

Abstract

We present a scalable image localization system that
uses distributed kd-trees created on overlapping geo-
graphic cells using a database of 10 million Google
Street View images for an area of approximately
10,000 square kilometers in Taiwan. Given a collection
of images over a region of interest (ROI), we generate
a database by dynamically creating geographic cells
that are optimized so that each cell contains roughly
the same number of images. We then create kd-trees
for each cell from SIFT features extracted from the
images in that cell. When querying the system, we run
traditional feature matching on each cell and pool the
results for each cell to rerank with a geometric con-
straint. The key idea is the subdivisions of the ROI into
overlapping geographic cells, allowing our system to
scale to 10 million images and to efficiently utilize pri-
or query location information when available. We
evaluate our system on a test set of 29 geo-tagged im-
ages, not from Google Street View, taken throughout
Taiwan with various resolutions, aspect ratios, and
qualities.

1. Introduction
In automatic image localization, the location of a given
query image is determined by querying a pre-generated
database of geo-located images to retrieve the closest
visual matches. This problem has many applications
such as providing location on smartphones in areas
with weak GPS signal and increasing coverage for
commercial products such as location based ad target-
ing. With the increasing availability of geo-tagged im-
ages from sources such as Google Street View and
Flickr, image localization has the potential to localize
any image in the world. To achieve such global locali-
zation however, image localization systems must be
able to scale to millions or even billions of images.

Generally image localization is done by extracting
some type of local feature descriptor for all images and
then obtaining feature correspondences between the
query and multiple database images through an approx-
imate nearest neighbor algorithm such as the random-

ized kd-tree method [3]. These feature correspondences
are then pruned to resolve erroneous correspondences
through a geometric consistency step.

One of the main factors contributing to the non-
scalability of existing image localization systems is the
large memory footprint of loading the local descriptors
of all the database images, a necessary step in kd-tree
based approximate nearest neighbor algorithms. In the
case of loading in SIFT features [2], only around
100,000,000 features can be loaded into a 12 GB RAM
as noted by [10]. Traditionally, scalable methods avoid
this large memory footprint by using a vocabulary tree
to quantize the local descriptors [8, 9, 10, 11], saving
memory by only needing the descriptors at the inner
nodes of the vocabulary tree to be loaded into memory
during the approximate nearest neighbor search.
Though vocabulary trees result in a smaller memory
footprint, their performance have been shown to be
inferior to kd-trees [7].

To circumvent the above problem, it is possible to
use features that require less memory. Rather than us-
ing local features, one can use global features to create
systems scalable to millions of images [4, 12]. In par-
ticular, [4] utilizes an ensemble of global features such
as miniaturized raw image pixels, global color histo-
gram, global texton histograms, etc while [12] uses
only the miniaturized raw image pixels and weak anno-
tations. While capable of returning images that global-
ly look similar to the query image, these highly scala-
ble global feature systems cannot match fine-grained
details, resulting in poor performance in the image
localization task.

Scalable Cell Based Image Localization

Andrew Zhai, Matthew Clements, and Avideh Zakhor
Signetron Inc. and University of California, Berkeley

Berkeley, CA 94720
{azhai,clements,avz}@eecs.berkeley.edu

Figure 1: Overview of our image retrieval pipe-
line.

 Our approach to a scalable image recognition system
is most related to the methods proposed in [1, 6]. In
[6], rather than creating one kd-tree over all images in
our database, the images are subdivided with a kd-tree
created for each subdivision. In [1], a geographic re-
gion is subdivided into evenly sized overlapping cells
and a kd-tree is constructed over each cell. In both [1]
and [6], the generic image localization algorithm is
then run for each cell independently and finally the top
results are aggregated amongst the various cells. The
most significant difference between our proposed
method and that of [1, 6] is our novel cell generation
step. Rather than randomly subdividing images into
cells of equal geographic size as in [1], our subdivi-
sions are optimized to create cells with roughly equal
number of images. This results in cells with geograph-
ically non-uniform size but approximately uniform
number of images, improving retrieval performance.
By limiting the maximum number of images per cell in
the subdivision process, we also mitigate the memory
footprint problem mentioned earlier. Finally, similar to
[1], this allows for efficient incorporation of prior que-
ry location information.
 The remainder of the paper is outlined as follows.
We provide an overview of our system in Section 2
and explain the image database generation in Section 3.
In Section 4, we describe our cell generation algorithm
and rationale. We evaluate our results in Section 5 and
conclude in Section 6.

2. System Overview
While the motivation for our proposed geographic cell
based approach comes from [1], straightforward appli-
cation of the approach in [1] is infeasible due to its
poor retrieval performance and memory scalability
issues resulting from our database being around 1000

times larger in size than in [1]. The block diagram for
our current system, shown in Figure 1, is similar to [1]
except for the cell generation step. Specifically our
system consists of the following components:

1) Database Generation (Offline)
After extracting SIFT features for each image in the 10
million Taiwan image database using [14], we subdi-
vide the images along with their features into geo-
graphic cells. For each of these geographic cells, we
create a kd-tree using FLANN [3] and save the index
for later use. We describe creation of these geographic
cells in Section 4.

2) Feature Correspondence Voting
After extracting SIFT features from a query, we obtain
the top N approximate nearest neighbors for each fea-
ture in the query, resulting in a maximum of N feature
correspondences per query feature. The approximate
nearest neighbor match is only accepted if the L2 dis-
tance between the query and database feature are with-
in a certain distance threshold. Furthermore, we discard
correspondences where the difference in rotation be-
tween the query and database feature is greater than 0.2
radians. This process is repeated independently for
each cell. We choose N = 4 based on previous bench-
marks in [15].

3) Filter and Pooling.
After the voting step for each cell, there exist point
correspondences between the query and multiple data-
base images. Mismatched point correspondences are
then pruned through a geometric consistency step
where we solve for the fundamental matrix between
the query and each matching database image, removing
point correspondences that do not satisfy epipolar con-
straints. After this step is repeated for all cells, we pool

(a) (b)

Figure 2: Distribution of closest database image distance in meters for the 29 TW queries. (a) Distribution with only images scraped from
OpenStreetMap road data. (b) Distribution with only images scraped from grid approach. (c) Distribution from the combination of (a) and
(b).

(c)

the matching database images and rank them by num-
ber of point correspondences. We take the maximum
number of point correspondences for database images
that are duplicated in multiple cells. The top matching
database image is the one with the most number of
correspondences.

3. Image Database Generation
The 10 million Google Taiwan Street View images
have been scrapped through the combination of two
methods in order to provide adequate resolution for our
geo-tagged 29 Taiwan query images, which are differ-
ent from Google Street View images.

Since Google Street View images are only taken
along roads, we initially sample 80 meter separated
points along OpenStreetMap’s roads for Taiwan [16]
as shown in Figure 3(a). Each point results in twelve
640x640 images, evenly spanning 360° heading with
67° field of view. Even though this results in around 5
million images, the resolution is inadequate as shown
in Figure 2(a). Specifically, only 14 of 29 test images
had an existing Google Street View image within 50
meters of the image’s ground truth. This is due to the
insufficient coverage of OpenStreetMap roads.

To boost the resolution, we have augmented our ex-
isting database by scraping along an 80 meter separat-
ed point grid over our region of interest, avoiding

redundant work by removing points near Open-
StreetMap roads as shown in Figure 3(b). This results
in an additional 5 million images after duplicates are
removed for a total of 10 million images. As shown in
Figure 2(c), by combining the road and grid point
scrape methods, 27 out of the 29 Taiwan test images
have an existing Google Street View image within 50
meters of the image’s ground truth.

4. Cell Generation
Initial runs of image localization using the fixed radius
cell division scheme described in [1] result in poor
performance due to the non-uniform geographic distri-
bution of database features. This non-uniformity is due
to the span of our region of interest covering both ur-
ban and rural areas in Taiwan as high-density areas
such as cities have a higher concentration of Street

(a)

(b)
Figure 4: (a) Fixed radius cell size distribution. (b) Dynamic
radius cell size distribution showing the max at nmax = 10000.
Limiting cell size guarantees that all cells fit in memory. Both
were generated from the 1 million Taiwan subset database.

Figure 3: Visualization of the points used for scraping. (a) Points
along OpenStreetMap roads. (b) Points used for grid scrape.

(a) (b)

View images per square meter than low-density ones
such as villages. Since the scheme in [1] relies on fixed
radius geographic cells, the number of images per cell,
or cell size, varies dramatically as shown in Figure 4(a)
ranging from less than 100 images to around 200,000
images for a random one million subset of the Taiwan
database. As a result, images in these small cells end
up with too many votes as each cell has an equal
amount of votes to distribute i.e. # of votes = # of que-
ry features × # of nearest neighbors requested. Fur-
thermore, because of the degradation of kd-tree per-
formance with database size as benchmarked in [15],
correct feature correspondence matches occur less in
these large ~200,000 image cells as the approximate
nearest neighbor search loses precision.

As explained in [5], it is also likely for multiple vis-
ually similar features to exist in a database as the data-
base size increases, making even the true nearest
neighbor match to result in an incorrect correspond-
ence. Furthermore, by not controlling the maximum
size of a cell, cell sizes grow, such that a single cell
might not fit into memory. Specifically, assuming an
average of 1000 SIFT features per image, the 200,000
image cell would require ~24 GB of RAM. Thus, to
achieve scalability, it is desirable to devise a scheme
that allows for non-uniform geographic cell size while
imposing some uniformity on the feature counts within
cells.

In an abstract sense, the division of our database into
cells is a form of clustering, where we assign elements
to clusters based on geographic proximity. This is es-
pecially useful for our system as it is designed to run
not only on full ROI but also on smaller context re-
gions that represent a priori knowledge of the query's
position. This prior knowledge can be used to prune
the number of cells to be queried, as there is no point to
query any circular cells not intersecting with the region
defined by a priori location knowledge. The prior
knowledge can again be applied after computing the
top result list for fine-grained pruning of specific lati-
tude/longitude points as the context region usually only
intersects with a portion of a given cell.

In choosing between divisive and agglomerative
clustering approaches, we have determined that ag-
glomerative clustering would result in cells of unusual
shapes, making it more difficult to incorporate prior
knowledge since such cell shapes would be difficult to
characterize and analyze. Therefore, we have opted for
a divisive approach, described as follows.

The basic idea behind our approach is to split each

cell into four children cells per iteration until the num-
ber of features in every cell falls below a given thresh-
old. In doing so, we alternate between cardinal and
diagonal splits in order to avoid unbounded growth in
cell overlap as shown in Figure 5. In cardinal splits,
children are offset either horizontally or vertically from
their parents. In diagonal splits, they are offset diago-
nally. The main motivation for the above approach is
that excessive cell overlap has been shown not to im-
prove or even degrade retrieval performance, while
increasing computation and memory requirements
[15].

We describe a cell c by its center, its radius, the ori-
entation in which splits, and the features it contains. A
list of cells is referred to as cell_list. Intuitively orien-
tation of a cell encodes whether it is split cardinally or
diagonally. Specifically the orientation of a cell is ei-
ther 0o or 45o depending upon whether it is cardinal or
diagonal respectively. Mathematically, orientation of a
given cell is the angle from that cell’s center to the
center of its first child with respect to the horizontal
axis.

We initialize cell_list to contain the smallest single
circular cell of radius r0, center [x0, y0]T, and orienta-
tion 0o, such that it contains every feature in our data-
base. The features in a cell c are referred to by
c.features. The other attributes of a cell are denoted by
a similar

 (a) (b)

Figure 5: Visualization of (a) cardinal split and (b) diagonal split.

Figure 6: Division of a cell into 4 cells via a diagonal split fol-
lowed by four additional cardinal splits; (a) parent cell; (b) four
children cells resulting from diagonal split; (c) 16 grandchildren
cells resulting from four cardinal splits of children cells in (b); (d)
Four pairs of duplicate cells in (c) highlighted in red. (e) remain-
ing grandchildren after removal of duplicates in (d).

(a) (b)

(c) (d) (e)

Figure 7: Dynamic radius cells visualized on top of Taiwan Region
of Interest for 1 million image subset db.

notation. As long as there are any cells c in cell_list
with more than nmax features, we select one and split it
into four children cells c0, c1, c2, and c3 with radii equal
to c.radius / √2. The center of each child cell is a dis-
tance c.radius / √2 from c.center. In a cardinal (diago-
nal) split the angle between the line connecting the
center of the first child to its parent and the horizontal
axis is 0o (45o). The angle measured at the center of
the parent cell between two successive children in both
cardinal and diagonal is 90o.

After each parent cell is decomposed into four child
cells, we assign to each child all database features ly-
ing within its geographic extent. We then add that child
to the cell_list provided it has non-zero number of fea-
tures and an equivalent cell does not already exist in
the cell_list. The reason for the latter is pictorially ex-
plained in Figure 6 which shows that of any cell’s 16
grandchildren, four are duplicates, resulting in only 12
unique grandchildren.

 The main motivation for the alternation between
cardinal and diagonal in successive splits is to control
the amount of overlap in children cells. Specifically, it
can be shown that ignoring edge effects, the alternation
procedure results in the overlap to remain constant as
the iterations proceed as duplicates are deleted. With-
out the alternation though, these duplicates do not oc-
cur and hence, the amount of overlap in the center re-
gion of the original cell continues to increase with the
number of iterations. This behavior is undesirable as
images in these highly overlapping regions have an
unfair and artificial advantage when tallying votes
since they occur in a multitude of cells.
 Quantitatively, it can be shown that splitting a cell of
radius r0 and area πr0

2 into 4 overlapping cells of radius
r0 / √2 in the manner described above, results in an
overlap area of r0

2(π – 2). If we define ρ to be the ratio
between sum of the areas of the cells to the

area of the union of the cells, it can be shown that for
the alternation approach, ρ asymptotically approaches
π/2 from below as depth of the tree, d, increases. In
contrast without alternations, ρ is shown in Appendix
A to be bounded by:

 (1)
Therefore, as long as d > 2, ρ is guaranteed to be
smaller for the alternating method than even the lower
bound for the non-alternating method. In Appendix B,
we provide bounds tighter than those shown in Equa-
tion 1.
 The size distribution of the dynamically sized cells
for nmax = 10,000 is shown in Figure 4(b). We see in
the histogram that there are cells with fewer than 500
images. Though this indeed does create an unfair vot-
ing environment as described earlier, the improved
approximate nearest neighbor performance from the
larger cells with the maximum cell size results in more
matching features in these cells, mitigating the effects
of the unfair voting. Furthermore, even though cells
with few images can have an inflated vote tally as
compared to other cells, usually the geometric con-
straint step eliminates many false matches. With the
combination of these two, even though smaller cells do
have an advantage, they do not overwhelm the top re-
sults.

A visualization of the dynamic radius geographic
cells on our region of interest is shown in Figure 7 on a
1 million image subset of our 10 million image data-
base. The maximum and minimum cell radii in Figure
7 are 70 km and 1 km respectively.

(a)

(b)
! (a)!

)

(c)
! (a)!

)

Figure 8: Successful results with query on the left and the retrieved
Google Street View image on the right. Image stitching artifacts
can be seen on the right image of (b).

5. Evaluation
We evaluate our retrieval system using the 10 million
image Taiwan Street View database described in Sec-
tion 3. Since the fixed radius cells approach in [1] re-
sults in cells with kd-trees that are too large to fit in
memory, we have opted not to compare our proposed
dynamic subdivision cells approach to [1] for our 10
million image database.
 We evaluate our system on a set of 29 Taiwan
ground-level images that do not originate from Google
Street View with 18 urban images and 11 rural images.
Examples of urban and rural images are shown in Fig-
ures 8(c) and 9(a) respectively. Our test images also
have a variety of resolutions ranging from 5 to 20
times the size of the Street View database images. Fur-
thermore, the quality of the images varies significantly.
As seen, Figures 8(a) and 8(c) are high quality DSLR

images while test image 8(b) exhibits much lower
quality with both decreased resolution and motion blur.
Some test images are taken through car windows as
shown in Figures 9(b) and 9(d). Though the quality and
environment of our test images vary significantly, they
are all possible queries to a real world image localiza-
tion system and as such allow us to estimate our sys-
tem’s practical real world performance.

To measure retrieval performance, in Figure 10 we
plot the percent of queries having matches within 80
meters of the ground truth location against the number
of top ranked images considered. As seen, around 25%
of our queries can be matched by only considering the
top 5 images. These test images all correspond to urban
regions. Figures 8 and 9 show successful and failed
retrievals respectively depending on whether or not the
matching database image to a query is within the top 5
images returned by our system. We have found that
images with obviously distinct features existing in both
the query and database images such as a brand or text
label result in excellent localization due to the distinct
features resulting from these texts. This is also seen in
Figure 8(b) with the huge crack on the wall underneath
the green roof. The lack of distinct matching features is
the most significant reason for failures in localizing
test images.

Eleven of our test images from rural environments
are filled with non-rigid vegetation resulting in local
descriptors that are likely to not match between query
and the correct matching database image as the fea-
tures detected over vegetation vary with environmental
factors such as weather conditions. Furthermore, vege-
tation is likely to change over time as shown in Figure
9(a) where the color and shape of the grass fields be-
tween the query and database images differs. Though
the database image in Figure 9(d) does seem likely to

Figure 10: Distribution of the fraction of queries having matches
within 80m of ground truth while varying the top number of
images considered.

(a)

(b)

(c)

(d)

Figure 9: Failed results with query on the left and the closest
matching Google Street View image on the right. We can see that
test images taken in (b) and (d) are from within a car and exhibit
motion blur distorting the distinctive features between query and
database match. Images (a) and (c) also show the varying nature of
vegetation between the query image and the database image.

have discriminative features, the motion blur and low
quality of the query image due to being taken through a
car window hinders such features from being generated
and robustly matched.

6. Conclusion
In this paper we have presented a scalable image local-
ization system using dynamically generated geographic
cells over a region of interest. By using a novel cell
division algorithm, we are able to control the maxi-
mum number of images per cell, reducing the memory
footprint of each cell so that each cell can be loaded
into memory. This allows us to use the robust but
memory intensive SIFT features. Furthermore, by di-
rectly controlling the size of each cell, we avoid the
degradation of performance with increasing database
size of the approximate nearest neighbor algorithm
using kd-trees from FLANN [3, 15]. Along with allow-
ing our system to scale to 10 million images, these
geometric cells have also allowed us to efficiently uti-
lize prior query location knowledge.

Appendix A: Loose Bounds
This appendix characterizes the level of overlap be-
tween cells for a database with no alternation of split
orientation and deletion of duplicate cells.

Let d denote the uniform depth of the dendrogram of
cell divisions within the database, with a single cell
undivided corresponding to d = 1, and let database
overlap be characterized by

 !

where c denotes a cell and cells denotes the set of all
cells in the database. We will show:

These loose bounds arise from a pair of simplifying
approximations, one of which is guaranteed not to
overestimate ρ, resulting in a lower bound, the other of
which is guaranteed to overestimate, resulting in an
upper bound. Note that for d = 1, a single cell, ρ = 1.

For the lower bound, the simplifying assumption is
to assume that the descendants of one cell might over-
lap the descendants of another, such that we only need
to consider the overlap between siblings when compu-
ting ρ. Supposing that we start with a single cell of

radius r0, its four children each have area for a
summed area of . The area of the intersection be-

tween two adjacent children, one “petal” such as is
visible in Figure 5, is half the difference between the
area of one child cell and the square inscribed within it:

. As there are four such “petals”, and no
other intersections between the children, inclusion-
exclusion gives an area of the union of the four cells of
! . Thus, each increment of the depth d re-
sults in a multiplicative increase in ρ, making

.
For the upper bound, the simplifying approximation

is to ignore the fact that the descendants of a given cell
partially occupy regions that the original cell did not,
i.e. we treat the denominator of ρ as constant. As
shown above, the numerator increases by a factor of 2
after each level of division, resulting in an upper
bound of ! .

Appendix B: Tight Bounds
This appendix provides a tighter bound than that of
Appendix A. Again, letting d refer to the depth of divi-
sion and ρ to the level of database overlap, tighter
bounds on ρ will be shown to be:

Figure 11: A diagram of uniformly oriented splits and
their bounding boxes. The black line segments, along
with some simple geometry, allow us to compute the
sizes of the bounding boxes.

 (2)

Both of these bounds are based on the observation that
when all splits are in the same orientation, be it cardi-
nal or diagonal, the circular cells occupy an area that
approximates a square as d increases. The diagonal
case is shown in Figure 11.

The minimal bounding box around the union of the
cells – for example, the square ijkl in Figure 11, around
the union of the magenta cells or square efgh around
the blue – provides an overestimate of the area of that
union, ρ’s denominator. Substituting the area of that
bounding box for the area of the union thus provides an
underestimate of ρ itself.

For a database of depth d, we define f (d) to be the
perpendicular distance from the center of the database
to one side of the square bounding box around it; this
value can be thought of as the "radius" of the square,
and is equivalent to one half the length of a side of that
bounding box. Clearly, for an initial cell radius of r0,
we have ! . As shown in Figure 11, we have
! and the difference between f (2) and

f (1) is . The difference between f (3) and
f (2) is times the preceding difference, a pattern that
continues as d increases, which allows f to be ex-
pressed in terms of a geometric sum:

In terms of f, the area of the bounding square at

depth d is , or

. The sum of the

areas of the cells within that square is once again
, leading to our lower bound on ρ.

For the upper bound, we substitute the area of the
maximum square entirely contained within the union of
the cells. Conveniently, this maximum interior square
– square efgh for the magenta cells in the figure, or
abcd for the blue – turns out to be the minimum bound-
ing box of the cells in the previous level of division so
its area is . This gives us our upper bound.

Noting that as ! , we can
declare ρ to be ! .

Acknowledgement
Supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Air Force Research
Laboratory, contract FA8650-12-C-7211. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Disclaimer: The
views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements,
either expressed or implied, of IARPA, AFRL, or the
U.S. Government.

References
[1] J. Zhang and A. Hallquist, “Location-based image re-

trieval for urban environments,” Image Process. (ICIP),
…, vol. 50, no. 150, pp. 1–4, 2011.

[2] D. G. Lowe, “Distinctive Image Features from Scale-
Invariant Keypoints,” in International Journal of Com-
puter Vision, 60, 2, pp. 91-110, 2004.

[3] M. Muja and D. Lowe, “Fast Approximate Nearest
Neighbors with Automatic Algorithm Configuration.,”
VISAPP (1), 2009.

[4] J. Hays and A. Efros. “Im2gps: estimating geographic
information from a single image,” In Computer Vision
and Pattern Recognition, 2008. CVPR 2008, 2008.

[5] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua,
“Worldwide pose estimation using 3d point clouds,”
Comput. Vision–ECCV 2012, 2012.

[6] M. Aly, M. Munich, and P. Perona, “Distributed kd-
trees for retrieval from very large image collections,”
Br. Mach. Vis. Conf. …, pp. 1–11, 2011.

[7] M. Aly, M. Munich, and P. Perona, “Indexing in Large
Scale Image Collections: Scaling Properties, Parameter
Tuning, and Benchmark,” pp. 1–35, 2010.

[8] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man, “Object retrieval with large vocabularies and fast
spatial matching,” 2007 CVPR, 2007.

[9] D. Nister and H. Stewenius, “Scalable recognition with
a vocabulary tree,” 2006 CVPR, 2006.

[10] G. Schindler, M. Brown, and R. Szeliski, “City-Scale
Location Recognition,” 2007 IEEE CVPR, 2007.

[11] J. Sivic and A. Zisserman, “Video Google: a text re-
trieval approach to object matching in videos,” Proc.
Ninth IEEE Int. Conf. Comput. Vis., 2003.

[12] A. Torralba, R. Fergus, and W. T. Freeman. “Tiny im-
ages.” Technical Report MIT-CSAIL-TR-2007-024,
2007.

[13] C. Valgren, “SIFT , SURF and Seasons#: Long-term
Outdoor Localization Using Local Features,” vol. 128,
pp. 1–6.

[14] http://cs.unc.edu/~ccwu/siftgpu/
[15] E. Liang and A. Zakhor, “Structuring a Sharded Image

Retrieval Database,” IS&T/SPIE Electron. Imaging, pp.
4–7, 2013.

[16] http://www.openstreetmap.org/

