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ABSTRACT

We provide an analytical study of the selection and modulus quan-
tization of matching pursuits (MP) coefficients. We demonstrate
that an optimal rate-distortion trade-off is achieved by selecting
the atoms up to a dead-zone threshold, and by defining the modu-
lus quantizer in terms of that threshold. In doing so, we take into
account quantization error re-injection resulting from inserting the
modulus quantizer inside the MP atom computation loop.In-loop
quantization affects the stepsize of the uniform quantizer, and re-
sults in a non-uniform optimal entropy constrained quantizer. Im-
provements larger than one dB are obtained for video coding.

1. INTRODUCTION

Matching pursuit (MP) is a greedy and iterative approximation al-
gorithm that generates sparse representation of a signal with re-
spect to an overcomplete set of basis functions. The MP expan-
sion is defined in terms of index, sign, and modulus of a subset of
basis functions. In this paper, we primarily deal with the modulus
quantization of matching pursuits coefficients. Our study relies on
two main assumptions. Firstly, linear reconstruction is assumed
because complexity considerations dictate such reconstruction in
most applications. Secondly, independent scalar modulus quanti-
zation is considered. This is applicable to coding scenarios where
successively transmitted atom moduli are independent, i.e. where
the atom coding order is dictated by entropy gain achieved on atom
indices rather than by their modulus. This is the case for video
coding applications, where a significant entropy gain is obtained
by appropriate differential description of the atom positions [1].
This second assumption differentiates our work from [2], which
is dedicated to systems coding the atoms in decreasing order of
magnitude.

A previous work has already addressed the MP atom modu-
lus quantization issue in the context of linear reconstruction and
modulus-independent encoding order [3]. Our work not only pro-
vides an analytical derivation of the empirical results in [3], but
also refines and completes them. Our study takes into account
the quantization error re-injection resulting from insertion of the
modulus quantizer inside the MP atom computation loop. Due
to re-injection, the quantization error of an atom is likely to be
corrected by subsequent iterations, resulting in improved coding
efficiency. We show re-injection also impacts the quantizer design
for both uniform quantization, and non-uniform optimal entropy
constrained quantization.
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The rest of the paper is organized as follows. Sections 2 and
3 express rate-distortion constraints, for the expansion process and
for the quantization stage of the MP coder respectively. Section 2
shows that an optimal MP expansion must stop as soon as the mod-
uli of the extracted atoms become smaller than a threshold. In
Section 3, we assume an exponential distribution of the MP atom
modulus, and review rate-constrained optimal quantization of such
a random variable. We then consider the re-injection of the quanti-
zation error into the MP expansion loop, and show that re-injection
reduces the impact of quantization error on the final reconstructed
signal distortion. A formal analysis of this phenomenon reveals
that the benefit of the re-injection is stronger for the atoms that are
selected during the initial iterations of the MP expansion. As these
atoms are also expected to have the largest moduli, we propose
the use of a non-uniform quantizer, and present a method to de-
sign the R/D optimal non-uniform quantizer. Section 4 measures
the impact of our work for video coding, and Section 5 includes
conclusion.

2. EXPANSION IN A RATE/DISTORTION FRAMEWORK

MP is a greedy and iterative expansion process. In a coding con-
text, a critical question is when to stop the process. This section
shows that an expansion is optimal in the rate/distortion (R/D)
sense if it captures all and only all atoms larger than a thresh-
old. Let a dictionary
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To code the expansion, i.e. the index, sign, and modulus of the co-
efficients, it is desirable to achieve the highest quality at the low-
est cost. A convenient way to formalize this problem is to use a
Lagrange multiplier$ to define the relative importance of the dis-
tortion % and of the number of bits



. The optimal trade-off in

terms of quality and coding cost is then the one that minimizes the
Lagrangian cost function& �$" � % ' $


. For an MP expansion,
define% �

to be the distortion or MP residue energy after� atoms
have been selected and( %� � % � � % ���

to be the decrease in
residual energy due to the�)* atom. As atoms are roughly selected
in decreasing order of magnitude, we have+,� - +,�. /

(1)

In the same way, define

�

the number of bits to encode� atoms
and( 
 � � 
 � � 
 ���

the incremental increase of the bit budget
due to the�)* atom. As MP representations are sparse, the number



of bits devoted to an additional atom does not rapidly decrease
with the iteration number. We have+0� 1 +0�. /

(2)

For a Lagrangian multiplier$, combining (1) and (2) gives+,� . 2+0� - +,�./ . 2+ 0�./
(3)

So, the incremental contribution( % ' $( 

of successive atoms

to & �$"
can be assumed to be monotically increasing. This ensures

the convexity of the�
 � % "
curve drawn along the expansion pro-

cess. It also makes the selection of an additional atom worthwhile
only until +, . 2+0 3 4 5

(4)

defining a stopping criterion for the MP expansion in terms of in-
cremental rate( 


and decrease of MP residue energy( % due to
the additional atom. Defining6 to be the modulus of an additional
atom and78 9:; �6 "

to be its quantization error for a quantization
method defined by< � "

, the decrease( % of the MP residue en-
ergy is +, 3 = >? @ = A@B CDE C? EF

(5)

( 

can be divided in two parts: the first one


8 9:; �6 "
corre-

sponds to the quantized atom modulus; the second one( 
��GHIcorresponds to the rate for the sign and index of the additional
atom, and is not directly affected by the quantization method. Based
on Equations (4) and (5), the stopping criterion can be formulated
in terms of the Lagrange multiplier$, and of the modulus of the
last selected atomJ ,

2 3 =+,+0 3 K@ = A@B CDE CK E+0�LMNO . 0B CDE CK E (6)

whereJ is the threshold modulus beyond which it is worthless to
select an additional atom, and78 9:; �J "

is the quantization error of
modulusJ . To achieve a rate constrained optimal representation,
atoms have to be selected until no atom larger than the thresholdJ can be found on the residual signal. An important observation is
that when the signal to expand is partitioned into smaller subspaces
for complexity reasons, the stopping criteria has to be met in every
subspace. Note also that, for a given$, J depends on the quantizer< � "

. A condition for overall optimality is to design a quantizer
achieving R/D optimality for the same Lagrange multiplier$. The
quantizer design is investigated in the next section.

3. ATOM MODULUS QUANTIZER DESIGN

At constant number of atoms, a coarser modulus quantization in-
creases the distortion% but decreases the bit budget



of the MP

expansion. The goal of this section is to find the quantizer that
minimizes the Lagrangian cost function& �$" � % ' $


for a
given multiplier $. We consider independent scalar quantization
of atoms, which is appropriate when atoms are coded in a ran-
dom order of modulus. As the dead-zone subtracted atom modulus
distribution closely fits an exponential model [3], we first review
the entropy-constrained, or R/D optimal, quantization for expo-
nentially distributed random variables. Then, we demonstrate that,
due to the re-injection of the quantization error into the MP ex-
pansion loop, the quantization error of the atoms that are selected
during the initial MP iterations are partly corrected by latter MP it-
erations. The benefit of the quantization error re-injection is taken
into account to determine the uniform quantizer stepsize. The re-
injection also motivates the design of a novel non-uniform quanti-
zation scheme.

3.1. Entropy-constrained scalar quantization

It has been shown that the dead-zone subtracted MP atom mod-
ulus distribution closely matches an exponential distribution [3].
Formally, if the MP expansion selects atoms up to a thresholdJ ,
the J-substracted modulus random variablePQ has an exponen-
tially decreasing probability distribution functionR� K � "

. As an
exponentially distributed random variable is memoryless, it has
a uniform optimal quantizer [4], i.e. all its steps have the same
sizeS . For simplicity and also because a more precise derivation
has not improved the results [5], we approximate the R/D opti-
mal S with a high-resolution analysis, i.e. by considering quan-
tization with small bin widthS . This high-resolution assumption
is made all along the paper. In this case, the quantizer becomes
a mid-quantizer, and the squared-error distortion and entropy are
approximately given by [6],TK CU E 1 U@ V/@ (7)WTK CU E 1 = X YTK COE Z[\@ YT K COEMO = Z[\@ U

(8)

Using a Lagrange multiplier$ to define the incremental rela-
tive importance of distortion and entropy, the optimal entropy-
constrained scalar quantizer (ECSQ) is the one which minimizes
the objective function]� K � % � K ' $^ � K [4], i.e. that solves_,TK CU E_U . 2 _WT K CU E_U 3 4

(9)

Inserting (7) and (8) into (9) defines the R/D optimal stepsizeS to
quantize an exponentially random variable as a function of$, i.e.2 3 = _,TK_WTK

3 Z` C@E DU@a (10)

3.2. In-loop quantization of MP atom modulus

To improve coding efficiency,in-loop quantization re-injects the
quantization error in the MP expansion process so that it can be
corrected by subsequent iterations. Here, we analyze the evolution
of the energy of the MP residue along the quantized expansion
process in order to understand the impact of the re-injection on the
distortion of the quantized moduli. Using the notations introduced
in Section 2,� is a given source vector in


�
and


�� is the ex-
pansion residue after� MP iterations. At the initial step,


� � � �
is the signal to expand. At step�, the algorithm selects the dictio-
nary function

���
that best matches


�� and generates the residue
for the next iteration. Ifb! �

is defined to be the quantized value
of

!� � � 
 �� � ��� �, then the residue based on the quantized
modulus is given by


�� �� � 
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. Definingc d� as the

quantization distortion on
!�

, and observing that

�� � !� ���

is
orthogonal to

���
, with �� �� referring to the quadratic norm in


 �
,

we have ee0 �. /O ee@ 3 ee0� O ee@ = f@� . g@� (11)

Without loss of generality, we can assume that at step� a fractionh �
of the residual signal energy is captured by the MP expansion,

i.e.
! d� � h � ��
 �� ��d . Then, we haveee0 / O ee@ 3 ee04 O ee@ = f@4 . g@4 i �jk f@4 3 l4 ee04 O ee@3 C/ = l4 E ee04 O ee@ . g@4ee0@ O ee@ 3 ee0 /O ee@ = f@/ . g@/ i �jk f@/ 3 l/ ee0 /O ee@3 C/ = l4 EC/ = l/ E ee04 O ee@ . C/ = l/ Eg@4 . g@/ee0L./O ee@ 3 mL�34 C/ = l� E ee04 O ee@ . Ln�34 >mLo3�. / C/ = lo EF g@� (12)

In the above equation, the factorpq �r ��� � �
 � hr "s
multiplyingc d� is a direct consequence of re-injecting the quantization error

into the MP expansion loop. This factor is smaller than one, show-
ing that re-injection reduces the impact of quantization error on the
final distortion��
 �� �� ��d.



3.3. Uniform quantization

For uniform quantization of exponentially distributed modulus, the
quantization distortion is the same for all coefficients [4]. So, in
(12), the distortionc d� is independant of� and, following the no-
tations of Section 3.1, can be denoted by%� K �S "

. When a total
of t atoms are selected, the distortion% u 8 resulting from thein-
loop uniform quantization of these atoms is the second term of the
sum in (12) and can be written as

,v B CU E 3 w =/n�34 >mw =/o3�./ C/ = lo EF ,T K CU E
(13)

The entropŷ u 8 for t atoms ist times theJ-subtracted mod-
ulus entropy, i.e.̂ � K �S "

in (8). For a givent and$, the R/D
optimal quntizer stepsizeS solves

2 3 = _,v B_Wv B 3 = xw =/�34 >mw =/o3�. / C/ = lo EF
w D _,TK_WTK (14)

Combining (14) with (10) and introducingy �t "
to denote the

first factor in (14), we get2 3 z Cw E D Z` C@E DU@a (15)

Equation (15) specifies the relationship between$ andS assum-
ing y �t "

is known. The multiplication by a factory �t "
that

is smaller than one is due to re-injection. (15) shows thatS in-
creases asy �t "

decreases, indicating that taking re-injection into
account results in larger quantization step than otherwise. To es-
timatey �t "

, we note that by definition, allh�
are much smaller

than one, and we approximate them by their mean value, denoted
by h . y �t "

then becomes

z Cw E 1 xw =/�34 C/ = {w =/o3�. /l� E
w1 C/ = w l V@E 1 |C/ = w l E

(16)

In (12), by neglecting the quantization distortion in comparison
with the energy of the residual signal, we also haveee0w O ee@ 1 mw =/�34 C/ = l� E ee04 O ee@ee0w O ee@ 1 C/ = w l E ee04 O ee@ (17)

From ( 16) and ( 17),y �t "
is estimated in terms of the ratio

between the initial and final MP residual energy, i.e.z Cw E 1| ee0w O ee@ V ee04 O ee@ . Since an optimal expansion selects the atoms
up to a thresholdJ , the final residual energy��
} � ��d is also the
energy~ Q after all atoms larger thanJ have been selected. In that
sense,y �t "

is a function ofJ and we have

z Cw E 1 ���� �Kee04 O ee@ � z � CK E
(18)

In practice, the final residual energy is only known once the ex-
pansion has been performed, which means thaty� �J "

can only be
estimated a posteriori. However, asin-loop quantization performs
the quantization along the expansion process, the stepsizeS has to
be known ahead of the expansion. Thus, we face a chicken-and-
egg problem. Experiments have shown that for an arbitrary signal,y � �J "

can be estimated from an initial expansion that is computed
without quantization. For video coding applications,y� �J "

can be
estimated from the expansion obtained on the previous frame [5].

To sum up, for a given Lagrange multiplier$, (15) specifies the
stepsize to be used for quantizing atoms. In Section 2, for the same$, (6) indicates when to stop the iterative MP expansion. Here, we
combine these results to derive an explicit relation between the ex-
pansion stopping thresholdJ , and the quantizer stepsizeS . We

begin by simplifying (6). As a direct consequence of the quantizer
design, the quantization error on the last atom, i.e.78 9:; �J "

, is
equal toS ��. Experimentaly we have also observed that the cost in
bits of the last selected atom, i.e.


 ���) � ( 
 ��GHI ' 
 8 9:; �J "
,

does not significantly depend on the stopping thresholdJ . Under
these simplifications, combining (6) and (15) results in

K@ = U@ V�0 ���j 3 z � CK E D Z` C@E DU@ Va
(19)

For a givenJ , (19) gives theS that results in a R/D optimal
expansion. For video coding,


���) 	 �
�    
��
, and henceU

K
1 4 Daa D |z � CK E=/

(20)

For y � �J " � 

, this result is very close to the�  �

empirical ratio
found in [3]. The analytical derivation helps us understand the
assumptions under which this result is valid and refines it when
the impact of re-injection becomes significant, i.e.y � �J " � � 


.

3.4. Non-uniform quantization

In the previous paragraph we have shown that re-injection affects
the optimal uniform quantizer stepsize. Now we consider the de-
sign of the entropy constrained quantizer in presence of re-injection
but in absence of uniformity constraint. Non-uniformity is justified
by the observation that atoms are roughly selected in decreasing
order of magnitude. As a consequence, the initial atoms, which
have more chance to be corrected by subsequent MP iterations,
are also the largest ones. This suggests increasing the quantization
stepsize with the atom magnitude. Designing the R/D optimal non-
uniform quantizer consists of fixing its bin boundaries, or equiva-
lently the sequence of stepsizes

�S� ����
, so that all bins have the

same incremental benefit in distortion for a given incremental cost
in rate, the ratio between them being defined by the Lagrangian
multiplier $. We propose a recursive approach: at each step, given
the lower boundary of a quantizer bin, the upper boundary is deter-
mined. From Section 2, the lower boundary of the first bin is the
stopping thresholdJ . Let us now consider the selection of the up-
per boundary of the�)* quantizer bin, assuming its lower boundary
is known. The problem is first solved in an abstract way in order
to formulate the conditions for optimality in terms that are man-
ageable by a practical algorithm. Let� �

denote the hypothetical
iteration index for which the atom modulus

!�/
equals the lower

boundary of the�)* quantizer bin. For any hypothetical iteration
index �d � � �

, define
!�@ to be the selected atom modulus. As

atoms are selected in decreasing order of magnitude,
!�@ � ! �/

and the set of atoms selected between the�)*d and�)*� iterations of
the MP expansion belong to

�!�/ � ! �@ �
. Without loss of general-

ity our problem is to find
!�@ , or equivalently�d , so that the best

Lagrangian R/D trade-off is achieved for the quantization of the�� � � � d "
atoms belonging to

�!� / � ! �@ �
. Letting t be the hy-

pothetical total number of atoms selected by the MP expansion up
to theJ threshold, the distortion%� �t � � � � � d "

due to the quanti-
zation of the�� � � � d "

atoms belonging to the�)* bin
�! �/ � ! �@ �

with a stepsizeS� � ! �@ � ! �/
is an immediate consequence of

(12) and can be written

,� Cw 5 L/ 5 L@ E 3 L/n�3L@./ >mw =/o3�. / C/ = lo EF D ,TK CU� E
(21)

Similar to (14) and (15), given$, the optimal�)* bin quantizer
stepsizeS�

solves

2 3 = xL/�3L@ . / >mw =/o3�./ C/ = lo EFL/ = L@ D _,TK_WTK3 z� Cw 5 L/ 5 L@ E D Z` C@E DU@�a (22)



In (22), S �
is the width of the�)* bin. Given the lower bound of

the bin, it defines the upper bound as a function of$. For smallh�
,y � �t � � � � � d "

can be approximated as

z� Cw 5 L / 5 L@ E 1 C/ = w =/no3L/ . / lo E D x
L/�3L@ ./ C/ = {L /o3�./lo EL / = L@ (23)

Developments similar to the ones in (16) and (17) give

C/ = w =/no3L/. / lo E 1 ee0w O ee@ee0L/ O ee@ (24)

xL/�3L@ ./ C/ = {L /o3�./lo EL / = L@
1 ���� ee0L/ O ee@ee0L@ O ee@ (25)

and

z� Cw 5 L / 5 L@ E 1 ee0w O ee@ee0L/ O ee@ D ���� ee0L/ O ee@ee0L@ O ee@ 3 ee0w O ee@| ee0L / O ee@ D ee0L@ O ee@ (26)

This factor depends on the residual signal energies after respec-
tively � �

, � d andt MP iterations, witht � � � � � d . To design
the non-uniform quantizer, we use an alternative interpretation of
these energy values. We note that each of them is the energy of
the residual signal after all atoms larger than a particular threshold
have been selected.

ee0L/ O ee@ and
ee0L@ O ee@ are measured once

the atoms larger than the lower and higher boundary of the�)* bin
have been selected respectively.

ee0w O ee@ measures the energy of
the final residue, i.e. once all atoms larger than the stopping thresh-
old J have been selected. Formally, let��

be the lower boundary
of the �)* bin, i.e. �� 3 K . �=/n�3/ Uo. /� (27)

Define ~� to be the energy of the residue after all atoms larger
than � have been selected.~Q denotes the final residual energy.~��

denotes the energy after all atoms larger than the lower bound-
ary of the�)* bin have been selected. So, (26) can be written as

z� Cw 5 L / 5 L@ E 1 �K|�
�� D �

��./ � z �� CK 5 �� 5 ��./ E � z �� CK E
(28)

For notation convenience,y �� �J � �� � ��� �"
is simply refered to asy �� �J "

in the following. Similar to arguments used in deriving (20),
(6) can be combined with (22) to arrive atU�

K
1 4 Daa D |z �� CK E=/

(29)

We note thaty �� �J "
decreases as� increases, which indicates that

the stepsizeS�
increases with the quantizer bin index�. This

is to be expected as quantization error of large moduli atoms in
early MP iterations is corrected by subsequent iterations. The en-
ergy values needed to estimate

�y �� �J "����
in (28) are derived ei-

ther from a non-quantized expansion of the current signal or from
the previous frame of the video sequence, thus avoiding excessive
computation. Specifically, the R/D optimal expansion is computed
as follows. Let

�y �r� �J "����
be they � sequence derived for the� )* frame of the video sequence. The process is initialized withy � �� �J " � 


for all �. At frame
� ' 


, for a givenJ ,
�Sr � �� ����

is computed from (29), using
�y �r� �J "����

, and subsequently the
signal expansion is performed within-loop quantization. In order
to estimate the sequence

�y �r � �� �J "����
for the next frame, the

final residual energy and the residual energy after all atoms larger
than the boundaries of each quantization bin have been selected
are computed. This computation is performed by accumulating the
atom contribution to the residue energy decrease on a quantizer bin
basis [5]. For the� )* atom, this contribution is

! d� � �! � � b! � "d ,
where

! �
and b!�

are the non-quantized and quantized moduli.

4. APPLICATION TO VIDEO CODING

In Fig.1, three uniform and one non-uniform quantizers are com-
pared. All uniform quantizer stepsizes have been selected accord-
ing to equation (20), i.e.S �J � �  �� �y � �J "��

. For both� < � � �
and

� < , the quantization error re-injection is neglected,
i.e. y � � 


. They are different in that
� < � � �

stops the search
as soon as an atom smaller thanJ has been encountered, while� < continues the search until no atoms larger thanJ can be
found in any subspace.

� < � � �
is the approach used in [3] while� < conforms to the stopping criteria expressed in Section 2. The

third uniform quantizer
�  < considers the quantization error re-

injection and setsy � according to (18). The non-uniform quantizer,t �  < , is designed based on (29) and (28). As expected,t �  <
outperforms all uniform quantizers. However, at low bitrates the
improvement is negligible. This is because most of the bits are
devoted to motion vector coding, and few atoms are encoded. On
the contrary, at high bitrates, the non-uniform quantizer results in
0.5 to 2 dBs improvement over [3].
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Fig. 1. R/D curves for video sequences encoded at 30 fps.

5. CONCLUSIONS

We have presented a R/D analysis of the MP expansion and quan-
tization for systems that transmit atoms in random order of magni-
tude. Our study shows that, at optimality, atoms are selected up to a
quality-dependent threshold. It also validates the characterization
of the quantizer proposed in [3], in terms of the ratio between its
stepsize and the expansion stopping threshold. Moreover, we have
shown that due to the re-injection of the quantization error during
the MP expansion, the R/D optimal quantizer is non-uniform.
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