q(1 (, Z)

p,- p-

where q(1')(w, z) has maximum degree n, - E mai in w and maximum degree n - Z m(i) in z and
i=O i=O

p-1 --1

has 1 + mwt Z(n - mak)) + m'(n,, - n mnw)) common zeros with c,,. Since c,, is irreducible, by
k=O k=O

modified version of Bezout's theorem, it must be a factor of q(P (w, z). This contradicts our hypothesis
since by inequalities (2.32) and (2.29), the degree of c,, in either w or z, is larger than that of qP)(w, z).

The above theorem is the generalized version of Theorems (2.3) and (2.4). More specifically,

if ci is an irreducible polynomial of the form

z = awl (2.33)

then Theorem (2.7) simply reduces to Theorem (2.4) for positive integer values of , and to

Theorem (2.3) for I = 1. This is because polynomials of the form given by equation (2.33)

are known to be irreducible. An example of the distribution of sampling points required by

Theorem (2.7) for n, = n = 2, m( = (01) n = 1 and ) = 2 is shown in figure (2.8).

There are two classes of irreducible polynomials which are particularly useful in deriving

sampling strategies for multidimensional periodic signals of the form given by equation (1.1).

These two classes of polynomials in W 1 and W 2 are of the form:

W2 = al , M, > O, M, > O (2.34)
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W2MW 1 = a, M > O, M > O (2.35)

where My and Mz are positive integers which are relatively prime with respect to each other.

Using the fact that W1 and W 2 of equation (1.1) are related to x and y, the signal coordinates,

via

W1 = ej2rz

W2 = ej 2 rv

and letting

Oa = d 2' f

the curves in the W1 - W 2 plane given by equations (2.34) and (2.35) correspond to lines of the

form

Myy = + Mz , M,, M >O (2.36)

Mvy + Mz = 5 , Mz, M >O (2.37)

in the x - y plane. Geometrically, equations (2.36) and (2.37) correspond to lines with positive

and negative rational slopes respectively. Therefore, lines with positive and negative rational

slopes in the z - y domain correspond to irreducible bivariate polynomials in the W 1 - W2 plane.

We can use this fact, together with Theorem (2.7) to define the following sampling strategy:

Corollary 2.3 Consider a bandlimited, continuous time, periodic signal f(z, y) with period one
in z and y direction and Fourier series representation:

N N

f(x,y) = E E F(nl,n2)e 2rxz n e2ryn2 (2.38)
nl=-N n2=-N

Let lo, ... ,lp be distinct lines in the z - y plane with li, the ith curve given by

M(i)y = M(O + pi (2.39)
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Figure 2.8: Geometrical distribution of the sampling points
of Theorem (2.7) for n, = n = 2.

where M ( ') and M ( i) are positive or negative integers which are relatively prime with respect to
each other. Let p be an integer satisfying either one of the following:

2N < E (2.40)
i=O

2N < E |MWi) | (2.41)
i=O

Suppose that the set of

S(i) |M) (2N - E M) ) + M(i) (2N - Mk) ) + 1
k=O k=O

arbitrary distinct samples on li, is given by

(z, y(i)) O < i < p, 0 < j < s(i)} (2.42)

If none of the interpolation points given by equation (2.42) are on the intersection of two or
more of the ci 's, then for any data set

t(ti) 0o < j < S(i)} (2.43)
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X

Figure 2.9: Geometric distribution of the sampling points of
Corollary (2.3) for N = 1.

we can reconstruct f(z, y) uniquely.

An example of the geometric distribution of the sampling points required by this theorem

for N = 1 and M(°)= -1, M(°)= 1 , M(1)) = 2 is shown in figure (2.9). The above

result is more general than our previous results in the sense that Corollary (2.1) becomes a

special case of it when

M(') M) = 1 Viz Y

and Corollary (2.2) becomes its special case when

M ( i ) = , Vi

M (i) = m > O , Vi
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All the theorems we have discussed so far, provide us with sufficient conditions for unique

recovery of polynomials or their associated BLP signals. We can use arguments similar to the

proof of Theorem (2.7) to find conditions under which the reconstruction problem will have

infinitely many solutions:

Theorem 2.8 Let co, cl, ..., cp be distinct bivariate polynomials with the maximum degrees of ci
in w and z given by m(i) and m (i) where p is an integer satisfying the following two inequalities:

P

n > m( ) (2.44)
i=O

nz > m (i') (2.45)
i=O

Suppose that we choose S(i), an arbitrary number of interpolation points, on the ith curve, ci.
Then for any data set

{t i ) O<i< p, 0 <j< S(i)}

there are an infinite number of bivariate polynomials of the form

p(w,z)= E E a(i,j)wz
i=0 j=Q

such that
p(w),(i)) = t( ) < i < p, O < j < S(i) (2.46)

Proof: The proof is similar to the proof of Theorem (2.7). To show that there are an infinite
number of polynomials which satisfy (2.46), it is sufficient to show that there is at least one polynomial
of maximum degree < n in w and < n in z which vanishes at all the interpolation points defined by
the theorem. The most obvious choice for this polynomial is

p

q(w, Z) =l Ci (w, z)
i=O

Since by inequalities (2.44) and (2.45), the maximum degree of q(w, z) is less than nw in w and less than
nz in z, there exists infinite number of polynomials in II(n.n,) which satisfy (2.46). 0

Translating the above result to the signal domain via our usual transformations:

W 1 = e}2 rz
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W2 = ej2*r

and assuming the irreducible curves of the above corollary to be of the form shown in equations

(2.34) and (2.35), we arrive at the following result:

Corollary 2.4 Consider a bandlimited, continuous time, periodic signal f(z, y) with period one
in z and y direction and Fourier series representation:

N N

f(z,y) = E KE F(ni, n2)e j 2 r' xnl e 27rn2 (2.47)
nl=-N n2=-N

Let lo, ...,lp be distinct lines in the x - y plane with li, the ith curve given by

M(i)y = M) + i (2.48)

where M (i ) and M (i) are positive or negative integers which are relatively prime with respect to
each other. Let p be an integer satisfying the below two inequalities:

2N > E (2.49)
i=O

2N > EM) (2.50)

i=O

Suppose that we choose S(i), an arbitrary number of interpolation points on the ith line Ii.
Then, for any data set

{t}O) I < j < (i)} (2.51)

there are infinitely many functions of the form given by equation (2.47) such that:

If (};) ) = t() o < i < p, < j < S(i)

In terms of sampling multidimensional periodic signal, the above theorem implies that

unless the number of interpolation lines and their respective slopes are chosen carefully, we

might encounter situations where the interpolation problem has non unique solutions.

To summarize this section, we have derived a variety of results on multivariate polynomial

interpolation in l(nn,). Exploiting the polynomial representation of multidimensional BLP

signals, we applied these results to the problem of reconstruction from non-uniformly spaced
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samples. More specifically, our results provide us with sufficient conditions for the unique

reconstruction of signals from their samples on various lines of positive or negative rational

slopes. A summary of all the theorems and corollaries of the last two sections is included

at the end of this chapter. In the next section, we will apply these results to a variety of

multidimensional reconstruction problems.

2.3 Applications of the Line-Sampling Strategy

In section 2.2, we found sufficient conditions under which samples of a multidimensional

signal can be used to uniquely specify it. More specifically, the theoretical results of the previ-

ous section provide us with a variety of distributions of sampling points along lines of positive

or negative rational slope which result in unique recovery of a signal. Although our main

motivation for deriving these semi-implicit sampling strategies has been the problem of recon-

struction from multiple level threshold crossings, they can also be applied to a variety of other

reconstruction problems with non-uniformly spaced samples in areas such as machine vision

[18,19], radio astronomy [20] and computed tomography [21], as well as natural sciences such

as geology, meteorology, and oceanography. These problems can be divided into the following

three categories:

1. Recovery of signals from their crossings with arbitrary functions. A special case of this

problem is reconstruction of signals from their single or multiple level threshold crossings.

Another special case is reconstruction of signals from their crossings with periodic func-

tions, which has potential applications in the conversion of halftone images to continuous

tone ones.
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2. Recovery of signals from their projections. Applications of this problem include such

diverse fields as X-ray tomography, transmission electron microscopy and radio astronomy.

3. Recovery of signals whose values are known along certain paths, curves or contours.

This roblem arises frequently in the area of machine vision, where depth or distance

information is available on the zero crossing contour of the convolution of the image with

the Laplacian of a Gaussian.

Although the main focus of this thesis is the problem of reconstruction from multiple level

threshold crossings, in this section, we will briefly describe the way our semi-implicit schemes

of section (2.2) can be applied to some of these other problems.

2.3.1 Recovery from Crossings with Arbitrary Functions

In reconstructing signals from their crossings with arbitrary functions, the intersections of

sampling lines with the crossing contours are used as interpolation points. The steps involved

in the reconstruction of BLP signals from their multiple level crossings can be summarized as

follows:

1. Find the level crossing contours associated with the thresholds.

2. Find a set of sampling lines with rational slopes whose intersections with the crossing

contours satisfies the distributions required by Corollaries (2.1), (2.2) or (2.3).

3. Use the intersections to find the coefficients of the polynomial associated with the signal

or equivalently the Fourier coefficients of the signal.

In Chapter 3, we will propose a variety of techniques for carrying out the third step of the above
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description, and show examples of reconstruction from level crossings. As we will see, the major

difficulty in applying the above procedure to actual reconstruction problems is that, in general,

we are not guaranteed to get enough intersections between sampling lines and threshold contours

to satisfy the distribution requirements of Corollaries (2.1), (2.2) or (2.3). Of course, as will

be seen in section (3.4), we can find guidelines which help us choose the slope and position

of our sampling lines in an "optimal" fashion so that the number of intersections of sampling

lines with the threshold contours is maximized. However, the problem still remains that for

small number of thresholds, nt, we might not be able to find any set of sampling lines which

satisfy our theoretical requirements. Indeed, this becomes our main motivation for deriving the

less restrictive results of Chapter 4. Meanwhile, we can make a few observations for the more

general problem of reconstruction from crossings with arbitrary functions. As it turns out, for

certain class of functions such as sinusoids, the number of intersections of sampling lines with

function crossings of the signal becomes signal independent. As an example, consider the eye

picture shown in figure (2.10) and its sinusoid crossings with the function:

h(x, y) = A ( 1 + cos(2wr(px + qy))) (2.52)

shown in figure (2.11). As seen, the above sinusoid assumes its maximum value 2A and minimum

value 0 on equidistant lines of slope - . Thus, if we impose the condition

= h(Z, Y)Imin < f(x, y) < h(z, y)],,, = 2A, (, y) (2.53)

on the amplitude of our signal, then between every two neighboring parallel lines where h(x, y)

assumes its minimum and maximum values, there exists a contour of crossings of h(z, y) and

our signal f(z, y). Since, the intensity of the eye picture lies in the range [0,2561, to satisfy

inequality (2.53), the value of A for the crossings shown in figure (2.11) was chosen to be 128.
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If we now sample these sinusoid crossings of our signal along lines of rational slope m given by

n
I: y -- + (2.54)

m

we are guaranteed to get exactly 2[pm + qn] samples. As shown in figure (2.11), each sample

on line I is located between the two intersections of the sampling line with two lines at which

h(x, y) assumes its maximum and minimum values.

We can use the above example, together with the distribution requirements of Corollaries

(2.1), (2.2) and (2.3), to find the exact number of sinusoids needed for recovery of a signal via a

given set of sampling lines. For instance, suppose that we are interested in sampling crossings

of a sinusoid with a (2N + 1) x (2N + 1) BLP signal along lines of rational slope m where n and

m are relatively prime with respect to each other. Invoking Theorem (2.7) we realize that for

this sampling strategy the maximum number of samples needed on any of the sampling lines is

2N(n + m) + 1. Since the number of intersections of a sinusoid with period 1 in the z direction

and in the y direction with a line of slope m is 2[pm + qn], in order to satisfy the sampling

requirements of Theorem (2.7), we must have

2(pm + qn) > 2N(m + n) + 1

or

(pm + qn) > (m + n)N (2.55)

A necessary condition for satisfying the above inequality is that at least one of the quantities

p or q must be greater than N. This in turn implies that using the semi-implicit sampling

strategies of this chapter a BLP signal can be uniquely reconstructed from its crossings with

a sinusoid only if the frequency of the sinusoid lies outside the bandwidth of the signal. More
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Figure 2.10: The original eye picture with 31 x 31 region of support in the Fourier domain.

Maximum lines

Minimum lines

Figure 2.11: Sinusoid crossings of the original eye picture. The lines at which the sinusoid
assumes its maximum and minimum values are also shown.
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generally, reconstruction of an (2N + 1) x (2N + 1) signal from samples of its crossings with L

sinusoids along lines of slope m is possible if and only if:

1. The maximum and minimum values of each sinusoid is larger and smaller than the max-

imum and minimum values of the signal under consideration.

2. The periods of the sinusoids along z and y directions given by and satisfy:

L

E(pim + qin) > (m + n)N (2.56)
i=1

An important practical application of reconstruction from crossings with periodic functions

is recovery of contone images from halftone images [17]. The halftone process has been used for

more than a century for converting continuous tone pictures into regular patterns of black and

white dots which can then be printed. The size of each dot is related to the tone at that same

place in the original image being reproduced. Mathematically speaking, the halftone version

of a continuous tone image can be obtained by comparing the value of the signal with a two-

dimensional periodic function and producing a white or black pixel on a high contrast medium

depending on whether the signal value is higher or lower than that of the periodic function.

Thus, if the period of the thresholding function is a sinusoid satisfying the inequality (2.55), we

can be guaranteed unique reconstruction of the continuous tone image by sampling the halftone

image along lines of slope . A few examples of such reconstructions are shown in Chapter 3.

2.3.2 Recovery from Projections

Another major application of the theoretical results of section (2.2) is in the area of recon-

struction of multidimensional signals from their projections. In this section, we will show that
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the one-projection theorem due to Mersereau and Oppenheim [45]1 is a special case of Theorem

(2.4) and can be generalized to situations with an arbitrary number of projections.

Consider a bandlimited two-dimensional signal of order M and bandwidth W whose Fourier

transform is given by [45]:

?2M-1M-1

F(wi,w2) = i + n42)Wbw (ww 2 ) (2.57)
m=O n=O

where

x I,11 < 1, Io21 < 1
bw (wi, w2) < 1, 1 (2.58)

0 elsewhere

The key result in recovering signals from their projections is the projection slice theorem, which

essentially relates the one-dimensional Fourier transform of a projection of a signal to a slice of

its two-dimensional Fourier transform. In many applications, the only available information for

reconstructing a signal is samples of the slices of its two-dimensional Fourier transform. The

one-projection theorem of Mersereau and Oppenheim ([45]) basically states that M 2 samples on

one slice of the two-dimensional transform is sufficient for unique reconstruction of the signal,

provided the angle of the projection is chosen to be a critical angle. To prove the one-projection

theorem for the special case where the projection angle is given by = tan-1 M, let

Z = e-i w

Z2 = e- JW 2

in equation (2.57). Then, the Fourier transiorm shown in equation (2.57) can be written as a

polynomial in terms of Z1 and Z 2:

2 M-1M-1

F(ZI,Z 2) = wZ E Z z 2z
m=O n=O
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Thus, invoking Theorem (2.4), M2 samples on a line of the form:

in the Z1 - Z2 domain, or equivalently

W2 = Mw 1

in the w1 - w2 plane are sufficient for unique recovery of the coefficients of F(wl, 2). Exploiting

the fact that Theorem (2.4) is a special case of Theorem (2.7), we can generalize this result to

reconstruction from an arbitrary number of slices with rational slopes. More specifically, we

have:

Corollary 2.5 Consider a signal whose Fourier transform is given by equation (2.57). Let
so, ...sp be distinct slices in the ol, w 2 plane with si the ith slice given by:

P(i)w2 = P()wP2 --

where P) and P(') are positive or negative integers which are relatively prime with respect to
each other. Let L be the smallest integer such that either one of the following is satisfied:

L

M- 1 < Il
i=o

L

M-1< Ip(i)
i=O

Suppose that the set of

i-1 i-1

Q(i) = IP)I(M- 1- IP?)I) + [P(i)I(M- 1- Pk)) + 1
k=O k=O

arbitrary distinct samples on si, is given by

(( )(i)(j) < j < Q(i)}

Then, if none of the interpolation points is equal to (wl,w 2) = (0, 0), coefficients of F(wl,w2 ),
or equivalently our original signal can be uniquely reconstructed from the samples of the Fourier
transform of the signal.
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We will not investigate the consequences of the above result experimentally, simply because

it is not directly related to the main focus of this thesis, which is reconstruction from multiple

level threshold crossings.

2.3.3 Recovery from Signal Values along Specific Paths

In many reconstruction applications, the value of a signal is known along certain contours,

paths or curves and it is necessary to recover the signal from this information. Clearly, our

results of previous sections can be applied to these situations by using the intersections of

sampling lines and the contours as interpolation points.

As an example, consider the surface interpolation problem which arises frequently in machine

vision. Computational theories of structure from motion [40] and stereo vision 141] only specify

the computation of three dimensional surface information at special points in the image. Yet,

the visual perception is clearly of complete surfaces. To account for this, a computational

theory for interpolating surfaces from visual information has been proposed by many researchers

[18]. More specifically, if we view the human early visual system as a symbolic manipulator,

we can consider visual processing as a series of transformations from one representation to

another [42,43]. The first transformation is from images to a description called the primal

sketch of those locations at which the image irradiances change. These locations can be found

by finding the zero crossings of the convolution of the original image with the Laplacian of

a Gaussian. Next, primal sketch descriptions of several images are matched, either by the

stereo or motion computation, to obtain a description of the surface information at the zero

crossings. This representation is called the raw 2D sketch. Finally, the raw 2 D sketch is
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interpolated to obtain complete surface descriptions, called the full 21D sketch [44]. Since the

input representations for the interpolation step consist of explicit surface information such as

distance or relative distance along the zero crossings of the convolved image, the intersections

of our sampling lines with the zero crossing contours of the convolved image can be used as

interpolation points for finding the polynomial associated with the surface under consideration.

Under these circumstances, the theoretical results of section (2.2), provide us with a variety of

sufficient conditions for interpolating the distance values on selected points of the zero crossing

contour of the convolved image.

To summarize this chapter, we have developed a variety of results on interpolation of poly-

nomials in l(n,n). These results ultimately have been used to derive a variety of semi-implicit

sampling strategies for reconstruction of multidimensional signals from their crossings with ar-

bitrary functions, their non-uniformly spaced samples, and their projections. A summary of

all the theorems and corollaries derived in this chapter are included in table (2.1). In the next

chapter, we will propose reconstruction algorithms for the specific problem of reconstruction

from multiple level threshold crossings.
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Theorem or Corollary Reference for proof Region of Description
Number Support

polynomial interpolation
Theorem (2.1) Gasca and Maetzu [361 triangular with n + 1 lines and i + 1

samples on the ith line
polynomial interpolation

Theorem (2.2) [29,32,33,34] rectangular with non-uniform
rectangular sampling

polynomial interpolation
Theorem (2.3) section (2.2.1) rectangular with n + 1 lines through the

origin and 2i + 1 samples
on the ith line

...... recovery of BLP signals
Corollary (2.1) Theorem (2.3) rectangular from their samples on

lines of unit slope
polynomial interpolation

Theorem (2.4) appendix (A) rectangular from samples on curves
of the form z = awm

recovery of BLP signals
Corollary (2.2) Theorem (2.4) rectangular from samples on lines

of positive integer slope
upper bound on the number

Theorem (2.5) Bezout 137,38] triangular of common zeros of two
polynomials

upper bound on the number
Theorem (2.6) appendix (B) rectangular of common zeros of two

polynomials
polynomial interpolation with

Theorem (2.7) section (2.2.3) rectangular samples on irreducible curves
recovery of BLP signals

Corollary (2.3) Theorem (2.7) rectangular from their samples on
lines of rational slope

necessary conditions for unique
Theorem (2.8) section (2.2.3) rectangular interpolation of polynomials

necessary conditions for unique
Corollary (2.4) Theorem (2.8) rectangular reconstruction of BLP signals

recovery of bandlimited signals
Corollary (2.5) Theorem (2.7) rectangular of a given order from an

arbitrary number of projections

Table 2.1: Summary of the theorems and corollaries of Chapter 2.
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Chapter 3

Reconstruction Algorithms for the
Semi-implicit Sampling Approach

In Chapter 2, we derived a spectrum of semi-implicit sampling strategies for a variety of

multidimensional reconstruction problems. Our main goal in this chapter is to derive recon-

struction algorithms for these sampling schemes. Although most of the examples in this chapter

are related to the problem of reconstruction from multiple level threshold crossings, the majority

of our proposed algorithms can also be applied to the other reconstruction problems described

in section (2.3).

Our first approach to signal reconstruction, which involves solving a linear system of equa-

tions, is included in section (3.1). Although this approach has the potential of being numerically

stable, it is computationally intensive and requires large amounts of storage. Our second ap-

proach which is described in section (3.2), is recursive and is based on the proofs of Theorems

(2.3) and (2.4). The recursive algorithm requires less storage and computation. However, since

it computes the coefficients recursively, small errors in the initial steps of the algorithm are

propagated and magnified in the final steps of the algorithm. Thus, as we expect, unless the

interpolation problem at hand is extremely well conditioned, the recursive algorithm does not

result in satisfactory reconstruction. In section (3.3), we will derive a line by line reconstruction
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algorithm which is somewhat similar to the recursive algorithm of section (3.2), but is free of

its numerical instabilities. The basic idea behind line by line reconstruction is to recover the

one-dimensional signal associated with each of the sampling lines and then to interpolate the

original signal from these one-dimensional functions. We will propose two strategies for the

former part of the algorithm. The first strategy is non-iterative; It can be used for a variety

of reconstruction problems utilizing the semi-implicit sampling strategy. The second strategy,

which is iterative, can only be applied to the problem of reconstruction from function cross-

ings. In addition, the number of interpolation points required for each of these two line by line

reconstruction strategies exceeds the theoretical requirements of Chapter 2. The main features

of the iterative algorithm are its robustness, speed, and low storage requirements.

For all the reconstruction examples of this chapter, the location of crossings are specified

to 16 digits. The quantization issues of some of the reconstruction methods described in this

chapter will be investigated further in Chapter 5.

3.1 Linear Least-Squares Approach

The most straightforward approach to the reconstruction of signals via the semi-implicit sam-

pling strategy is to solve a linear system of equations. Thus, in reconstructing a (2N + 1) x

(2N + 1) BLP signal from nt thresholds, we must first find a set of sampling lines whose in-

tersections with the threshold contours satisfy the theoretical requirements of Chapter 2, Then

these M > N 2 samples are used to solve the following linear system of equations:

N N

E E F(ki,k 2 ) 2,r(kli + k2vj) = ti 1 < i < n, 1 < j < M
kl=-N k2 =-N

The required number of reconstruction samples depends on the sampling lines and is at least

as large as the number of Fourier coefficients. As we will see in section (5.1.2), increasing the
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number of reconstruction samples improves the condition number of the reconstruction problem

at hand.

Examples of reconstruction of the 31 x 31 eye picture shown in figure (2.10) from 8 of

its level crossings are shown in figures (3.1) and (3.2). Figure (3.1) shows the 8 level non-

uniform amplitude quantized version of figure (2.10) and the threshold contours associated

with these levels. Since the intensity value of the original picture lies between 0 and 256, the

thresholds were also chosen in this range. Figure (3.2), shows the reconstructed versions of

the original eye picture, via different sets of sampling lines. More specifically, 31 sampling

lines of unit slope were used for the reconstruction shown in figure (3.2a), 11 sampling lines

of slope 3 were used for the reconstruction shown in figure (3.2b), and 15 sampling lines with

slopes 1, 2, ± 1, ±3, ± , ±4, ± , 5 were used for the reconstruction shown in figure (3.2c). In

all the above examples, the distributions obtained from the intersections of sampling lines and

threshold contours satisfied the theoretical requirements of Theorems (2.3), (2.4), and (2.3). To

improve the robustness, we used all the intersections of sampling lines and threshold contours

as reconstruction samples, and applied QR decomposition [1] to solve the overdetermined linear

systems of equations associated with each example. More specifically, the number of samples

used for reconstructions shown in figures (3.2a), (3.2b), and (3.2c) were 1475, 1266, and 1548

respectively.

Robustness of the linear least-squares approach is highly dependent upon the actual al-

gorithm used for solving the overdetermined system of equations. Of the many algorithms

available, we chose the QR decomposition primarily for stability reasons. Unfortunately, the

most stable algorithms, such as QR, are also very computation intensive. For instance, solving

an m x p overdetermined system of equations requires mp2 floating point operations (flops).
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(a) (b)

Figure 3.1: (a) 8 level non uniform amplitude quantized ver-
sion of the original eye picture; (b) Threshold contours asso-
ciated with the 8 level crossings.

Thus, assuming that the number of interpolation points used is of the same order of magnitude

as the number of unknown Fourier series coefficients, for an image with N x N region of support

in the Fourier domain, the number of flops required by the QR decomposition algorithm is pro-

portional to N 6. The other major drawback of the linear least-squares approach is its storage

requirements. The storage required for an image with N x N region of support in the Fourier

domain is N 4. Indeed, storage was our main limiting factor in terms of the largest image we

could process using the QR decomposition.

One way to get around the storage problem is to use iterative algorithms such as the

conjugate gradient method. In these algorithms, the M x N 2 matrix associated with the M
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(a) (b)

(c)

Figure 3.2: Reconstructed version of the original eye picture via QR decomposition from inter-

sections of 8 level crossings with: (a) 31 lines of unit slope, .(b) 11 lines of slope 3, (c) 15 lines

of slopes 1,2, ±4, ±3, ±4, ±4, ± 15.
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samples of a signal with N x N region of support in the Fourier domain need not be stored,

since in each step of the iteration we only need to multiply it implicitly by a vector. The

conjugate gradient algorithm needs to operate on symmetric matrices. Thus, in order to solve

the overdetermined system of equations given by:

A = b

we need to premultiply both sides of the above equation by AT to get:

AT A = AT b

Since the condition number of ATA is the square of the condition number of A, and the conver-

gence rate of the algorithm is proportional to the condition number of ATA [1], if our original

interpolation problem is slightly ill-conditioned (i.e., A has rather large condition number ),

then it will take many iterations before the algorithm converges. Thus, the conjugate gradient

approach is only appropriate for situations where our interpolation problem is well-conditioned.

Geometrically speaking, this corresponds to the situation in which our samples are more or less

evenly distributed in the image. We have found experimentally that reconstruction of images

from multiple level threshold crossings via the conjugate gradient algorithm is unsuccessful,

when the number of thresholds is small. As an example, consider figure (3.3b) which shows

the reconstructed version of the original eye picture from 8 of its thresholds crossings on lines

of slope 1 via the conjugate gradient algorithm. The intersections of threshold crossings and

the sampling lines are shown in figure (3.3a). As is apparent, the quality of reconstruction in

various areas of the image is highly dependent on the density of the available crossings in the

region.

Although the conjugate gradient algorithm does not perform satisfactorily for reconstruction
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(a) (b)

Figure 3.3: (a) Intersections of lines of unit slope with the 8
level crossings shown in figure (3.lb); (b) Reconstructed ver-
sion of the eye picture via the conjugate gradient algorithm
using the intersections of 8 level crossings with lines of unit
slope.

from level crossings, it can be used successfully for reconstruction problems in which the samples

are evenly distributed across the image. Recall from section (2.3.1) that the sinusoid crossings of

BLP signals lie in between parallel equidistant lines at which the sinusoid assumes its maximum

and minimum values. Thus, we would expect the conjugate gradient algorithm to perform

satisfactorily for the problem of reconstruction from sinusoid crossingsl. Figure (3.4) shows

the one bit amplitude quantized version of the original 31 x 31 eye picture with the sinusoidal

function

'Note that even distribution of the samples results in stable reconstruction of the signal plu sinusoid, and
not necessarily the signal itself. For instance, if the dynamic range of the sinusoid is much larger than that of
the signal, we would expect the quality of reconstruction of the signal by itself to be rather poor.
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128{1 + cos(2x(16x + 16y)l}

Figure (3.5) shows the reconstructed version of the eye picture via the conjugate gradient

algorithm with 20 iterations. The reconstruction samples were chosen to be a subset of all the

intersections of the 31 lines of unit slope with the crossings, satisfying the minimum distribution

requirements of Corollary (2.1).

Our second example involves reconstruction of the 63 x 63 picture shown in figure (3.6)

which will be referred to as cman. One bit amplitude quantized version of the sum of original

cman picture and the sinusoidal function:

128{1 + cos[2r(32 + 3 2y)1}

is shown in figure (3.7). Its reconstructed versions via the conjugate gradient algorithm with 20

iterations are shown in figure (3.8). Figure (3.8a) was reconstructed from all the intersections of

63 equidistant lines of slope one with sinusoid crossings, whereas a smaller subset of the inter-

sections satisfying the theoretical requirements of Theorem (2.3) were chosen for reconstruction

of figure (3.8b). Thus, all the sampling lines in the former case have 64 points, whereas in the

latter case there are sampling lines with as few points as 1 or 3. Indeed, the artifacts shown

in figure (3.8b) are due to the fact that some sampling lines contain many fewer interpolation

points than other lines. To summarize this section, we have proposed the application of two

major least-squares algorithms for solving the linear system of equations associated with our

reconstruction problem. The QR decomposition approach is extremely robust and can be used

for a variety of reconstruction problems including the ones in which the samples are not evenly

distributed across the image. The drawback of the QR decomposition approach is that it is

computationally intensive and its storage requirements are rather large. The conjugate gra-
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Figure 3.4: One bit amplitude quantized version of the sum of the original eye picture and
128(1 + cos(2x(16 + 16y))).

Figure 3.5: Reconstruction of the eye picture from its sinusoid crossings via the conjugate
gradient algorithm. Reconstruction samples were chosen from a subset of all the intersections
of lines of unit slope with the crossings, satisfying the minimum distribution requirements of
Theorem (3.6).
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Figure 3.6: The original cman picture with 63 x 63 Fourier coefficients.

Figure 3.7: One bit amplitude quantized version of the sum of the original cman picture and
128(1 + cos(2r(32 + 32y))).
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(a)

(b)

Figure 3.8: Reconstruction of the cman picture from its sinusoid crossings via the conjugate

gradient algorithm. All the intersections of sampling lines of unit slope with the sinusoid

crossings were used for reconstruction shown in (a), and a subset of them for (b).
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dient algorithm needs less storage and converges rather quickly for well conditioned problems

such as reconstruction from sinusoid crossings. However, its slow convergence properties for

ill conditioned problems limits its applicability to reconstruction from multiple level threshold

crossings.

3.2 Recursive Approach

As mentioned in Chapter 2, although the algebraic geometric results of section (2.2.3) are

considerably more general than those of sections (2.2.1) and (2.2.2), the inherent advantage of

the results in the latter sections lies in the existence of recursive algorithms to carry out the

reconstruction proposed by their theoretical results 2. These algorithms are essentially based on

the constructive proofs of Theorems (2.3) and (2.4) which provide us with sufficient conditions

for unique recovery of BLP signals from their samples on lines with fixed positive integer slope.

These proofs are constructive in the sense that unique recovery is shown by actually deriving

a reconstruction strategy. Since detailed description of the recursive algorithms are included

in Chapter 2 and Appendix (A), we will briefly describe the recursive algorithm based on the

proof of Theorem (2.3) and show a few examples of reconstruction.

Theorem (2.3) of section (2.2.1) provides us with the distribution of points on lines passing

through the origin, which results in unique recovery of polynomials

n n

p(w,z) = E E a(i,j) w z (3.1)
i=o j=o

More specifically, it states that for unique reconstruction of a polynomial of the above form, we

2It might also be possible to derive a recursive proof for the results of section (2.2.3). However, since such a
proof would be considerably more complex than the algebraic geometric one, and its resulting recursive algorithm
is likely to be rather unstable (for reasons which we will discuss in this section), we have decided not to presue
the recursive approach for the theoretical results of section (2.2.3).
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need n + 1 lines lo, -- In

Z = CiW ai O

with 2i + 1 points on the ith line. Defining the variables bk) associated with the kth sampling

line in terms of its slopes ack and the polynomial coefficients a(i, j) in the following way:

E a(i-m,m)ct < i < n

b(k) = m=O (3.2)

a(i - m, m)ci' , n < i < 2n
m=i-n

we conclude that samples on the kth line satisfy:

2n-s-1 s 2n

Z b(k)Wi p(w,akw) - b(k)i - b(k)Wi (3.3)
i=s+l1 i=O i=2n-s

The recursive algorithm essentially consists of 2n + 1 steps corresponding to s = -1, ..., 2n - 1

in the above equation. More specifically, at the sth stage, the algorithm uses the computed

values of b (k) and bk) for 0 < k < n, together with the 2(n - s) - 1 samples on the line

l,_-_1, in order to find b ) for s + 1 < i < 2n - s - 1 by solving a linear system of

equations indicated by equation (3.3). These values are then used in equation (3.2) to find the

coefficients {a(i,j) I i + j = s + 1, 2n - s - 1) by solving a second set of linear equations.

Finally, the coefficients {a(i,j) i + j = s + 1, 2n - s - 1} are used to find b( k ) and b(k)

for 0 < k < n - s - 2 via equation (3.2) for the next step of the algorithm.

From the above description, we see that the polynomial coefficients are found recursively and

that the coefficients found in initial steps are used to compute the ones in the later stages. Thus,

as we might expect, small errors in finding the coefficients in the initial steps are propagated

and magnified in the final steps of the algorithm. Indeed, this turns out to be a major source

of instability for the recursive algorithm.
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Since BLP signals can be expressed as polynomials, the above recursive algorithm can be

used for reconstructing signals from their samples on lines of unit slope. In applying this al-

gorithm to the problem of reconstruction from multiple level crossings, we have found that

unless the interpolation points are more or less evenly distributed across the image, the al-

gorithm fails to recover the signal successfully. For instance, the algorithm is unsuccessful in

reconstructing the 31 x 31 eye picture of figure (2.10) from its 8 level crossings shown in figure

(3.1b), even though it is capable of reconstructing it from its sinusoid crossings shown in figure

(3.4). This is because, as we mentioned earlier, the sinusoid crossings of the signal are almost

uniformly distributed across the image. The reconstructed version of the eye picture from its

crossings with 128 1 + cos[27r (16 + 16y)]} is shown in figure (3.9). The reconstruction

samples were chosen to be a subset of all the intersections of 31 equidistant lines of unit slope

with the crossings, satisfying the minimum required distribution of Theorem (2.3).

The reconstructed version of the cman picture from its sinusoid crossings shown in figure

(3.7), is shown in figure (3.10). The reconstruction samples were chosen to be a subset of

the intersections of 63 equidistant lines of unit slope and the sinusoid crossings, satisfying the

distribution requirements of Theorem (2.3). Notice that unlike reconstruction via conjugate

gradient algorithm shown in figure (3.8b), there are no artifacts in figure (3.10) due to unequal

number of samples on different sampling lines. This indicates that the recursive algorithms are

somewhat more stable than the conjugate gradient algorithm. In fact, the recursive algorithm

described in this section is robust enough for reconstruction from sinusoid crossings of larger

images such as the one shown in figure (3.11). Figure (3.11) which will be referred to as

vegas, has 127 x 127 Fourier coefficients. Its crossings with 128 {1 + cos[2r (64x + 64y))} are

shown in figure (3.12) and its reconstructed version is shown in figure (3.13). The reconstruction
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samples were chosen as a subset of the all the intersections of 127 equidistant lines of slope one

with the sinusoid crossings, satisfying the minimum distribution requirements of Theorem (2.3).

Finally, let us briefly discuss the efficiency and storage requirements of the recursive algo-

rithm, described in this section. As we mentioned earlier, to find the coefficients of a polynomial

given by equation (3.1), the recursive algorithm goes through 2n + 1 steps and in each step it

has to solve two Van der Monde systems of linear equations. More specifically, in the kth step,

the size of these systems are (2n - k) x (2n - k) and (k + 2) x (k + 2). Although there are ways of

solving a p x p Van der Monde system of equations with O(p2 ) flops, these methods are usually

unstable. Stable techniques, on the other hand, require O(p3 ) floating point operations. Thus

the total number of operations required for reconstruction of a signal with N x N region of

support in the Fourier domain is of the order of O(N4 ). Furthermore, the storage requirements

of the recursive algorithm is of the order of N 2.

Comparing characteristics of the recursive algorithm with the QR decomposition we find

that the latter requires more computation and space but is also more stable. However, as we saw

in figures (3.8b) and (3.10), the recursive approach is more stable than the iterative approach

of the conjugate gradient algorithm. Furthermore, the recursive algorithm can only be used

for reconstruction from samples on lines of integer slope with all the lines having equal slopes,

whereas the linear least-squares approaches of section (3.1) are capable of reconstructing from

samples on lines with different positive or negative rational slopes. However, the least-squares

and recursive methods are similar, in the sense that they can both be used for the more general

problem of reconstruction from non-uniformly distributed samples, as opposed to the specific

problem of reconstruction from level crossings. As we will see in the next section, this is not
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Figure 3.9: Reconstructed version of the eye picture via the recursive algorithm from its sinusoid

crossings. The reconstruction samples were chosen to be a subset of all the intersections of 31

equidistant lines of unit slope with the crossings, satisfying the minimum required distribution

of Theorem (3.6).

Figure 3.10: Reconstructed version of the cman picture from its sinusoid crossings via the

recursive algorithm. The reconstruction samples were chosen to be a subset of all the intersec-

tions of 63 equidistant lines of unit slope with the crossings, satisfying the minimum required

distribution of Theorem (3.6).
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Figure 3.11: The original vegas picture with 127 x 127 region
of support in the Fourier domain.

the case for the iterative version of our line-by-line reconstruction algorithm.

3.3 Line by Line Reconstruction Approach

As we saw in the previous section, the major drawback of the recursive approach to recon-

struction is its numerical instability, which is a direct consequence of computing the Fourier

coefficients recursively. More specifically, the recursive algorithm finds the coefficients in the

kth step by using the value of the coefficients it has computed in the first (k - 1) steps. Thus, as

we might expect, small errors in computing the coefficients in the initial steps are propagated

and magnified in the final steps of the algorithm.

Our main goal in this section is to propose a new algorithm, similar in style to the recursive
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Figure 3.12: One bit amplitude quantized version of the sum of vegas picture and
128(1 + cos[2 (64 + 64y)J}.

Figure 3.13: Reconstructed version of the vegas picture from its sinusoid crossings via the
recursive algorithm. The reconstruction samples were chosen to be a subset of all the intersec-
tions of 127 equidistant lines of unit slope with the crossings, satisfying the minimum required
distribution of Theorem (3.6).
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approach, which is free of its numerical instabilities. The line by line reconstruction strategy we

are going to describe in this section exploits the fact that the one-dimensional signal obtained

by sampling our two-dimensional signal along a line with rational slope is bandlimited and

periodic. More specifically, consider a two-dimensional, BLP signal with (2N + 1) x (2N + 1)

region of support in the Fourier domain given by

N N

f(,y) = £ >i F(ki,k2 ) ej2rzkjl e2ryk2

kl=-N k2=-N

If it is sampled along the line:

my = n + i

the one-dimensional signal is periodic and has 2N(m + n) + 1 Fourier series coefficients. Thus

2N(m + n) + 1 samples of this one-dimensional signal will enable us to uniquely specify it3 .

Since our semi-implicit line sampling strategy of Chapter 2 consists of using points on lines of

various rational slopes, an obvious way to recover a two-dimensional signal would be to

1. Reconstruct each of the one-dimensional signals corresponding to the sampling lines sep-

arately.

2. Recover the two-dimensional signal using the one-dimensional ones.

We now need to address a few issues with regard to the above reconstruction strategy. The

first issue is whether or not the sampling distribution proposed by the theoretical results of

Chapter 2 provide us with enough interpolation points to recover the one-dimensional signal

associated with each of the sampling lines. As it turns out, the sampling requirements of

the above line by line reconstruction scheme are more stringent than those of Corollary (2.3),

3 The fact that the one-dimensional signal associated with a sampling line with rational slope is bandlimited
and periodic was originally shown by Merseraeu [2].
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which is the most general result of Chapter 2. For instance, in situations where all of the

sampling lines have integer slopes p, the theoretical results of Chapter 2 require 2 (p+ 1)N - 2pi

interpolation points on the ith line, whereas the above line by line reconstruction strategy needs

2(p + 1)N samples on all the lines. In other words, for line by line reconstruction, the number

of samples required on each of the lines is equal to the maximum number of points required by

Theorem (2.4) on any one of them. Since the line by line approach requires more samples than

the minimum specified by the theoretical results of Chapter 2, we would expect that, for the

problem of reconstruction from level crossings, more thresholds are needed to generate these

samples. Indeed, as we will see in the examples of this section, while the eye picture of figure

(2.10) can be reconstructed from samples of its 8 level crossings via the linear least-squares

approach, 14 level crossings are needed for its line by line reconstruction.

The second issue which needs to be addressed has to do with the recovery of the two-

dimensional signal under consideration, once all the one-dimensional signals associated with

the sampling lines have been reconstructed. In situations where all the nodes of the (2N + 1) x

(2N + 1) square grid of the two-dimensional signal are located on the sampling lines, the value

of the signal on the grid can be computed easily from the one-dimensional signals. Equally

spaced sampling lines of unit slope is an example of such a situation. For the more general case,

we can proceed as follows:

1. Use the one-dimensional signals to find their intersections with (2N + 1) equally spaced

horizontal or vertical lines. For the most general sampling scenario, described by Corollary

(2.3), we can show that each horizontal or vertical line intersects our sampling lines in at

least (2N + 1) points. More specifically, if inequality (2.40) of Corollary (2.3) is satisfied,

then each of the (2N + 1) horizontal lines intersect our sampling lines at (2N + 1) points;
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On the other hand, if inequality (2.41) is satisfied, then each of the (2N + 1) vertical lines

intersect our sampling lines at (2N + 1) points.

2. Since the one-dimensional signal associated with each horizontal or vertical line is a BLP

signal with (2N + 1) Fourier coefficients, they are reconstructible from their (2N + 1)

samples, obtained in the previous step.

3. For each of the horizontal or vertical lines, find the values of the signal on (2N + 1) equally

spaced points. These (2N + 1) points on each of the (2N + 1) horizontal or vertical lines

correspond to samples of the two-dimensional signal on a (2N + 1) x (2N + 1) square grid.

The third issue we need to address is the recovery of the one-dimensional signals associated

with the sampling lines. As we mentioned earlier, the sampling requirements of line by line

reconstruction could be more stringent than those required by the theoretical results of Chapter

2. Since the one-dimensional signal along the ith sampling line:

li: mi y = ni + i

is bandlimited and periodic with 2N(mi + ni) + 1 Fourier harmonics, theoretically speaking,

2N(mi + ni) + 1 samples of it are sufficient to reconstruct it uniquely. We can find its Fourier

series coefficients by solving a (2N(mi + ni) + 1) x (2N(mi + ni) + 1) linear system of equations,

or use Lagrange interpolation to compute its samples. An example of reconstruction of the

original eye picture shown in figure (2.10) from intersections of 14 of its threshold crossings

with lines of unit slope is shown in figure (3.14). In this example, the one-dimensional signals

associated with the sampling lines were found by solving linear systems of equations.

For the specific problem of reconstruction from level crossings, we can propose an iterative

algorithm which uses all the intersections of the level crossings with sampling lines to reconstruct
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Figure 3.14: Reconstruction of the original eye picture from
intersections of lines of unit slope with 14 of its level crossings.
Non-iterative line by line reconstruction was used.

the one-dimensional signals associated with the sampling lines. We will devote the remaining

part of this section to this iterative algorithm.

3.3.1 Iterative Approach to Line by Line reconstruction

In this section, we will describe an iterative algorithm for the reconstruction of one-dimensional

signals, associated with sampling lines, from their intersections with level crossings. As we

will see, similar to the least-squares and recursive approaches of sections (3.1) and (3.2), the

iterative approach can be applied both to the specific problem of reconstruction from function

crossings and to the more general problem of reconstruction from non-uniformly distributed

samples.
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The basic idea behind iterative reconstruction is to iterate between space and frequency

domains by imposing appropriate constraints on the signal in each domain. The frequency

domain constraint is due to the fact that the one-dimensional signal, obtained by sampling

our two-dimensional signal along a line with rational slope, is bandlimited and periodic. The

space domain constraint can be derived using the level crossing information. More specifically,

if the locations of all the crossings of a one-dimensional, continuous, BLP signal g(z) with p

thresholds tl < t 2 ... < tp are known, and the signal is known to be in the range tO, tp+l],

then for any arbitrary z0, we can deduce the range into which g(zo) falls. That is, given zo, we

can find i such that

ti < g(zo) t+l

The above process is shown pictorially in figure (3.15). In order to derive the range information

for any point on a one-dimensional signal, we need a minimum of two samples corresponding

to two different thresholds. This has to do with the fact that the samples, corresponding to

one threshold, are incapable of resolving the sign ambiguity of the one-dimensional signal under

consideration.

Using the above ideas, we propose the following algorithm for reconstructing a one-dimensional,

continuous, BLP signal, g(z) with period 1 and 2N + 1 Fourier harmonics from all of its level

crossings with thresholds tl,...,tp:

1. Deduce the range of intensity for M > 2N + 1 equally spaced points

1 2 M-1
M M ... ' M

That is, for each of the above points, find the threshold ti such that the actual value of g

at that point is larger than t and smaller than ti+l. Thus, if tl(n) and t(n) denote the
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Figure 3.15: (a) Deriving the space domain constraint for recovery of a one-dimensional sig-

nal via the iterative algorithm; (b) Ambiguous range information via samples of the contour

associated with one threshold.
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lower and upper bound for the nth point, we have:

tj(n) < 9(M <t(n) , n = O,...,M-1 (3.4)

2. Let g(l)(M) denote the value of g in the Ith iteration at the point . Then, the initial

guess becomes:

g(0)( n tl(n) + t(n) n = ,...,M-1
M 2

As we will see later, the convergence of the algorithm is independent of the initial guess.

3. Take the discrete Fourier transform (DFT) of g in the Ith step:

G(l)(k) = DFT [ g()(M) ], 0 < n,k < M

4. Impose the bandlimited constraint:

G()(k) 0 < k N ,M- N < k < M

O elsewhere

5. Take the inverse discrete Fourier transform (DFT-') of G(L+1)(k):

g(+)(n) = DFT-[(1 +)(k)] , 0 < k,n < M

6. Impose the space domain constraint:I §(+l)( n) , t(n) < (l+l)( 4) < t(n)

9(+,)( )= tl(n) (3.5)

tU(n) i(l+])(n) t(n)

7. If all the M points of (1+1)( ) satisfy the space domain constraint to within some

acceptable error, then we are done. Otherwise go to step (3) and repeat steps (3) through

(7).
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As far as convergence of the above algorithm goes, we can show that the mean square error

between the unknown signal, which satisfies the space and frequency domain constraints, and

the solution obtained via successive iterations decreases. Furthermore, as we will see in the

next section, we can apply the theory of projection onto convex sets (POCS) to prove that the

algorithm is guaranteed to converge to a solution, which satisfies both the space and frequency

domain constraint, if such a solution exists.

3.3.2 Application of POCS to the Iterative Algorithm

We could use the theory of projection onto convex sets to establish the convergence of our

algorithm. As we will see, our algorithm is a special case of a more general iterative scheme

discussed extensively in the literature [46,47]. By generalizing our algorithm, we can not only

establish its convergence, but also find ways of improving its convergence properties. The basic

theorem describing the general iterative method can be stated as follows:

Theorem 3.1 (Youla and Webb 146]) Let H be a Hilbert space with elements f,g,...,etc,
a zero vector and an inner product (, y). Furthermore, let Co, the intersection of closed,
convex subsets C 1,...,Cm of H be given by:

Co = n Ci

be non-empty. Consider the composition operator

T = TmTm,,...Ti

where
Ti = 1 + Ai(Pi - 1)

and Pi is a projection operator onto Ci. Then, for every x E H and every choice of relazation
constants A1, ...,Am in the interval:

< i < 2 , 1 < i < m

the sequence {Tnx} converges weakly to a point in Co. If H is finite dimensional, the conver-
gence is strong. In addition, if one of the Ci 's say Cm, is finite dimensional, by setting

Am= 1
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we are guaranteed of strong convergence even though H might be infinite dimensional.

Before we proceed to apply the above result to our reconstruction problem, let us briefly go

over a few definitions. The sequence (fk) is said to converge strongly to f if

lim llfk - f =0
k-oo

The sequence { f} is said to converge weakly to f if

lim (fk,g) = (f,g) Vg EH
k-*oo

Finally, the projection

h Pi f

of f onto Ci is the element which satisfies

min 1 f - 112 = f - hll2
yECi

Our iterative algorithm is essentially a special case of Theorem (3.1) where the Hilbert space

H is the finite dimensional space of all M point real sequences and the inner product between

two M point sequences x(n) and y(n) is given by:

M-1

(Xy) = z(n)y(n)
n=O

The convex, closed subsets of H, are given by C1 and C 2. C1 is the set of all M point real,

bandlimited sequences whose DFT is 0 in the range N < k < M - N, and C2 is the set of

all M point real sequences, y(n), which satisfy the space domain constraint derived from the

level crossing information as described in the first step of our algorithm. That is:

tl(n) y(n) < t(n) 0 < n < M (3.6)
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Note that for C 2 to be closed, it is necessary to define it exactly the way it is shown above. For

instance, if in inequality (3.6), the < were replaced with <, then C2 would not be closed. PI

is the bandlimiting operator which projects onto the set C 1, and P2 is the projection operator

which imposes the space domain constraint and projects onto C 2. Thus, our iterative algorithm

is nothing but a successive application of the operator T = P1 P2 to an arbitrary initial

condition, which we chose in the second step of the algorithm. Therefore, taking into account

the fact that H is a finite dimensional vector space, and applying Theorem (3.1) with

A1 = A2 = 1

we can conclude that our iterative algorithm converges strongly to an element in the set Co,

which in this case, is the set of M point real sequences which satisfy both the space and

frequency domain constraints. It is worthwhile to mention that, since M is finite, there might

be many M point real sequences in the set Co. However, in the limit as M -+ oo, the set Co

will contain exactly one sequence, as long as the number of samples on a given line exceeds the

number of Fourier coefficients of the one-dimensional signal associated with the line (because of

the uniqueness of Fourier series). Under these circumstances, H will not be finite dimensional;

thus one might begin to worry whether strong convergence is guaranteed any longer. However,

as it is mentioned in Theorem (3.1), since at least one of our convex closed subsets, namely C 1,

is finite dimensional, we are still guaranteed of strong convergence as long as we set

A1 = 1

Theorem (3.1) not only outlines the conditions under which our iterative algorithm, de-

scribed earlier in this section, converges, but also generalizes our algorithm by introducing the

relaxation parameters A1 and A2. We can control the convergence properties of our algorithm
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by adjusting the values of the A's. We speak of under-relaxation or over-relaxation, depending

on whether 0 < A < 1 or 1 < A < 2 respectively. With A = 2, we have another special

case, referred to by Motzkin and Schoenberg [48] as the reflection method. Values of A outside

the interval (0, 2] disrupt convergence.

Convergence of the generalized iterative algorithm depends on the "angle" formed at the

intersection of the projection sets, C 1 and C 2; a wide angle between the sets results in a faster

convergence than situations where the sets intersect at a smaller angle. In general, one can

expect that the smaller the intersection of the sets is, the smaller the angle at which they

intersect will be, resulting in slower convergence. There are many ways to accelerate the

convergence of this type of iterative algorithm. The simplest such technique is over-relaxation,

which essentially consists of choosing the relaxation parameter between 1 and 2; this has the

effect of "opening up" a small angle of intersection between sets. As we will see in the next

section, for the particular problem of reconstruction from level crossings, convergence rates do

not present serious enough problems for us to seek other means of accelerating convergence.

3.3.3 Examples of the Iterative Algorithm

An example of reconstruction of the original 31 x 31 eye picture of figure (2.10) via the

iterative algorithm is shown in figure (3.16). Intersections of 14 level crossings with 32 lines of

unit slope were used to recover the one-dimensional signal associated with the sampling lines.

Although our theoretical results of Chapter 2 only require 31 sampling lines, to be able to

use the FFT with a power of 2 for interpolation from one-dimensional signals to the square

grid, we chose 32 equally spaced sampling lines. Thus samples of the two-dimensional signal
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Figure 3.16: Reconstructed version of the original eye picture
from intersections of lines of unit slope with 14 level crossings
via the iterative algorithm.

on a 32 x 32 grid coincided with equally spaced points on the sampling lines. The relaxation

parameters were chosen to be A1 = A2 = 1, and the number of equally spaced points on the

sampling lines, M, was chosen to be 64.

The main reason for choosing such a large number of thresholds in the above example is that

the number of crossings on a given line must be larger than the number of Fourier harmonics

of the one-dimensional signal associated with that line. However, even if this condition is

satisfied, there might still be many one-dimensional, BLP signals satisfying the space and

frequency domain constraints, as long as M is finite. Thus, unique reconstruction, via the

iterative algorithm, is possible only in the limit as M -- oo, if the number of crossings on each

line is greater than or equal to the number of Fourier series coefficients of the one-dimensional
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signal associated with the line. Since in practice, M can not be infinite, the solution obtained by

the iterative algorithm is only an approximate one, regardless of the number of crossings used

for reconstruction. Therefore, the question which arises naturally is the way reconstruction

quality is degraded as the number of crossings is decreased below the number of Fourier series

coefficients of the one-dimensional signal to be recovered. We will answer this question more

quantitatively in Chapter 5. In this section, however, we will only show two examples of

reconstruction where the number of crossings on the sampling lines are smaller than the number

of Fourier coefficients of the one-dimensional signal associated with the sampling line. Figure

(3.17a) shows the reconstructed version of the eye picture from 4,6 and 8 thresholds, via

the iterative algorithm for M = 64,128. Similar to the previous example, we chose 32

equidistant sampling lines, and 20 iterations for each one-dimensional reconstruction. The

relaxation parameters were chosen to be A = 1, A2 = 1.75. Our second example shown

in figure (3.17b) deals with the reconstruction of the 63 x 63 cman picture from 4,6 and 8

thresholds with M = 128,256. We used 64 equidistant sampling lines of unit slope, the

number of iterations for each line was 20, and the relaxation parameters were chosen to be

A1 = 1, A2 = 1.75.

As seen in both of the above examples, increasing the number of thresholds affects the quality

of reconstruction in a more substantial way than increasing M. We have found experimentally

that if the sixth step of the algorithm dealing with projection onto the space domain is modified

in the following way:

n ( ) ti(n) < (L+l)(A) < t(n)
9 t1(n) + t (n) M (3.7)

)tt2n)+ tn) otherwise

the algorithm converges in fewer steps than the case where relaxation parameters are used
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(a)

(b)

Figure 3.17: Reconstructed version of the eye and cman pictures via the iterative algorithm.
The numbers of thresholds are 4,6 and 8, increasing from left to right. The number of equally
spaced samples on the lines increases from top to bottom, and are 64, 128 for the eye picture,
and 128 and 256 for the cman picture.
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to accelerate convergence. Recall that the sixth step of the algorithm projects the sequence

§ onto C 2, the set of M point real sequences satisfying the space domain constraint. This

implies that if the value of the unknown function is constrained to be smaller than t(n) and

larger than t(n), and §(M) is outside the interval [tl(n), tu(n)], its projected value is either

t,(n) or tl(n), depending on the value of §(M)- Although the the scheme shown in equation

(3.7) is not a projection and although the mean square error does not always decrease from one

iteration to the next, by' "projecting" onto ti(n)+t-(n) instead of tl(n) or t,(n), we can somewhat2

speed up the convergence. This can be explained by formulating the problem in a statistical

framework [49], but we shall not go over it here. The important point here is that, although in

most reconstructions, carried out via the above modified version the algorithm, converged to a

sequence satisfying both the space and frequency domain constraints, the mean square error of

the solution was almost identical to the solution obtained via the over relaxation method. This

suggests that the reason behind the poor quality of the reconstruction for a small number of

thresholds is not the fact that the algorithm did not converge, but that there are many signals

satisfying the space and frequency domain constraints; the algorithm has simply converged to

one of them. Increasing the number of thresholds or increasing M, imposes more constraints

on the signal, thus reducing the number of sequences satisfying both the space and frequency

domain requirements. As we said earlier, if the number of crossings on a sampling line exceeds

the number of Fourier harmonics of the one-dimensional signal associated with it, the solution,

obtained via the iterative algorithm, becomes unique as M -* oo.

Before we end this section, let us briefly compare the iterative algorithm with other recon-

struction algorithms proposed in this chapter. Unlike the iterative approach which needs all

the intersections of sampling lines with the crossings of the signal in order to derive the space
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domain constraint correctly, all of our other algorithms can use a subset of the intersections

for successful reconstruction. Clearly, the quality of reconstruction via the iterative algorithm

is not as high as the least-squares approach or the non-iterative line-by-line reconstruction;

However, one must bear in mind that reconstructions using the latter techniques use, at least

in principle, the exact location of the crossings, whereas the iterative algorithm, in effect, uses

the rather coarsely quantized version of the crossings as long as M is finite. We will study these

quantization issues in more depth in Chapter 5. Finally, the iterative algorithm is free of many

limitations of the other schemes proposed earlier in this chapter. More specifically,

* Its storage requirement is not as stringent as the QR decomposition, thus, enabling us to

process much larger images. In fact, it is the only algorithm in this chapter which can

reconstruct large images from multiple level crossings (as opposed to sinusoid crossings).

* It is not as computationally intensive as the QR decomposition, conjugate gradient or the

non-iterative line-by-line reconstruction scheme.

* It is considerably more robust than the recursive algorithm of section (3.2), which is only

capable of reconstruction from sinusoid crossings.

* It is more robust than the other algorithms in the sense that if the number of thresholds is

not large enough to result in a sufficient number of crossings, it can still carry out approx-

imate reconstruction. Indeed, this graceful degradation in the quality of reconstruction is

a feature which is lacking in all the other algorithms we have discussed so far.

In Chapter 5, we will discuss the quantization characteristics of the iterative algorithm and the

linear least-squares approach in detail.

89



3.4 Discussion

In this chapter, we proposed three major reconstruction algorithms for the semi-implicit

sampling strategy of Chapter 2. Our first approach involved solving a linear system of equa-

tions via QR decomposition or the conjugate gradient algorithm. Reconstruction via QR de-

composition is more stable than all of our other algorithms. However, its storage requirements

are large enough to limit its applicability to reconstruction problems with a lart ~ number of

Fourier coefficients. In fact, for a signal with N x N region of support in the Fourier domain,

the storage requirement of the QR decomposition is proportional to N 6, and its computation

requirements are proportional to N 6. The conjugate gradient algorithm does not need to store

the entire linear least-squares matrix. It is, therefore, less storage intensive. However, its major

drawback is that unless the reconstruction problem is extremely well conditioned, it does not

result in satisfactory reconstruction. Thus, we have only been able to use it for recovery of

signals from their sinusoid crossings.

The recursive algorithm proposed in section (3.2) takes advantage of the geometry of the

interpolation points obtained via the semi-implicit sampling strategy. It is not as general as

the linear least-squares approach, since it only deals with sampling situations in which all

the sampling lines have fixed integer slopes. Furthermore, since it computes the coefficients

recursively, small errors in the coefficients obtained in the initial stages of the algorithm are

propagated and magnified in the final steps, resulting in instability. Although it is somewhat

more stable than the conjugate gradient algorithm, it can only be applied to well conditioned

problems such as reconstruction from sinusoid crossings.

The non-iterative line-by-line reconstruction scheme of section (3.3) is more stable than the
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conjugate gradient or the recursive algorithm, and its computation and storage requirements

are not as demanding as the QR decomposition. Its major drawback however, is that the

number of crossings it needs for reconstruction exceeds the theoretical requirements of Chapter

2. Thus for reconstruction from multiple level crossings, the number of thresholds required by

this algorithm is generally larger than our other algorithms.

Finally, the iterative algorithm of section (3.3.1) shares many of the characteristics of the

non-iterative line-by-line reconstruction algorithm except that it is capable of approximate

reconstruction in situations where the number of crossings do not satisfy the theoretical re-

quirements of Chapter (2). However, it requires all the intersections of sampling lines with the

crossings of the signal in order to derive the space domain constraint correctly.

In spite of the variety of reconstruction algorithms proposed in this chapter, the major

drawback of the semi-implicit sampling scheme is the fact that, in general, we are never guar-

anteed to get enough intersections between the sampling lines and the level crossings in order

to satisfy the minimum theoretical requirements of the Chapter 2. Of course, we can propose

various guidelines in order to increase the number of intersections as much as possible. For in-

stance, one way would be to choose the slopes of our sampling lines perpendicular to the general

direction of the crossing contours. More specifically, if the harmonic content of a real signal' at

spatial frequency (p, q) is very strong, we would expect the signal to vary with frequency (p, q)

along lines of slope and thus choosing the sampling lines with slope would result in large

number of intersections.

Another way to increase the likelihood of satisfying the theoretical requirements is to choose

sampling lines which result in the least stringent sampling requirements. For instance, in

situations where all the sampling lines have equal slope , the ratio between the maximum
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number of points on a sampling line and its length is given by:

2 [2N(m + n) + 1 4 N2+ 1 + n/ 1)
max n2 + 2 1 + (n/n)2

Thus for > 1, larger slopes result in less stringent sampling requirements whereas for 0 <

- < 1, smaller slopes result in less stringent sampling requirements.

Clearly, oth of the above guidelines are somewhat qualitative and by no means do they

guarantee that the number of intersections of the sampling lines with the level crossings sat-

isfies the theoretical requirements of Chapter 2. The major drawback of the semi-implicit

approach still remains, since it is incapable of providing us with sufficient conditions for unique

reconstruction from an arbitrarily small number of thresholds. Indeed, this has been our main

motivation for deriving the implicit sampling scheme of the next chapter.

92





Chapter 4

Implicit Approach to
Reconstruction

In Chapter 2, we proposed a variety of semi implicit sampling strategies for the reconstruc-

tion of multidimensional signals from their crossings with arbitrary functions. More specifically,

the intersection of sampling lines of rational slope with crossing contours was used to interpo-

late the bivariate polynomial associated with the signal. As we mentioned earlier, the major

drawback of the line sampling strategy for reconstruction from function crossings is the fact

that, in general, one is never guaranteed to get enough intersections between the sampling lines

and signal crossings to satisfy the conditions of Corollaries (2.1), (2.2) and (2.3). As we saw

in section (3.4), we can improve the likelihood of satisfying the sampling requirements of these

theoretical results by careful choice of the slope and position of sampling lines. In addition, in

section (3.4), we found that under certain conditions, the number of intersections of sampling

lines with certain functions such as sinusoids, becomes predictable. In spite of these observa-

tions, the basic problem still exists; that is, for arbitrary functions, the intersections of sampling

lines and level crossings might not result in a sufficient number of interpolation points to satisfy

our theoretical results of Chapter 2. Therefore, it seems natural to search for more general

strategies for reconstruction of multidimensional signals from their crossings with an arbitrary
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number of thresholds. The derivation of such a scheme will be our major goal in this chapter.

As we mentioned in Chapter 2, the inherent difficulty in bivariate interpolation is the lack

of existence of Chebychef systems in R2. Our approach in Chapter 2 was to constrain the

location of our interpolation points. Another approach, which will be the basis for our implicit

sampling strategy of this chapter, consists of conditionally regular interpolation methods. An

interpolation method is called regular if it is uniquely solvable for ny selection of interpolation

points. Conditionally regular interpolation methods are solvable not for all selection of points,

but only for most of them 31]. Roughly speaking, they are uniquely solvable with probability

one. For methods of this type, if one has a concrete problem, and selects the interpolation

points at random, it will be extremely likely that the problem will be solvable.

In section (4.1), we will take the above approach to derive sufficient conditions under which

the problem of reconstruction from level crossings is almost always uniquely solvable. Section

(4.2), describes two reconstruction algorithms for the results of section (4.1). It is worthwhile

to mention that while the results of Chapter 2 are applicable to the more general problem of

reconstruction from crossings with arbitrary functions, the results of this section are specifically

tailored to reconstruction from level crossings or crossings with any pre-specified function that

lies in the band of the signal under consideration. On the other hand, unlike the semi-implicit

approach, the implicit approach of this chapter is capable of reconstruction from an arbitrary

number of level crossings.

4.1 Theoretical Results

In this section, we apply algebraic geometric concepts to derive conditions under which

multidimensional signals can be reconstructed from their level crossings with an arbitrary num-
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ber of thresholds. More specifically, we will show that under mild conditions, a signal with

(2N + 1) x (2N + 1) region of support in the Fourier domain can be uniquely reconstructed

from almost any k points from its a level crossings, and (2N + 1)2 - k points from its fB level

crossings. As we will see, the extension of the above result to the problem of reconstruction from

more than two threshold crossings is rather straightforward. Furthermore, we can extend our

basic result to the problem of reconstruction from sinusoid crossings, provided the frequency of

the sinusoid under consideration lies within the bandwidth of our signal.

Consider a two-dimensional, real, BLP signal, f(z, y) with periods T2 and T in and y

directions respectively. The Fourier series representation of f(x, y) is given by:

N, N2 . k k__g

f(z,y) = F(klk 2) e 2 (T T+ (4.1)
kl=-N, k2 =-N2

For simplicity we will assume F(kl, k 2) to have a square region of support of size (2N + 1) x

(2N + 1), and Tz and T, the periods in x and y directions to be equal to 1. Our results can

be easily modified for cases when Tz and Ty are not equal to 1 and F(kl, k2) has a rectangular

region of support.

Since f(z, y) is real, its Fourier series coefficients are conjugate symmetric. That is:

F(kl,k 2) = F*(-kl,-k 2) Ikl,lIk2 < N (4.2)

Using this relationship, we can rewrite our signal as a trigonometric function with real coeffi-

cients in the following manner:

f(z, y) = Re[F(O,O)] + (4.3)

2 E Re[F(O, k2)]cos(22rk2y) - Im[F(O, k 2)]sin(2rk2y) +
k 2--1

N N

E E Re[F(ki, k 2)]cos[27r(ki + k2y)] - Im[F(ki, k2)sin[2?r(klz + k2y)]
k1=l k2 =-N
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Thus, f(z, y) can be uniquely specified with (2N+ 1)2 real numbers which represent the real and

imaginary part of its Fourier series coefficients. Therefore unique reconstructibility of f(z, y)

from (2N + 1)2 samples of it given by:

(Zi,yi) i = 1,...,(2N+ 1)2

is equivalent to non-singularity or full rank of the (2N + 1)2 x (2N + 1)2 matrix M whose ith

row, ri is given by:

T 
ri 

cos(27ryi)

cos(42ryi)

cos(2Nryi)

sin(27ryi)

sin(2Nryi)

cos[2ir(xi - Nyi)]

cos[27r(Nzi + Nyi]

sin[2-r(zi,- Nyi)]

sin[27r(Nxi + Nyi)]

(4.4)

We will refer to M as the matrix associated with the points (xi, yi), i = 1, ... , (2N + 1)2,

and denote its determinant by the trigonometric polynomial p(Xl, l, ..., Z(2N+1)2, Y(2N+1)2)- In

general, the J x (2N + 1)2 matrix associated with the points (zi, yi), i = 1,..., J is rectangular
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as opposed to square.

As we mentioned earlier, our main goal is to show that almost any 0 < k < (2N + 1)2

points from the set of a level crossings and (2N + 1)2 - k points from the fi level crossings

are sufficient for unique specification of f(z, y) provided a 0 6. In order to express this in a

mathematical framework, let us define the sets A, and Ag as a and level crossings of f, in

the following manner:

Aa(C) = {(z,y) E I f(zy) = a}

A,(R) = {(X,y)ER I f(z,y) = a)

= A,(C) n R2 (4.5)

Ap(C) = {(zy)EC2 I f(zy) = 

Ad(R) = {(,y) E R I f(,y) = /}

= A,(C) R 2 (4.6)

Furthermore, let B(R) C R2(2N+1)2 denote the cross product

B(R) = A(R) x A(2N+)2 -kR)

where AK (R) is k times the cross product of Aa (R) with itself, and A(2N+1) 2-k (R) is (2N+1)2 -k

times the cross product of A (R) with itself.

Having made the above definitions, we can now state our goal as finding the conditions

under which real zeros of the trigonometric polynomial p(x, yl, ..., 2(2N+1)2, Y(2N+1)2) become

of measure zero in the set B(R) c R 2(2N+1)2. To formulate our problem in an algebraic

geometric framework, we must change some variables to express our trigonometric polynomials
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as algebraic ones. This is primarily because algebraic geometry only deals with zeros of algebraic

polynomials rather than trigonometric ones. To this end, let

sin(27rz) = w

cos(2zrx) = z

sin(22ry) = u

cos(2ry) = v

so that the trigonometric polynomials

ten as:

f(Z, y) and p(xl, yl, ... , (2N+1)2, Y(2N+1)2) can be rewrit-

f(x,y) = f(w,z,u,v)

P(Zl,Yl,---,Z(2N+1)2, Y(2N+1)2) = (w zP(W 1, u, 1 , U1.V1, (2N+1)2, Z(2N+1)2, U(2N+1)2, V(2N+1)2)

With these new variables, the sets A, and Ap can be rewritten in the following way:

(, , u, v) C4 I f(w, z,u,v) = a

A,,(C) = W2 + 2 = 1

U2 + 2 = 1

A,,,(R) = (C) nR 4

(W,z,,)eC 4 (w,z,,v) =

Ae( C )- = W2 + Z2 = 1

1t ~~u 2 + V2 = 1

A# (R) = Ai(C) n R4

B(C) = Ak (C) x (2N+L)2-k()~(c)~a = %..I .~ c (4.7)
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B(R) = B(C) n R2(2N+1)2

= A(R)x A(2 N+ )2-k(R)

Since there is a one to one correspondence between elements of the sets Aa and A,, A#

and A, and B and B, our major goal, which was to find conditions under which real zeros

of P(z 1, Yl, -...,(2N+1)2, y(2N+1)2) have measure zero in B(R), becomes equivalent to finding

conditions under which real zeros of P(wl, zl,..., 2N+1)2, v(2N+1)2) have measure zero in B(R).

The major implication of changing variables is the fact that, unlike Ac,, Ag and B, the sets

A,, Ad and B are algebraic sets. Algebraic sets are important elements in algebraic geometry,

and we will take full advantage of their properties in proving the major result of this chapter.

Thus, before we state our major theorem, it is worthwhile to go over few definitions in algebraic

geometry [50].

Definition 4.1 Let K be any field and An(K) or simply A n denote the Cartesian product of K
with itself n times. That is An(K) is the set of n-tuples of elements of K. If the coefficients
of a polynomial F are in K, i.e. F E K[X 1,...,X,], a point P = (ai, ..., a,) E An(K) is a zero
of F if F(P) = F(al,...,an) = . Ifs is any set of polynomials in K[X1 , ... ,Xn], we define
V(S) to be the set of common zeros of all the polynomials in S. That is:

V(S) = {PEA" I F(P) = O, VF S}

A subset X c An(K) is an affine algebraic set or simply an algebraic set, if X = V(S) for
some S.

Thus A,,(R) and A#(R) are algebraic sets in R4, and A,(C) and A,4(C) are algebraic sets

in C 4. An algebraic set may be the union of several smaller algebraic sets. An algebraic set

V c A" is reducible if

V = V1 U V2

where V1 and V2 are algebraic sets in A n and

Vi V i = 1,2
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V1 and V2 are referred to as components of V. If V is not reducible, it is irreducible. It can be

shown that an algebraic set is the union of a finite number of irreducible algebraic sets. More

specifically, we have:

Theorem 4.1 [50/: Let V be an algebraic set in An(K). Then there are unique irreducible
algebraic sets V, ... , Vm such that

V = V ... U Vm

and
Vi ¢ V, V i j

The proof is straightforward and is included in [501. An important consequence of the

above theorem is the fact that given an irreducible algebraic set V in An(K), the zeros of the

polynomial F E K[Xl,..., X are either of measure zero in V, or contain all the points in V.

As we will see, this fact will be crucial in proving our major theorem which can be stated in

the following manner:

Theorem 4.2 The set of real zeros of the polynomial 1(wl, ..., (2N+1)2) is of measure zero in

the set B(R) provided the following conditions hold:

1. A,(R) and A,(R) have maximal topological dimensions.

2. The polynomials

2N 2N

ga(W 1,W 2) = Z Z F.(k1
k1=O k2 =0

2N 2N

go(WI,W 2 ) = E F(k
k1 =O k2 =O

with

F.(kl, k2) = F(O,O) -,

F#(kl, k2) = F(O, ) -

are irreducible over the set of complex numbers.
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Proof:

The outline of the proof is as follows: We will first use the first condition to show that B(R) is an
irreducible algebraic set over reals. Then either zeros of p are of measure zero in B(R) or all the points
in B(R) are zeros of p. Since our objective is to prove that real zeros of 1 are of measure zero in B(R),
all we have to show is that there is at least one point in B(R) at which p does not vanish. As we will
see, the second condition of the theorem will be used to show this.

To begin, notice that the polynomials g (W 1, W2) and g (W 1, W2) are related to our BLP signal
f(x, y) via the change of variables

W1 = ej2rx

W2 = e
j 2

i
r y

in the following manner:
f(z, )-a = W;N W2N g (W 1, W2 )

X(X, y) = W[N W2 N g(WIW 2 )

Thus, there is a one to one correspondence between zeros of g,,(Wl, W2 ) (resp. g (W 1, W2 )) and A,(C)
(resp. A(C). Therefore, the second condition of the theorem implies that A,, and A,4 are also irre-
ducible. Considering equation (4.7), since B(C) is the Cartesian product of A,,,(C)s and A,(C)s, we can
conclude that B(C) is also irreducible over complex numbers.

Similarly, since A4(R) and A.4(R) have maximal topological dimensions, so does B(R). Therefore
considering Theorem (C.1) of Appendix (C), and taking into account that B(C) is irreducible, we can
conclude that B(R) is Zariski dense in B(C). This means that every polynomial that vanishes on B(R)
vanishes on all of B(C). This, together with the fact that B(C) is irreducible, implies that B(R) is
irreducible over complex numbers and thus the reals. Therefore, in order to show that the real zeros of
P(tl, ...,v(2N+1l2) are of measure zero in B(R), we merely have to show that there exists at least one

point in B(R) at which p does not vanish. That is, p does not vanish identically on B(R).
Since, by hypothesis, g, (W1 , W2 ) and g (W1, W2 ) are irreducible over complex numbers, taking into

account modified version of Bezout's theorem of Appendix (B), we can conclude that any 8N2 +1 samples
of A, will enable us to specify f(x, y)-a to within a scale factor 151]. This means the (8N 2 + 1)x (2N+1)2

matrix associated with any 8N2 + 1 points of A,, D, has rank (2N + 1)2 - 1, and its null vector is
specified by the coefficients of f(x, y) - a. Similarly, Dp, the 8N 2 + 1 x (2N + 1)2 matrix associated
with any 8N2 + 1 points of A$ has rank (2N + 1)2 - 1, and its null vector is given by the coefficients
of f(x, y) - P. Since by hypothesis a 6 f, the direction of the null vectors of D and D9 are different
from each other. Therefore, there exists at least one combination of k rows from D, and (2N + 1)2 - k
rows from Dq which result in a full rank (2N + 1)2 x (2N + 1)2 matrix with non zero determinant .

Hence does not vanish identically on B(R).
Since B(R) is irreducible over reals and p does not vanish on it identically, the real zeros of p must

be of measure zero in B(R). QED.

The above theorem implies that two-dimensional signals with (2N + 1) x (2N + 1) region

of support in the Fourier domain can be uniquely specified from almost any 0 < k < (2N + 1)2

points from their ac crossings and (2N + 1)2 - k points from their 8 crossings, provided they

satisfy the conditions of the theorem. Thus, it is natural to question the strictness of these
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conditions in practical situations. The first condition of the theorem requires Aa(R) and A#(R)

to have maximal topological dimensions. Since the complex topological dimension of Aa(C)

(resp. A (C)) is 1, and its real topological dimension is 2, maximal dimension for A,(R) (resp.

A#(R)) is 1. This implies that the points (, y) satisfying f(z, y) = a (resp. f(z,y) = O)

must contain at least a curve and can not simply be isolated points in the - y plane. In

practice, this condition can be easily satisfied by choosing our threshold Ca (resp. A) in such a

way that the corresponding threshold contours form curves and not isolated points.

The second condition of Theorem (4.2) is also easily satisfied in practice. Since throughout

our derivation we assumed f(z,y) to be real and F(kl, k2) to be conjugate symmetric, our

approach is to show that the set of reducible polynomials is of measure zero in the space of all

the bivariate polynomials of the form:

2N 2N

p(w,z) = E E a(i,j) zj
i=o j=o

a*(i,j) = a(2N - i,2N - j)

As it turns out, this is a simple extension of the fact that the set of reducible polynomials are

of measure zero in the space of all the bivariate polynomials with complex coefficients [52,53].

Theorem (4.2) can be easily extended to recovery of multidimensional signals from more

than two threshold crossings. More specifically, we can show that given m distinct thresholds,

t1, ..., tin, almost any distribution of (2N + 1)2 points among the thresholds will result in unique

reconstruction of the signal under consideration provided

1. Not all the points are chosen on one threshold.

2. For 1 < i < m, the set of points satisfying

f(X,y) = ti
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has maximal topological dimension (i.e. consists of curves as opposed to isolated points).

3. For 1 < i < m, the polynomial associated with

f(Z,y) = ti

is irreducible over complex numbers.

Furthermore, Theorem (4.2) implies that almost any (2N + 1)2 samples of one level crossings

of a signal with (2N + 1) x (2N + 1) region of support in the Fourier domain is sufficient for

its unique reconstruction to within a scale factor, provided the polynomial associated with the

signal is irreducible. This is in contrast with (16N 2 + 1) samples required by the theoretical

results of Curtis 151], or 8N 2 + 1 samples required by the application of the modified form of

Bezout's theorem as in [39].

Finally, it is not hard to see that the basic idea in Theorem (4.2) can be extended to

reconstruction from crossings with BLP functions, whose bandwidth lie within the bandwidth

of the signal. Examples of reconstruction via the implicit sampling scheme, described in this

section, are included in the next section.

4.2 Reconstruction Algorithms

In the previous section, we found that most multidimensional signals can be uniquely re-

constructed from samples on contours corresponding to two or more level crossings. Unlike the

semi-implicit line sampling strategy of Chapter 2, the sampling scheme described in section

(4.1) is truly implicit. In other words, whereas the interpolation points of the semi-implicit

approach must lie on lines of rational slope, for the implicit approach, there is no pre-imposed

103



pattern or structure to the samples.

In this section, we will propose two methods to reconstruct multidimensional signals from

their level crossings, via the implicit sampling approach of the previous section. The most

straightforward way, is to solve a linear (possibly overdetermined) system of equations of the

form:

N N

f(xi,yi) = F(kl, k 2)ej 2 r(kzi + k2 y) = tj 1 < i < M, 1 < j < p
kl=-N k2=-N

where (zi, yi) correspond to the threshold values tj. Theoretical results of the previous section

guarantee the uniqueness of the solution provided the signal under consideration satisfies the

mild conditions of Theorem (4.2). An example of reconstruction of the original eye picture

of figure (2.10) from samples of its two-level crossings is shown in figures (4.1) and (4.2).

Figure (4.1) shows the two-level, non-uniform, amplitude quantized version of the eye picture

and the crossing contours associated with thresholds 75 and 145. Since the eye picture has

961 coefficients, invoking Theorem (4.2), almost any k points from its 75 level crossings and

961 - k samples from its 145 level crossings are sufficient for its unique reconstruction. The

reconstructed version of the eye picture using the linear least-squares approach is shown in figure

(4.2). QR decomposition was used with 526 samples on the threshold contour corresponding to

75, and 426 samples on the 145 contour. Although other linear least-squares algorithms such as

conjugate gradient algorithm need less storage than QR decomposition, they are generally not

stable enough for the problem of reconstruction from multiple level threshold crossings, unless

the number of thresholds is very large. Our second approach to reconstruction is similar to

the iterative algorithm of section (3.3.1). The remaining part of this section is devoted to this

algorithm.
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(a) (b)

Figure 4.1: (a) 2 level non uniform amplitude quantized version of the original eye picture; (b)
Threshold contours associated with the 2 level crossings.

Figure 4.2: Reconstructed version of the eye picture from its level crossings at 75 and 145 via
the QR decomposition.
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4.2.1 The Iterative Approach

Our second approach to the problem of reconstruction from implicit samples of level cross-

ings is iterative and is based on Theorem (3.1) of section (3.3.1). Intuitively, this strategy is

based on imposing the space and frequency domain constraints successively. The space domain

constraint is derived from the quantized threshold contours; the frequency domain constraint

is due to the bandlimitedness of the signal under consideration. We will now describe the algo-

rithm for reconstructing a BLP signal with (2N + 1) x (2N + 1) region of support in the Fourier

domain. We assume that all the crossing contours of the signal associated with p thresholds

tl < t 2 < ... < tp are quantized on an M x M grid where M > 2N + 1, and that the

intensity of the signal lies in the range [to, tp+l]. The steps of the algorithm are as follows:

1. Deduce the range of intensity of the signal on the nodes of the M x M grid using the

position quantized threshold crossings. The quantization process is shown pictorially in

figure (4.3). As shown, quantized threshold contours trace outside of the boundary of

level crossings on the nodes of the grid. Thus, as long as there are a minimum of two

contours corresponding to two different thresholds, the intensity range for the nodes on

the M x M grid can be found'. Therefore, if t(nl, n2 ) and t,(nl, n2 ) denote the lower

and upper bound for the (nl, n2)th point on the grid, we have:

fl n2
tj(n,,n2 ) < f( ,) < t(nln2), nl,n2 = 0, ..., M-1

It is worthwhile to mention that the quantized threshold contours can also be chosen to

be inside of the actual contours. In general, our quantization scheme must be chosen so

'The fact that we need at least two thresholds is a direct consequence of Theorem (4.2). Intuitively, if we only
have contours associated with one threshold, there is no way to determine which parts of the signal are smaller
than the threshold and which parts are larger.
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Figure 4.3: (a) Deriving the space domain
gorithm; (b) Ambiguous range information
threshold.
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that there is no ambiguity which grid points are inside or outside of a given threshold

contour.

2. Let f()(, ) denote the value of fin the value of f iteration the th iteration athe point (, M). Then the

initial guess becomes:

f(0)(( nl n2) tg(n,n 2 ) + t(ni,n 2 ) ni n = ... , M-
M'M 2 

Similar to the iterative algorithm of section (3.3.1), the convergence of this algorithm is

independent of the initial guess.

3. Take the discrete Fourier transform (DFT) of f in the Ith step:

F(')(kl,k 2) = DFT[f(l)(j M,) 1l 0 < k,k 2 < M

4. Impose the bandlimited

P(t+l)(kl, k2) = {
I constraint:

F(')(kl, k2)

0

0 < kl,k 2 N, M-N kl,k2 < M

elsewhere

5. Inverse discrete Fourier transform of PF(+l)(kl, k2):

f('+')(1 l n2) = DFT-1 ( ('+l)(k,k 2) 

6. Impose the space domain constraint:

f(+ , n2 (+) ( ) < tt(n,2) ,n2)
f (1-1', n2)= t](n(+)(, n) < t(nl,n2)

t.(ni,, 2 ) , (+1)(, M) > t,(nl,n2 )

7. If all the nodes of the M x M grid satisfy the space domain constraint, we are done.

Otherwise go to step (3) and repeat steps (3) through (7).
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The above algorithm is very similar to the one-dimensional iterative algorithm, described

in section (3.3.1). Similar to the one-dimensional case, we can show that the mean square error

between the unknown signal, which satisfies the space and frequency domain constraints, and

the solution obtained via successive iterations decreases. Furthermore, we can apply Theorem

(3.1) to prove that the algorithm is guaranteed to converge to a solution which satisfies both

the space and frequency domain constraint, if such a solution exists. More specifically, the

algorithm described in this section is a special case of the iteration described in Theorem (3.1)

where:

* The Hilbert space H is the finite dimensional space of all M x M point real sequences.

* The inner product between two M x M point sequences x(ni, n2) and y(nl, n2) is given

by:
M-1 M-1

(X ,y) = E E x(nl,n2 ) y(n 1 ,n 2 )
ni=O n2=0

* C 1 is a convex, closed subset of H, and includes all M x M point real, bandlimited

sequences whose DFT is 0 in the range N < k < M- N. Furthermore, C2 is a convex,

closed subset of H containing all M x M point real sequences, y(nl, n2 ), which satisfy

the space domain constraint, derived from the level crossing information as described in

the first step of the algorithm. In other words, any M x M sequence which satisfies

tl(nl,n2) < y(n i ,n 2) < t(ni,n2), V 0 < n, n < M (4.8)

belongs to the set C 2. Note that for C 2 to be closed, it is necessary to define it exactly

the way is is shown above. For instance, if in inequality (4.8), the < were replaced with

<, then C 2 would not be closed.
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* P1 is the bandlimiting operator which operates onto the set C1, and P2 is the projection

operator which imposes the space domain constraint by projecting onto C2.

* The relaxation parameters are chosen to be 1.

Thus, the iterative algorithm described in this section, is a special case of the iterative

scheme described by Theorem (3.1). Consequently, it converges strongly to an element of

Co = C1 n C2, the set of two-dimensional M x M sequences satisfying both the space and

frequency domain constraints. Since in practice M is finite, there might be many M x M point

real sequences in the set Co. However, in the limit as M -- oo, our theoretical results of section

(4.1) guarantee that the set Co will contain exactly one sequence. Under these circumstances,

H will not be finite dimensional, and one might begin to wonder whether strong convergence

is guaranteed any longer. However, as it is mentioned in Theorem (3.1), since at least one of

our convex closed subsets, namely C 1, is finite dimensional, we are still guaranteed of strong

convergence as long as we set A1 = 1.

In order to generalize our algorithm to the case where the relaxation parameters are not

equal to one, we must modify its 6th step in the following way:

Having found the projection of f(l)(-, M) onto C1 given by:

j(l+)(nl n2) = p f(l)(nl n2)]

apply the operator

T = 1 + Al (P 1 - 1)

to f(l)(, M) to get:

/ 1)(nl -, f2 f)( M n2) + Al [f (l+)(nl n2) - f()(nl n2)
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* Now impose the space domain constraint by projecting f(l+l)(M, M) onto C 2 to get:

(+1)(,, M) - P [ j(i+1)(, M)]

= t (,M'2) , + t(ln2) < f t(lEnl ) < tu(n,,n2)

t(n, n) i(l'+)( ) < t,(nl,n)

tu(nl, n2) j(+)( ) > t(nl,n2)

* Apply the operator T2 given by:

T2 = 1+ A2 ( P2 -1)

to fJ('+')(M) ") to get:

f(1,+) , ) T2 [ P+1' (EL, a)

M,) M M(t M

f(l+)(, n2) + 2 ( (l+l)(M, M) - jl+)( , nM)
M M, ,M,)

The main advantage of the generalized version of the iterative algorithm is that its convergence

properties can be modified by adjusting the relaxation parameters A1 and A2. In fact, there

has been great deal of research on the "optimum" choice of relaxation parameters; we will only

mention the simplest such technique, over-relaxation, which essentially consists of choosing the

relaxation parameters in the range (1,2). We have found experimentally that convergence rates

do not present serious enough problems to seek other means of accelerating convergence.

4.2.2 Examples of the Iterative Algorithm

An example of the reconstruction of the original eye picture of figure (2.10), is shown in

figures (4.4) and (4.5). Figure (4.4) shows the 5 level non-uniform amplitude quantized version

of figure (2.10) and the threshold contours associated with these levels. The reconstructed
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version of figure (4.4) is shown in figure (4.5); the quantizing grid was 256 x 256, relaxation

parameters were A = 1 and 2 = 1.7, and the number of iterations was 20. We have found

experimentally that in order to reconstruct the image from fewer than 5 thresholds, the grid

size has to be much finer than 512 x 512. We will investigate the trade off between number

of thresholds and the size of the quantizing grid in more detail in Chapter 5. In this section,

however, we will only show three examples of reconstruction for different number of thresholds

and various values of M. Figures (4.6), (4.7), and (4.8) show the reconstructed version of

the eye, cman and vegas picture from 4,6 and 8 thresholds via the iterative algorithm for

different values of M. The relaxation parameters for all the reconstructions were chosen to

be A1 = 1, A2 = 1.75. As shown, increasing the number of thresholds affects the quality of

reconstruction in a more substantial way than increasing M. In addition, comparing figures

(4.6) and (3.17) we can see that the quality of reconstruction via the two-dimensional iterative

algorithm of this section is superior to the one-dimensional iterative algorithm of section (3.3.1).

Similar to the one-dimensional case, we have found experimentally that altering the 6th

step of the algorithm in the following manner:

f(t+)( n2 = I M(+l)( M, , tt(nl,n2) < (+l)(n, M) < tu(nl,n2)

M' M J tl(nl,n2) + t(n,n2)
2 , otherwise

reduces the mean square error faster than the generalized version of the iterative algorithm

where relaxation parameters are used to accelerate convergence. This is true, in spite of the

fact that the mean square error does not necessarily decrease from one iteration to the next and

that the convergence of this technique can not even be guaranteed by applying Theorem (3.1).

Although this faster convergence can be explained by formulating the problem in a statistical
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(a) (b)

Figure 4.4: (a) 5 level non uniform amplitude quantized version of the original eye picture; (b)
Threshold contours associated with the 5 level crossings.

Figure 4.5: Reconstructed version of the eye
algorithm with M = 256.

picture from its 5 level crossings via the iterative
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Figure 4.6: Reconstructed version of the original eye picture via the two-dimensional iterative
algorithm. The number of thresholds are 4,6, and 8, increasing from left to right, and the
number of equally spaced samples on lines, M are 31 (no reconstruction), 32, 64, 128, increasing
from top to bottom.
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Figure 4.7: Reconstructed version of the cman picture via the two-dimensional iterative algo-
rithm . The number of thresholds are 4,6 and 8, increasing from left to right, and the number
of equally spaced samples on lines, M are 63 (no reconstruction), 64, 128, 256 increasing from
top to bottom.
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framework 49], we will not develop it here. The important point is that, although in most re-

constructions carried out via the above modified version, the algorithm converges to a sequence

satisfying both the space and frequency domain constraints, the quality of the reconstructed

image was almost identical to the one obtained via the over relaxation method. This suggests

that the reason behind poor quality of reconstruction for small number of thresholds is not the

fact that the algorithm did not converge, but that, as with the semi-implicit iterative scheme,

there are many signals satisfying the space and frequency domain constraints, and the algo-

rithm has simply converged to one of them. Increasing the number of thresholds or increasing

M imposes more constraints on the signal, thereby reducing the number of sequences satisfying

both the space and frequency domain requirements. As we said earlier, the solution via the

iterative algorithm becomes unique as M - oo.

Before we end this section, let us briefly compare the iterative and linear least-squares ap-

proach for reconstruction via the implicit sampling strategy, described in this chapter. Unlike

the iterative approach, which needs all the quantized threshold contours, the linear least-squares

approach only needs samples of the threshold contours. While, the iterative algorithm is less

storage and computation intensive, the quality of reconstruction via the iterative algorithm is

not as high as the least-squares approach. However, one must keep in mind the fact that recon-

structions using the latter technique use, at least in principle, the exact location of the crossings,

whereas the iterative algorithm uses the rather coarsely quantized version of the crossings, as

long as M is finite. Thus, in situations where the location of the level crossings is quantized too

coarsely, unlike the linear least-squares algorithm, which is completely unsuccessful in carrying

out reconstruction, the iterative algorithm is capable of producing approximate reconstructions.

We will study these quantization issues at length in Chapter 5.
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Figure 4.8: Reconstructed version of the vegas picture via the two-dimensional iterative algo-

rithm of this section. The number of thresholds are 4,6 and 8, increasing from left to right,

and the number of equally spaced samples on lines, M are 127 (no reconstruction), 128, 256

increasing from top to bottom.
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Chapter 5

Preliminary Speculations on
Quantization Properties

In the past three chapters, we have proposed various approaches to the problem of recon-

struction from level crossings. As we mentioned in Chapter 1, our main motivation for solving

this problem has been to find sampling strategies whose characteristics lie in between the ex-

plicit Nyquist sampling and the implicit zero crossing strategy as defined by Curtis 151]. More

specifically, in Nyquist sampling, the amplitude of the signal is specified to infinite precision

at prespecified points, and all the bits used to represent the signal are essentially amplitude

bits. On the other hand, for successful reconstruction from zero crossings, the position of the

crossings need to be known extremely accurately, whereas only one bit is needed to quantize the

amplitude information. Similarly, while the bandwidth used in representing signals via their

Nyquist samples is minimal and the dynamic range is maximal, the zero crossing representation

requires maximal bandwidth and minimal dynamic range. As will see in this chapter, in repre-

senting signals via their samples of multiple level threshold crossings, the required bandwidth

and dynamic range are in between those of the zero crossing and Nyquist representations.

To demonstrate this more quantitatively, we need to investigate position and amplitude

quantization requirements of our sampling/reconstruction schemes as a function of the number
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of thresholds. A rigorous and thorough investigation of these quantization characterizations

involves extensive dealing with coding issues and experiments, both of which are beyond the

scope of this thesis. Therefore, the nature of discussions in this chapter tends to be rather

preliminary, and most of the conclusions are somewhat tentative. However, these speculative

results can be used as a starting point for further research in the areas of multidimensional

signal representation and image coding.

Since we have proposed numerous sampling and reconstruction strategies in the last three

chapters, even a preliminary investigation of their quantization properties is a formidable task.

Thus, our approach in this chapter has been to study a subset of these schemes. More specifi-

cally, we will study the quantization properties of the linear least-squares approach in section

(5.1), and the iterative algorithms in section (5.2). The reason behind choosing the linear least-

squares approach is that, if it is implemented via stable algorithms such as QR decomposition, it

can result in extremely robust reconstructions for both the semi-implicit and implicit sampling

strategies. The main reason for studying the iterative algorithms is that their quantization

characteristics are substantially different from our other algorithms.

The organization of this chapter is as follows. In sections (5.1) and (5.2), we will examine

the quantization requirements of the linear least-squares approach and iterative algorithms as

a function of the number of thresholds and the sampling strategy. As we will see in section

(5.1), the number and geometric distribution of the level crossings play an important role in

the robustness of linear least-squares reconstruction via the QR decomposition. In addition,

for both the QR decomposition and iterative algorithms, increasing the number of thresholds,

which in effect corresponds to an increase in the number of amplitude bits, leads to a decrease in

the required number of position bits. Thus, there is a tradeoff between the number of thresholds
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and total number of amplitude and position bits. Finally, in section (5.3), we show that under

certain circumstances Nyquist sampling simply becomes a special case of our semi-implicit and

implicit sampling strategies; this will bridge the conceptual gap between explicit, semi-implicit

and implicit sampling strategies, unify seemingly unrelated sampling schemes and provide us

with a spectrum of sampling techniques for multidimensional signals.

5.1 Linear Least-Squares Approach

This section includes a preliminary investigation of the quantization properties of recon-

struction via the linear least-squares approach and the QR decomposition. Before approaching

this problem however, we need to address a few issues.

The first issue has to do with the fact that quantization procedures for the implicit and

semi-implicit sampling approaches are somewhat different from each other. As we will see in

section (5.1.1), while for the implicit approach, level crossing samples are quantized on a square

grid, for the semi-implicit approach, we exploit the geometric constraint of the sample positions

to quantize their locations.

The second issue that needs to be addressed is how the number of reconstruction samples

influences reconstruction robustness. As we will see in section (5.1.2), increasing the number

of samples will result in fewer position bits per sample, although beyond a certain level, it

increases the total number of bits used to represent a signal.

Having discussed these two issues in sections (5.1.1) and (5.1.2), in section (5.1.3), we will

investigate how the number of thresholds affect position and amplitude quantization charac-

teristics of reconstruction via the linear least-squares approach and the QR decomposition.

Our experimental results seem to suggest that, although increasing the number of thresholds
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* Non-quantized samples

o Quantized samples

Figure 5.1: Quantization procedure for the implicit sampling
strategy via the linear least-squares approach.

initially decreases the number of position bits, beyond a certain point, it increases the total

number of position and amplitude bits required for representing a two dimensional signal.

5.1.1 Quantization Procedures

Quantization procedures which we used for the implicit and semi-implicit sampling strategies

are slightly different from each other. Figure (5.1) shows quantization of samples of threshold

contours obtained via the implicit sampling approach. As shown, we used a simple quantization

algorithm in which the quantized coordinates of a given sample are chosen to be the coordinates

of the center point of the square the sample falls in. In addition, for situations in which two

or more samples fall into the same quantizing square, the sample closest to the center of the

square is kept and the remaining ones are discarded.
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For the semi-implicit approach, we can take advantage of the geometry of the sampling lines.

More specifically, in a sampling scenario with nl sampling lines, our strategy for specifying the

location of a given sample has been to:

1. Use log2 nL bits to specify the line it falls on.

2. Use b bits to specify the location of sample along its sampling line.

It is worthwhile to point out that there are many other ways to quantize the position of our

samples, and our proposed coding schemes are almost certainly not optimal. In fact, a rigorous

investigation of the quantization properties involves dealing with coding issues which are well

beyond the scope of this thesis. Since we have chosen unsophisticated and simple quantization

strategies, it is important to bear in mind that the nature of our conclusions tend to be rather

speculative and preliminary.

5.1.2 Choice of the Number of Samples

Although the theoretical results of Chapters 2 and 4, provide us with a variety of sufficient

conditions under which samples of level crossings of a BLP signal can be used to uniquely

specify it, using more interpolation points than the minimum required by these theoretical

results should improve the robustness of reconstruction, and thus decrease the required number

of position bits for specifying the location of the crossings. Although for a fixed quality of

reconstruction, increasing the number of samples will initially decrease the number of position

bits per sample, beyond a certain point, it increases the total number of bits used to represent

a signal. Thus, our goal in this section is to find the extent to which oversampling signals will

reduce the total number of bits necessary for representing them. To this end, we carried out
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Figure 5.2: The original eye.lp picture which is the low pass
version of the 31 x 31 eye picture.

a series of experiments on a picture shown in figure (5.2) with 15 x 15 region of support in

the Fourier domain. This picture which is more or less the low pass version of the original eye

picture of figure (2.10), will be referred to as eye.lp.

For the semi-implicit approach, we first found all the intersections of 7 level crossing contours

with 15 equidistant lines of unity slope, and then chose five subsets of these intersections,

with a different number of samples in each subset. To guarantee unique reconstructibility,

the distribution of the interpolation points among various sampling lines for each subset was

chosen in such a way that the conditions of Theorem (2.3) were satisfied. As it turns out,

for a small number of thresholds, the quality of recovered images via the QR decomposition

deteriorates very rapidly once the number of bits used for quantizing the location of samples

drops below a certain level. Hence, it is rather straightforward to find the minimum number of
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position bits required for successful reconstruction. Nevertheless, it is important to emphasize

that our evaluation of the reconstructed images were purely subjective and rather informal. A

plot of the minimum number of position bits per sample versus the number of reconstruction

samples is shown in figure (5.3). As shown, the number of position bits drops very rapidly as

the number of samples is increased from 225 to 250. However, this drop becomes considerably

less significant as the number of samples is further increased to 399. Figure (5.3) also contains

the plot of the position bits versus the number of samples for the implicit sampling approach of

Chapter 4. Like the semi-implicit approach, the number of pusition bits drops considerably as

the number of samples is increased from 225 to 256; however, increasing the number of samples

from 256 to 576 does not seem to decrease the number of position bits any further.

The shape of the curves in figure (5.3) suggests that a plot of total number of position

bits versus the number of samples must exhibit a minimum. Indeed, as shown in figure (5.4),

the minimum occurs when the number of samples is around 250. It is important to note that

the vertical axis in figure (5.3) indicates the number of position bits per sample, whereas in

figure (5.4) it stands for the total number of position bits normalized to the number of Fourier

coefficient i.e.:

number of position bits per sample x number of samples
number of Fourier coefficients

The curves in figure (5.4) suggest that for a fixed number of thresholds, (in this case 7),

oversampling the level crossings by approximately 10 percent results in lowest total number of

position bits. In the next section, we will investigate how the number of thresholds and the

number of reconstruction samples affect the quantization requirements of reconstruction via

the QR decomposition.
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Semi-implicit
.... Implicit

200 380 400 580 666

Number of samples

Figure 5.3: Number of position bits per sample used for successful reconstruction of the eye.lp
picture versus the number of samples. Each curve represents more or less constant quality as
judged subjectively and informally.
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Figure 5.4: Normalized number of position bits used for successful reconstruction of the eye.lp
picture versus the number of samples. Each curve represents more or less constant quality as
judged subjectively and informally.
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5.1.3 Quantization Requirements

As we mentioned earlier, position and amplitude quantization requirements of various re-

construction strategies depend on factors such as sampling strategy and the number of recon-

struction samples. Having discussed the effect of number of reconstruction samples in section

(5.1.2), we are now ready to investigate quantization requirements of semi-implicit and implicit

sampling strategies as a function of the number of thresholds.

Figure (5.5) shows the plot of mean square error (mse) versus the total number of amplitude

and position bits as a function of the number of thresholds. The mean square error between

the original and reconstructed image is given by:

1 N N
mse = 2N [F(k1 ,k 2 ) - 1

(2N + 1) 2 kl=-N k2 =-N

where F(k, k2) and F(k, k 2) correspond to the Fourier coefficients of the original and recon-

structed image respectively. We have found experimentally that the quality of the reconstructed

image becomes almost indistinguishable from the original one when mse < .1 . Figure (5.5b)

corresponds to the implicit sampling strategy and (5.5a) corresponds to semi-implicit sampling

strategy with equidistant lines of unity slope. In both cases, the number of samples used for

reconstruction was 225 i.e. the minimum number required by our theoretical results. As we

would expect, the slope of the curves shown in figure (5.5) are negative, indicating that the

quality of the reconstruction is improved as the the number of position bits is increased. In

addition, the spacing between the curves decreases from right to left, indicating that the im-

provement in the quality of reconstruction decreases as the the number of thresholds gets larger.

In fact, as shown in figure (5.5b), for mse < .05 the quantization characteristics of the curve

corresponding to 16 thresholds is slightly more favorable than that of 32 thresholds.
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Figure 5.5: Plot of mse versus total normalized number of position and amplitude bits as a

function of the number of thresholds for: (a) semi-implicit sampling; (b) implicit sampling. The

number of reconstruction samples was fixed at 225.
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Superimposing curves of figures (5.5a) and (5.5b), we obtain figure (5.6) which shows the

semi-implicit and implicit curves corresponding to 7, 16, and 32 thresholds. As shown, the slope

of the semi-implicit curves are more negative than the slope of implicit ones. In addition, it ap-

pears that for mse > .1, the implicit curves exhibit more favorable quantization characteristics

than the semi-implicit ones. This is primarily due to the fact that for semi-implicit sampling

situations in which the number of reconstruction samples does not exceed the required mini-

mum value, the geometric distribution of samples is constrained by the conditions of theorems

of Chapter 2, whereas the interpolation points of the implicit sampling are more or less chosen

at random and can be more evenly distributed across the image. As an example, consider

semi-implicit sampling scenarios where all the sampling lines have identical integer slopes m.

In this case, the ratio between the maximum and minimum number of required samples on the

sampling lines is given by:

maximum number of points on a line 1 + 2(lml + 1 ) N
minimum number of samples on a line 1 + 2(lml + 1) N - 4N (5.1)

which can be approximated by:

mlP t1 (5.2)
Imli -1

Clearly, an even distribution of samples corresponds to small values of p. Therefore, for Iml > 1

increasing Iml, and for ml < 1, decreasing Iml will result in smaller value of p, and thus, a

more favorable distribution of samples. To verify this experimentally, a reconstructed version

of the eye.lp picture using samples on lines of slopes 3 and 1 are shown in figure (5.7). The

artifacts in figure (5.7a) occur at a place where two neighboring sampling lines of unity slope

have 15 and 1 points respectively. Indeed, the value of p is 15 for sampling lines of unity slope

and approximately 2 for lines of slope 3.
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Figure 5.6: Plot of mse versus total normalized number of position and amplitude bits for
semi-implicit and implicit sampling. The number of reconstruction samples was fixed at 225
and the number of thresholds was 7 in (a), 16 in (b), and 32 in (c).
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(a)

(b)

Figure 5.7: Reconstructed version of the eye.lp picture from 225 intersections of 7 level crossings

with lines of (a) unity slope; (b) slope 3.
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As the number of reconstruction samples is increased beyond the minimum required by our

theoretical results, the distribution of interpolation points becomes more even, thus resulting

in fewer position bits. Figure (5.8) shows the plot of mse versus total number of position and

amplitude bits as a function of the number of thresholds. The curves shown in figure (5.8) were

generated in a similar fashion to those of figure (5.5) except that the number of reconstruction

samples was 256 instead of 225. Notice that for the semi-implicit curves of figure (5.8a),

increasing the number of thresholds from 7 to 16 improves the quantization characteristics,

while further increase from 32 to 64 thresholds degrades it. As far as implicit sampling curves

of figure (5.8b) go, the "optimum" number of thresholds which results in minimum number of

bits varies as a function of mse. For instance, for .2 < mse < 1 it is 7, for .06 < mse < .2 it is

16, and for .02 < mse < .06 it is 32.

Although it is rather difficult to draw strong conclusions from figures (5.5) and (5.8), the

plots seem to suggest that for both semi-implicit and implicit sampling strategies, there exists

an "optimum" number of thresholds which results in the least number of amplitude and position

bits. This "optimum" number appears to be a function of mse, the sampling strategy and the

number of reconstruction samples.

5.2 Iterative Approach

As we mentioned earlier, the quantization properties of the iterative algorithms of sections

(3.3.1) and (4.2.1) are substantially different from our other algorithms. In this section, we will

present some preliminary results on the quantization properties of these iterative algorithms.

More specifically, sections (5.2.1) and (5.2.2) include amplitude and position quantization re-
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Figure 5.8: Plot of mse versus total normalized number of position and amplitude bits as a
function of the number of thresholds for: (a) semi-implicit sampling; (b) implicit sampling. The
number of reconstruction samples was fixed at 256.
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quirements of the semi-implicit and the implicit sampling strategies respectively.

5.2.1 Quantization Requirements for Semi-implicit Sampling

In this section, we will present a preliminary investigation of the quantization properties of

the iterative algorithm for the semi-implicit sampling strategy. Figure (5.9) shows the mean

square error between the original eye.lp picture and its reconstructed version, versus the number

of position and amplitude bits. The number of thresholds associated with the four curves shown

in figure (5.9) is 6, 8, 12, and 16. For each curve the thresholds were chosen with equal spacing

between 0 and 256. The four points on each curve correspond to different number of equally

spaced points on the sampling lines, i.e. M = 32, 64, 128. In addition, the sampling lines

were chosen to be equidistant and of unity slope. Although our theoretical results of Chapter 2

only require 15 sampling lines of unity slope, to be able to use the FFT with a power of 2 for the

interpolation part of the iterative algorithm (i.e. interpolation from recovered one-dimensional

signals to a square grid on the two-dimensional one), we chose 16 equally spaced sampling

lines. The y axis in figure (5.9) corresponds to mse, and for completeness we have also included

the actual reconstructed images for different values of M and different number of thresholds

in figure (5.10). As shown in figure (5.10), the quality among the reconstructed images with

approximately equal mse is comparable. Also, the quality of reconstruction certainly improves

as mse is decreased. Finally, the x axis in figure (5.9) indicates the total number of position and

amplitude bits used for the particular reconstruction at hand. Because of the inherent structure

of the samples used by the iterative algorithm, there are a variety of ways to represent the signal

under consideration and to arrive at the number of quantization bits. The most straightforward

way is to quantize the location of threshold crossings on the sampling lines to log2 M bits, so
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Figure 5.10: Reconstructed images of the eye.lp picture via the semi-implicit sampling strategy
with lines of unity slope. The number of thresholds is increased in the sequence 4,6,8 from top
to bottom, and M is increased in the sequence 32,64,128 from left to right.
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that the space domain constraint for the M equally spaced points on each of the sampling lines

can be derived easily. Using this strategy, the total number of amplitude and position bits for

representing the signal can be written as:

nt

(log2 M + log 2 nt + 1g 2 nl) ENi
i=L1

where

* Ni denotes the number of intersections of the ith threshold crossings with all the sampling

lines.

* nt denotes the number of thresholds.

n denotes the number of sampling lines.

* M denotes the number of equally spaced points on each of the sampling lines.

An alternative strategy for representing the signal is to specify the range of intensity for each of

the equally spaced points on the sampling lines. More specifically, if the number of thresholds

is nt, and the signal is known to be in the range [0,256], then the value of the signal at any

given point lies in one of the (nt + 1) intervals corresponding to our nt thresholds. In this case,

the total number of bits used to represent the signal is given by Mnl log2(nt + 1). Clearly, this

second quantization strategy outperforms the first one for large values of nt and small values of

M. Our strategy in determining the total number of position bits for the abscissa of figure (5.9)

has been to choose the minimum of the above two quantization strategies. As it turns out, we

would reach the same conclusions if we choose either of the quantization strategies described

above.

Having discussed the details of generating the curves shown in figure (5.9) and the images

of figure (5.10), it is now appropriate to make a few observations and comments regarding

137

j �_ I



their shapes. As we would expect, the slope of each curve is negative indicating that for fixed

number of thresholds the mean square error decreases as M is increased. In addition, for fixed

M, the mean square error is decreased as the number of thresholds is increased. The decreasing

distance between the curves shown in figure (5.9) is indicative of the fact that as the number

of thresholds increases, the resulting drop in mse is less. Thus, the decrease in mse as the

number of thresholds changes from 6 to 8 is more substantial than when it changes from 12

to 16. An interesting question to address, however, is whether or not there is an "optimum"

number of thresholds for which the lowest number of amplitude and position quantization bits

is achieved. As figure (5.9) shows, this optimum" number varies as a function of the mean

square error. For instance, for the value of mse in the range 10.53, 0.85], it is between 6 to 8, and

for mse in the range [0.15,0.23], it is between 12 and 16. Thus, for iterative reconstruction via

semi-implicit sampling, it appears that the "optimum" number of thresholds, resulting in least

number of amplitude and position bits, is a decreasing function of mse. In the next section, we

will investigate iterative reconstruction via implicit sampling.

5.2.2 Quantization Requirements for Implicit Sampling

Our main goal in this section is to investigate quantization properties of the iterative recon-

struction algorithm for the implicit sampling strategy. The basic idea behind this algorithm, is

to iterate between the space domain constraints derived from the quantized threshold contours,

and the frequency domain constraints derived from the bandlimitedness of the signal.

Similar to the iterative reconstruction algorithm of the semi-implicit sampling, there are

several strategies one might take to arrive at the total number of amplitude and position
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quantization bits for representing a given image via the implicit sampling scheme. Since in

each of these strategies, we are encoding the quantized contours corresponding to different

thresholds, almost all of the efficient coding schemes for two tone images proposed and studied

by many researchers [54,55] can be used for representing our images. The most obvious way of

encoding the boundary points of a threshold contour quantized to b bits is to use 2b bits for

x and y coordinates of each point. Using this strategy, the total number of bits required to

specify nt threshold contours is given by:

nt

(log2 nt + 2b)( Ni(b))
i=l

where Ni(b) denotes the number of quantized boundary points on a 2b x 2b quantization grid

for the ith threshold. A second and more efficient way of representing the boundary points is to

follow the boundary i.e. to do contour tracing. Since the image is quantized on a 2b x 2b square

grid, each pel has only eight neighbors. Therefore, it is sufficient to use 3 bits to indicate where

the next boundary point is. Of course, to get on each boundary, we need to specify the position

of an initial point. Thus, ignoring the additional bits required to get to the initial points on

the boundaries and to specify their associated threshold value, total number of points required

for specifying an image is given by
nt

3 E Ni(b)
i=1

Our third encoding strategy involves specifying the range of the signal for each node of the

2b x 2b quantization grid. This strategy is suitable for sampling schemes with large number

of thresholds and coarse quantization of the contours. The total number of bits required for

specifying an image via this encoding technique is given by

22b log2 (nt + 1)
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As far as efficiency of these encoding strategies goes, clearly the second strategy outperforms

the first one, and the relative efficiencies of the second and third encoding schemes depend on

the form of Ni(b). Intuitively, we would expect Ni(b) to be proportional to 2b, since the number

of boundary points of quantized threshold contours is doubled as the size of quantizing grid is

increased from 2 b x 2b to 2b+1 x 2b+ l . Thus, for small values of b and large values of nt, the

third strategy outperforms the second one. As it turns out, our major conclusions are more

or less independent of the actual encoding strategy used; so our adopted strategy has been to

choose the minimum of second and third quantization strategies for representing images.

Having described our quantization strategy, we will now examine how the number of thresh-

olds affect the required number of position bits and the quality of reconstruction. Figure (5.11)

shows the plot of the mean square error between the eye.lp picture and its reconstructed version

versus the total number of position and amplitude bits. The four curves shown in figure (5.11)

correspond to four different values of the grid size, i.e 16, 32,64 and 128. Various points on each

curve correspond to reconstruction from different numbers of thresholds. The reconstructed im-

ages corresponding to different points on the curves of figure (5.11) are shown in figure (5.12).

The reconstruction was carried out via the iterative algorithm of section (4.2) with Al = 1.5

and A2 = 1.95. These values of A's were found to result in the smallest values of the mean

square error. The following observations can be made about the plots shown in figure (5.11):

* The slopes of the curves are negative indicating that the quality of reconstruction is

improved as the number of thresholds is increased or equivalently as the number of position

and amplitude bits used for representing the image is increased.

* Smallest number of position and amplitude bits is achieved when the grid size is at its

minimum value i.e. 16, or equivalently for b = 4.

140



2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

8
0 4 8 12 16 26 24

Normalized number of position and amplitude bits

Figure 5.11: Plot of mean square error between the eye.lp picture and its reconstructed version
versus normalized number of position and amplitude quantization bits for different values of
grid size.
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Figure 5.12: Reconstructed images of the eye.lp picture via the implicit sampling strategy and
the iterative algorithm. The number of thresholds is increased in the sequence 4,6,8 from top
to bottom, and the grid size is increased in the sequence 16,32,64,128 from left to right.
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* The number of thresholds which results in smallest number of quantization bits is a

decreasing function of the mse. For the curve corresponding to b = 4, the "optimal"

number of thresholds for mse = 1, .1, .01 are 6, 32, and 128 respectively.

* Beyond a certain point, an increase in the number of thresholds does not result in fur-

ther decrease in the mse, but merely increases the total number of bits. For the curves

corresponding to b = 5,6, this phenomenon is reached at nt = 16,8 respectively.

Thus, the larger the grid size is, the smaller the number of thresholds which result in this

"saturation" phenomenon.

Another way to present the quantization results of figure (5.11) is to plot the mean square

error versus normalized number of position and amplitude bits as a function of the number of

thresholds. This is shown in the curves of figure (5.13), which correspond to reconstruction from

a different number of thresholds. Various points on each curve correspond to reconstruction

with different values of grid size. As we would expect, the slopes of the curves are negative,

indicating that the quality of reconstruction improves as the quantization grid becomes finer.

In addition, the number of thresholds which results in smallest number of quantization bits is

a function of mse. For instance, if we are interested in reconstructed signals with mse < .556,

then the optimal number of thresholds is between 8 and 16. Finally, comparing figures (5.13)

and (5.9), it seems that for fixed quality of reconstruction via iterative algorithms, implicit

sampling results in lower number of bits than semi-implicit sampling with lines of unit slope.

5.3 Relationship to Nyquist Sampling

As we mentioned in Chapter 1, explicit sampling refers to schemes in which a function is
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Figure 5.13: Plot of mean square error between the eye.lp picture and its reconstructed version
versus normalized number of position and amplitude quantization bits for reconstruction from
different number of thresholds.
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represented by its samples or derivatives at prespecified points. An example of such a technique

is Nyquist sampling where the amplitude of a signal is given at equally spaced points. Thus,

for a two-dimensional BLP signal with N x N region of support in the Fourier domain, Nyquist

sampling involves amplitude specification at the nodes of a N x N grid. Our main goal in this

section is to explore the relationship between Nyquist sampling/reconstruction and reconstruc-

tion from level crossings via implicit or semi-implicit sampling strategies. We shall begin with

the implicit sampling strategy of Chapter 4.

5.3.1 Implicit Sampling

Recall from section (5.1.1) that reconstruction of an N x N signal from implicit samples of

its nt level crossings via the linear least-squares approach consists of the following steps:

1. Find the level crossing contours associated with nt thresholds.

2. Quantize the threshold contours to b bits by

* Superimposing a 2b x 2b grid over the signal in the space domain.

* Assigning to the center point of all the x squares which contain some piece

of one or more threshold contours, the value of the threshold whose contour comes

closest to the center of the square.

3. Choose M of the above 26 x squares with their center points becoming our quantized

reconstruction samples.

4. Reconstruct the signal from its quantized samples by finding its Fourier series coefficients.

The above process is shown pictorially in figure (5.14a). As seen in figure (5.14b), for

sufficiently large number of thresholds, all the 22b squares associated with the 2 b x 2b grid
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will have a threshold value associated with them. Moreover, if the grid size is the same as

the signal size i.e. 2b = N, the number of reconstruction samples, M, becomes equal to

N 2 , and we will end up with quantized samples of our signal on a N x N grid. Under these

circumstances, the position of our sampling points are identical to that of Nyquist samples, and

their amplitude corresponds to the threshold associated with them. Thus, there seems to be a

duality between the above sampling set and log2 nt bit amplitude quantized Nyquist samples.

However, it is important to bear in mind that these two sampling sets are inherently different

from each other. In Nyquist sampling, the amplitude information is quantized at the nodes of a

N x N grid, whereas, in reconstruction from threshold crossings, the nodes of this N x N grid

correspond to position quantized samples of level crossings. In other words, Nyquist sampling

corresponds to amplitude quantization at prespecified points, and reconstruction from level

crossings corresponds to position quantization at prespecified amplitudes.

We will now turn our attention to the iterative algorithm of section (4.2.1). Recall from

section (5.2.2) that the quantization procedure for iterative reconstruction of an N x N signal

from nt level crossings via the implicit sampling strategy consists of the following steps:

1. Find all the level crossing contours associated with nt thresholds.

2. Quantize the threshold contours to b bits by finding nodes of a 2b x 2b grid corresponding

to the boundary points of the contours.

3. Derive the range of the signal for each of the nodes of a 2 x 2b grid by utilizing the

quantized threshold contours of the previous step. This will be used as the space domain

constraint of the algorithm.

4. Impose the bandlimited constraint and the space domain constraint of the previous step
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* Non-quantized samples
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(a) (b)

Figure 5.14: (a) Position quantized samples obtained via im-
plicit sampling; (b) Position quantized samples occupy all the
N 2 nodes of a N x N grid if the number of thresholds are
large enough.

iteratively.

Thus, the iterative algorithm derives the amplitude range for the nodes of a 2b x 2b grid

by utilizing the quantized threshold contours. Therefore, the input to the iterative algorithm

can be either represented by quantized threshold contours, or by the space domain constraint

obtained from them. Indeed, as we saw in section (5.2.2), representation via the former strategy

involves tracing the boundary of threshold contours, and representation via the space domain

constraint involves specifying the range information for the nodes of a 2b x 2b grid. In the

case where all the contours associated with all the thresholds are used for reconstruction, the
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Figure 5.15: (a) Contours corresponding to two thresholds tl
and t 2; (b) Amplitude quantized samples derived from quan-
tized threshold contours are identical to amplitude quantized
Nyquist samples.

intensity of each node of the grid lies in one of the nt + 1 intervals defined by the nt thresholds.

Thus, as shown in figure (5.15), we can think of the nodes of the grid being amplitude quantized

to log2(nt + 1) bits. In addition, if the size of the grid, 2b, assumes its minimum possible value

i.e. N, then our sampling set becomes identical to log2(nt + 1) bit amplitude quantized Nyquist

samples.

5.3.2 Semi-implicit Sampling

The discussion for the semi-implicit sampling is somewhat similar to implicit sampling.
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Recall from section (5.1.1) that reconstruction of an N x N signal from its crossings with

nt arbitrary functions, via the semi-implicit sampling strategy of Chapter 2, consists of the

following steps:

1. Find all the crossings of the signal with the nt crossing functions.

2. Sample the crossings along lines of rational slope.

3. Choose M samples from the intersections of the sampling lines and function crossings in

such a way that conditions of Corollary (2.3) are satisfied.

4. Quantize the position of the chosen samples to b bits.

5. Reconstruct the signal from its quantized samples by finding its Fourier series coefficients.

The above process is shown pictorially in figure (5.16a). Suppose that the following conditions

are satisfied:

* The crossing functions are chosen-to be constants, so that function crossings become level

crossings.

* The sampling lines are chosen to be horizontal or vertical and equally spaced.

* The number of reconstruction samples is N 2 .

* The number of quantization bits is log 2 N.

As seen in figure (5.16b), under these circumstances, the location of our N 2 position quantized

samples corresponds to the nodes of a N x N grid, or equivalently the location of Nyquist

samples, and their amplitudes correspond to the threshold crossing associated with them. Note

that for the above conditions to hold, the number of thresholds used for reconstruction must

be large enough so that each of the N horizontal (or vertical) lines contain N samples after
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quantizing the x (or y) position of the samples to log2 N bits. Thus, similar to the implicit

sampling case, there seems to be a duality between the samples obtained in the above manner

and log 2 nt bit amplitude quantized Nyquist samples. However, it is important to bear in mind

that these sampling sets are inherently different from each other. In Nyquist sampling, the

amplitude information is quantized at the nodes of a N x N grid, whereas, in semi-implicit

reconstruction from threshold crossings, the nodes of this N x N grid correspond to samples of

level crossings position quantized along the sampling lines. In other words, Nyquist sampling

corresponds to amplitude quantization at prespecified points, and reconstruction from level

crossings corresponds to position quantization along sampling lines at prespecified amplitudes.

We will now turn our attention to the iterative algorithm of section (3.3.1). As shown in

figure (5.17a) , the iterative algorithm utilizes the position quantized semi-implicit samples in

order to derive the space domain constraint. Therefore, the input to the iterative algorithm

can be represented either by position quantized samples, i.e. in a similar fashion to the linear

least-squares and recursive approach, or by the intensity range of equally spaced points on the

sampling lines. In the latter case, since all the intersections of sampling lines with the threshold

contours are utilized, the intensity of the equally spaced points lie in one of nt + 1 intervals

defined by the nt thresholds. In addition, suppose that the following conditions are satisfied:

* We have N equally spaced horizontal or vertical sampling lines.

* The number of equally spaced points on sampling lines, M, is equal to N.

As figure (5.17b) shows, under these circumstances, the N equally spaced samples on N hori-

zontal or vertical lines correspond to nodes of a N x N grid, and since the amplitude of each

node is in one of the (nt + 1) intervals corresponding to nt thresholds, our sampling set becomes
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* Non-quantized samples Sampling lines

o Quantized samples ..... Lines used for quantization
along sampling lines

(a) (b)

Figure 5.16: (a) Position quantized samples obtained via
semi-implicit sampling; (b) If we have N equidistant horizon-
tal or vertical sampling lines, and the number of thresholds
is large enough, the position quantized samples will occupy
all the N 2 nodes of a N x N grid.

identical to log2(nt + 1) bit amplitude quantized Nyquist samples.

To summarize this section, we have found conditions under which the location of position

quantized samples obtained via semi-implicit and implicit sampling become identical to those

of Nyquist samples. In addition, under certain circumstances, the range information used as

an input to the iterative algorithms can be considered to be identical to amplitude quantized

Nyquist samples. Thus, it appears that representation of two-dimensional signals via their

amplitude quantized explicit samples is intimately related to their position quantized semi-

implicit or implicit samples, and that reconstruction from multiple level threshold crossings has
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Figure 5.17: (a) Derivation of space domain constraint for the
iterative algorithm of semi-implicit sampling; (b) If we have
N equidistant horizontal or vertical sampling lines, together
with N equally spaced samples on each line, our sampling set
corresponds to amplitude quantized Nyquist samples.

bridged the gap between explicit, semi-implicit and implicit sampling strategies.

5.4 Summary

In this chapter, we have presented a preliminary investigation of quantization properties of

various sampling and reconstruction schemes as a function of the number of thresholds. We

started with the linear least-squares approach via the QR decomposition, which is our most

stable reconstruction algorithm for both the semi-implicit and implicit sampling strategies.
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There are a variety of factors influencing the robustness of reconstruction via the linear least-

squares approach. In section (5.1.2), we found that for fixed number of thresholds and a

given sampling strategy, the number of position bits is initially decreased as the number of

reconstruction samples is increased from its minimum value. However, as seen in figure (5.4),

increasing the number of samples beyond a certain point will merely result in an increase

in total number of bits used for representing the signal. In section (5.1.3), we found that

for fixed number of reconstruction samples, the quantization characteristics initially improve

as the number of thresholds is increased. However, for large number of thresholds, further

increase in the number of thresholds does not necessarily lead to more favorable quantization

characteristics.

As far as iterative algorithms go, the "optimum" number of thresholds, which results in

smallest number of position and amplitude bits, is highly dependent on the quality of the

reconstructed images. More specifically, as seen in figures (5.9) and (5.11), for smaller values

of the mean square error, the "optimum" number of thresholds is larger.

Recall that our goal in this chapter has been to demonstrate that the quantization charac-

teristics of our sampling and reconstruction algorithms lie in between Nyquist and zero crossing

sampling and reconstruction. While recovery of an N x N signal from its Nyquist samples re-

quires minimum number of position bits, i.e. log 2 N, and maximum number of amplitude bits,

i.e. infinite, and recovery from zero crossings requires maximum number of position bits, i.e.

infinite, and minimum number of amplitude bits, i.e. 1, the position and amplitude quantiza-

tion requirements of our sampling strategies for reconstruction from multiple level crossings lie

in between these two extremes. In fact, the experimental results of this chapter seem to suggest

that the optimal number of thresholds, which results in minimum number of total amplitude
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tion requirements of our sampling strategies for reconstruction from multiple level crossings lie

in between these two extremes. In fact; the experimental results of this chapter seem to suggest

that the optimal number of thresholds, which results in minimum number of total amplitude

and position bits, is neither infinite, as it is with Nyquist sampling, nor is it one, as is the case

with zero crossing sampling. Indeed, this optimum number depends on a variety of factors such

as:

* Quality of reconstruction.

* The specific sampling strategy used i.e. semi-implicit or implicit sampling.

* The specific reconstruction strategy.

· The number of reconstruction samples.

Finally, as we saw in section (5.3), representation of two-dimensional signals via their am-

plitude quantized, explicit, Nyquist samples is intimately related to their position quantized

implicit or semi-implicit samples. The preliminary results of this chapter seem to indicate that

reconstruction from multiple level threshold crossings, has bridged the gap between explicit,

semi-implicit, and implicit sampling strategies, unified seemingly unrelated sampling schemes,

and provided us with a spectrum of sampling techniques for multidimensional signals.
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Chapter 6

Summary, Conclusions, and Future
Directions of Research

Our main goal in this thesis has been to derive sampling and reconstruction schemes whose

characteristics lie in between Nyquist sampling and zero crossing sampling as proposed by Curtis

[511. As we mentioned in Chapter 1, while the required bandwidth for representing signals via

their Nyquist samples is minimal, to be able to recover the signal exactly, the dynamic range

or equivalently the number of amplitude bits must be infinite. On the other hand, since in

representing multidimensional signals via their one level threshold crossings the location of the

level crossings must be known with large accuracy, the required bandwidth is extremely large,

while the dynamic range is minimum. Thus our objective has been to derive sampling strategies

whose bandwidth and dynamic range characteristics lie in between these two extremes, and can

be used for reconstruction of signals from their multiple level crossings.

Our approach to solving this problem has been to formulate it in terms of multivariate

interpolation theory. The reasons behind this formulation are two-fold. First, BLP signals which

encompass a fairly large, general class of signals, can be represented in terms of polynomials.

Second, a rather large body of the mathematical results in polynomial interpolation theory can

be applied directly to the problem at hand. As we mentioned in Chapter 2, although univariate
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polynomial interpolation is relatively straightforward, the inherent difficulty in multivariate

interpolation is the fact that unlike the univariate case, there are no Chebychef systems in R s

for s > 2. Indeed, our main theoretical results in this thesis deal with two major strategies for

overcoming this difficulty.

Our first strategy, described in Chapter 2, consisted of imposing restrictions on the location

of interpolation points, used for recovery of the bivariate polynomial associated with the signal

under consideration. To this end, we developed several theoretical results on multivariate

polynomial interpolation theory using algebraic geometric concepts. We then used these results

to derive a variety of semi-implicit sampling strategies to provide us with sufficient conditions

under which multidimensional BLP signals can be recovered from their non-uniform samples

on lines of rational slope. To utilize these results in the context of reconstruction from level

crossings, the non-uniform samples were chosen at the intersection of sampling lines with level

crossings. As we saw in section (2.3), the semi-implicit sampling strategy can also be applied

to a variety of other problems such as reconstruction from crossings of the signal with arbitrary

functions, and reconstruction of multidimensional signals from their projections.

The major drawback of the line sampling strategy for reconstruction from level crossings

is the fact that in general, we are never guaranteed to get enough intersections between the

sampling lines and level crossings to satisfy the conditions of the theorems in Chapter 2. As

we saw in section (3.4), although we can improve the likelihood of satisfying these conditions

by careful choice of the slope and position of sampling lines, the basic problem still remains in

the sense that the semi-implicit sampling strategy is incapable of reconstructing signals from

an arbitrary number of thresholds.

To overcome the above difficulty, in Chapter 4, we proposed a second approach to the
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problem of reconstruction from level crossings. While the semi-implicit sampling strategy of

Chapter 2 can be applied to 'the more general problem of reconstruction from non-uniformly

spaced samples, the implicit sampling strategy of Chapter 4 can only be applied to reconstruc-

tion from level crossings or crossings with functions, whose bandwidth lies within the bandwidth

of the signal. The main advantage of the implicit sampling scheme, however, is that unlike the

semi-implicit approach it can reconstruct signals from an arbitrary number of thresholds. The

major result in Chapter 4 states that for almost all signals with N x N region of support in the

Fourier domain, almost all k > 0 points from its a level crossings and N 2 - k points from its 

level crossings are sufficient to uniquely specify it. This result was extended to situations where

the number of thresholds is larger than 2 and to the problem of reconstruction from crossings

with sinusoids, whose frequencies lie within the bandwidth of the signal.

Having developed the semi-implicit and implicit sampling strategies, we then proposed a

variety of reconstruction algorithms in Chapters 3 and 4. The most straightforward way of

carrying out reconstructions for both the semi-implicit and implicit sampling strategies, is to

solve a linear system of equations to find the Fourier series coefficients associated with the signal.

We proposed two algorithms for solving the linear least-squares problem: QR decomposition

and the conjugate gradient algorithm. While QR decomposition is considerably more robust

than the conjugate gradient algorithm, its storage requirements for a signal with N x N region of

support in the Fourier domain are of the order of N 4. We also proposed the recursive algorithm

of section (3.2) in conjunction with the semi-implicit sampling strategy; the recursive approach

is not storage intensive and is efficient computationally, although it is somewhat ill conditioned.

To circumvent the problems associated with the recursive and linear least-squares approach,

we proposed the line by line iterative algorithm of section (3.3.1) for the semi-implicit sampling
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strategy, and the iterative algorithm of section (4.2) for the implicit sampling strategy. As it

turns out, these iterative algorithms are relatively stable and their storage and computational

requirements are not demanding.

The input requirements of the iterative algorithms however, are somewhat different from

our other algorithms, since they utilize all the available level crossing information to derive the

space domain constraint for the iterations. More specifically, the iterative algorithm of section

(3.3.1) requires all the intersections of sampling lines and threshold contours, and the iterative

algorithm of section (4.2) requires all the quantized threshold contours. An important feature

of the iterative algorithm of section (3.3.1) is the fact that, if the number of threshold crossings

on each sampling line exceeds the number of Fourier harmonics of the one-dimensional signal

associated with the line, then the solution obtained via the iterative algorithm is unique, only

in the limit as the number of equally spaced samples on the sampling lines, M, tends to infinity.

Since in practice M can only be finite, the solution obtained via the iterative algorithm is only

an approximate one. As far as the implicit sampling strategy goes, while the linear least-squares

approach requires N 2 samples of threshold crossings in order to recover an N x N signal, the

iterative algorithm requires quantized versions of all the threshold contours themselves. Similar

to the semi-implicit case, the solution obtained via the iterative algorithm is unique only in

the limit as the size of quantization grid approaches zero. Thus the solution obtained via the

iterative algorithm with finite grid size is only an approximate one.

In Chapter 5, we presented a preliminary investigation of the quantization properties of

some of our reconstruction algorithms as a function of the number of thresholds. We started

with the linear least-squares approach via the QR decomposition, which is our most stable

reconstruction algorithm for both the semi-implicit and implicit sampling strategies. As we
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saw, there are a variety of factors influencing the robustness of reconstruction via the linear

least-squares approach. In section (5.1.2), we found that for a fixed number of thresholds and

a given sampling strategy, the number of position bits is initially decreased as the number of

reconstruction samples is increased from its minimum value. However, as seen in figure (5.4),

increasing the number of samples beyond a certain point will merely result in an increase in

total number of bits used for representing the signal. In section (5.1.3), we found that for a fixed

number of reconstruction samples, the quantization characteristics of the linear least-squares

approach initially improve as the number of thresholds is increased. However, for a large number

of thresholds, further increase in the number of thresholds does not necessarily lead to more

favorable quantization characteristics. As we saw in section (5.2), the quantization properties

of the iterative algorithms suggest that the "optimum" number of thresholds which results in

the smallest number of position and amplitude bits is highly dependent on the quality of the

reconstructed images. More specifically, as figures (5.9) and (5.11) show, for smaller values

of the mean square error, the "optimum" number of thresholds is larger. It is important to

mention that the results presented in Chapter 5 are rather preliminary and that the conclusions

are somewhat tentative. Our hope is that these speculative results can be used as a starting

point for further research in the applications of the theory to areas of multidimensional signal

representation and image coding.

Recall that our goal in this thesis has been to derive sampling schemes whose bandwidth

and dynamic range characteristics lie in between those of Nyquist and zero crossings sampling.

While recovery of an N x N signal from its Nyquist samples requires minimum number of

position bits, i.e. log2 N, and maximum number of amplitude bits, i.e. infinite, and recovery

from zero crossings requires maximum number of position bits, i.e. infinite and minimum
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number of amplitude bits, i.e. 1, the position and amplitude quantization requirements of our

sampling strategies for reconstruction from multiple level crossings lie in between these two

extremes. In fact, the experimental results of Chapter 5 seem to suggest that the optimal

number of thresholds, which results in minimum number of total amplitude and position bits,

is neither infinite, as it is with Nyquist sampling, nor is it one, as is the case with zero crossing

sampling. Indeed, this optimum number depends on a variety of factors such as:

* Quality of reconstruction.

* The specific sampling strategy used i.e. semi-implicit or implicit sampling.

* The specific reconstruction strategy.

* The number of reconstruction samples.

Finally, as we saw in section (5.3), representation of two-dimensional signals via their am-

plitude quantized explicit samples is intimately related to their position quantized implicit or

semi-implicit samples. The results of Chapter 5 seem to indicate that not only does the am-

plitude and position quantization characteristics of our sampling and reconstruction schemes

lie in between those of Nyquist and zero-crossings, but also under certain circumstances, semi-

implicit and implicit sampling strategies become a special case of Nyquist sampling. In short,

reconstruction from multiple level threshold crossings, has bridged the gap between explicit,

semi-implicit and implicit sampling strategies, unified seemingly unrelated sampling schemes,

and provided us with a spectrum of samplin g techniques for multidimensional signals.
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6.1 Directions for Future Research

A wide variety of different directions are possible for expanding or extending the results

of this thesis. The most natural application of the results are in the area of multidimensional

signal representation and coding. As we mentioned earlier, the quantization results of Chapter

5 are rather preliminary, and most of the conclusions are somewhat tentative. However, these

speculative results can be used as a starting point for a rigorous and thorough investigation of

the quantization characteristics of the various sampling and reconstruction schemes presented in

this thesis. Such characterization involves consideration of many coding issues, a large number

of experiments and comparison to other existing coding schemes.

Our theoretical results can also be applied to the area of multidimensional signal reconstruc-

tion from projections. This problem arises in diverse fields as X-ray tomography, transmission

electron microscopy, and radio astronomy. In section (2.3.2), we used Theorem (2.7) to gener-

alize the one-projection theorem due to Mersereau and Oppenheim [451 to a multiple-projection

theorem. The major problem in reconstructing bandlimited functions of order M from a single

projection is a computational one, and is due to the high order of the polynomials involved.

More specifically, in order to recover all M 2 samples from a single projection, it is necessary to

work with a polynomial of degree greater than or equal to M 2. However, reconstruction from

multiple projections at angles specified by Corollary (2.5), results in lower degree polynomials

and thus, a more stable numerical problem. Extensive simulations are needed to verify this

idea experimentally, and to compare it with the existing reconstruction schemes.

Our results in bivariate polynomial interpolation can also be applied to a variety of other

problems. An example of such problems is multidimensional FIR filter design, where the fre-
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quency response of the filter is expressed in terms of a two-dimensional polynomial. If the

frequency response of the filter is specified at points located on lines of rational slope, we can

apply a variety of the techniques described in Chapter 3 to determine the impulse response of

the filter. Another application of the multivariate polynomial interpolation is surface interpo-

lation from scattered data. This problem arises frequently in fields such as geology, astronomy,

oceanography, and machine vision where it is necessary to recover a signal or function whose

values are known along certain contours, paths, or curves. For instance in machine vision, pri-

mal sketch descriptions of several images are matched, either by stero or motion computation,

to obtain a description of surface information at the zero crossings contours of the convolution

of the image with the Laplacian of a Gaussian.

As we saw in section (2.3.1), the theoretical results of Chapter 2 can be used to reconstruct

signals from their crossings with arbitrary functions. A potential application of this result is in

the conversion of halftone images to contone ones. The halftone process has been used for more

than a century to convert continuous tone pictures into a regular patterns of black and white

dots which can then be printed. Mathematically speaking, the halftone version of a continuous

tone image can be obtained by comparing the value of the signal with a two-dimensional periodic

function, called the screen function, and producing a white or black pixel on a high contrast

medium depending on whether the signal value is higher or lower than the screen function. In

effect, the boundary of black and white pixels in the halftone image corresponds to the crossing

of the signal with the screen function. Thus, the theoretical results of Chapter 2 can be applied

to reconstruct the continuous signal from its crossings. Few examples of such reconstructions via

the conjugate gradient and recursive algorithms were shown in Chapter 3. In these examples,

162

*I�__ _ _ �_ _ _____



the screen function was chosen to be

A {1 + cos[27r(px + qy)]}

Thus, future work must focus on the applicability of these results to more general screen func-

tions, numerical robustness of reconstruction in practical situations, and comparison with ex-

isting conversion techniques.

As we mentioned in Chapter 1, a major drawback of reconstruction from one-level crossings

is that the location of the crossings need to be known extremely accurately. This accuracy lim-

its the applicability of reconstruction from one-level crossings in many practical situations such

as image restoration. More specifically, consider an image which has undergone nonintentional

nonlinear processing such as a high contrast recording medium with few intensity levels. If it is

distorted in such a way as to preserve one or more of its level crossings, it is possible, at least

in principle, to recover it from the level crossings of its distorted version. Since reconstruction

from a single threshold needs very accurate location of the one-level crossings, successful recov-

ery of the original image requires an extremely high resolution recording medium. However,

considering the results of Chapter 5, we would expect this requirement to be substantially re-

duced if the original image is reconstructed from multiple level crossings of its distorted version.

Thus, the spectrum of sampling/reconstruction techniques described in this thesis enables us to

store/retrieve data from a wide variety of recording media with different resolution and dynamic

range characteristics. Similar remarks can he made about analog communication channels with

different bandwidth and dynamic range characteristics.

From a theoretical point of view, we can extend our results in a number of different ways.

We have not addressed the robustness of our sampling and reconstruction schemes with re-
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spect to the bandlimitedness and periodicity assumption. We would expect the level crossing

contours of an almost BLP signal to be somewhat similar to the threshold contours of its ban-

dlimited, periodic version. Further investigation is needed to determine how violations of these

assumptions affect the quality of reconstruction as a function of the number of thresholds. A

different problem involves finding sufficient conditions for unique reconstruction of nonperiodic

signals. These conditions have already been found for the case of reconstruction from one-level

crossings [51].

Finally, the results in this thesis could potentially have a major impact in the area of signal

representation and manipulation. In most signal processing applications, multidimensional

signals such as images are usually represented by a two-dimensional array consisting of the

intensity of the signal on a square or rectangular array, with most of the processing done in the

space or frequency domain. In this thesis, we have shown that multidimensional signals can be

robustly represented with an arbitrary number of threshold contours or their samples. Thus,

one might consider ways of processing signals in the threshold domain as opposed to the more

conventional space or frequency domains. More specifically, signal processing operations which

preserve the bandlimitedness and periodicity of the signal, can be carried out in the threshold

domain by simply operating on few threshold contours of the signal in order to obtain a new

set of threshold contours of the "processed" signal.

An interesting application of the above idea might be in the area of morphological analysis

of images where some of the morphological operations such as erosion and dialation commute

with thresholding. One way to carry out these operations on a function f, at least in principle,

is to process all the level crossings of f separately in order to build" the desired signal by

stacking its level crossings. Thus, in situations where we know that the dialated or eroded
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version of a signal f is bandlimited and periodic, we can perform these operations on few level

crossings of f instead of all of them. Clearly, most of the above ideas are rather speculative,

and further research is needed to verify them both theoretically and experimentally.
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Appendix A

Proof of Theorem 3.8

In this appendix we will prove Theorem (2.4) of section (2.2.2).

Theorem A.1 Let lo,...,lp be distinct curves with li, the ith curve given by:

Z = Oiw Lai = O

where m < n is an arbitrary integer, p is the smallest integer such that

p

i(m + 1)n- 2mi + 1] > (n + 1)2
i=O

and

{(w), z))lj = 0,..., (m + 1)n - 2mi; } (A.1)

the set of distinct points on li. If none of the interpolation points defined by (A.1) are equal to

(0,0), the common intersection of all the curves, then for any data set

{ti) j = 0O, ..., (m + 1)n - 2mi; i = O,...,p;

there is a unique bivariate polynomial of the form

n n

p(w, ) = a(i, j)w' iz
i=o j=o

such that
p(W=i) Z(i)) = ti) i = O,..., n;

Proof:

Our approach will be to describe a method of reconstruction of the polynomial p(w, z) which
satisfies the conditions described in the theorem. In the process of reconstruction, we will show
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that this polynomial exists and is unique. The reconstruction algorithm consists of p -- 1 steps.
We will use induction to show that in the ith step we can find the 2mi coefficients given by the

set
{a(11,12)Ill + m12 = (i - l)m, ... ,im - 1,n(m+ 1) - im+ 1,...,n(m+ 1)}

Before we start the induction, it is worthwhile to mention that sampling the bivariate
polynomial p(w, z) along the ith curve, li, which is given by

z = Cawm

is equivalent to sampling the univariate polynomial

n(m+l)

pj(w) = p(w,aiwm ) = E b(')w'r (A.2)
r=O

where
n n

0~t) = E2 a ala(11 12) (A.3)
/1=o 12=o

l1+ ml2 =r

In the first step of the algorithm, we can use the points on the curve lo given by the set

{(u) aow()i= O,...,(m+l)n}

together with their corresponding data set

{t )lj= O0,..., (m+ 1)n}

in order to find b °) for i = O,..., n(m + 1). This can be done because po(w) of equation (A.1) is

a one dimensional polynomial of degree n(m + 1) and thus any (m + 1)n + 1 distinct samples

of it are sufficient to find its coefficients. We can now use the value of the quantities

{b()li = 0,..., - 1,n(m + 1)- (m-), ... ,(m + 1);}

together with equation (A.3) to find the coefficients

{a(ll,12)I1l + m12 = O,...,m - 1,n(m + 1) - (m - 1),...,n(m+ 1); }

As we will see later, the values of the remaining coefficients of the polynomial po(w), which

are found in the first step of the algorithm, will be used in future steps. More specifically, for

j = 0, ... , m - 1 the quantities b()m and b(O,+l)imj will be used in the (i + 1)st step of the

algorithm.
Having shown the validity of the induction hypothesis for the first step of the algorithm, we

will now show that if in steps 1 through i the quantities

{a(1l, 12)11I + ml 2 = O,..., im- 1,n(m + 1)- im 1,..., n(m + 1);}

and
{b(?)j = 0, ... ,i; r = jm,jm + 1, ..., (m 1) - jm + 1; )
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are found, then in the (i + 1)st step the quantities

{a(ll,12)Il - +ml2 = mi,...,m(i + 1) - 1,n(m + 1) - (i + 1)m,...,n(m+ 1) - im; }

and

{b('+ Ir = im,..., n(m + 1) - im;}

can be evaluated. Rearranging the terms in equation (A.1) we get:

n n

Aw, aiw)- = p(w, wm) - E E ay2a(Il, 12)uWL+L2
I =t 1,2=t

a+ml2=0,...,m-l, n(m+l)-im+1 ,...,n(m+1)

n n

= EI E c12a(l, 1 2)W' + 12
I 11=0 12 =40

l +ml 2=im ,...,n(m+l)-im

n(m+l)-im

-Z b(s')wr (A.4)
r=im

By hypothesis, since the point (0,0) is on the intersection of all the curves O, ..., lp, it could not
possibly be one of the interpolation points. Therefore we have

W ) O j = O, ... ,n(m+ ) - 2im;

This implies that the points on the ith curve, li, given by the set

{(Uj) , aiwt) )i= 0, ... ,n(m + 1) - 2im}

are sufficient to uniquely specify the coefficients

{b')ilr = im,...,n(m + 1) - im; }

of the univariate polynomial given by equation (A.4). The values of b's found in the (i + 1)st
step of the algorithm together with the ones found in previous steps can now be used for finding
the coefficients of p(w, z). More specifically, for j = 0, ... , m - 1 the quantities

{bm+jlk = O,..., i; }

can be used to find the coefficients

{a(ll, 12)11 + ml2 = mi + j; )

Using equation (A.3) we have

6m+j = aca(j + im - rm, r)
r=O

Since the curves lo,...,p are distinct, the c's corresponding to different curves are different
from each other. Therefore the coefficients

{a(ll,12)lll + ml2 = mi + j; }
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can be uniquely found by solving the above Van der Monde system of equations. The same
procedure can be applied for finding

(a(ll, 12)111 + ml 2 = n(m + 1) - im - j; }

from the quantities
{bn(m+l).im jIk = , ... ,i; }

Therefore we have shown that in step i + 1 we can uniquely determine the quantities

{a(l1,1 2)11 + m12 = mi,..., m(i + 1) - 1,n(m + 1) - (i + 1)m + 1,...,n(m + 1) - im; )

This completes the induction and proves the theorem. It is worthwhile to mention that since
in the ith step of the algorithm we find 2mi coefficients of p(w, z), for arbitrary values of n and
m, there is no guarantee that the number of interpolation points is equal to the number of the
unknown coefficients. In fact unless there is an integer p such that

P

(m + 1)n- 2mi + 1 = (n + 1)2
i=O

we need more data points than unknown coefficients.

C
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Appendix B

A Bound on the Number of Finite
Common Zeros Based on
Polynomial Degree

Recall that Bezout's theorem is concerned with determining the number of common

zeros of two bivariate polynomials. It is restated here for convenience,

Theorem B.1 If p(w, z) and q(w, z) are bivariate polynomials of total degree r and s respec-
tively with no common factors, then there are at most rs distinct pairs (w, z) where

p(w, z) = q(w, z) = 0 (B.1)

Since Bezout's theorem is concerned with total degree as opposed to degree in each variable,

it pertains most generally to polynomials whose coefficients have triangular support as shown

in Figure B.1.

In our case of reconstruction from level crossings, this corresponds to an image which has a

triangular support. On the other hand, many times one is interested in images with square or

rectangular support as shown in Figure B.2.

For the case when the polynomials under consideration have rectangular support, we are

able to lower the bound on the number of common finite zeros from the bound set by Bezout's
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theorem. Specifically if the two relatively prime polynomials p(w, z) and q(w, z) are given by

M Np

p(w, ) = Z Z pm,
mt- (B.2)

m=O n=O

and
Mq Nq

q(w, ,z) = E qm,nwmZ (B.3)
m=O n=O

the upper bound on the number of common finite zeros set by Bezout's theorem is (Np +

Mp)(Nq + Mq). Our objective is to establish a tighter upper bound on the number of common

finite zeros of p(w, z) and q(w, z).

Before proceeding, we need to review several results concerning the resultant of polynomials

in one or two variables. The resultant Rpq of two one-dimensional polynomials p(w) and q(w)

M,

p(W) = C Pnwn

Mq

q(w) = qnw"
n=O

(B.4)

(B.5)

(B.6)

is defined [37] as the determinant of the (Mp + Mq) by (Mp + Mq) matrix

Po Pi
O Po

00

0 0

'The derivation presented
described in [39].

P1

*Po

* * qM9 0

* * qM - 1 qMq

PM, 0 . . 0 

PMp-1 PMP * O0

.. .PMP
0 . ... 0

0 .0 .

.. qo * * * qMq.

(B.7)

here is due to a collaboration between D. Izraelivitz and the author and is also
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A basic property of resultants is stated in the following theorem [37],

Theorem B.2 When the polynomials p(w) and q(w) have numerical coefficients, a necessary
and sufficient condition that they shall have a finite or infinite common root is that Rpq = 0.

Consider now the two relatively prime bivariate polynomials p(w, z) and q(w, z), defined in

(B.2) and (B.3), expressed as polynomials in w, with coefficients which are polynomials in z,

P(, z) = po(z) + p1(Z)w + * + PM(Z)WM (B.8)

q(w, z) = qo(z) + ql(z)w + ' + qMq(Z)WM q (B.9)

We can define the resultant of p(w, z) and q(w, z) with respect to w as the determinant of the

(Mp + Mq) by (Mp + Mq) matrix, M(z), with polynomial entries:

M(z) =
po(Z) pi(Z) PM,(Z) 0 0 0

o po(Z) Pl(z) PMY-1(Z) PM,(Z) o0 

0 . . . . . . .()

qo(z) q (z) . qM, (Z) 0 0 0

O qo(z) ql(z) qMq-1(Z) qM(z) 0 * 0 . 0

0 0 q. .o(z) qM (z)

(B.10)

This resultant is a function of the remaining variable z and is denoted by Rpq (z). Expanding

the determinant of the above matrix and taking into account that each pi(z) and qi(z) is of

degree at most Np and Nq respectively, we can conclude that Rpq(z) is a polynomial of degree

NpMq + NqMp or less. It can be shown [38], that if p(w, z) and q(w, z) are relatively prime then

Rpq(z) is not identically zero. Moreover, if (wo, zo) is a common zero of p(w, z) and q(w, z) then
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Rpq(zo) = O. Thus, the zero sets of p(w, z) and q(w, z) have at most NpMq + NqMp values of z

in common.

As our argument stands, we have not yet placed any tight limit on the number of intersec-

tions of p(w, z) and q(w, z) since for each z which is a root of Rpq(z) there could be a large

number of wj, such that for each j,

p(wj, zi) = q(wj, zi) = O (B.11)

In order to specify the number of wj for each zi, we need to study the behavior of Rpq(z)

in the vicinity of each zi.

Theorem B.3 If at each zo there are k values of w, wj, such that

p(wj, zo) = q(wj, zo) = 0 for j = 1,..., k (B.12)

then Rpq(z) has a zero of multiplicity at least k at zo.

The above theorem implies that p(w, z) and q(w, z) as defined in equation (B.2) and (B.3)

have at most NpMq + NqMp zeros in common.

In order to prove Theorem B.3 we need to review some results on matrices with polynomial

entries, relating to the Smith Normal Form [56],

Theorem B.4 Let A(z) be an n by n polynomial matrix of normal rank r. We can find

unimodular matrices {P(x),Q(z)}, such that

B(x) = P(x)A(x)Q(x) (B.13)

and

1. B(z) is a diagonal polynomial matrix called the Smith Normal Form of A(x).

2. The first r diagonal elements of B(x) are monic polynomials pl(z), p2(x), " , Pr(z)-

3. The remaining diagonal elements, if any, are zero.
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4. pi(z) divides pi+l(x) for i= 1,*,r- 1.

Normal rank in the above theorem is defined in [56]. The unimodular polynomial matrices

of the above theorem are defined to have nonzero constant determinant independent of z.

Therefore, if r = n, i.e., if A(z) has full normal rank then,

n

det(B(x)) = H pi(x) (B.14)
i=1

Also, from part (4) of Theorem B.4 we can conclude that if pi(x) = 0 then pk(x) = 0 for

k > i. From the above theorem, we can derive the following,

Theorem B.5 Let A(x) be a polynomial matriz of full normal rank. If A(xo) has rank defi-
ciency of k then det(A(z)), has a zero of multiplicity at least k at xo.

Proof:

Using Theorem B.4 we can find B(z), the Smith normal form of A(x). Since P(z) and Q(z)
are unimodular, B(x) is of full normal rank. Furthermore, the ranks of B(z) and A(x) at each
value of x, including x0, are equal. Therefore B(xo) has rank deficiency of k. This means that
Pn(zo) = Pn-l(xo) = ... = Pn-k+l(o) = 0. Therefore, from (B.14) det(B(x)) has a zero of
multiplicity at least k at o0. Since the determinant of A(z) is within a constant factor of that
of B(x), A(x) also has a zero of multiplicity at least k at Zo.

Using Theorem B.5, we can return to Theorem B.3,

Proof:

(Theorem B. 3) Suppose that for z0o there are k common finite zeros wj, j = 1, ... , k between
p(w, z) and q(w, z). Then the matrix M(zo) defined by (B.10) must have k linearly independent
null vectors given by:

[1, wj, , *.*.,IwM+M -]T (B.15)

for j = 1, , k. Thus M(zo) has rank deficiency of k. Furthermore, since p(w, z) and q(w, z)
have no common factors, Rpq(z) is not identically zero, so M(z) has full normal rank. From
Theorem B.5 then, Rpq(z) has a zero of multiplicity of at least k at zo.
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From Theorem B.3, and the fact that Rpq(z) is a polynomial of degree NpMq + NqMp, we

get immediately, the main result of this appendix,

Theorem B.6 Let p(w, z) and q(w, z) be two polynomials of degree (Mp, Np) and (Mq, Nq)

with no common factors, then there are at most NpMq + NqMp pairs of finite complex numbers

(w,z) such that
p(w, z) = q(w, z) = 0 (B.16)
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Appendix C

A Result in Algebraic Geometry

In this appendix, we will briefly go over few definitions, and then prove a result in algebraic

geometry, which is used in the proof of Theorem (4.2).

Consider the polynomials

Pi(x0,...,x,) = O i=0,. .,r

defining an irreducible algebraic set V over K. Let us denote the r x n Jacobian matrix

associated with V by (i). Points xr of V at which the Jacobian matrix assumes is maximum

rank are called ordinary points. Any point of V which is not ordinary is said to be singular

[57]. If the singular points of V are removed, we obtain a manifold whose dimension defines

the topological dimension of V '. The dimension of a reducible algebraic set is defined to be

the maximum of topological dimensions of its various irreducible components.

The complex topological dimension of V c C", which is defined to be the dimension of its

associated complex manifold, is also given by [59]:

afin - max( )p

'Precise definition of manifolds is included in [58]
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where P ranges over the points in V. By definition, the real dimension of V is twice its complex

dimension. For convenience, we will use the term topological dimension to denote real dimension

unless specificed otherwise. If V(R) denotes the real part of V c C", we have 60]:

dimt0opV(R) < dimtopV

where dimtp denotes the topological dimension. V(R) is said to be of maximal topological

dimension if its dimension is exactly half the dimension of V.

We are now ready to prove the following theorem 2 which is ultimately used in the proof of

Theorem (4.2).

Theorem C.1 Let V C CN be the set of complex zeros of polynomials fl,...,f,. Then if V
is irreducible and V(R), the real points of V has mazimal topological dimension, then V(R) is
Zariski dense in V. That is, every polynomial that vanishes on V(R) must vanish on all of V.

Proof:

We will prove the above result by contradiction. If a polynomial f vanishes on V(R) and
does not vanish on V, then let W V be the set of real and complex zeros of f which are in
V. Since V is irreducible, and W is a proper subset of V,

dimtopW < dimtopV (C.1)

Since the real part of W and V are the same, then

dimtopW(R) = dimtopV(R)

Using the above equation and the assumption of maximal topological dimension for V(R), we
get

dimtopW(R) = dimtopV (C.2)

Furthermore, as we mentioned earlier

dimtpW(R) < dimtopW (C.3)

2This theorem and its proof were suggested by Prof. M. Artin at MIT.
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From equations (C.2) and (C.3) we conclude that:

dimtopV < dimtopW

which contradicts inequality (C.1).

[O
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