
 

 

Abstract 
 

We present a scalable image localization system that 
uses distributed kd-trees created on overlapping geo-
graphic cells using a database of 10 million Google 
Street View images for an area of approximately 
10,000 square kilometers in Taiwan. Given a collection 
of images over a region of interest (ROI), we generate 
a database by dynamically creating geographic cells 
that are optimized so that each cell contains roughly 
the same number of images. We then create kd-trees 
for each cell from SIFT features extracted from the 
images in that cell. When querying the system, we run 
traditional feature matching on each cell and pool the 
results for each cell to rerank with a geometric con-
straint. The key idea is the subdivisions of the ROI into 
overlapping geographic cells, allowing our system to 
scale to 10 million images and to efficiently utilize pri-
or query location information when available. We 
evaluate our system on a test set of 29 geo-tagged im-
ages, not from Google Street View, taken throughout 
Taiwan with various resolutions, aspect ratios, and 
qualities. 
 

1. Introduction 
In automatic image localization, the location of a given 
query image is determined by querying a pre-generated 
database of geo-located images to retrieve the closest 
visual matches. This problem has many applications 
such as providing location on smartphones in areas 
with weak GPS signal and increasing coverage for 
commercial products such as location based ad target-
ing. With the increasing availability of geo-tagged im-
ages from sources such as Google Street View and 
Flickr, image localization has the potential to localize 
any image in the world. To achieve such global locali-
zation however, image localization systems must be 
able to scale to millions or even billions of images. 

Generally image localization is done by extracting 
some type of local feature descriptor for all images and 
then obtaining feature correspondences between the 
query and multiple database images through an approx-
imate nearest neighbor algorithm such as the random-

ized kd-tree method [3]. These feature correspondences 
are then pruned to resolve erroneous correspondences 
through a geometric consistency step. 

One of the main factors contributing to the non-
scalability of existing image localization systems is the 
large memory footprint of loading the local descriptors 
of all the database images, a necessary step in kd-tree 
based approximate nearest neighbor algorithms. In the 
case of loading in SIFT features [2], only around 
100,000,000 features can be loaded into a 12 GB RAM 
as noted by [10]. Traditionally, scalable methods avoid 
this large memory footprint by using a vocabulary tree 
to quantize the local descriptors [8, 9, 10, 11], saving 
memory by only needing the descriptors at the inner 
nodes of the vocabulary tree to be loaded into memory 
during the approximate nearest neighbor search. 
Though vocabulary trees result in a smaller memory 
footprint, their performance have been shown to be 
inferior to kd-trees [7]. 

To circumvent the above problem, it is possible to 
use features that require less memory. Rather than us-
ing local features, one can use global features to create 
systems scalable to millions of images [4, 12]. In par-
ticular, [4] utilizes an ensemble of global features such 
as miniaturized raw image pixels, global color histo-
gram, global texton histograms, etc while [12] uses 
only the miniaturized raw image pixels and weak anno-
tations. While capable of returning images that global-
ly look similar to the query image, these highly scala-
ble global feature systems cannot match fine-grained 
details, resulting in poor performance in the image 
localization task. 
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Figure 1: Overview of our image retrieval pipe-
line. 



 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 Our approach to a scalable image recognition system 
is most related to the methods proposed in [1, 6]. In 
[6], rather than creating one kd-tree over all images in 
our database, the images are subdivided with a kd-tree 
created for each subdivision. In [1], a geographic re-
gion is subdivided into evenly sized overlapping cells 
and a kd-tree is constructed over each cell. In both [1] 
and [6], the generic image localization algorithm is 
then run for each cell independently and finally the top 
results are aggregated amongst the various cells. The 
most significant difference between our proposed 
method and that of [1, 6] is our novel cell generation 
step. Rather than randomly subdividing images into 
cells of equal geographic size as in [1], our subdivi-
sions are optimized to create cells with roughly equal 
number of images. This results in cells with geograph-
ically non-uniform size but approximately uniform 
number of images, improving retrieval performance. 
By limiting the maximum number of images per cell in 
the subdivision process, we also mitigate the memory 
footprint problem mentioned earlier. Finally, similar to 
[1], this allows for efficient incorporation of prior que-
ry location information. 
 The remainder of the paper is outlined as follows. 
We provide an overview of our system in Section 2 
and explain the image database generation in Section 3. 
In Section 4, we describe our cell generation algorithm 
and rationale. We evaluate our results in Section 5 and 
conclude in Section 6. 
  

2. System Overview 
While the motivation for our proposed geographic cell 
based approach comes from [1], straightforward appli-
cation of the approach in [1] is infeasible due to its 
poor retrieval performance and memory scalability 
issues resulting from our database being around 1000 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
times larger in size than in [1]. The block diagram for 
our current system, shown in Figure 1, is similar to [1] 
except for the cell generation step. Specifically our 
system consists of the following components: 
 
1) Database Generation (Offline) 
After extracting SIFT features for each image in the 10 
million Taiwan image database using [14], we subdi-
vide the images along with their features into geo-
graphic cells. For each of these geographic cells, we 
create a kd-tree using FLANN [3] and save the index 
for later use. We describe creation of these geographic 
cells in Section 4. 
 
2) Feature Correspondence Voting 
After extracting SIFT features from a query, we obtain 
the top N approximate nearest neighbors for each fea-
ture in the query, resulting in a maximum of N feature 
correspondences per query feature. The approximate 
nearest neighbor match is only accepted if the L2 dis-
tance between the query and database feature are with-
in a certain distance threshold. Furthermore, we discard 
correspondences where the difference in rotation be-
tween the query and database feature is greater than 0.2 
radians. This process is repeated independently for 
each cell. We choose N = 4 based on previous bench-
marks in [15]. 
 
3) Filter and Pooling. 
After the voting step for each cell, there exist point 
correspondences between the query and multiple data-
base images. Mismatched point correspondences are 
then pruned through a geometric consistency step 
where we solve for the fundamental matrix between 
the query and each matching database image, removing 
point correspondences that do not satisfy epipolar con-
straints. After this step is repeated for all cells, we pool 

(a) (b) 

Figure 2: Distribution of closest database image distance in meters for the 29 TW queries. (a) Distribution with only images scraped from 
OpenStreetMap road data. (b) Distribution with only images scraped from grid approach. (c) Distribution from the combination of (a) and 
(b). 

(c) 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
the matching database images and rank them by num-
ber of point correspondences.  We take the maximum 
number of point correspondences for database images 
that are duplicated in multiple cells. The top matching 
database image is the one with the most number of 
correspondences. 
 

3. Image Database Generation 
The 10 million Google Taiwan Street View images 
have been scrapped through the combination of two 
methods in order to provide adequate resolution for our 
geo-tagged 29 Taiwan query images, which are differ-
ent from Google Street View images. 

Since Google Street View images are only taken 
along roads, we initially sample 80 meter separated 
points along OpenStreetMap’s roads for Taiwan [16] 
as shown in Figure 3(a). Each point results in twelve 
640x640 images, evenly spanning 360° heading with 
67° field of view. Even though this results in around 5 
million images, the resolution is inadequate as shown 
in Figure 2(a). Specifically, only 14 of 29 test images 
had an existing Google Street View image within 50 
meters of the image’s ground truth. This is due to the 
insufficient coverage of OpenStreetMap roads. 

To boost the resolution, we have augmented our ex-
isting database by scraping along an 80 meter separat-
ed point grid over our region of interest, avoiding 

 
 
 
 
 

 
redundant work by removing points near Open-
StreetMap roads as shown in Figure 3(b). This results 
in an additional 5 million images after duplicates are 
removed for a total of 10 million images. As shown in 
Figure 2(c), by combining the road and grid point 
scrape methods, 27 out of the 29 Taiwan test images 
have an existing Google Street View image within 50 
meters of the image’s ground truth. 
 

4. Cell Generation 
Initial runs of image localization using the fixed radius 
cell division scheme described in [1] result in poor 
performance due to the non-uniform geographic distri-
bution of database features. This non-uniformity is due 
to the span of our region of interest covering both ur-
ban and rural areas in Taiwan as high-density areas 
such as cities have a higher concentration of Street  

(a) 

(b) 
Figure 4: (a) Fixed radius cell size distribution. (b) Dynamic 
radius cell size distribution showing the max at nmax = 10000. 
Limiting cell size guarantees that all cells fit in memory.  Both 
were generated from the 1 million Taiwan subset database. 

Figure 3: Visualization of the points used for scraping. (a) Points 
along OpenStreetMap roads. (b) Points used for grid scrape. 

(a) (b) 



 

 

 
 
 

 
 
 
 
 
 
 
View images per square meter than low-density ones 
such as villages. Since the scheme in [1] relies on fixed 
radius geographic cells, the number of images per cell, 
or cell size, varies dramatically as shown in Figure 4(a) 
ranging from less than 100 images to around 200,000 
images for a random one million subset of the Taiwan 
database. As a result, images in these small cells end 
up with too many votes as each cell has an equal 
amount of votes to distribute i.e.  # of votes = # of que-
ry features × # of nearest neighbors requested. Fur-
thermore, because of the degradation of kd-tree per-
formance with database size as benchmarked in [15], 
correct feature correspondence matches occur less in 
these large ~200,000 image cells as the approximate 
nearest neighbor search loses precision. 

As explained in [5], it is also likely for multiple vis-
ually similar features to exist in a database as the data-
base size increases, making even the true nearest 
neighbor match to result in an incorrect correspond-
ence. Furthermore, by not controlling the maximum 
size of a cell, cell sizes grow, such that a single cell 
might not fit into memory. Specifically, assuming an 
average of 1000 SIFT features per image, the 200,000 
image cell would require ~24 GB of RAM. Thus, to 
achieve scalability, it is desirable to devise a scheme 
that allows for non-uniform geographic cell size while 
imposing some uniformity on the feature counts within 
cells. 

In an abstract sense, the division of our database into 
cells is a form of clustering, where we assign elements 
to clusters based on geographic proximity. This is es-
pecially useful for our system as it is designed to run 
not only on full ROI but also on smaller context re-
gions that represent a priori knowledge of the query's 
position. This prior knowledge can be used to prune 
the number of cells to be queried, as there is no point to 
query any circular cells not intersecting with the region 
defined by a priori location knowledge. The prior 
knowledge can again be applied after computing the 
top result list for fine-grained pruning of specific lati-
tude/longitude points as the context region usually only 
intersects with a portion of a given cell. 

In choosing between divisive and agglomerative 
clustering approaches, we have determined that ag-
glomerative clustering would result in cells of unusual 
shapes, making it more difficult to incorporate prior 
knowledge since such cell shapes would be difficult to 
characterize and analyze.  Therefore, we have opted for 
a divisive approach, described as follows. 

 
The basic idea behind our approach is to split each 

cell into four children cells per iteration until the num-
ber of features in every cell falls below a given thresh-
old. In doing so, we alternate between cardinal and 
diagonal splits in order to avoid unbounded growth in 
cell overlap as shown in Figure 5. In cardinal splits, 
children are offset either horizontally or vertically from 
their parents. In diagonal splits, they are offset diago-
nally. The main motivation for the above approach is 
that excessive cell overlap has been shown not to im-
prove or even degrade retrieval performance, while 
increasing computation and memory requirements 
[15].  

We describe a cell c by its center, its radius, the ori-
entation in which splits, and the features it contains.  A 
list of cells is referred to as cell_list. Intuitively orien-
tation of a cell encodes whether it is split cardinally or 
diagonally. Specifically the orientation of a cell is ei-
ther 0o  or 45o  depending upon whether it is cardinal or 
diagonal respectively. Mathematically, orientation of a 
given cell is the angle from that cell’s center to the 
center of its first child with respect to the horizontal 
axis.   

We initialize cell_list to contain the smallest single 
circular cell of radius r0, center [x0, y0]T, and orienta-
tion 0o, such that it contains every feature in our data-
base. The features in a cell c are referred to by 
c.features. The other attributes of a cell are denoted by 
a similar 

 
 
 
 
 
 
 

 

          (a)                                     (b) 

Figure 5: Visualization of (a) cardinal split and (b) diagonal split. 

Figure 6:  Division of a cell into 4 cells via a diagonal split fol-
lowed by four additional cardinal splits; (a) parent cell; (b) four 
children cells resulting from diagonal split; (c) 16 grandchildren 
cells resulting from four cardinal splits of children cells in (b); (d) 
Four pairs of duplicate cells in (c) highlighted in red. (e) remain-
ing grandchildren after removal of duplicates in (d). 

(a)                   (b) 

(c)                       (d)                       (e) 



 

 

Figure 7: Dynamic radius cells visualized on top of Taiwan Region 
of Interest for 1 million image subset db. 
 

notation. As long as there are any cells c in cell_list 
with more than nmax features, we select one and split it 
into four children cells c0, c1, c2, and c3 with radii equal 
to c.radius / √2. The center of each child cell is a dis-
tance c.radius / √2 from c.center.  In a cardinal (diago-
nal) split the angle between the line connecting the 
center of the first child to its parent and the horizontal 
axis is 0o  (45o). The angle measured at the center of 
the parent cell between two successive children in both 
cardinal and diagonal is 90o. 

After each parent cell is decomposed into four child 
cells, we assign to each child all database features ly-
ing within its geographic extent. We then add that child 
to the cell_list provided it has non-zero number of fea-
tures and an equivalent cell does not already exist in 
the cell_list. The reason for the latter is pictorially ex-
plained in Figure 6 which shows that of any cell’s 16 
grandchildren, four are duplicates, resulting in only 12 
unique grandchildren. 
 
 The main motivation for the alternation between 
cardinal and diagonal in successive splits is to control 
the amount of overlap in children cells. Specifically, it 
can be shown that ignoring edge effects, the alternation 
procedure results in the overlap to remain constant as 
the iterations proceed as duplicates are deleted. With-
out the alternation though, these duplicates do not oc-
cur and hence, the amount of overlap in the center re-
gion of the original cell continues to increase with the 
number of iterations. This behavior is undesirable as 
images in these highly overlapping regions have an 
unfair and artificial advantage when tallying votes 
since they occur in a multitude of cells. 
 Quantitatively, it can be shown that splitting a cell of 
radius r0 and area πr0

2 into 4 overlapping cells of radius 
r0 / √2 in the manner described above, results in an 
overlap area of r0

2(π – 2). If we define ρ to be the ratio 
between sum of the areas of the cells to the  

 

area of the union of the cells, it can be shown that for 
the alternation approach, ρ asymptotically approaches 
π/2 from below as depth of the tree, d, increases. In 
contrast without alternations, ρ is shown in Appendix 
A to be bounded by: 

      (1) 
Therefore, as long as d > 2, ρ is guaranteed to be 
smaller for the alternating method than even the lower 
bound for the non-alternating method.  In Appendix B, 
we provide bounds tighter than those shown in Equa-
tion 1.  
 The size distribution of the dynamically sized cells 
for nmax = 10,000 is shown in Figure 4(b). We see in 
the histogram that there are cells with fewer than 500 
images. Though this indeed does create an unfair vot-
ing environment as described earlier, the improved 
approximate nearest neighbor performance from the 
larger cells with the maximum cell size results in more 
matching features in these cells, mitigating the effects 
of the unfair voting. Furthermore, even though cells 
with few images can have an inflated vote tally as 
compared to other cells, usually the geometric con-
straint step eliminates many false matches. With the 
combination of these two, even though smaller cells do 
have an advantage, they do not overwhelm the top re-
sults.  

A visualization of the dynamic radius geographic 
cells on our region of interest is shown in Figure 7 on a 
1 million image subset of our 10 million image data-
base. The maximum and minimum cell radii in Figure 
7 are 70 km and 1 km respectively. 
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Figure 8: Successful results with query on the left and the retrieved 
Google Street View image on the right. Image stitching artifacts 
can be seen on the right image of (b). 



 

 

5. Evaluation 
We evaluate our retrieval system using the 10 million 
image Taiwan Street View database described in Sec-
tion 3. Since the fixed radius cells approach in [1] re-
sults in cells with kd-trees that are too large to fit in 
memory, we have opted not to compare our proposed 
dynamic subdivision cells approach to [1] for our 10 
million image database. 
 We evaluate our system on a set of 29 Taiwan 
ground-level images that do not originate from Google 
Street View with 18 urban images and 11 rural images. 
Examples of urban and rural images are shown in Fig-
ures 8(c) and 9(a) respectively. Our test images also 
have a variety of resolutions ranging from 5 to 20 
times the size of the Street View database images. Fur-
thermore, the quality of the images varies significantly. 
As seen, Figures 8(a) and 8(c) are high quality DSLR 

 
 
 
 
 

 
 

 
 
 
 
 

 
 
 

 
 

 
 
 
 
 
images while test image 8(b) exhibits much lower 
quality with both decreased resolution and motion blur. 
Some test images are taken through car windows as 
shown in Figures 9(b) and 9(d). Though the quality and 
environment of our test images vary significantly, they 
are all possible queries to a real world image localiza-
tion system and as such allow us to estimate our sys-
tem’s practical real world performance. 

To measure retrieval performance, in Figure 10 we 
plot the percent of queries having matches within 80 
meters of the ground truth location against the number 
of top ranked images considered. As seen, around 25% 
of our queries can be matched by only considering the 
top 5 images. These test images all correspond to urban 
regions. Figures 8 and 9 show successful and failed 
retrievals respectively depending on whether or not the 
matching database image to a query is within the top 5 
images returned by our system. We have found that 
images with obviously distinct features existing in both 
the query and database images such as a brand or text 
label result in excellent localization due to the distinct 
features resulting from these texts. This is also seen in 
Figure 8(b) with the huge crack on the wall underneath 
the green roof. The lack of distinct matching features is 
the most significant reason for failures in localizing 
test images. 

Eleven of our test images from rural environments 
are filled with non-rigid vegetation resulting in local 
descriptors that are likely to not match between query 
and the correct matching database image as the fea-
tures detected over vegetation vary with environmental 
factors such as weather conditions. Furthermore, vege-
tation is likely to change over time as shown in Figure 
9(a) where the color and shape of the grass fields be-
tween the query and database images differs. Though 
the database image in Figure 9(d) does seem likely to 

Figure 10: Distribution of the fraction of queries having matches 
within 80m of ground truth while varying the top number of 
images considered. 

(a) 

(b) 

(c) 

(d) 

Figure 9: Failed results with query on the left and the closest 
matching Google Street View image on the right. We can see that 
test images taken in (b) and (d) are from within a car and exhibit 
motion blur distorting the distinctive features between query and 
database match. Images (a) and (c) also show the varying nature of 
vegetation between the query image and the database image. 
 



 

 

have discriminative features, the motion blur and low 
quality of the query image due to being taken through a 
car window hinders such features from being generated 
and robustly matched. 

 

6. Conclusion 
In this paper we have presented a scalable image local-
ization system using dynamically generated geographic 
cells over a region of interest. By using a novel cell 
division algorithm, we are able to control the maxi-
mum number of images per cell, reducing the memory 
footprint of each cell so that each cell can be loaded 
into memory. This allows us to use the robust but 
memory intensive SIFT features. Furthermore, by di-
rectly controlling the size of each cell, we avoid the 
degradation of performance with increasing database 
size of the approximate nearest neighbor algorithm 
using kd-trees from FLANN [3, 15]. Along with allow-
ing our system to scale to 10 million images, these 
geometric cells have also allowed us to efficiently uti-
lize prior query location knowledge. 
 

Appendix A: Loose Bounds 
This appendix characterizes the level of overlap be-
tween cells for a database with no alternation of split 
orientation and deletion of duplicate cells. 

Let d denote the uniform depth of the dendrogram of 
cell divisions within the database, with a single cell 
undivided corresponding to d = 1, and let database 
overlap be characterized by 

 

              !  
 

where c denotes a cell and cells denotes the set of all 
cells in the database.  We will show: 
 

  
 

These loose bounds arise from a pair of simplifying 
approximations, one of which is guaranteed not to 
overestimate ρ, resulting in a lower bound, the other of 
which is guaranteed to overestimate, resulting in an 
upper bound.  Note that for d = 1, a single cell, ρ = 1. 

For the lower bound, the simplifying assumption is 
to assume that the descendants of one cell might over-
lap the descendants of another, such that we only need 
to consider the overlap between siblings when compu-
ting ρ.  Supposing that we start with a single cell of 

radius r0, its four children each have area  for a 
summed area of . The area of the intersection be-

tween two adjacent children, one “petal” such as is 
visible in Figure 5, is half the difference between the 
area of one child cell and the square inscribed within it: 

.  As there are four such “petals”, and no 
other intersections between the children, inclusion-
exclusion gives an area of the union of the four cells of 
! .  Thus, each increment of the depth d re-
sults in a multiplicative  increase in ρ, making  

. 
For the upper bound, the simplifying approximation 

is to ignore the fact that the descendants of a given cell 
partially occupy regions that the original cell did not, 
i.e. we treat the denominator of ρ as constant.  As 
shown above, the numerator increases by a factor of 2 
after each level of division, resulting in an upper  
bound of ! . 
 

Appendix B: Tight Bounds 
This appendix provides a tighter bound than that of 
Appendix A. Again, letting d refer to the depth of divi-
sion and ρ to the level of database overlap, tighter 
bounds on ρ will be shown to be: 

Figure 11: A diagram of uniformly oriented splits and 
their bounding boxes.  The black line segments, along 
with some simple geometry, allow us to compute the 
sizes of the bounding boxes. 
 



 

 

 (2) 

 
Both of these bounds are based on the observation that 
when all splits are in the same orientation, be it cardi-
nal or diagonal, the circular cells occupy an area that 
approximates a square as d increases.  The diagonal 
case is shown in Figure 11. 

The minimal bounding box around the union of the 
cells – for example, the square ijkl in Figure 11, around 
the union of the magenta cells or square efgh around 
the blue – provides an overestimate of the area of that 
union, ρ’s denominator.  Substituting the area of that 
bounding box for the area of the union thus provides an 
underestimate of ρ itself. 

For a database of depth d, we define f (d) to be the 
perpendicular distance from the center of the database 
to one side of the square bounding box around it; this 
value can be thought of as the "radius" of the square, 
and is equivalent to one half the length of a side of that 
bounding box.  Clearly, for an initial cell radius of r0, 
we have ! .  As shown in Figure 11, we have 
!  and the difference between f (2) and    

f (1) is .  The difference between f (3) and       
f (2) is   times the preceding difference, a pattern that 
continues as d increases, which allows f to be ex-
pressed in terms of a geometric sum: 
 

 

  

 
In terms of f, the area of the bounding square at 

depth d is , or  

. The sum of the 

areas of the cells within that square is once again 
, leading to our lower bound on ρ. 

For the upper bound, we substitute the area of the 
maximum square entirely contained within the union of 
the cells.  Conveniently, this maximum interior square 
– square efgh for the magenta cells in the figure, or 
abcd for the blue – turns out to be the minimum bound-
ing box of the cells in the previous level of division so 
its area is .  This gives us our upper bound. 

Noting that   as ! , we can 
declare ρ to be ! . 
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