
Efficient Video Similarity Measurement
and Search

by

Sen-ching Cheung

B.S. (University of Washington) 1992

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering
and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Avideh Zakhor, Chair
Professor Lawrence A. Rowe
Professor Ray R. Larson

Fall 2002

The dissertation of Sen-ching Cheung is approved:

Chair Date

Date

Date

University of California at Berkeley

Fall 2002

Efficient Video Similarity Measurement
and Search

Copyright Fall 2002

by

Sen-ching Cheung

1

Abstract

Efficient Video Similarity Measurement
and Search

by

Sen-ching Cheung

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Avideh Zakhor, Chair

The amount of information on the world wide web has grown enormously since its

creation in 1990. Duplication of content is inevitable because there is no central

management on the web. Studies have shown that many similar versions of the same

text documents can be found throughout the web. This redundancy problem is more

severe for multimedia content such as web video sequences, as they are often stored

in multiple locations and different formats to facilitate downloading and streaming.

Similar versions of the same video can also be found, unknown to content creators,

when web users modify and republish original content using video editing tools. Iden-

tifying similar content can benefit many web applications and content owners. For

example, it will reduce the number of similar answers to a web search and identify

inappropriate use of copyright content. In this dissertation, we present a system ar-

chitecture and corresponding algorithms to efficiently measure, search, and organize

similar video sequences found on any large database such as the web.

2

We first introduce a class of randomized algorithms, called ViSig, to estimate

video similarity. The basic idea is to summarize each video sequence into a small set

of video frames, or a signature, that is most similar to a set of predefined random

images. Theoretical and experimental results show that video similarity can be reli-

ably estimated by the ViSig method. Even though a small signature is sufficient to

estimate similarity, each frame in the signature is represented by a high-dimensional

vector. Similarity search on a large database of high-dimensional vectors is a chal-

lenging problem from a computational viewpoint. To solve this problem, we propose

a novel non-linear feature extraction technique that can be used in a fast similarity

search system. The proposed technique combines the classical principal component

analysis (PCA) with triangle inequality pruning. Experimental results show that

our proposed method outperforms techniques such as the Haar Wavelet, Fastmap

and PCA. To further improve retrieval performance and provide better organization

of similarity search results, we also design a new graph-theoretical clustering algo-

rithm on large databases of signatures. The algorithm treats all the signatures as

an abstract threshold graph, where the threshold is determined based on local data

statistics. Similar clusters are identified as highly connected regions in the graph.

By measuring the retrieval performance against a ground-truth set, we show that

our proposed algorithm outperforms simple thresholding and hierarchical clustering

techniques.

3

Professor Avideh Zakhor
Dissertation Committee Chair

i

To Dad and Mom

ii

Contents

List of Figures iv

List of Tables vi

1 Inroduction 1

1.1 Video similarity measurement . 4
1.2 Fast similarity Search . 8
1.3 Similarity clustering . 10
1.4 Organization . 13
1.A Appendix: Acronyms and Notations 15

2 A similarity video search engine 18

2.1 System description . 19
2.2 Web video acquisition . 21
2.3 Ground-truth construction . 24

3 Measuring video similarity 30

3.1 Ideal video similarity . 31
3.2 Voronoi video similarity . 37
3.3 Video signature method . 41
3.4 Seed vector generation . 44
3.5 Voronoi gap . 49
3.6 Ranked ViSig method . 53
3.7 Experimental results . 58

3.7.1 Color histogram feature . 58
3.7.2 Simulation results . 62
3.7.3 Ground-truth results . 66

3.8 Summary . 74
3.A Appendix: Proofs of propositions . 75

iii

4 Fast similarity search on signatures 82

4.1 The GEMINI approach for similarity search 85
4.2 Projection-vector mapping . 89
4.3 PCA on projection vectors . 97
4.4 Summary . 105
4.A Appendix: Modification for speed tests 106

5 Similarity signature clustering 109

5.1 Graphical representation of signature database 111
5.2 Signature clustering . 114
5.3 Ground-truth results . 118
5.4 Similar cluster statistics for web video 121
5.5 Summary . 124
5.A Appendix: Proof of Proposition 5.2.1 125
5.B Appendix: Clustering algorithm . 126

6 Summary and Future Work 133

Bibliography 138

iv

List of Figures

2.1 Schematic of the video search engine. 19
2.2 Search results of keyword “telephone”. 22
2.3 Ground-truth clusters and their sizes (part 1 of 2). 28
2.4 Ground-truth clusters and their sizes (part 2 of 2). 29

3.1 Two video sequences with NVS equal to 0.9. 33
3.2 Two video sequences with IVS equal to 1/3. 36
3.3 The Voronoi diagram of a three-frame video. 39
3.4 The shaded area denotes the similar Voronoi region between the two

sequences. 40
3.5 Examples of sequences with identical IVS’s but very different VVS’s. . 45
3.6 The unshaded region is the Voronoi gap for this pair of video sequences

with IVS one. 49
3.7 The error probability for the hamming cube at different values of ε and

distances k between the vectors in the video. 53
3.8 Values of ranking function Q(·) for a three-vector video sequence. Lighter

colors correspond to larger values. 56
3.9 Quantization of the HSV color space. 59
3.10 Comparisons between the basic (broken-line) and ranked (solid) ViSig

methods for four different signature sizes: m = 2, 6, 10, 14. 69
3.11 Precision and recall performance for ranked ViSig method at m =

2, 6, 10, 14. 70
3.12 Comparison between dc metric (broken) and d̂c distance (solid). . . . 71
3.13 Comparison between the Ranked ViSig method with m = 6 (solid) and

k-medoid with 7 representative vectors (broken). 72
3.14 Comparison between the symmetric and asymmetric VSSr with m = 6. 73

4.1 Distribution of the metric d(x, y) for 100,000 random pairs of signa-
ture vectors in the coordinates of maxi=1,2,...,100 |d(x, si) − d(y, si)| and
mini=1,2,...,100[d(x, si) + d(y, si)]. Different colors correspond to metric
values at different ranges. 92

v

4.2 Pruning-versus-Accuracy plots for the “lower-bound”, the “product”
and the proposed schemes. 96

4.3 Pruning-versus-accuracy plot for two dimension. 100
4.4 Pruning-versus-accuracy plot for four dimension. 101
4.5 Pruning-versus-accuracy plot for eight dimension. 102
4.6 Pruning and Accuracy versus pruning threshold for three independent

sets of queries. 103
4.A The left figure shows the signature similarity search that uses the rank-

ing of the query signature. The system on the right uses the rankings
of the signatures in the database. Since the right system only needs
to access the top-ranked signature vectors, less memory is required to
store the database. 107

5.1 A threshold graph with three connected components. 113
5.2 Precision versus recall for different clustering algorithms and simple

thresholding. 119
5.3 Precision and Recall versus edge density threshold γ. 121
5.4 Distribution of cluster sizes. 122
5.A For both illustrations, we obtain a contradiction by replacing e of length

d with a shorter edge (u, v) to obtain a better MST. 127

vi

List of Tables

2.1 Statistics of collected web video sequences 25

3.1 Comparison between using uniform random and corel image seed vec-
tors. The second through fifth columns are the results of using uniform
random seed vectors and the rest are the corel image seed vectors. Each
row contains the results of a specific test video at IVS levels 0.8, 0.6,
0.4 and 0.2. The last two rows are the averages and standard deviations
over all the test sequences. 63

3.2 Comparison between VSSb and VSSr under different levels of perturba-
tion. The table follows the same format as in Table 3.1. The pertur-
bation levels ε tested are 0.2, 0.4, 0.8, 1.2 and 1.6. 65

4.1 Speed comparisons among the sequential search, the proposed scheme,
Fastmap, and Haar Wavelet. 104

5.1 Statistics of the largest ten clusters in the database. 123

vii

Acknowledgements

I am deeply indebted to my advisor and mentor, Professor Avideh Zakhor, for

her guidance and inspiration throughout my graduate career at Berkeley. I am truly

grateful for her dedication to the quality of my research, and her insightful prospec-

tives on numerous technical issues.

This work has also benefited from helpful discussions with several individuals. I

would like to thank Prof. Lawrence A. Rowe for helping me to identify a number of

key issues in my dissertation work, and always leaving his door open for discussions.

I would also like to thank Professor Ray R. Larson for his helpful comments during

my qualifying examination and dissertation talk. I am very grateful to both Professor

Rowe and Professor Larson for reading earlier drafts of this dissertation. I would also

like to thank Professor Alistair Sinclair for introducing me to many of the theoretical

results in similarity search. In addition, I would like to express my gratitude to Rainer

Lienhart from Intel Research Lab, and Frederic Dufaux from Compaq Cambridge

Research Lab for providing the necessary video capturing routines and hyperlink

datasets to begin my research.

The financial support for my research work in last three years is greatly appre-

ciated. They include funding from AFOSR Muri Grant FDF49620-99-1-0062, NSF

grant CCR-9903368, California Digital Media Innovation (DiMI) program D97-03,

and Hughes Research Lab.

The companionship and support from students in the department are gratefully

viii

acknowledged. In particular, many thanks to Thinh Nguyen, Daniel Tan, Vito Dai,

Nelson Chang, Ralph Neff, John Koo, and Christian Frueh, for the insightful discus-

sions on diverse research problems, for the tremendous help in both technical and

personal matters, and for showing me that difficult problems can actually be solved

in tennis court and soccer field.

I am most grateful to my parents for instilling in me the importance of science and

technology at a very young age, for encouraging me to pursue my own dream, and

for reminding me the importance of doing my best even in the most difficult time.

Finally, I would like to thank my wife Blanca for her love, her help and her

support in my final stage of dissertation research and thesis writing. It was absolutely

wonderful to have some one, late at night while I was stuck at a programming problem,

bringing me a cup of hot coffee or a bowl of sweet grapes.

1

Chapter 1

Inroduction

The amount of information on the world wide web has grown enormously since its

creation in 1990. By June 2002, commercial search engines such as Google and Fast

had indexed more than two billion web-pages. There is no central management on the

web, so duplication of content is inevitable. There have been a number of research

studies in recent years that investigated duplicated or highly-similar web-pages and

web-sites [1, 2, 3, 4, 5]. The amount of redundancy on the web, as shown by these

studies, is in fact quite high – one study has shown that about 46% of all the text

documents on the web have at least one “near-duplicate,” that is a document which is

identical except for low level details such as formatting, and 5% of them have between

10 and 100 replicas [2]. Overly-duplicated content wastes resources in storage and

transmission bandwidth, and increases the effort required to mine information for

both human and artificial agents.

2

Such a problem is more severe for web multimedia content, especially for web

video sequences. Tens or even hundreds of very similar video clips are returned

when sending popular video keywords such as “star wars” or “Clinton testimony” to

commercial search engines. There are a number of factors contributing to such a high

degree of multiplicity. Due to the stringent requirements in bandwidth and delay,

web video sequences are often stored in multiple locations, formatted to various sizes

and frame-rates, and compressed with different algorithms and bitrates to facilitate

downloading and streaming. As multimedia authoring tools are now commonplace

on personal computers, similar versions, in part or as a whole, of the same video

can also be found on the web when users modify and combine original content with

their own productions. Advances in automatic video analysis also enable users to

easily create trailers or key-frame story-boards to summarize video sequences. All

the aforementioned variations of the same video sequence share a large percentage

of visually similar frames with each other. These are the types of similar video

sequences we are interested in finding on the web. Identifying these similar content

can be beneficial to content owners and web video applications such as the followings:

• As users typically do not view items beyond the first result screen from a search

engine [6], it is detrimental to have all “near-duplicate” entries cluttering the

top retrievals. It is better to group together similar entries before presenting

the retrieval results to users. Commercial search engines such as Google and

Altavista have already applied techniques to cluster similar text documents

3

together before presenting them to users.

• When a particular web video becomes unavailable or suffers from slow network

transmission, users can opt for a better version among similar video content

identified by the video search engine.

• Similarity detection algorithms can also be used for content identification when

conventional techniques such as watermarking are not applicable. For example,

multimedia content brokers may use similarity detection to check for copyright

violation as they have no right to insert watermarks into original material.

In this dissertation, we explore the design and implemention of video similarity de-

tection and search algorithms for large databases of video sequences such the web.

There are three main challenges in building such a system: first, to design a robust

and low-complexity video similarity measure; second, to support fast similarity search

over potentially millions of video sequences, and third, to present the search results

to users in an organized and intuitive manner. We propose, in this dissertation, a

number of algorithms to tackle these problems, and demonstrate the efficiency and

effectiveness of these algorithms on a large dataset of web video sequences. Before

embarking on a detailed description of our system, we will first elaborate on these

challenges and review existing solutions in the literature.

4

1.1 Video similarity measurement

As mentioned earlier, we are interested in defining a video similarity measure

based on the percentage of visually similar frames or shots shared between two video

sequences. This is analogous to finding the percentage of shared words or phrases

between two text documents. This commonly-used document similarity measure is

called a Tanimoto measure [1, 2]. While it is relatively straightforward to distinguish

two different words,1 it is much harder to identify visually similar frames or shots due

to the large number of possible variations. The typical approach is to identify each

frame or shot by some of its attributes such as color, texture, shape, and motion,

usually represented as a high-dimensional feature vector. Visual similarity between

different frames can then be gauged by a metric function between the corresponding

feature vectors. To compute our target video similarity measure, we thus need to

identify feature vectors from two video sequences that are “close” to each other based

on the computed metric values. There exist other video similarity measures in the lit-

erature and some of them are reviewed in this section. Nonetheless, no matter which

measure is used, the major challenge is how to perform the measurement efficiently.

As a video sequence can potentially have thousands of feature vectors representing

different shots, computing a high-dimensional metric between them becomes a daunt-

ing task. On the other hand, for every new video added to the database or a query

1Variants of the same word should be first converted to the root by a process known as word
stemming [7, ch. 3]. Synonyms can also be identified as a unique lexical concept via the use of an
electronic thesaurus [8].

5

video presented by a user, similarity measurements need to be performed with possi-

bly millions of entries in the database. Thus, it is imperative to develop fast methods

to compute similarity measurements for database applications.

Finding visually similar content is the central theme in the area of Content-Based

Information Retrieval (CBIR). In the past decade, numerous algorithms has been

proposed to identify visual content similar in color, texture, shape, motion and many

other attributes [9, 10, 11, 12, 13]. Much of the video similarity research has been

focused on the problem of search for a particular short segment, such as a television

commercial, within a long sequence [14, 15, 16, 17]. When extending the similarity

measurement to full video, the first challenge is to define a single measurement to

gauge the similarity between two video sequences. To this end, several proposals can

be found in the literature: in [18, 19, 20], warping distance is used to measure the

temporal edit differences between video sequences. Hausdorff distance is proposed

in [21] to measure the maximal dissimilarity between shots. Template matching of

shot change duration is used by Indyk et al. [22] to identify the overlap between video

sequences. A common step shared by all the above schemes is to match similar feature

vectors between two video sequences. This usually requires searching through part

of or the entire video. The full computation of these measurements thus require the

storage of the entire video, and time complexity that is at least linear in the length

of the video. Applying such computations to find similar content within a database

of millions of video sequences is too complex in practice.

6

On the other hand, computing the precise value of a similarity measurement is

typically unnecessary. As feature vectors are idealistic models and do not entirely

capture the process of how similarity is judged in the human visual system [23], many

CBIR applications only require an approximation of the underlying similarity value.

As such, it is unnecessary to maintain full fidelity of the feature vector representations,

and approximation schemes can be used to alleviate high computational complexity.

For example, in a video similarity search system, each video in the database can be

summarized into a compact fixed-size representation that can be compared to test

the similarity between the two video sequences.

Two types of summarization techniques are used for similarity approximation:

higher-order and first-order. Higher-order techniques summarize all feature vectors

in a video as a statistical distribution. These techniques are useful in classification

and semantic retrieval as they are highly adaptive and robust against small perturba-

tion. Nonetheless, they typically assume a restricted form of density models such as

Gaussian, or mixtures of Gaussian distributions, and require computationally inten-

sive methods such as Expectation-Maximization for parameter estimation [24, 25, 26].

As a result, higher-order techniques may be impractical for matching the enormous

amount of extremely diverse video content on the web. First-order techniques sum-

marize a video by a small set of representative feature vectors. One approach is to

compute the “optimal” representative vectors by minimizing the distance between

the original video and its representation. If the metric is finite-dimensional Euclidean

7

and the distance is the sum of squared metric, the well-known k-means method can

be used [27]. For general metric spaces, we can use the k-medoid method which iden-

tifies k feature vectors within the video to minimize the distance [28, 21]. Both of

these algorithms are iterative with each iteration running at O(l) time for k-means,

and O(l2) for k-medoids, where l represents the length of the video. To summarize

long video sequences, such as feature-length movies or documentaries, these methods

are clearly too complex to be used in large databases.

To produce a compact summarization that is both easy to generate and capable

of producing a reliable estimate of the underlying similarity, we propose a class of

randomized techniques called the Video Signature (ViSig) method in Chapter 3. The

ViSig method summarizes each video sequence in the database by selecting a number

of its frames closest to a set of random vectors. Such a representation is called a video

signature. An important result shown in Chapter 3 is that, regardless of how long

the video sequences are, it is sufficient to use very small video signatures to identify

those sequences that share a large fraction of similar frames. Our proposed ViSig

method is also an example of first-order video summarization technique. Unlike the

k-means or k-medoid methods, it is a single-pass O(l) algorithm. Thus, it takes far

less computation to generate a summarization for a long video sequence. On the

other hand, as demonstrated by the experimental results in Chapter 3, ViSig can

produce retrieval results that are comparable to other techniques that are much more

computationally intensive.

8

1.2 Fast similarity Search

An efficient algorithm to measure video similarity is only the first step towards

building a similarity video search engine. When a user presents a query in the form

of a video signature to the search engine, the search engine must identify all similar

signatures in the database of possibly millions of entries. The naive approach of

sequential search is too slow to handle large databases, and complex comparison

functions. To guarantee a fast response time, it is imperative to develop fast similarity

search algorithms. Faster-than-sequential solutions have been extensively studied by

the database community. Elaborate data structures, collectively known as the Spatial

Access Methods (SAM), have been proposed to facilitate similarity search [29, 9,

30]. Most of these methods, however, do not scale well to high dimensional metric

spaces [31]. This problem is commonly known as the “curse of dimensionality”.

One possible strategy to mitigate this problem is to design a transformation to map

the original metric space to a low-dimensional space where a SAM structure can be

efficiently applied. Such a transformation is called feature extraction mapping, and

the approach of combining feature extraction with SAM is called GEneric Multimedia

INdexIng (GEMINI) [9, ch. 7].

A good feature extraction mapping should be able to closely approximate dis-

tances in the high-dimensional space using the corresponding distances in the low-

dimensional projected space. The most commonly used feature extraction mapping

is Principal Component Analysis (PCA). PCA has been shown to be optimal in ap-

9

proximating Euclidean distance [32], and a myriad of techniques have been developed

for generating PCA on large datasets [33]. If the underlying metric is not Euclidean,

PCA is no longer optimal and more general schemes need to be used. Multidimen-

sional Dimension Scaling (MDS) is the most general class of techniques for creating

mappings that preserve a high-dimensional metric in a low-dimensional space [34].

Historically, MDS schemes have been developed for visualizing high-dimensional data

on a computer screen. MDS solves a non-linear optimization problem by searching

for the mapping that best approximates all the high-dimensional pairwise distances

between data points. In most occasions, MDS is simply too complex to be used for

similarity search.

There are other techniques less computationally intensive techniques that are de-

veloped for metric spaces. One such technique is the Fastmap algorithm proposed

by Faloutsos and Lin [35]. Fastmap is a heuristics algorithm that uses Euclidean dis-

tance to approximate a general metric. The time complexity of generating a fastmap

mapping is linear with respect to the size of the database. In Section 4.3, we compare

the search performance of fastmap with our proposed technique. Another class of

techniques constructs feature extraction mappings based on distances between the

high-dimensional vectors and a set of random vectors. These kinds of “random map-

pings” have been shown to possess certain favorable theoretical properties. [36] and

[37] have shown that a specific form of the random mappings can achieve the best

possible approximation of high-dimensional distances. Unfortunately, such mappings

10

are quite complex, and effectively require the computations of all pairwise distances.

A more practical version has been proposed in [38] for approximating a metric used

in protein sequencing. An even simpler version, called Triangle-Inequality Pruning

(TIP), has been proposed by Berman and Shapiro for similarity search on image

databases [39]. In Chapter 4, we propose a novel feature extraction mapping for

metric-space data. This technique improves upon TIP by taking into account both

the upper and lower bounds offered by the triangle-inequality. It also exploits the

classical PCA technique in order to achieve any target dimension. As we will demon-

strate in Chapter 4, our proposed scheme outperforms many other techniques in the

literature in terms of the search performance on a large database of video signatures.

1.3 Similarity clustering

For a meaningful presentation of similarity search results, we investigate the use

of clustering algorithms on a large database of video signatures. The goal is to group

similar video sequences into non-overlapping clusters so a user is presented an un-

cluttered view of the results. A clustering structure provides an efficient organization

of data which allows users to rapidly focus on relevant information. For example,

clustering is extensively used in the areas of browsing and navigation [40, 41] as well

as story segmentation of video clips [42, 43]. There are other benefits to applying

clustering techniques to large databases. It has long been observed that clustering

similar data items can improve the performance of a text-based information retrieval

11

system [44]. A number of recent studies have demonstrated that retrieval performance

on multimedia information systems can also be improved via clustering [45, 21, 25].

Clustering experiments on web text documents show that the number of clusters

with similar documents is likely to be very large [1]. It is difficult to apply many pop-

ular optimization-based clustering algorithms, such as the k-means method, to our

problem as many of them need the precise number of clusters as input [46, ch. 14].

Another popular class of clustering algorithms, called the hierarchical algorithms, do

not have such a requirement [46, ch. 13]. Hierarchical algorithms recursively create

new clusters by either subdividing or merging existing ones. Different hierarchical al-

gorithms use different criteria to decide which clusters to merge or divide. A common

approach is based on the distances between centroids of the existing clusters. Never-

theless, in general metric spaces where distances are the only measurable quantities,

there may not be a sensible way to compute the centroid of a cluster. In addition, as

the ViSig method is a randomized algorithm, there are uncertainties associated with

each signature. Centroids computed based on erroneous signature vectors certainly

do not reflect the actual locations of the clusters.

Rather than computing centroids, we can treat each data point as a vertex of

a graph, and form edges between two data points if their distances are less than a

certain threshold. The hierarchical clustering algorithm then considers the graphs

formed at different thresholds, and identifies parts of the graphs as clusters based on

their degree of connectivity. The simplest of such algorithms are the single-link and

12

complete-link algorithms [46]. The single-link algorithm identifies all the connected

components in the graph as clusters, and the complete-link uses complete subgraphs.

Both algorithms are viable candidates for clustering, but the results obtained by

applying them to our data are dissatisfactory. The problem with the single-link algo-

rithm is that its cluster definition is too lenient. As a result, a single-link algorithm

produces some large clusters that contain totally irrelevant video clips. The cluster

definition of the complete-link algorithm, in contrast, is too stringent – it dismisses

true clusters in the presence of one single erroneous distance measurement. Ideally,

a clustering algorithm should aim at identifying clusters between these two extremes

of single-link and complete-link.

In Chapter 5, we propose a new hierarchical clustering algorithm that allows

the user to adjust the desirable level of connectivity for cluster identification. In

the proposed algorithm, a connected component forms a cluster if its edge density

exceeds a user-defined threshold. Not only does the proposed algorithm produce

favorable retrieval results, it admits a simple implementation based on the classical

Minimum Spanning Tree (MST) algorithm by Kruskal [47]. In [48], Zahn has used

MST to separate data into different clusters if the MST branch connecting them is

significantly longer than the nearby edges [48]. We extend this concept to consider

the connectivity of the clusters. Recently, a number of graph-theoretical clustering

algorithms based on network-flow algorithms have been proposed for visual grouping

and gene expression clustering [49, 50]. Compared to MST, these techniques are far

13

more computationally intensive, and are thus difficult to scale to very large databases.

1.4 Organization

This dissertation is organized as follows: we first provide, in Appendix 1.A, a list

of all the commonly-used acronyms and notations in this dissertation. Chapter 2

provides an overview of the design of a similarity video search engine. This design

overview provides a functional description of how individual components proposed in

this dissertation can be applied to a realistic design. This search engine can be ac-

cessed on the web at http://www-video.eecs.berkeley.edu/~cheungsc/cluster.

The dataset of web video sequences, which we use throughout this dissertation, is

also described in this chapter.

Chapter 3 is devoted to video similarity measurement. Different video similarity

models are discussed in this chapter, but the focus is on developing the ViSig method

and its variations. We introduce the geometric interpretation of the ViSig method as

an estimation of the intersecting volume between voronoi diagrams. This leads to the

design of a number of heuristics that are essential to applying ViSig to real data. We

present both experimental and simulation results to demonstrate the performance of

ViSig.

Chapter 4 deals with fast similarity search on large databases of video signatures.

After a brief review of a generic similarity search procedure, we focus on designing the

feature extraction mapping on high-dimensional video signatures to low-dimensional

14

index vectors. The two main components of this mapping, namely the projection

vector mapping and the PCA, are described in detail. Finally, we compare the search

performance on randomly queries between the proposed technique and other state-

of-the-art methods.

Chapter 5 discusses how clustering can be applied to improve retrieval perfor-

mance. We first introduce the graphical representation of a database of video signa-

tures, and define similar clusters as highly connected regions inside the graph. We

then explain how these similar clusters can be identified by using a simple modifica-

tion of Kruskal’s minimum spanning tree algorithm. Experimental results are then

presented comparing the proposed algorithm with simple thresholding, single-link

and complete-link hierarchical clustering algorithms. Finally, we apply our algorithm

to a large database of web video sequences, and statistically analyze the resulting

clustering structure.

Chapter 6 presents a summary of the results in this dissertation along with sug-

gestions for future work. Portions of Chapter 3 have appeared in [51, 52, 53, 54, 55],

while parts of Chapters 4 and 5 have been presented in [56, 57].

15

1.A Appendix: Acronyms and Notations

Acronyms

NVS Näıve Video Similarity
IVS Ideal Video Similarity
VVS Voronoi Video Similarity
ViSig Video Signature
VSSb Basic ViSig Similarity
PDF Probability Density Function
VSSr Ranked ViSig Similarity
HSV Hue-Saturation-Value color space
GEMINI Generic Multimedia Indexing
CC Connected Component
MST Minimum Spanning Tree

Notations

(F, d(·, ·)) Feature vector space F with metric d(·, ·)
x, y Video frames, represented as feature vectors
X, Y Video sequences, represented as sets of feature vectors
ε Frame Similarity Threshold
1X Indicator function
|X| Cardinality of set X
nvs(X,Y ; ε) NVS between X and Y
[X]ε Collection of clusters in X
[X ∪ Y]ε Clustered union between X and Y
ivs(X,Y ; ε) IVS between X and Y
V (X) Voronoi Diagram of video X
VX(x) Voronoi Cell of x ∈ X
VX(C) Voronoi Cell of a cluster C ∈ [X]ε

16

R(X,Y ; ε) Similar Voronoi Region
Vol(A) Volume of a region A
Prob(A) Probability of event A
vvs(X,Y ; ε) VVS between X and Y
XS Signature of X with respect to the SV set S
gX(s), xs Signature vector of X with respect to s
vssb(XS, YS; ε,m) VSSb between XS and YS

m Number of signature vectors in a signature
f(u;X ∪ Y) PDF that assigns equal probability to the Voronoi Cell

of each cluster in [X ∪ Y]ε
G(X,Y ; ε) Voronoi gap between X and Y
Q(gX(s)) Ranking function for the signature vector gX(s)
vssr(XS, YS; ε,m) VSSr between XS and YS

m′ Number of top-ranked signature vectors used in comput-
ing VSSr

v̂ssr(XS, YS; ε,m) Asymmetric VSSr between XS and YS using the ranking
of XS

dq
c(xi, yi), d̂

q
c(xi, yi) l1 and modified l1 color histogram distances

dc(x, y), d̂c(x, y) Quadrant color histogram distances based on dq
c(·, ·) and

d̂q
c(·, ·)

ρ Dominant color threshold used in d̂q
c(·, ·)

rel(X) The set of video sequences that are subjectively similar
to video X as defined in the ground-truth set

ret(X, ε) The set of video sequences that are declared to be similar
to X by the ViSig method at ε level

Recall(ε) The recall in retrieving the ground-truth by the ViSig
method at ε level

Precision(ε) The precision in retrieving the ground-truth by the ViSig
method at ε level

A(x; ε) The result set of similarity search on feature vector x
AS(XS; ε) The result set of similarity on signature XS

ε′ Pruning threshold
C(x; ε′) The GEMINI candidate set for feature vector x
C(XS; ε

′) The GEMINI candidate set for signatures XS

A′(x; ε, ε′) The GEMINI result set for feature vector x
A′(XS; ε, ε

′) The GEMINI result set for signature XS

(F ′, d′(·, ·)) Range space and Range metric
T (x) Feature extraction mapping of feature vector x
P(x) Projection vector mapping of feature vector x
dsig(·, ·) Signature distance

17

V (G) Vertex set of a graph G
E(G) Edge set of a graph G
P (V , ρ) Threshold graph on vertex set V and distance threshold

ρ
Γ(G) Edge density of graph G
γ Edge density threshold

18

Chapter 2

A similarity video search engine

This chapter describes a similarity video search engine that utilizes all our pro-

posed algorithms, as well as the dataset behind this engine and other experiments

presented throughout the dissertation. The functional description of the search en-

gine can be found in Section 2.1. A prototype of this engine can be accessed at

http://www-video.eecs.berkeley.edu/~cheungsc/cluster. Section 2.2 describes

the web video dataset behind this search engine and the data collection process. We

also derive a ground-truth set from this dataset to measure the retrieval performance

of various algorithms. The construction of the ground-truth set is described in Section

2.3.

19

2.1 System description

The architecture of our proposed search engine is shown in Figure 2.1. The Uni-

form Resource Locator or URL database contains a large number of URL addresses of

video hyperlinks, which are acquired by traversing the web with a web crawler. The

web video capturer reads the URL addresses from the URL database, downloads the

corresponding video clip, and identifies relevant meta-data terms. Meta-data terms

are textual information about the video clip. They consist of terms extracted from

the URL address of the video hyperlink, the description of the hyperlink, the title

and address of the web-page, and auxiliary information such as the creator’s name

and the copyright notice embedded in the clip. The meta-data terms are stored in

the cluster & meta-data database, while the video-data is sent to the signature &

index generation process.

Signature &

Index

Generation

Similarity

Search

Cluster & Meta-Data

Database

Web Video

Capturer

WebWeb

Signature

Clustering

URL

database

Signature

Database

Index

Database

Keyword

Search

Video Data

Meta Data

Cluster

Definition

Signatures

Indices

Video query

Results

Keyword

query

Results

Figure 2.1: Schematic of the video search engine.

During the signature & index generation process, a signature and an index are

20

generated for each input video clip. A signature is a compact representation of a video

clip, while an index is an even smaller entity that is used to facilitate similarity search

on signatures. Details on how indices are used to facilitate fast similarity search on

signatures are described in Chapter 4. The video search engine uses similarity search

in two different modes. First, it allows a user to search for video content in the

search engine database that are potentially similar to the input query video clip. To

do this, a user needs to first download software to produce a signature for his/her

video clip. The signature is then sent to the search engine where a similarity search

is performed. Thumbnail images and hyperlink information for all signatures within

a small distance threshold of the query are then presented to the user.

Similarity search is also used by the signature clustering process in our search

engine. Based on the similarity search results of all the signatures, the signature

clustering process identifies clusters of similar video sequences in the database. These

similarity clusters can be used in many different ways: First, we show in Chapter

5 that it is possible to improve retrieval performance by returning similar clusters,

rather than individual video, that are close to the input query. Second, we can use the

resulting clusters to expand the results of keyword search, which is another function

supported by our search engine. After the signature clustering process, membership

information of all the clusters is stored in the cluster & meta-data database. For each

meta-data term k in the database, we identify those clusters with at least one video

clip that has k in its meta-data record. All these clusters will be returned if k is a

21

part of the user’s keyword search. This approach expands the simple paradigm of

keyword search to include those visually similar video clips that may not have any

meta-data term that matches the query keyword. To illustrate this concept via an

example, consider querying our search engine with the keyword “telephone.” Figure

2.2 shows a screen-shot of the search results. Thumbnail images are used to represent

returned clusters, which are ranked by the number of video clips in them. The detailed

listing of all video clips is shown by clicking on the thumbnail image. As shown in

the figure, 48 video clips relevant to the keyword “telephone” are retrieved, despite

the fact that only eight clips actually have the term “telephone” in their meta-data

records. These 48 video clips are organized into seven clusters of visually similar

video sequences. The cluster organization provides the user a concise summary of all

the visually distinctive video sequences among the search results.

2.2 Web video acquisition

In order to demonstrate the applicability of our algorithms, it is important to

base our results on a representative collection of video sequences on the web. Most

experimental results presented in this dissertation are based on a collection of 46,331

video sequences, crawled from the web between June and December of 1999. This

section briefly describes the approach used to acquire these sequences as well as the

nature of the web video sequences in our collection.

A common approach to collect data from the web is to use a web crawler. A web

22

crawler is a program that automatically traverses the web’s hyperlink structure and

retrieves desired information. As video sequences are sparsely distributed over the

web, a web crawler requires substantial amount of time and resources to collect a

representative data-set. Our approach to building a video collection is to send a large

set of queries to the AltaVista video search engine to obtain URL addresses of web

Figure 2.2: Search results of keyword “telephone”.

23

video sequences. Similar methods have been used to estimate the size of the web [58].

To avoid bias towards particular types of content, our query word set consists of

about 300,000 words obtained from a general search engine [59], an Internet video-

on-demand site [60] and a speech recognizer vocabulary [61]. All query requests are

carefully controlled so as not to overburden the search engine. Over the entire month

of June 1999, about 62,000 URL addresses pointing to video content were obtained.

This data-set constitutes roughly 15% of all the non-broadcast video clips on the

web at that time, according to the figure estimated by Compaq Cambridge Research

Laboratory in November 1998 [62].

The second step is to follow the resulting URLs and download the actual video

sequences. Among all the video URLs, the most popular formats are RealVideo,

Quicktime, MPEG-1, and AVI. Except for MPEG-1 which is an open standard [63],

the remaining formats are proprietary. This has a significant impact on the download

time since no fast bit-stream level processing can be applied, and the video sequences

can only be captured after full decoding. In other words, the capture time is limited by

the decoding speed or even real-time display in certain formats. RealVideo streaming

format [64] presents an additional level of challenge since its display quality depends

on the network conditions during the download. Depending on the settings of the

content server, heavy packet losses on the network may cause delay, frame drops

or corrupted frames. We developed capture software that takes the delay due to

packet losses into account but fails to detect frame drops or corrupted frames. As

24

a result, the quality of the captured video sequences may vary significantly even for

the same video downloaded from two different locations. In order to reduce storage

requirements, all video sequences are re-sampled at three frames per second. For each

sequence, almost identical neighboring frames with peak signal to noise ratio larger

than 50 dB are removed, and the remaining frames are compressed using motion-

JPEG.

After eliminating synonymous1 and expired URL entries, we capture 46,331 video

clips with total duration of approximately 1800 hours. The total disk space required

for the motion-JPEG video sequences exceeds 100 Gigabytes. The total capture time

was approximately 30 days using four Intel Pentium-based personal computers. In

other words, on average, it takes 1.6 hours to capture 1 hour of video. The bottleneck

in capturing is primarily due to the buffering delay in recording streaming RealVideo.

The statistics of the four most abundant types of collected video sequences are shown

in Table 2.1. Except RealVideo video sequences, most of the other sequences are less

than one minute long.

2.3 Ground-truth construction

A ground-truth set is commonly used as an experimental tool to measure how

well an automatic retrieval algorithm can match human judgment [44, 98]. A general

1Synonymous URLs are detected using the following heuristics [65] : (i) removing the port
80 designation (the default), (ii) removing the first segment of the domain name for URLs with a
directory depth greater than one (to account for machine aliases), and (iii) unescaping any “escaped”
characters.

25

Video Type % over all clips Duration (mean ± std-dev in minutes)

MPEG 31 0.26 ± 0.7
QuickTime 30 0.51 ± 0.6
RealVideo 22 9.57 ± 18.5

AVI 16 0.16 ± 0.3

Table 2.1: Statistics of collected web video sequences

ground-truth set consists of multiple clusters of data items from a large dataset. Each

cluster of the ground-truth set contains all the items in the dataset that are considered

to be relevant to a particular concept by a group of human subjects. By presenting

each data item in the ground-truth set as a query to an automatic retrieval system,

we can measure how well the system can approach human judgment.

In our particular application, the ground-truth set contains clusters of highly

similar video sequences from the web video dataset. Ideally, each group in the ground-

truth set should capture all of the similar versions of the same video content in

the entire dataset. Rather than manually examining the entire set of more than

1800 hours of video, we adopt a best-effort approach to obtain such a ground-truth.

This approach is similar to the pooling method commonly used in text retrieval

systems [44]. The basic idea of pooling is to first send the same queries to different

automatic retrieval systems, other than the one being tested. Then, the top-ranked

results from these systems are pooled together and examined by human experts to

identify the truly relevant ones. The goal of pooling is to reduce human effort by

using automatic systems to eliminate a large number of irrelevant results.

26

For our system, the first step is to use meta-data terms to identify the initial

ground-truth clusters. As described in Section 2.2, meta-data terms are extracted

from the URL address and other textual information of each video. All video se-

quences in the dataset containing at least one of the top 1000 most frequently used

meta-data terms are manually examined and grouped into clusters of similar video.

Clusters which are significantly larger than others are removed to prevent bias. We

obtained 107 clusters which form the initial ground-truth clusters. This method,

however, may not be able to identify all the video clips in the dataset that are similar

to those already in the ground-truth clusters. We further examined those video se-

quences in the dataset that share at least one meta-data term with the ground-truth

video, and add any similar video to the corresponding clusters.

In addition to meta-data, we apply visual similarity scheme to enlarge the ground-

truth as well. In particular, we identify video sequences in the dataset with color

distribution similar to those already in the ground-truth. It has been shown that

color is one of the most important low-level visual cue in identifying similar visual

content [70]. We briefly describe here how we expand the ground-truth with color

similarity, but defer all the technical details of similarity measurement until Section

3.7. We first convert every frame of a video into a color histogram feature vector.

Then, each video clip in the dataset and the ground-truth set is summarized as

a k-medoid of seven feature vectors. As mentioned in Chapter 1, k-medoid is a

summarization technique that minimizes the distance between the original video and

27

its summarization [28, 21]. For each k-medoid X in the ground-truth, we identify

100 k-medoids in the dataset that are closest to X in terms of the minimum distance

between all the vectors in their corresponding k-medoid representations. These 100

video clips are again manually examined to identify those visually similar to X. As a

result, we obtain a ground-truth set consisting of 443 video sequences in 107 clusters.

These ground-truth clusters and their sizes are shown in Figures 2.3 and 2.4. Each

cluster is represented by a video frame randomly selected from one of the sequences

within the cluster. The cluster size ranges from 2 to 20, with average size equal to 4.1.

For all our retrieval experiments, these ground-truth clusters serve as the basis for

comparison against those similar video sequences identified by the automatic retrieval

algorithms.

28

Figure 2.3: Ground-truth clusters and their sizes (part 1 of 2).

29

Figure 2.4: Ground-truth clusters and their sizes (part 2 of 2).

30

Chapter 3

Measuring video similarity

This chapter defines the video similarity models used in this dissertation, and

describes how they can be efficiently estimated by the ViSig method. We assume

that individual frames in a video sequence are represented by high-dimensional feature

vectors from a metric space (F, d(·, ·))1. In order to be robust against editing changes

in the temporal domain, we define a video sequence X as a finite set of feature vectors

and ignore any temporal ordering. For the remainder of this chapter, we make no

distinction between a video frame and its corresponding feature vector. The metric

d(x, y) measures the visual dissimilarity between vectors x and y. We assume that

vectors x and y are visually similar to each other if and only if d(x, y) ≤ ε for an

ε > 0 independent of x and y. We call ε the Frame Similarity Threshold.

This chapter is organized as follows. Section 3.1 defines our target measure, called

1For all x, y in F , the function d(x, y) is a metric if a) d(x, y) ≥ 0; b) d(x, y) = 0 ⇔ x = y; c)
d(x, y) = d(y, x); d) d(x, y) ≤ d(x, z) + d(z, y), for all z ∈ F .

31

the Ideal Video Similarity (IVS), used in this chapter to gauge the visual similarity

between two video sequences. As we explain in the section, this similarity measure is

complex to compute exactly, and requires a significant number of vectors to represent

each video. To reduce the computational complexity and the representation size, we

propose an alternative form of video similarity called the Voronoi Video Similarity

(VVS) in Section 3.2. This particular form of similarity leads directly to an efficient

technique for representation and estimation called the ViSig method, described in de-

tail in Section 3.3. Sections 3.4 through 3.6 analyze the scenarios where IVS cannot

be reliably estimated by our proposed algorithm, and propose a number of heuristics

to rectify the problems. Experimental results are presented in Section 3.7. We sum-

marize this chapter in Section 3.8. The proofs to all propositions in this chapter can

be found in Appendix 3.A.

3.1 Ideal video similarity

As mentioned in Chapter 1, we are interested in using a video similarity measure

that is based on the percentage of visually similar frames between two sequences.

A naive way to compute such a measure is to first find the total number of frames

from each video sequence that have at least one visually similar frame in the other

sequence. Then, compute the ratio of this number with the overall total number of

frames as the final similarity value. We call this measure the Näıve Video Similarity

(NVS):

32

Definition 3.1.1 Näıve Video Similarity

Let X and Y be two video sequences. The number of vectors in video X that have

at least one similar vector in Y can be computed by
∑

x∈X 1{y∈Y : d(x,y)≤ε}, where 1A is

the indicator function with 1A = 1 if A is not empty, and zero otherwise. The Näıve

Video Similarity between X and Y , nvs(X,Y ; ε), can thus be defined as follows:

nvs(X,Y ; ε)
∆
=

∑
x∈X 1{y∈Y : d(x,y)≤ε} +

∑
y∈Y 1{x∈X: d(y,x)≤ε}

|X|+ |Y | , (3.1)

where | · | denotes the cardinality of a set, or in our case the number of vectors in a

given video.

If every vector in video X has a similar vector in Y and vice versa, nvs(X,Y ; ε) = 1.

If X and Y share no similar vectors at all, nvs(X,Y ; ε) = 0.

Unfortunately, NVS does not always reflect our intuition of video similarity. Most

real-life video sequences can be temporally separated into video shots, within which

frames are visually similar. Among all possible versions of the same video, the num-

ber of frames in the same shot can be quite different. For instance, different coding

schemes modify the frame rates for different playback capabilities, and video summa-

rization algorithms use a single keyframe to represent an entire shot. As NVS is based

solely on frame counts, its value is highly sensitive to these kinds of manipulations.

To illustrate this problem with a pathological example, consider the two sequences

shown in Figure 3.1. We represent the feature vector space as a 2-D square. Crosses

and dots in the figure signify frames from two different video sequences X and Y

respectively. X has two frames that are very far apart, while all the frames in Y are

33

clustered around one of the frames in X. This may happen, for example, when X

is a key-frame sequence of a video with two distinct shots, and Y retains an entire

shot of this video. Assume all eight frames in Y are within ε of that particular frame

in X. Even though it is intuitive to say that the two sequences have 50% overlap,

the measured NVS between X and Y is 90%. It is possible to rectify the problem by

using shots as the fundamental unit for similarity measurement. Since we model a

video as a set and ignore all temporal ordering, we instead group all visually similar

vectors in a video together into non-intersecting units called clusters.

Figure 3.1: Two video sequences with NVS equal to 0.9.

A cluster should ideally contain only similar vectors, and no other vectors similar

to the vectors in a cluster should be found in the rest of the video. Mathematically,

we can express these two properties as follows: for all pairs of vectors xi and xj in

34

X, d(xi, xj) ≤ ε if and only if xi and xj belong to the same cluster. Unfortunately,

such a clustering structure may not exist for an arbitrary video X. Specifically, if

d(xi, xj) ≤ ε and d(xj, xk) ≤ ε, there is no guarantee that d(xi, xk) ≤ ε. If d(xi, xk) >

ε, there is no consistent way to group all the three vectors into clusters.

In order to have a general framework for video similarity, we adopt a relatively

relaxed clustering structure by only requiring the forward condition, i.e. d(xi, xj) ≤ ε

implies that xi and xj are in the same cluster. A cluster is simply one of the connected

components [66, appendix B] of a graph in which each node represents a vector in

the video, and every pair of vectors within ε of each other is connected by an edge.

We denote the collection of all clusters in video X as [X]ε. It is possible for such a

definition to produce chain-like clusters where one end of a cluster is very far from the

other end. Nonetheless, given an appropriate feature vector and a reasonably small

ε, most clusters found in real video sequences are compact, i.e. all vectors in a cluster

are similar to each other. We call a cluster ε-compact if all its vectors are within ε

from each other. The clustering structure of a video can be computed by a simple

hierarchical clustering algorithm called the single-link algorithm [67].

To define a similarity measure based on the visually similar portion shared between

two video sequences X and Y , we consider the clustered union [X∪Y]ε. If a cluster in

[X ∪ Y]ε contains vectors from both sequences, these vectors are likely to be visually

similar to each other. Thus, we call such a cluster a Similar Cluster and consider it as

part of the visually similar portion. The ratio between the number of similar clusters

35

and the total number of clusters in [X ∪ Y]ε forms a reasonable similarity measure

between X and Y . We call this measure the Ideal Video Similarity (IVS):

Definition 3.1.2 Ideal Video Similarity, IVS

Let X and Y be two video sequences. For each cluster C in [X ∪ Y]ε, C contains

vectors from both X and Y if and only if 1C∩X · 1C∩Y = 1. Thus, we can define the

IVS between X and Y , ivs(X,Y ; ε), as follows:

ivs(X,Y ; ε)
∆
=

∑
C∈[X∪Y]ε

1C∩X · 1C∩Y

|[X ∪ Y]ε|
(3.2)

The main theme of this chapter is to develop efficient algorithms to estimate the IVS

between a pair of video sequences. A simple pictorial example, shown in Figure 3.2,

demonstrates the use of IVS. Vectors closer than ε are connected by dotted lines.

There are altogether three clusters in the clustered union, and only one cluster has

vectors from both sequences. The IVS measure is thus 1/3.

It is complex to precisely compute IVS. The clustering used in IVS depends on

the distances between vectors from the two sequences. This implies that for two

video sequences with l vectors each, one needs to first compute the distance between

l2 pairs of vectors before running the clustering algorithm and computing the IVS.

In addition, the computation requires the entire video to be stored. The complex

computation and large storage requirements are clearly undesirable for large database

applications. As the exact similarity value is often not required in many applications,

36

Figure 3.2: Two video sequences with IVS equal to 1/3.

sampling techniques can be used to estimate the true IVS. Consider the following

simple sampling scheme: let each video sequence in the database be represented by

m randomly selected vectors. We estimate the IVS between two sequences by counting

the number of similar pairs of vectors Wm between their respective sets of sampled

vectors. As long as the desired level of precision is satisfied, m should be chosen as

small as possible to achieve low complexity. Nonetheless, even in the case when the

IVS is as high as one, we show in the following proposition that we need a large m

to find even one pair of similar vectors among the sampled vectors.

Proposition 3.1.1 Let X and Y be two video sequences with l vectors each. Assume

for every vector x in X, Y has exactly one vector y similar to it, i.e. d(x, y) ≤ ε. We

also assume the same for every vector in Y . Clearly, ivs(X,Y ; ε) = 1. The expectation

37

of the number of similar vector pairs Wm found between m randomly selected vectors

from X and from Y is given below:

E(Wm) =
m2

l
. (3.3)

Despite the fact that the IVS between the video sequences is one, Equation (3.3)

shows that we need, on average, m =
√
l sample vectors from each video to find

just one similar pair. Furthermore, comparing two sets of
√
l vectors requires l high-

dimensional metric computations. A better random sampling scheme should use

a fixed-size record to represent each video, and require far fewer vectors to identify

highly similar video sequences. Our proposed ViSig method is precisely such a scheme

and is the topic of the following section.

3.2 Voronoi video similarity

As described in the previous section, the simple sampling scheme requires a large

number of vectors sampled from each video to estimate IVS. The problem lies in

the fact that since we sample vectors from two video sequences independently, the

probability that we simultaneously sample a pair of similar vectors from them is rather

small. Rather than independent sampling, the ViSig method introduces dependence

by selecting vectors in each video that are similar to a set of predefined random feature

vectors common to all video sequences. As a result, the ViSig method requires far

38

fewer sampled vectors to find a pair of similar vectors from two video sequences. The

number of pairs of similar vectors found by the ViSig method depends strongly on

the IVS, but does not have a one-to-one relationship with it. We call the form of

similarity estimated by the ViSig method the Voronoi Video Similarity (VVS).

The term “Voronoi” in VVS is borrowed from a geometrical concept called the

Voronoi Diagram. Given a video X = {xt : t = 1, . . . , l}, the Voronoi Diagram V (X)

of X is a partition of the feature space F into l Voronoi Cells VX(xt). By definition,

the Voronoi cell VX(xt) contains all the vectors in F closer to xt ∈ X than to any

other vectors in X, i.e. VX(xt)
∆
= {s ∈ F : gX(s) = xt and xt ∈ X}, where gX(s)

denotes the vector in X closest2 to s. A simple Voronoi diagram of a video is shown

in Figure 3.3. We can extend the idea of the Voronoi diagram to video clusters by

merging Voronoi cells of all the vectors belonging to the same cluster. In other words,

for C ∈ [X]ε, VX(C)
∆
=
⋃

x∈C VX(x).

Given two video sequences X and Y and their corresponding Voronoi diagrams,

we define the Similar Voronoi Region R(X,Y ; ε) as the union of all the intersection

between the Voronoi cells of those x ∈ X and y ∈ Y where d(x, y) ≤ ε:

R(X,Y ; ε)
∆
=

⋃

d(x,y)≤ε

VX(x) ∩ VY (y). (3.4)

2If there are multiple x’s in X that are equidistant to s, we choose gX(s) to be the one closest to a
predefined vector in the feature space such as the origin. If there are still multiple candidates, more
predefined vectors can be used until a unique gX(s) is obtained. Such an assignment strategy ensures
that gX(s) depends only on X and s but not some arbitrary random choices. This is important to
the ViSig method which uses gX(s) as part of a summary of X with respect to a randomly selected
s. Since gX(s) depends only on X and s, sequences identical to X produce the same summary vector
with respect to s.

39

Figure 3.3: The Voronoi diagram of a three-frame video.

It is easy to see that if x and y are close to each other, their corresponding Voronoi

cells are very likely to intersect in the neighborhood of x and y. The larger number

of vectors from X and from Y that are close to each other, the larger the resulting

R(X,Y ; ε) becomes. A simple pictorial example of two video sequences with their

Voronoi diagrams is shown in Figure 3.4: dots and crosses represent the vectors of

the two sequences; the solid and broken lines are the boundary between the two

Voronoi cells of the two sequences represented by dots and crosses respectively. The

shaded region shows the similar Voronoi region between these two sequences. Similar

Voronoi region is the target region whose volume defines VVS. Before providing a

definition of VVS, we need to first clarify what we mean by the volume of a region in

the feature space.

40

Figure 3.4: The shaded area denotes the similar Voronoi region between the two
sequences.

We define the volume function Vol : Ω→ R to be the Lebesgue measure over the

set, Ω, of all the measurable subsets in the feature space F [68]. For example, if F is

the real line and the subset is an interval, the volume function of the subset is just

the length of the interval. We assume all the Voronoi cells considered in our examples

to be measurable. We further assume that F is compact in the sense that Vol(F)

is finite. Because we are going to normalize all volume measurements by Vol(F),

we assume that Vol(F) = 1. To compute the volume of the similar Voronoi region

R(X,Y ; ε) between two video sequences X and Y , we first notice that individual

terms inside the union in Equation (3.4) are disjoint from each other. By the basic

properties of Lebesgue measure, we have

Vol(R(X,Y ; ε)) = Vol(
⋃

d(x,y)≤ε

VX(x) ∩ VY (y)) =
∑

d(x,y)≤ε

Vol(VX(x) ∩ VY (y)).

41

Thus, we define the VVS between two video sequences X and Y as follows:

vvs(X,Y ; ε)
∆
=

∑

d(x,y)≤ε

Vol(VX(x) ∩ VY (y)) (3.5)

The VVS of the two sequences shown in Figure 3.4 is the area of the shaded region,

which is about 1/3 of the area of the entire feature space. Notice that for this example,

the IVS is also 1/3. VVS and IVS are close to each other because the Voronoi cell

for each cluster in the cluster union has roughly the same volume (area). In general,

when the clusters are not uniformly distributed over the feature space, there can be a

large variation among the volumes of the corresponding Voronoi cells. Consequently,

VVS can be quite different from IVS. Before explaining how we can reconcile these

two similarity measures, we first introduce the core algorithm in this chapter, the

Basic ViSig method, as a randomized technique to estimate VVS.

3.3 Video signature method

It is straightforward to estimate vvs(X,Y ; ε) by random sampling. First, generate

a set S of m independent uniformly distributed random vectors s1, . . . , sm, which we

call Seed Vectors. By uniform distribution, we mean for every measurable subset A

in F , the probability of generating a vector from A is Vol(A). Second, for each seed

vector s ∈ S, determine if s is inside R(X,Y ; ε). By definition, s is inside R(X,Y ; ε)

if and only if s belongs to some Voronoi cells VX(x) and VY (y) with d(x, y) ≤ ε.

Since s must be inside the Voronoi cell of the vector closest to s in the entire video

42

sequence, i.e. gX(s) in X and gY (s) in Y , an equivalent condition for s ∈ R(X,Y ; ε)

is d(gX(s), gY (s)) ≤ ε. Since we only need gX(s) and gY (s) to determine if each seed

vector s belongs to R(X,Y ; ε), we can summarize video X by the m-tuple XS
∆
=

(gX(s1), . . . , gX(sm)) and Y by YS. We call XS and YS the Video Signature (ViSig),

or simply signature, with respect to S of video sequences X and Y respectively. In

the final step, we compute the percentage of signature vector pairs gX(s) and gY (s)

with distances less than or equal to ε to obtain:

vssb(XS, YS; ε,m)
∆
=

m∑

i=1

1{d(gX(si),gY (si))≤ε}

m
. (3.6)

We call vssb(XS, YS; ε,m) the Basic ViSig Similarity (VSSb) between signatures XS

and YS. As every seed vector s ∈ S in the above algorithm is chosen to be uniformly

distributed, the probability of s being inside R(X,Y ; ε) is simply the VVS between

X and Y . Thus, vssb(XS, YS; ε,m) forms an unbiased estimator of the VVS between

X and Y . We refer to this approach of generating a signature and computing VSSb

the Basic ViSig method. To apply the Basic ViSig method to a large number of video

sequences, we must use the same seed vector set S to generate all the signatures in

order to compute VSSb between an arbitrary pair of video sequences.

The number of seed vectors in S, m, is an important parameter. On one hand,

m represents the number of samples used to estimate the underlying VVS and thus,

a large m produces a more accurate estimation. On the other hand, the complexity

of the Basic ViSig method depends on m. If a video has l vectors, it takes l metric

43

computations to generate a single signature vector. The number of metric computa-

tions required to compute the entire signature is thus m · l. Also, computing the VSSb

between two signatures requires m metric computations. It is, therefore, important

to determine an appropriate value of m that can satisfy both the desired estimation

fidelity and the computational resources of a particular application. The following

proposition provides an analytical bound on m in terms of the maximum error in

estimating the VVS between any pair of video sequences in a database:

Proposition 3.3.1 Assume we are given a database Λ with n video sequences and

a set S of m random seed vectors. Define the error probability Perr(m) to be the

probability that any pair of video sequences in Λ has their m-vector VSSb different

from the true VVS value by more than a given γ ∈ (0, 1], i.e.

Perr(m)
∆
= Prob

(⋃

X,Y ∈Λ

{|vvs(X,Y ; ε)− vssb(XS, YS; ε,m)| > γ}
)

(3.7)

A sufficient condition to achieve Perr(m) ≤ δ for a given δ ∈ (0, 1] is as follows:

m ≥ 2 lnn− ln δ

2γ2
(3.8)

It should be noted that the bound (3.8) in Proposition 3.3.1 only provides a

sufficient condition and does not necessarily represent the tightest bound possible.

Nonetheless, we can use this bound to understand the dependencies of m on various

factors. First, unlike the random sampling described in Section 3.1, m does not

44

depend on the length of individual video sequences. This implies that it takes fewer

vectors for the ViSig method to estimate the similarity between long video sequences

than random vector sampling. Second, we notice that the bound on m increases

with the natural logarithm of n, the size of the database. The signature size depends

on n because it has to be large enough to simultaneously minimize the error of all

possible pairs of comparisons, which is a function of n. Fortunately, the slow-growing

logarithm makes the signature size rather insensitive to the database size, making

it suitable for very large databases. The contribution of the term ln δ is also quite

insignificant. Comparatively, m is most sensitive to the choice of γ. A small γ means

an accurate approximation of the similarity, but usually at the expense of a large

number of sample vectors m to represent each video. The choice of γ should depend

on the particular application at hand.

3.4 Seed vector generation

We have shown in the previous section that the VVS between two video sequences

can be efficiently estimated by the Basic ViSig method. Unfortunately, the estimated

VVS does not necessarily reflect the target measure of IVS as defined in Equation

(3.2). For example, consider the two pairs of sequences in Figures 3.5(a) and (b).

Dots and crosses are vectors from the two sequences, whose Voronoi diagrams are

indicated by solid and broken lines respectively. The IVS’s in both cases are 1/3.

Nonetheless, the VVS in Figure 3.5(a) is much smaller than 1/3, while that of Figure

45

3.5(b) is much larger. Intuitively, as mentioned in Section 3.2, IVS and VVS are the

same if clusters in the clustered union are uniformly distributed in the feature space.

In the above examples, all the clusters are clumped in one small area of the feature

space, making one Voronoi cell significantly larger than the other. If the similar

cluster happens to reside in the smaller Voronoi cells, as in the case of Figure 3.5(a),

the VVS is smaller than the IVS. On the other hand, if the similar cluster is in the

larger Voronoi cell, the VVS becomes larger. This discrepancy between IVS and VVS

implies that VSSb, which is an unbiased estimator of VVS, can only be used as an

estimator of IVS when IVS and VVS is close. Our goal in this section and the next

is to modify the Basic ViSig method so that we can still use this method to estimate

IVS even in the case when VVS and IVS are different.

(a) (b)

Figure 3.5: Examples of sequences with identical IVS’s but very different VVS’s.

46

As the Basic ViSig method estimates IVS based on uniformly-distributed seed

vectors, the variation in the sizes of Voronoi cells affects the accuracy of the esti-

mation. One possible method to amend the Basic ViSig method is to generate seed

vectors based on a probability distribution such that the probability of a seed vector

being in a Voronoi cell is independent of the size of the cell. Specifically, for two video

sequences X and Y , we can define the Probability Density Function (PDF) based on

the distribution of Voronoi cells in [X∪Y]ε at an arbitrary feature vector u as follows:

f(u;X ∪ Y)
∆
=

1

|[X ∪ Y]ε|
· 1

Vol(VX∪Y (C))
(3.9)

where C is the cluster in [X ∪ Y]ε with u ∈ VX∪Y (C). f(u;X ∪ Y) is constant within

the Voronoi cell of each cluster, with the value inversely proportional to the volume

of that cell. Under this PDF, the probability of a random vector u inside the Voronoi

cell VX(C) for an arbitrary cluster C ∈ [X ∪ Y]ε is given by
∫
VX(C)

f(u;X ∪ Y) du =

1/|[X ∪Y]ε|. This probability does not depend on C, and thus, it is equally likely for

u to be inside the Voronoi cell of any cluster in [X ∪ Y]ε.

Recall that if we use uniform distribution to generate random seed vectors, VSSb

forms an unbiased estimate of the VVS defined in Equation (3.5). If we use f(u;X∪Y)

to generate seed vectors instead, VSSb now becomes an estimate of the following

general form of VVS:

∑

d(x,y)≤ε

∫

VX(x)∩VY (y)

f(u;X ∪ Y) du. (3.10)

Equation (3.10) reduces to Equation (3.5) when f(u;X∪Y) is replaced by the uniform

47

distribution, i.e. f(u;X ∪Y) = 1. As shown by the following proposition, the general

form of VVS in Equation (3.10) is equivalent to the IVS under certain conditions.

Proposition 3.4.1 Assume we are given two video sequences X and Y . Assume

clusters in [X]ε and clusters in [Y]ε either are identical, or share no vectors that are

within ε from each other. Then, the following relation holds:

ivs(X,Y ; ε) =
∑

d(x,y)≤ε

∫

VX(x)∩VY (y)

f(u;X ∪ Y) du. (3.11)

The significance of this proposition is that if we can generate seed vectors with

f(u;X ∪Y), it is possible to estimate IVS using VSSb. The condition that all clusters

in X are Y are either identical or far away from each other is to avoid the formation

of a special region in the feature space called a Voronoi Gap. The concept of Voronoi

gap is expounded in Section 3.5.

In practice, it is impossible to use f(u;X∪Y) to estimate the IVS between X and

Y . This is because f(u;X∪Y) is specific to the two video sequences being compared,

while the Basic ViSig method requires the same set of seed vectors to be used by all

video sequences in the database. A heuristic approach for seed vector generation is

to first select a set Ψ of training video sequences that resemble video sequences in

the target database. Denote T
∆
=
⋃

Z∈Ψ Z. We can then generate seed vector based

on the PDF f(u;T), which ideally resembles the target f(u;X ∪ Y) for an arbitrary

pair of X and Y in the database.

48

To generate a random seed vector s based on f(u;T), we follow a four-step algo-

rithm, called the Seed Vector Generation method, as follows:

1. Given a particular value of εsv, identify all the clusters in [T]εsv using the single-

link algorithm [67].

2. As f(u;T) assigns equal probability to the Voronoi cell of each cluster in [T]εsv ,

randomly select a cluster C from [T]εsv so that we can generate the seed vector

s within VT (C).

3. As f(u;T) is constant over VT (C), we should ideally generate s as a uniformly-

distributed random vector over VT (C). Unless VT (C) can be easily parameter-

ized, the only way to achieve this goal is to repeatedly generate uniform sample

vectors over the entire feature space until a vector is found inside VT (C). This

procedure may take an exceedingly long time if VT (C) is small. To simplify the

generation, we select one of the vectors in C at random and output it as the

next seed vector s.

4. Repeat the above process until the required number of seed vectors has been

selected.

In Section 3.7, we compare performance of this algorithm against uniformly dis-

tributed seed vector generation in retrieving real video sequences.

49

3.5 Voronoi gap

We show in Proposition 3.4.1 that the general form of VVS using an appropriate

PDF is identical to IVS, provided that all clusters between the two sequences are

either identical or far away from each other. As feature vectors are not perfect in

modeling the human visual system, visually similar clusters may have feature vectors

that are close but not identical to each other. Consider the example in Figure 3.6

where vectors in similar clusters are not identical but within ε of each other. Clearly,

Figure 3.6: The unshaded region is the Voronoi gap for this pair of video sequences
with IVS one.

the IVS between the two sequences shown in Figure 3.6 is one. Consider the Voronoi

diagrams of the two sequences. Because the boundaries of the two Voronoi diagrams

do not coincide exactly with each other, the similar Voronoi region, as indicated by

the shaded area, does not occupy the entire feature space. As the general form of

50

VVS defined in Equation (3.10) is the weighted volume of the similar Voronoi region,

it is strictly less than the IVS. The difference between the two similarities is due to

the unshaded region in Figure 3.6. A large unshaded region leads to a large difference

between the two similarities. If a seed vector s falls within the unshaded region in

Figure 3.6, we can make two observations about the corresponding signature frames

gX(s) and gY (s) from the two sequences X and Y : (1) they are far apart from each

other, i.e. d(gX(s), gY (s)) > ε; (2) they both have similar vectors in the other video,

i.e. there exists x ∈ X and y ∈ Y such that d(x, gX(s)) ≤ ε and d(y, gY (s)) ≤ ε.

These observations define a unique characteristic of a particular region, which we

refer to as a Voronoi Gap. Intuitively, any seed vector in a Voronoi gap between two

sequences produces a pair of dissimilar signature vectors, even though both signature

vectors have a similar match in the other video. More formally, we define the Voronoi

gap as follows:

Definition 3.5.1 Voronoi Gap

Let X and Y be two video sequences. The Voronoi gap G(X,Y ; ε) of X and Y is

defined by all s ∈ F that satisfy the following criteria:

1. d(gX(s), gY (s)) > ε,

2. there exists x ∈ X such that d(x, gY (s)) ≤ ε,

3. there exists y ∈ Y such that d(y, gX(s)) ≤ ε.

51

The example in Figure 3.6 seems to suggest that the Voronoi gap is small if ε

is small. An important question is how small ε must be before we can ignore the

contribution of the Voronoi gap. In order to have a rough idea on how ε affects the

volume of a Voronoi gap, we present here a simple example using the h-dimensional

hamming cube as our feature vector space. A hamming cube is a set containing all

the h-bit binary numbers. The distance between two vectors is simply the number

of bit-flips to change the binary representation of one vector to the other. Since it is

a finite space, the volume function is simply the cardinality of the subset divided by

2h. We choose the hamming cube because it is easy to analyze, and some commonly

used metrics such as l1 and l2 can be easily embedded inside the hamming cube with

little distortion [69].

To simplify the calculations, we only consider video sequences with two vectors

in the h-dimensional hamming cube H. Let X = {x1, x2} be a video in H. Let the

distance between x1 and x2 be a positive integer k. We assume the two vectors in X

are not similar, i.e. the distance between them is much larger than ε. In particular,

we assume that k > 2ε. We want to compute the “gap volume”, i.e. the probability

of choosing a seed vector s that is inside the Voronoi gap formed between X and some

video sequence in H. Based on the definition of Voronoi gap, if a video sequence Y

has a non-empty Voronoi gap with X, Y must have a vector similar to each vector in

X. In other words, the IVS between X and Y must be one. Let Γ be the set of all

two-vector sequences whose IVS with X is one. The gap volume is thus the volume

52

of the union of the Voronoi gap formed between X and each video in Γ. As shown by

the following proposition, this gap probability can be calculated using the binomial

distribution.

Proposition 3.5.1 Let X = {x1, x2} be a two-vector video sequence in the Hamming

cube H, and Γ be the set of all two-vector sequences whose IVS with X is one. Define

A to be the union of the Voronoi gap formed between X and every video in Γ, i.e.

A
∆
=
⋃

Y ∈Γ

G(X,Y ; ε).

Then, if k = d(x1, x2) is an even number larger than 2ε, the volume of A can be

computed as follows:

Vol(A) = Prob(k/2− ε ≤ R < k/2 + ε)

=
1

2k

k/2+ε−1∑

r=k/2−ε

(
k

r

)
(3.12)

where R is a random variable that follows a binomial distribution with parameters k

and 1/2.

We compute Vol(A) numerically by using the right hand side of Equation (3.12).

The resulting plot of Vol(A) versus the distance k between the vectors in X for

ε = 1, 5, 10 is shown in Figure 3.7. Vol(A) decreases as k increases and as ε decreases,

but it is hardly insignificant even when k is substantially larger than ε. For example, at

k = 500 and ε = 5, Vol(A) ≈ 0.34. It is unclear whether the same phenomenon occurs

for other feature spaces. Nonetheless, rather than assuming that all Voronoi gaps are

53

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance between frames, k

E
rr

or
 P

ro
ba

bi
lit

y,
 V

ol
(A

)

ε = 1
ε = 5
ε = 10

Figure 3.7: The error probability for the hamming cube at different values of ε and
distances k between the vectors in the video.

insignificant, it makes sense to discard seed vectors that are inside the Voronoi gap

when using the ViSig method to estimate video similarity.

3.6 Ranked ViSig method

Consider again the example in Figure 3.6. Assume that we generate m random

seed vectors to compute VSSb. If n out of m seed vectors are inside the unshaded

Voronoi gap, we can reject these n seed vectors and use the remaining (m− n) seed

vectors for the computation. The resulting VSSb exactly matches IVS in this example.

The only caveat in this approach is that we need an efficient algorithm to determine

whether a seed vector is inside the Voronoi gap. Direct application of Definition 3.5.1

54

is not practical, because conditions (2) and (3) in the definition require computing

the distances between each signature vector of one video and all the vectors in the

other video. Not only is the time complexity of comparing two signatures significantly

larger than the time to compute VSSb, it defeats the very purpose of using a compact

signature to represent a video. A more efficient algorithm is needed to check if a seed

vector is inside the Voronoi gap.

The remainder of this section proposes an algorithm that can be applied after

generating the signature to identify those seed vectors which are more likely to be

inside the Voronoi gap. In Figure 3.6, we observe that the two sequences have a pair

of dissimilar vectors that are roughly equidistant from an arbitrary vector s in the

Voronoi gap: x and gX(s) in the “dot” sequence, and y and gY (s) in the “cross”

sequence. They are not similar as both d(x, gX(s)) and d(y, gY (s)) are clearly larger

than ε. Intuitively, since vectors such as s inside the Voronoi gap are close to the

boundaries between Voronoi cells in both sequences, it is not surprising to find dissim-

ilar vectors such as x and gX(s) that are on either side of the boundaries to be roughly

equidistant to s. This “equidistant” condition is refined in the following proposition

to upper-bounding the difference between distance of s and x, and distance of s and

gX(s) by 2ε:

Proposition 3.6.1 Let X and Y be two video sequences. Assume all clusters in

[X ∪ Y]ε are ε-compact. If a seed vector s ∈ G(X,Y ; ε), there exists a vector x ∈ X

such that

55

1. x is not similar to gX(s), i.e. d(x, gX(s)) > ε.

2. x and gX(s) are roughly equidistant to s. Specifically, d(x, s)−d(gX(s), s) ≤ 2ε.

Similarly, we can find a y ∈ Y that share the same properties with gY (s).

The significance of Proposition 3.6.1 is that it provides a test for determining whether

a seed vector s can ever be inside the Voronoi gap between a particular video X and

any other arbitrary sequence. Specifically, if there are no vectors x in X such that x

is dissimilar to gX(s) and d(x, s) is within 2ε from d(s, gX(s)), we can guarantee that

s will never be inside the Voronoi gap formed between X and any other sequence.

The condition that all similar clusters must be ε-compact is to avoid pathological

chain-like clusters as discussed in Section 3.1. Such an assumption is not unrealistic

for real-life video sequences.

To apply Proposition 3.6.1 in practice, we first define a Ranking Function Q(·) for

the signature vector gX(s),

Q(gX(s))
∆
= min

x∈X, d(x,gX(s))>ε
d(x, s)− d(gX(s), s). (3.13)

An example of Q(·) as a function of a 2-D seed vector s is shown as a contour plot in

Figure 3.8. The three crosses represent the vectors of a video. Lighter color regions

correspond to the area with larger a Q(·) values, and thus farther away from the

boundaries between Voronoi cells. By Proposition 3.6.1, if Q(gX(s)) > 2ε, s cannot

be inside the Voronoi gap formed between X and any other sequence. In practice,

however, this condition might be too restrictive in that it might not allow us to

56

0
0

Figure 3.8: Values of ranking function Q(·) for a three-vector video sequence. Lighter
colors correspond to larger values.

find any seed vector. Recall that Proposition 3.6.1 only provides a sufficient but

not a necessary condition for a seed vector to be inside Voronoi gap. Thus, even if

Q(gX(s)) ≤ 2ε, it does not necessarily imply that s will be inside the Voronoi gap

between X and a particular sequence.

Intuitively, in order to minimize the chances of being inside any Voronoi gap, it

makes sense to use a seed vector s with as large Q(gX(s)) as possible. As a result,

rather than using only the signature vectors with Q(gX(s)) > 2ε, we generate a large

number of signature vectors, and use the few with the largest Q(gX(s)) for similarity

measurements. Let m′ > m be the number of vectors in each signature. After we

generate XS by using a set S of m′ seed vectors, we compute and rank Q(gX(s)) for

57

all gX(s)’s in XS. Analogous to VSSb defined in Equation (3.6), we define the Ranked

ViSig Similarity (VSSr) between the top-ranked signature vectors of XS and YS as

follows:

vssr(XS, YS; ε,m)
∆
=

1

m
(

bm/2c∑

i=1

1{d(gX(sj[i]),gY (sj[i]))≤ε} +

bm/2c∑

i=1

1{d(gX(sk[i]),gY (sk[i]))≤ε}) (3.14)

j[1], . . . , j[m′] and k[1], . . . , k[m′]’s denote the rankings of the signature vectors in XS

and YS respectively, i.e. Q(gX(sj[1])) ≥ . . . ≥ Q(gX(sj[m′])) and Q(gY (sk[1])) ≥ . . . ≥

Q(gY (sk[m′])). We call this method of generating signature and computing VSSr the

Ranked ViSig method. Notice that in the right hand side of Equation (3.14), the

first term uses the top-ranked bm/2c signature vectors from XS to compare with the

corresponding signature vectors in YS, and the second term uses the top-ranked bm/2c

vectors from YS. Computing VSSr thus requires m metric operations, the same as

the basic version in Equation (3.6). Alternatively, we can use only the ranking of one

signature, say XS, and compute the asymmetric VSSr as follows:

v̂ssr(XS, YS; ε,m)
∆
=

1

m

m∑

i=1

1{d(gX(sj[i]),gY (sj[i])) (3.15)

As we will explain in Chapter 4, we are interested in this asymmetric form of signature

similarity as it leads to a more efficient implementation of fast similarity search.

Theoretically, the asymmetry in (3.15) may lead to bias in the measurement. For

example, if one video is a sub-sequence of the other, using the ranking of the shorter

video may result in a larger asymmetric VSSr than using that of the longer one. In

58

Section 3.7.3, we show that there is little difference between the two versions of VSSr’s

in terms of the retrieval performance of highly similar video sequences on the web.

3.7 Experimental results

This section presents experimental results to demonstrate the performance of both

the basic and ranked ViSig method. All experiments use color histograms, described

in Section 3.7.1, as feature vectors. Two sets of experimental results are shown in the

remainder of the section. Results of a number of controlled simulations are presented

in Section 3.7.2 to demonstrate the heuristics introduced for seed vector selection

in Section 3.4, and for signature vector ranking in Section 3.6. We also apply the

ViSig methods to a large set of real-life web video sequences, and measure retrieval

performance with respect to the ground-truth set described earlier in Section 2.3.

The experimental methodology and results are presented in Section 3.7.3.

3.7.1 Color histogram feature

In our experiments, we use four 178-bin color histograms on the Hue-Saturation-

Value (HSV) color space to represent each individual feature vector in a video. A

color histogram is one of the most commonly used image features in content-based

retrieval systems. The quantization of the color space used in the histogram is shown

in Figure 3.9. This quantization is similar to the one used in [70]. The saturation

59

Figure 3.9: Quantization of the HSV color space.

(radial) dimension is uniformly quantized into 3.5 bins, with the half bin at the origin.

The hue (angular) dimension is uniformly quantized at 20◦-step size, resulting in 18

sectors. The quantization for the value dimension depends on the saturation value.

For those colors with the saturation values near zero, a finer quantizer of 16 bins

is used to better differentiate between gray-scale colors. For the rest of the color

space, the value dimension is uniformly quantized into three bins. The histogram is

normalized such that the sum of all the bins equals one. In order to incorporate spatial

information into the image feature, the image is partitioned into four quadrants, with

each quadrant having its own color histogram. As a result, the total dimension of a

single feature vector becomes 712.

We use two distance measurements in comparing color histograms: the l1 metric

and a modified version of the l1 distance with dominant color first removed. The

60

l1 metric on color histogram was first used in [71] for image retrieval. It is defined

by the sum of the absolute difference between each bin of the two histograms. We

denote the l1 metric between two feature vectors x and y as dc(x, y), with its precise

definition stated below:

dc(x, y)
∆
=

4∑

i=1

dq
c(xi, yi) where dq

c(xi, yi)
∆
=

178∑

j=1

|xi[j]− yi[j]| (3.16)

where xi and yi for i ∈ {1, 2, 3, 4} represent the quadrant color histograms from the

two feature vectors. A small dc(·, ·) value usually indicates visual similarity, except

when two images share the same background color. In those cases, the metric dc(·, ·)

does not correctly reflect the differences in the foreground as it is overwhelmed by the

dominant background color. Such scenarios are quite common among the videos found

on the web. Examples include those video sequences composed of presentation slides

or graphical plots in scientific experiments. To mitigate this problem, we develop a

new distance measurement which first removes the dominant color, then computes

the l1 metric for the rest of the color bins, and finally re-normalizes the result to the

proper dynamic range. Specifically, this new distance measurement d̂c(x, y) between

two feature vectors x and y can be defined as follows:

d̂c(x, y)
∆
=

4∑

i=1

d̂q
c(xi, yi)

where d̂q
c(xi, yi)

∆
=

2
2−xi[c]−yi[c]

178∑

j=1,j 6=c

|xi[j]− yi[j]| if xi[c] > ρ and yi[c] > ρ

178∑

j=1

|xi[j]− yi[j]| otherwise.

(3.17)

61

In Equation (3.17), the dominant color is defined to be the color c with bin value

exceeding the Dominant Color Threshold ρ. ρ has to be larger than or equal to 0.5

to guarantee a single dominant color. We set ρ = 0.5 in our experiments. When the

two feature vectors share no common dominant color, d̂c(·, ·) reduces to dc(·, ·).

Even though d̂c and dc are closely related to each other, unlike dc, d̂c is not a metric

in the mathematical sense. Specifically, it does not satisfy the triangle inequality. The

use of a metric space is one of the key assumptions behind the ViSig method and the

fast similarity search schemes described in Chapter 4. As such, d̂c is designed in such

a way that it satisfies the following proposition:

Proposition 3.7.1 Suppose that the Dominant Color Threshold ρ is larger than 0.5

in the definition of d̂c(·, ·) in Equation (3.17). The following inequality holds for an

arbitrary pair of color histogram feature vectors x and y:

d̂c(x, y) ≥ dc(x, y) (3.18)

In a similarity search, we are interested in finding the set of similar feature vectors

whose distances with the query are within some ε > 0. Inequality (3.18) implies that

the set of similar feature vectors identified by d̂c must be a proper subset of the set

identified by dc. Thus, we can treat the use of d̂c as a post-processing step to refine

the results of the similarity search obtained via dc. For the rest of the paper, we

adopt this model, and develop the theory of similarity search by assuming the use of

62

a true metric.

3.7.2 Simulation results

In this section, we present experimental results to verify the heuristics proposed

in Sections 3.4 and 3.6. The first experiment demonstrates the effect of seed vectors

on approximating the IVS by the basic ViSig method. We perform the experiment

on a set of 15 video sequences selected from the MPEG-7 video data set [72]3. This

set includes a wide variety of video content including documentaries, cartoons, and

television drama, etc. The average length of the test sequences is 30 minutes. We

randomly drop frames from each sequence to artificially create similar versions at

different levels of IVS. Signatures with respect to two different sets of seed vectors are

created for all the sequences and their similar versions. The first set of seed vectors

are independent random vectors, uniformly distributed on the high-dimensional his-

togram space. To generate such random vectors, we follow the algorithm described in

[73]. The second set of seed vectors are randomly selected from a set of images in the

Corel Stock Photo Collection. These images represent a diverse set of real-life images,

and thus provide a reasonably good approximation to the feature vector distribution

of the test sequences. We randomly choose around 4000 images from the Corel collec-

tion, and generate the required seed vectors using the seed vector generation method,

3The test set includes video sequences from MPEG-7 video CD’s v1, v3, v4, v5, v6, v7, v8, and
v9. We denote each test sequence by the CD they are in, followed by a number such as v8 1 if there
are multiple sequences in the same CD.

63

with εsv set to 2.0, as described in Section 3.4. At IVS levels of 0.8, 0.6, 0.4 and 0.2,

Table 3.1 contains the measured VSSb for each test sequence and its similar version

using m = 100 seed vectors. A good VSSb should be close to the IVS value in the

second row under the same column of the table.

Seed Vectors Uniform Random Corel Images

IVS 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2

v1 1 0.59 0.37 0.49 0.20 0.85 0.50 0.49 0.23
v1 2 0.56 0.38 0.31 0.05 0.82 0.63 0.41 0.18
v3 0.96 0.09 0.06 0.02 0.82 0.52 0.40 0.21
v4 0.82 0.75 0.55 0.24 0.92 0.44 0.48 0.25
v5 1 0.99 0.71 0.28 0.18 0.76 0.66 0.39 0.12
v5 2 0.84 0.35 0.17 0.29 0.81 0.68 0.36 0.10
v5 3 0.97 0.36 0.74 0.07 0.76 0.59 0.51 0.15
v6 1.00 0.00 0.00 0.00 0.79 0.61 0.46 0.25
v7 0.95 0.89 0.95 0.60 0.86 0.60 0.49 0.16
v8 1 0.72 0.70 0.47 0.17 0.88 0.69 0.38 0.20
v8 2 1.00 0.15 0.91 0.01 0.86 0.53 0.35 0.21
v9 1 0.95 0.85 0.54 0.15 0.93 0.56 0.44 0.18
v9 2 0.85 0.70 0.67 0.41 0.86 0.56 0.39 0.17
v9 3 0.90 0.51 0.30 0.10 0.78 0.70 0.45 0.15
v9 4 1.00 0.67 0.00 0.00 0.72 0.45 0.42 0.24

Average 0.873 0.499 0.429 0.166 0.828 0.581 0.428 0.187
Stddev 0.146 0.281 0.306 0.169 0.060 0.083 0.051 0.046

Table 3.1: Comparison between using uniform random and corel image seed vectors.
The second through fifth columns are the results of using uniform random seed vectors
and the rest are the corel image seed vectors. Each row contains the results of a specific
test video at IVS levels 0.8, 0.6, 0.4 and 0.2. The last two rows are the averages and
standard deviations over all the test sequences.

As shown in Table 3.1, VSSb based on Corel images are slightly closer to the under-

lying IVS than those based on random vectors. More importantly, the fluctuations in

the estimates, as indicated by the standard deviations, are far smaller with the Corel

64

images. This experiment shows that we can obtain a more consistent estimation of

IVS by using seed vectors that resemble the target data than using uniformly random

ones.

In the second experiment, we compare the ranked ViSig method with the basic

ViSig method in approximating IVS under the presence of small feature vector dis-

placements. As described in Section 3.5, when two vectors from two video sequences

are separated by a small ε, the basic ViSig method may underestimate IVS due to

the Voronoi gap region. To combat such a problem, we propose the ranked ViSig

method in Section 3.5. In this experiment, we create similar video by adding noise to

individual frames. Most of the real-life noise processes such as compression are highly

video dependent, and cannot provide a wide-range of controlled noise levels for our

experiment. As such, we introduce artificial noise that directly corresponds to the

different noise levels as measured by our color histogram metric. As shown in [71],

the dq
c(·, ·) metric defined in Equation (3.16), is equal to twice the percentage of the

pixels between two images that are of different colors. For example, if the l1 metric

between two histograms is 0.4, it implies that 20% of the pixels in the corresponding

images have different colors. Thus, to inject a particular ε noise level to a feature

vector, we determine the fraction of the pixels that need to have different colors and

randomly assign colors to them. The color assignment is performed in such a way

that ε noise level is achieved exactly.

Five ε levels are tested in our experiments: 0.2, 0.4, 0.8, 1.2 and 1.6. As every

65

feature vector contains four color histograms, an ε of 1.6, results in an average noise

level of 0.4 for each histogram. No frames are dropped, so the IVS between the

original sequence and the similar version is always one. A basic signature with m =

100 and a ranked signature with m′ = 500 are generated for each pair of video

sequences. All seed vectors are randomly sampled from the Corel dataset. To ensure

the same computational complexity between the two methods, the top m/2 = 50

ranked signature vectors are used in computing VSSr. The results are shown in Table

3.2. The averages and standard deviations over the entire set are shown in the last

Algorithm VSSb VSSr

ε 0.2 0.4 0.8 1.2 1.6 0.2 0.4 0.8 1.2 1.6

v1 1 0.89 0.76 0.62 0.54 0.36 1.00 1.00 0.90 0.87 0.74
v1 2 0.81 0.73 0.55 0.47 0.34 1.00 0.98 0.83 0.73 0.62
v3 0.90 0.76 0.70 0.42 0.36 1.00 1.00 0.96 0.87 0.72
v4 0.86 0.74 0.64 0.48 0.38 1.00 1.00 0.96 0.83 0.74
v5 1 0.90 0.77 0.64 0.45 0.41 1.00 1.00 0.98 0.79 0.86
v5 2 0.96 0.81 0.52 0.66 0.56 1.00 1.00 1.00 0.86 0.78
v5 3 0.88 0.83 0.59 0.42 0.39 1.00 1.00 0.90 0.83 0.74
v6 0.88 0.72 0.64 0.49 0.49 1.00 1.00 0.98 0.92 0.78
v7 0.89 0.84 0.68 0.46 0.43 1.00 1.00 1.00 0.91 0.78
v8 1 0.85 0.67 0.58 0.52 0.30 1.00 1.00 0.87 0.79 0.73
v8 2 0.90 0.80 0.72 0.59 0.56 1.00 1.00 0.99 0.95 0.86
v9 1 0.87 0.77 0.62 0.67 0.48 1.00 0.99 0.89 0.84 0.82
v9 2 0.82 0.70 0.55 0.50 0.37 1.00 1.00 0.90 0.78 0.59
v9 3 0.86 0.65 0.66 0.49 0.40 1.00 1.00 0.91 0.70 0.58
v9 4 0.92 0.86 0.71 0.61 0.53 1.00 1.00 0.93 0.89 0.82

Average 0.879 0.761 0.628 0.518 0.424 1.000 0.998 0.933 0.837 0.744
Stddev 0.038 0.061 0.061 0.080 0.082 0.000 0.006 0.052 0.070 0.088

Table 3.2: Comparison between VSSb and VSSr under different levels of perturbation.
The table follows the same format as in Table 3.1. The perturbation levels ε tested
are 0.2, 0.4, 0.8, 1.2 and 1.6.

66

two rows. Because the IVS is fixed at one, the approximation is better if the measured

similarity is closer to one. The amount of error increases for both methods as the noise

level increases. Nevertheless, the VSSr measurements are significantly closer to one

than VSSb. For high levels of IVS and small levels of perturbation, this experiment

demonstrates that the ranked ViSig method provides much better estimation of IVS

than the basic version.

3.7.3 Ground-truth results

Besides the simulation results presented in the previous section, we also measure

the performance of the ViSig method based on how well it can identify the ground-

truth set of similar video clips described earlier in Section 2.3. When using the

ViSig method to identify similar video sequences, we declare two sequences to be

similar if their VSSb or VSSr is larger than a certain threshold λ ∈ [0, 1]. In the

experiments, we fix λ at 0.5 and report the retrieval results for different numbers of

signature vectors, m, and the frame similarity threshold, ε. Our choice of fixing λ

at 0.5 is based on the following reasoning: as the dataset is composed of extremely

heterogeneous contents, it is rare to find partially similar video sequences. We notice

that most video sequences in our dataset are either very similar to each other, or not

similar at all. If ε is appropriately chosen to match subjective similarity, and m is

large enough to keep sampling error small, we would expect the VSS for an arbitrary

pair of signatures to be close to either one or zero, corresponding to either similar or

67

dissimilar video sequences in the dataset. We thus fix λ at 0.5 to balance the possible

false-positive and false-negative errors, and vary ε to trace the whole spectrum of

retrieval performance.

To accommodate such a testing strategy, we make a minor modification in the

ranked ViSig method: recall that we use the ranking function Q(·) as defined in

Equation (3.13) to rank all vectors in a signature. Since Q(·) depends on ε and its

computation requires the entire video sequence, it is cumbersome to recompute it

whenever a different ε is used. ε is used in the Q(·) function to identify the clustering

structure within a single video. Since most video sequences are compactly clustered,

we notice that their Q(·) values remain roughly constant for a large range of ε. As a

result, we a priori fix ε to be 2.0 to compute Q(·), and do not recompute them even

when we modify ε to obtain different retrieval results.

The performance measurements used in our experiments are recall and precision

as defined below. Let Λ be the web video dataset and Φ be the ground-truth set.

For a video X ∈ Φ, we define the Relevant Set to X, rel(X), to be the ground-truth

cluster that contains X, minus X itself. We also define the Return Set to X, ret(X, ε),

as the set of video sequences in the database which are declared to be similar to X by

the ViSig method, i.e. ret(X, ε)
∆
= {Y ∈ Λ : vss(XS, YS; ε) ≥ 0.5} \ {X}. vss(·, ·) can

be either VSSb or VSSr. By comparing the return and relevant sets of all the video

68

sequences in the ground-truth set, we define Recall and Precision as follows:

Recall(ε)
∆
=

∑
X∈Φ |rel(X) ∩ ret(X, ε)|∑

X∈Φ |rel(X)|

Precision(ε)
∆
=

∑
X∈Φ |rel(X) ∩ ret(X, ε)|∑

X∈Φ |ret(X, ε)| . (3.19)

Thus, recall computes the fraction of all ground-truth video sequences that can be

retrieved by the algorithm. Precision measures the fraction retrieved by the algorithm

that are relevant. By varying ε, we can measure the retrieval performance of the ViSig

methods for a wide range of recall values.

The goal of the first experiment is to compare the retrieval performance between

the basic and the ranked ViSig methods at different signature sizes. d̂c distance,

defined in (3.17), is used in this experiment. Seed vectors are randomly selected

by the seed vector generation method, with εsv set to 2.0, from a set of keyframes

representing the video sequences in the dataset. These keyframes are extracted by the

AltaVista search engine and captured during data collection process. Each video is

represented by a single keyframe. For the ranked ViSig method, m′ = 100 keyframes

are randomly selected from the keyframe set to produce the seed vector set which is

used for all signature sizes, m. For each signature size in the basic ViSig method, we

average the results of four independent sets of randomly selected keyframes in order

to smooth out the statistical variation due to the limited signature sizes. The plots in

Figure 3.10 show the precision versus recall curves for four different signature sizes: m

= 2, 6, 10, and 14. The ranked ViSig method outperforms the basic ViSig method in

all four cases. Figure 3.11 shows the ranked method’s results across different signature

69

0.6 0.8 1
0

0.5

1
Signature Size m=2

0.6 0.8 1
0

0.5

1
Signature Size m=6

0.6 0.8 1
0

0.5

1

Recall

P
re

ci
si

on

Signature Size m=10

Basic
Rank

0.6 0.8 1
0

0.5

1
Signature Size m=14

Figure 3.10: Comparisons between the basic (broken-line) and ranked (solid) ViSig
methods for four different signature sizes: m = 2, 6, 10, 14.

sizes. As shown in the figure, there is a substantial gain in performance when m is

increased from two to six. Further increase in m does not produce much gain. The

precision-recall curves all decline sharply once they reach beyond 75% for recall and

90% for precision. Thus, we conclude that m = 6 is adequate for the ranked ViSig

method to retrieve the ground-truth from the dataset.

In the second experiment, we test the difference between using the d̂c distance

and the dc metric on the color histogram. As described in Section 3.7.1, dc metric

represents a l1 metric between the two color histograms, while d̂c distance removes the

70

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Rank, m=2
Rank, m=6
Rank, m=10
Rank, m=14

Figure 3.11: Precision and recall performance for ranked ViSig method at m =
2, 6, 10, 14.

shared dominant color before computing a l1 metric. The same ranked ViSig method

with m = 6 is used. Figure 3.12 shows that d̂c distance significantly outperforms the

straightforward dc metric.

In the third experiment, we compare the retrieval performance between k-medoid

and the ranked ViSig method. As described in Chapter 2, k-medoid is a summa-

rization technique that minimizes the distance between the original video and its

summarization. Specifically, given a l-vector video X = {xt : t = 1, . . . , l}, the k-

medoid of X is defined to be a set of k vectors xt1 , . . . , xtk in X that minimize the

71

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

d
c

d

c

Figure 3.12: Comparison between dc metric (broken) and d̂c distance (solid).

following cost function:
l∑

t=1

min
j=1,...,k

d(xt, xtj) (3.20)

Due to the large number of possible choices in selecting k vectors from a set, it is

computationally impractical to precisely solve this minimization problem. In our

experiment, we use the PAM algorithm proposed in [28] to compute a k-medoid with

k = 7 for each video clip in our dataset. The PAM algorithm is iterative, and the

time complexity for each iteration is on the order of l2. Given ε > 0, we declare two

k-medoids to be similar if the shortest distance between vectors of the two k-medoids

72

is within ε. We plot the precision-recall curves for k-medoid and the ranked ViSig

method with m = 6 in Figure 3.13. The k-medoid technique provides a slightly better

retrieval performance. The advantage seems to be small considering the complexity

advantage of the ViSig method over the PAM algorithm – First, computing VSSr

needs six metric computations but comparing two 7-medoid representations requires

49. Second, the ViSig method generates signatures in O(l) time with l being the

number of vectors in a video, while the PAM algorithm is an iterative O(l2) algorithm.

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Medoid, m=7
Rank, m=6

Figure 3.13: Comparison between the Ranked ViSig method with m = 6 (solid) and
k-medoid with 7 representative vectors (broken).

73

Finally, we compare the retrieval performance between the symmetric VSSr de-

scribed in Equation (3.14), and the asymmetric VSSr in Equation (3.15). We set

m′ = 100 and m = 6 for both similarity measures so that their computational

complexities are identical. Figure 3.14 shows the precision-recall curves for the two

schemes. Though not identical, the two measures give very similar retrieval per-

formance in identifying the ground-truth set. On the other hand, the asymmetric

version, as we will explain in Chapter 4, leads to a more efficient implementation of

fast similarity search. Consequently, we focus primarily on this asymmetric similarity

measurement between signatures for the remainder of this dissertation.

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Asymmetric (m=6)
Symmetric (m=6)

Figure 3.14: Comparison between the symmetric and asymmetric VSSr with m = 6.

74

3.8 Summary

In this chapter, we have defined IVS as a video similarity measure for identifying

similar web video sequences. Since IVS is complex to compute in practice, we have

introduced an alternative measure called VVS, which can be efficiently estimated by

the basic ViSig method. The basic ViSig method summarizes each video sequence

into a small set of its frames, called a signature, that are closest to a set of random

seed vectors. In applying the basic ViSig method to a large database, we have shown

that the size of a signature depends on the desired fidelity of the measurements and

the logarithm of the database size.

In practice, IVS and VVS can be quite different depending on individual video

sequences. In order to reconcile the differences, we have extended the basic ViSig

method in two directions. First, we have shown that the seed vectors used to generate

signatures must resemble the statistics of the video sequences in the database. Second,

we have proposed a ranking scheme to identify signature vectors that are most robust

for similarity measurement. This new method of comparing signatures is called the

ranked ViSig method. We have presented simulation results on a set of MPEG-7

test sequences to show the performances of these extensions. Lastly, we have also

compared the retrieval performance of the two ViSig methods with the k-medoid

scheme based on a groundtruth set from a large set of web video sequences.

75

3.A Appendix: Proofs of propositions

Proof of Proposition 3.1.1

Without loss of generality, let X = {x1, x2, . . . , xl} and Y = {y1, y2, . . . , yl} with

d(xi, yi) ≤ ε for i = 1, . . . , l. Let Zi be a binary random variable such that Zi = 1 if

both xi and yi are chosen as sampled frames, and 0 otherwise. Since Wm is the total

number of similar pairs between the two set of sampled frames, it can be computed

by summing all the Zi’s:

Wm =
l∑

i=1

Zi

E(Wm) =
l∑

i=1

E(Zi) =
l∑

i=1

Prob(Zi = 1)

Since we independently sample m frames from each sequence, the probability that

Zi = 1 for any i is (m/l)2. This implies that E(Wm) = m2/l. 2

Proof of Proposition 3.3.1

To simplify the notation, let ρ(X,Y) = vvs(X,Y ; ε) and ρ̂(X,Y) = vssb(XS, YS; ε,m).

For an arbitrary pair ofX and Y , we can bound the probability of the event |ρ(X,Y)−

ρ̂(X,Y)| > γ by the Hoeffding Inequality [74]:

Prob(|ρ(X,Y)− ρ̂(X,Y)| > γ) ≤ 2 exp(−2γ2m) (3.A)

To find an upper bound for Perr(m), we can combine (3.A) and the union bound as

76

follows:

Perr(m) = Prob
(⋃

X,Y ∈Λ

|ρ(X,Y)− ρ̂(X,Y)| > γ
)

≤
∑

X,Y ∈Λ

Prob(|ρ(X,Y)− ρ̂(X,Y)| > γ)

≤ n2

2
· 2 exp(−2γ2m)

A sufficient condition for Perr(m) ≤ δ is thus

n2

2
· 2 exp(−2γ2m) ≤ δ

m ≥ 2 lnn− ln δ

2γ2
2

Proof of Proposition 3.4.1

For each term inside the summation on the right hand side of Equation (3.11),

d(x, y) must be smaller than or equal to ε. If d(x, y) ≤ ε, our assumption implies that

both x and y must be in the same cluster C belonging to both [X]ε and [Y]ε. As a

result, we can rewrite the right hand side of Equation (3.11) based only on clusters

in [X]ε ∩ [Y]ε:

∑

d(x,y)≤ε

∫

VX(x)∩VY (y)

f(u;X ∪Y) du. =
∑

C∈[X]ε∩[Y]ε

∑

z∈C

∫

VX(z)∩VY (z)

f(u;X ∪Y) du (3.B)

Based on the definition of a voronoi cell, it is easy to see that VX(z)∩VY (z) = VX∪Y (z)

for all z ∈ C with C ∈ [X]ε∩ [Y]ε. Substituting this relationship into Equation (3.B),

77

we obtain:

∑

d(x,y)≤ε

∫

VX(x)∩VY (y)

f(u;X ∪ Y) du =
∑

C∈[X]ε∩[Y]ε

∫

VX∪Y (C)

f(u;X ∪ Y) du

=
∑

C∈[X]ε∩[Y]ε

∫

VX∪Y (C)

1

|[X ∪ Y]ε| · Vol(VX∪Y (C))
du

=
1

|[X ∪ Y]ε|
∑

C∈[X]ε∩[Y]ε

∫
VX∪Y (C)

du

Vol(VX∪Y (C))

= |[X]ε ∩ [Y]ε|/|[X ∪ Y]ε|

Finally, we note that [X]ε ∩ [Y]ε is in fact the set of all Similar Clusters in [X ∪ Y]ε,

and thus the last expression equals to the IVS. The reason is that for any Similar

Cluster C in [X ∪ Y]ε, C must have at least one x ∈ X and one y ∈ Y such that

d(x, y) ≤ ε. By our assumption, C must be in both [X]ε and [Y]ε. 2

Proof of Proposition 3.5.1

Without loss of generality, we assume that x1 is at the origin with all zeros, and

x2 has k 1’s in the rightmost positions. Clearly, d(x1, x2) = k. Throughout this

proof, when we mention a particular sequence Y ∈ Γ, we adopt the convention that

Y = {y1, y2} with d(x1, y1) ≤ ε and d(x2, y2) ≤ ε.

We first divide the region A into two partitions based on the proximity to the

frames in X:

A1
∆
= {s ∈ A : gX(s) = x1} and A2

∆
= {s ∈ A : gX(s) = x2}

We adopt the convention that if there are multiple frames in a video Z that are

78

equidistant to a random vector s, gZ(s) is defined to be the frame furthest away from

the origin. This implies that all vectors equidistant to both frames in X are elements

of A2. Let s be an arbitrary vector in H, and R be the random variable that denotes

the number of 1’s in the rightmost k bit positions of s. The probability that R equals

to a particular r with r ≤ k is as follows:

Prob(R = r) =
1

2k

(
k

r

)

Thus, R follows a binomial distribution of parameters k and 1/2. In this proof, we

show the following relationship between A2 and R:

Vol(A2) = Prob(k/2 ≤ R < k/2 + ε) (3.C)

With an almost identical argument, we can show the following:

Vol(A1) = Prob(k/2− ε ≤ R < k/2) (3.D)

Since Vol(A) = Vol(A1) + Vol(A2), the desired result follows.

To prove Equation (3.C), we first show if k/2 ≤ R < k/2+ ε, then s ∈ A2. Be the

definitions of A and A2, we need to show two things: (1) gX(s) = x2; (2) there exists a

Y ∈ Γ such that s ∈ G(X,Y ; ε), or equivalently, gY (s) = y1. To show (1), we rewrite

R = k/2 + N where 0 ≤ N < ε and let the number of 1’s in s be L. Consider the

distances between s and x1, and between s and x2. Since x1 is all zeros, d(s, x1) = L.

As x2 has all its 1’s in the rightmost k position, d(s, x2) = (L − R) + (k − R) =

79

L+ k − 2R. Thus,

d(s, x1)− d(s, x2) = L− (L+ k − 2R)

= 2R− k

= 2N ≥ 0,

which implies that gX(s) = x2. To show (2), we define y1 to be a h-bit binary number

with all zeros, except for ε 1’s in the positions which are randomly chosen from the

R 1’s in the rightmost k bits of s. We can do that because R ≥ k/2 ≥ ε. Clearly,

d(x1, y1) = ε and d(s, y1) = L − ε. Next, we define y2 by toggling ε out of k 1’s in

x2. The positions we toggle are randomly chosen from the same R 1’s bits in s. As

a result, d(x2, y2) = ε and d(s, y2) = (L − R) + (k − R + ε) = L + ε − 2N . Clearly,

Y
∆
= {y1, y2} belongs to Γ. Since

d(s, y2)− d(s, y1) = (L+ ε− 2N)− (L− ε)

= 2(ε−N) > 0,

gY (s) = y1 and consequently, s ∈ G(X,Y ; ε).

Now we show the other direction: if s ∈ A2, then k/2 ≤ R < k/2 + ε. Since

s ∈ A2, we have gX(s) = x2 which implies that L = d(s, x1) ≥ d(s, x2) = L+k−2R or

k/2 ≤ R. Also, there exists a Y ∈ Γ with s ∈ G(X,Y ; ε). This implies gY (s) = y1, or

equivalently, d(s, y1) < d(s, y2). This inequality is strict as equality will force gY (s) =

y2 by the convention we adopt for gY (·). The terms on both sides of the inequality

can be bounded using the triangle inequality: d(s, y1) ≥ d(s, x1) − d(x1, y1) = L − ε

80

and d(s, y2) ≤ d(s, x2)+d(x2, y2) = L+k−2R+ ε. Combining both bounds, we have

L− ε < L+ k − 2R + ε⇒ R < k/2 + ε

This completes the proof for Equation (3.C). The proof of Equation (3.D) follows the

same argument with the roles of x1 and x2 reversed. Combining the two equations,

we obtain the desired result. 2

Proof of Proposition 3.6.1

We prove the case for video X and the proof is identical for Y . Since s ∈

G(X,Y ; ε), we have d(gX(s), gY (s)) > ε and there exists x ∈ X with d(x, gY (s)) ≤ ε.

Since all Similar Clusters in [X ∪ Y]ε are ε-compact, gX(s) cannot be in the same

cluster with x and gY (s). Thus, we have d(gX(s), x) > ε. It remains to show that

d(x, s)− d(gX(s), s) ≤ 2ε. Using the triangle inequality, we have

d(x, s)− d(gX(s), s) ≤ d(x, gY (s)) + d(gY (s), s)− d(gX(s), s)

≤ ε+ d(gY (s), s)− d(gX(s), s) (3.E)

s ∈ G(X,Y ; ε) also implies that there exists y ∈ Y such that d(y, gX(s)) ≤ ε. By the

definition of gY (s), d(gY (s), s) ≤ d(y, s). Thus, we can replace gY (s) with y in (3.E)

and combine with the triangle inequality to obtain:

d(x, s)− d(gX(s), s) ≤ ε+ d(y, s)− d(gX(s), s)

≤ ε+ d(y, gX(s))

≤ 2ε. 2

81

Proof of Proposition 3.7.1

We want to show that the following relationship holds for any two color histogram

feature vectors x and y,

dc(x, y) ≤ d̂c(x, y)

It suffices to show that dq
c(xi, yi) ≤ d̂q

c(xi, yi) for i = 1, 2, 3, 4. These two quantities

are identical when there is no common dominant color. When there is a dominant

color at bin c, we have xi[c], yi[c] ≥ ρ ≥ 0.5. Without loss of generality, we assume

that yi[c] ≥ xi[c].

dq
c(xi, yi) =

∑

j

|xi[j]− yi[j]|

= (1− xi[c])− (1− yi[c]) +
∑

j 6=c

|xi[j]− yi[j]|

=
∑

j 6=c

xi[j]−
∑

j 6=c

yi[j] +
∑

j 6=c

|xi[j]− yi[j]|

≤ 2 ·
∑

j 6=c

|xi[j]− yi[j]|

As ρ > 0.5, the normalization factor 2/(2−xi[c]− yi[c]) ≥ 2/(2−0.5−0.5) = 2. This

implies

dq
c(xi, yi) ≤

2

2− xi[c]− yi[c]

∑

j 6=c

|xi[j]− yi[j]| = d̂q
c(xi, yi),

and the result follows. 2

82

Chapter 4

Fast similarity search on signatures

In this chapter, we consider the problem of developing fast similarity search al-

gorithms for feature vectors in a metric space. We focus exclusively on metric-space

data for two reasons: First, it is a very general similarity model, and many algorithms

have been developed in the literature to address the metric-space similarity problem.

Second, based on a simple procedure, it is straightforward to apply any metric-space

algorithms to solve the similarity search problem for signature data. Given a query

signature XS, the goal of the similarity search is to identify all signatures in a large

database whose signature similarities with XS exceed a certain positive threshold

λ. In the context of similarity search, we use the asymmetric VSSr, as defined in

Equation (3.15), to measure similarity between signatures. As shown in Section 3.7,

asymmetric VSSr produces similar retrieval performance as the symmetric version,

and significantly outperforms the basic ViSig similarity. We opt for this asymmet-

83

ric definition because, by using the following procedure, it can reduce the signature

similarity search problem into a metric-space similarity search problem:

Procedure 4.0.1 Signature Similarity Search

1. Let XS = (gX(s1), . . . , gX(sm′)) be the query signature, and j[1], . . . , j[m′] be the

corresponding ranking.

2. For each of the m top-ranked signature vectors gX(sj[i]), identify those signa-

ture vectors gY (sj[i]) in the database with d(gX(sj[i]), gY (sj[i])) ≤ ε. This is a

similarity search problem in the metric space (F, d(·)).

3. Return all the signatures YS in the database which have at least bλ ·mc of their

signature vectors identified in the second step. This is equivalent to finding all

the YS in the database with v̂ssr(XS, YS; ε,m) ≥ λ.

In step two of the above procedure, by using only the ranking of XS, we turn the

signature similarity search problem into m similarity search problems in the metric

space (F, d(·)). This step is computationally intensive due to the large size of the

database and the complexity of high-dimensional metric computation. The result of

this step is a set of signatures from the database which share at least one similar

signature vector with the query. Step three of Procedure 4.0.1 then searches this set

for all those with more than λ·m similar signature vectors. This step is straightforward

as there are no metric computations involved, and the set of signatures that survives

84

the second step is typically small. As a result, this chapter will focus on efficient

algorithms to implement the second step of the procedure, which is similarity search

on metric data. Unless specified otherwise, we follow the convention in Section 3.7.3

by assuming λ to be 0.5 and parameterizing our algorithms based only on ε.

This chapter is organized as follows. We first introduce a general framework called

GEMINI in Section 4.1, on which we base our design of similarity search algorithms.

We also describe how to measure the performance of specific fast search algorithms.

The main step in GEMINI, called the feature extraction step, is to design a map-

ping from the metric space of feature vectors to a very low-dimensional space where

similarity search can be carried out efficiently. We propose a novel feature extraction

mapping for signature data in Sections 4.2 and 4.3. This mapping consists of two

steps. First, each high-dimensional signature vector is mapped into a particular form

of low-dimensional vector, which we refer to as a projection vector. The projection-

vector mapping is described in detail in Section 4.2. Second, classical principal com-

ponent analysis (PCA) is applied to the projection vector to further transform it into

an index vector of even lower dimension, as specified by the user. Section 4.3 presents

experimental results to compare our scheme with other techniques proposed in the

literature.

85

4.1 The GEMINI approach for similarity search

Generic Multimedia Indexing, or GEMINI, is an approach for fast similarity search

on data endowed with a metric function. Our description of GEMINI here is based

on [9, ch.7]. Given a query vector x and a database D of feature vectors, we define

the resulting set A(x; ε) of the similarity search on x as follows:

A(x; ε)
∆
= {y ∈ D : d(x, y) ≤ ε}. (4.1)

Obviously, we can compute A(x; ε) by a sequential search on the database to identify

those vectors that are within ε of x. The GEMINI approach, as outlined below,

attempts to avoid the complexity of a sequential search by projecting the vectors into

a low-dimensional metric space where similarity search can be performed efficiently:

Procedure 4.1.1 GEMINI

1. Design a feature extraction mapping T which maps feature vectors from the

metric space (F, d(·)) to a very low dimensional metric space (F ′, d′(·)). We

call the vectors in F ′ the Range Vectors and d′(·) the Range Metric.

2. For every feature vector y in a database D, compute the corresponding range

vector T (y) and store it in a SAM structure.

3. Given an input query feature vector x, first compute T (x), and then utilize the

SAM structure computed in step 2 to perform a similarity search on T (x). The

distance threshold used in this similarity search, which we refer to as Pruning

86

Threshold and denote by ε′, depends on both ε and T . We will show how ε′

is determined experimentally in Section 4.3. The set of feature vectors that

correspond to the result of this similarity search is called the Candidate Set:

C(x; ε′)
∆
= {y ∈ D : d′(T (x), T (y)) ≤ ε′} (4.2)

4. It is possible that some feature vectors in C(x; ε′) are far away from x. To com-

plete the search, we sequentially compute the full metric function d(·) between

x and each of the vectors in C(x; ε′), and identify those that are truly within ε

of x. We denote this resulting set as A′(x; ε, ε′):

A′(x; ε, ε′)
∆
= {y ∈ C(x; ε′) : d(x, y) ≤ ε}. (4.3)

We can easily extend the GEMINI approach to handle similarity search on signatures

by using Procedure 4.0.1 discussed in the beginning of this chapter. In the signature

case, we denote the candidate set, the resulting set from sequential search, and the

GEMINI resulting set as CS(XS; ε
′), AS(XS; ε), and A′S(XS; ε, ε

′) respectively.

GEMINI solves the similarity search problem exactly if A′S(XS; ε, ε
′) is identical

to AS(XS; ε). GEMINI is more efficient than sequential search if the following two

conditions hold:

1. The dimension of the range space is small. The dimension directly affects the

speed of similarity search on range vectors in the following two aspects: first, a

low-dimensional metric is typically faster to compute than the high-dimensional

87

one; and second, as shown in [31], we can expect a typical SAM structure to

deliver faster-than-sequential search time if the dimension is below ten.

2. A typical candidate set is small enough so that few full metric computations

are required in the last step of GEMINI.

In this dissertation, we assume the first condition holds, and do not delve into details

of the design and implementation of any particular SAM structure, as it has been

extensively studied elsewhere [29, 9, 30]. Instead, we focus on the design of a feature

extraction mapping T to achieve the second condition, specifically, making the can-

didate set as small as possible. Based on the definition in Equation (4.2), a candidate

set can be made arbitrarily small by decreasing the pruning threshold ε′. Nonetheless,

ε′ cannot be too small, otherwise most or all of the correct retrievals in AS(XS; ε) may

be excluded. As a result, there is a trade-off between the complexity, as measured

by the size of the candidate set, and the accuracy, as measured by the fraction of

the correct retrievals retained. Specifically, we define two quantities, Accuracy and

Pruning, to quantify this trade-off, and use them to evaluate the performances of

different feature extraction mappings.

Let R be a typical set of query signatures. Accuracy is defined as the ratio between

the sizes of the resulting sets obtained by GEMINI and by sequential search:

Accuracy(ε, ε′)
∆
=

∑
XS∈R

|A′S(XS; ε, ε
′)|∑

XS∈R
|AS(XS; ε)|

, (4.4)

88

where |A| denotes the cardinality of set A. The dynamic range of Accuracy is from

zero to one, with one corresponding to the perfect retrieval. The complexity is mea-

sured by Pruning, which is defined as the relative difference in the numbers of metric

computations between GEMINI and sequential search:

Pruning(ε′)
∆
=
|R| · |D| −∑XS∈R

|CS(XS; ε
′)|

|R| · |D| (4.5)

The dynamic range of Pruning is also between zero and one, with one corresponding

to the maximum reduction in complexity. We can explain the numerator and de-

nominator in Equation (4.5) as follows: the number of metric computations required

by the sequential search is the product of the number of queries and the size of the

database, i.e. |R| · |D|. For GEMINI, we only count the number of metric compu-

tations performed on the candidate sets described in step 4 of Procedure 4.1.1, i.e.

∑
XS∈R

|CS(XS; ε
′)|. We ignore the computational time of step 3, i.e. the similarity

search on the range vectors, as we assume that it is independent of the choice of ε′.

This assumption is certainly valid for sequential search on range vectors – no matter

what value for ε′ is chosen, the sequential search must compute the range metric

between the query range vector and all range vectors in the database. On the other

hand, the assumption might not necessarily hold for a particular SAM design. The

interaction between SAM and our proposed feature extraction mapping is a topic that

requires further study.

All experiments reported in this paper are based on the dataset of signatures

generated from the 46,331 web video clips described in Section 2.2. We refer to this

89

test dataset as SIGDB. Based on our prior experimental results in Section 3.7.3, we use

m′ = 100 seed vectors for each signature and the top m = 6 ranked signature vectors

for computing the signature similarity. The seed vectors are based on keyframes

sampled from the video sequences in the database. εC used in computing the ranking

function Q(·) in Equation (3.13) is set to be 2.0.

4.2 Projection-vector mapping

Let S be the set of seed vectors given by {s1, s2, . . . , sm}. Let xs and ys be the

signature vectors in signatures XS and YS that correspond to the same seed vector

s ∈ S. Consider the following m-dimensional vector,

T (xs)
∆
= (d(xs, s1), d(xs, s2), . . . , d(xs, sm)), (4.6)

as a feature extraction mapping of xs. We are interested in this particular formulation

because of the following two reasons. First, this mapping makes use of quantities that

have already been computed, and thus require no additional complex metric compu-

tations – the quantities d(xs, si) for i = 1, . . . ,m are used to identify which feature

vectors in X become signature vectors. Second, the distance d(xs, ys) between any

two signature vectors xs and ys can be related to the coordinates of the corresponding

range vectors T (xs) and T (ys) by the triangle inequalities:

|d(xs, si)− d(ys, si)| ≤ d(xs, ys) ≤ d(xs, si) + d(ys, si), i = 1, 2, . . . ,m (4.7)

90

The above inequalities are instrumental in designing the feature extraction mapping.

Our goal is to make use of these inequalities to design a range metric function d′(·)

such that small d(xs, ys) values correspond to “small” d′(T (xs), T (ys)) values and

vice versa.

The mapping T (·) and its variations have been previously proposed in the litera-

ture for feature extraction [36, 37, 38, 39]. These techniques typically use a lp-metric

as the range metric between T (xs) and T (ys). The most commonly-used lp-metric

functions include l1, l2 and l∞, and are defined as follows:

l1(T (xs), T (ys)) ∆
=

1

m
·

m∑

i=1

|d(xs, si)− d(ys, si)|

l2(T (xs), T (ys)) ∆
=

(
1

m
·

m∑

i=1

[d(xs, si)− d(ys, si)]
2

)1/2
(4.8)

l∞(T (xs), T (ys)) ∆
= max

i=1,2,...,m
|d(xs, si)− d(ys, si)|

We use a normalization factor of 1/m in the definitions of l1 and l2 so they are of the

same order of magnitude as the l∞-metric. All three metric functions defined in (4.8)

are composed of some variation of the absolute differences between the coordinates

of T (xs) and T (ys), i.e. |d(xs, si) − d(ys, si)|, for i = 1, 2, . . . ,m. These absolute

differences, however, appear only in the lower-bound half of the triangle inequalities

in (4.7).

The lower bound is preferred in the literature because perfect Accuracy can be

guaranteed by simply setting the pruning threshold ε’ to be the same as the similarity

threshold ε. This is the so-called the Contractive Property of lower bounds, which

91

can be explained by the following inequalities:

l1(T (xs), T (ys)) ≤ l2(T (xs), T (ys)) ≤ l∞(T (xs), T (ys)) ≤ d(xs, ys) (4.9)

The inequality l∞(T (xs), T (ys)) ≤ d(xs, ys) can be shown by taking the maximum

over all the lower bounds of the triangle inequalities in (4.7). The proofs of the other

inequalities in (4.9) can be found in [33]. If we choose any of the l1, l2, or l∞ as the

range metric d′(·) and set ε′ = ε, d(xs, ys) ≤ ε will imply d′(T (xs), T (ys)) ≤ ε′ for any

pair of signature vectors xs and ys. This further implies the candidate set C(xs; ε
′),

defined in Equation (4.2), must contain the true resulting set A(xs; ε), described in

Equation (4.1). As a result, GEMINI can produce perfect Accuracy by an exhaustive

search on C(xs; ε
′).

Nevertheless, for similarity search on the web, fast search time is typically more

desirable than perfect Accuracy. By using a simple experiment, we can demonstrate

that a better em Pruning-Accuracy tradeoff is achievable by combining both the

upper and lower bounds of the triangle inequalities. Our experiment is based on a

small random set of signature vectors sampled from the SIGDB that was introduced

in Section 4.1. 100,000 pairs of signature vectors, all corresponding to the same,

arbitrarily-chosen seed vector, are randomly sampled from the SIGDB. For each pair

of signature vectors xs and ys, we compute d(xs, ys) using the color histogram distance

dc(·) in Equation (3.16), illustrated in Figure 4.1 as a function of one lower and one

upper bound, defined as follows. For the lower bound, we take the maximum over

all the individual lower bounds in (4.7), which is identical to l∞(T (xs), T (ys)). For

92

the upper bound, we use a similar approach and take the minimum of the individual

upper bounds in (4.7) to form an α(·) function:

α(T (xs), T (ys)) ∆= min
i=1,2,...,m

[d(xs, si) + d(ys, si)] (4.10)

Different colored points in Figure 4.1 correspond to different ranges of values for

d(xs, ys). All the points in the plot are confined within a triangular area. The left edge

Figure 4.1: Distribution of the metric d(x, y) for 100,000 random pairs of
signature vectors in the coordinates of maxi=1,2,...,100 |d(x, si) − d(y, si)| and
mini=1,2,...,100[d(x, si) + d(y, si)]. Different colors correspond to metric values at dif-
ferent ranges.

of the triangle is due to the fact that l∞(T (xs), T (ys)) is always smaller than or equal

93

to α(T (xs), T (ys)). The right boundary with tightly packed red points implies the

inequality α(T (xs), T (ys))+ l∞(T (xs), T (ys)) ≤ 16. This inequality can be explained

as follows: let sj be the seed vector that achieves the maximum in l∞(T (xs), T (ys)) for

a particular pair xs and ys. This implies that α(T (xs), T (xs)) + l∞(T (xs), T (ys)) =

α(T (xs), T (ys))+|d(xs, sj)−d(ys, sj)| ≤ d(xs, sj)+d(ys, sj)+|d(xs, sj)−d(ys, sj)|. The

last inequality holds because α(T (xs), T (ys)) is the minimum of d(xs, si)+d(ys, si) for

all si’s. The last expression is also equal to twice the larger value between d(xs, sj)

and d(ys, sj). For the color-histogram feature vector used in the experiment, dc(·)

cannot be larger than eight, and thus the whole expression cannot be larger than

2 · 8 = 16.

If we set ε to be 3.0, which is a reasonable value to identify the majority of visually

similar web video in our dataset, then metric values found in a typical resulting set

A(xs; ε) will include those black and magenta data points in Figure 4.1. Our goal then

is to separate these “small-metric” points, from the rest of the “large-metric” points.

If we use l∞(·) as the range metric, a typical candidate set based on the inequality

l∞(T (xs), T (ys)) ≤ ε′ will include all the points below a horizontal line at level ε′.

An example of such a set with ε′ = 3 is shown in Figure 4.1. Even though all the

small-metric points are within the candidate set, many of the large-metric points are

also erroneously included as they have small l∞(·) values. It is clear, based on the

shape of the distribution of the small-metric points, that a better separating function

should combine both l∞(·) and α(·). One possible choice is based on their product,

94

β(·), defined as:

β(T (xs), T (ys)) ∆= α(T (xs), T (ys)) · l∞(T (xs), T (ys)) (4.11)

As shown in the figure, even though the candidate set defined by β(T (xs), T (ys)) ≤ 9

misses a few small-metric points, it excludes a much larger set of large-metric points

than l∞(·). The problem with β(·) is that it is not a metric1. As a result, we cannot

directly employ β(·) as our range metric.

The β(·) function in (4.11) is defined as the product of α(·) and l∞(·). The α and

l∞ functions represent the aggregate bounds of all the inequalities in (4.7). Rather

than using the two aggregate bounds, it is easier to form a metric by using the product

of the bounds from the individual inequalities as follows:

[d(xs, si) + d(ys, si)] · |d(xs, si)− d(ys, si)| = |d(xs, si)
2 − d(ys, si)

2|, i = 1, 2, . . . ,m

(4.12)

Note that Equation (4.12) is in the form of an absolute difference. While absolute

differences also appear in the definitions of lp metrics in Equation (4.8), the one in

Equation (4.12) is the absolute difference between the squares of the coordinates in

T (·). Thus, it is conceivable to propose a new metric ζ(·) that combines l2 with this

1β(·) is not a metric because, for an arbitrary pair of m-dimensional vectors u and v, β(u, v)
becomes zero when u and v share a zero in any one of the coordinates, rather than u = v as required
by a true metric.

95

absolute difference of squares of coordinates as follows2:

ζ(T (xs), T (ys)) ∆=
(

1

m
·

m∑

i=1

[d(xs, si)
2 − d(ys, si)

2]2

)1/2
(4.13)

This metric applied to T (·) can also be interpreted as the l2(P(xs),P(ys)), where

P(xs) is a new feature extraction mapping defined by:

P(xs)
∆
= (d(xs, s1)

2, d(xs, s2)
2, . . . , d(xs, sm)

2) (4.14)

We call P(xs) the Projection Vector of xs. Therefore, l2 metric with the projection

vector mapping is equivalent to applying the ζ(·) metric onto T (·) mapping. Our

particular choice of l2-metric will be explained in Section 4.3. We now justify the use

of the projection-vector mapping based on experimental results on signature data.

Unlike l∞(·) and β(·), it is difficult to show the candidate set of l2(P(xs),P(ys)) ≤

ε′ in Figure 4.1 because l2(·) cannot be written in terms of the ordinate and abscissa of

the graph. In addition, the simple experiment on which we have based our intuition

so far is quite limited – the sample size is small and the comparisons are between

individual signature vectors, rather than full signatures. To produce measurements

on a more realistic setting, we expand our experiments to the full SIGDB signature

database using Procedure 4.0.1, and test different range metrics within the GEMINI

framework for the similarity search. The augmented color histogram distance d̂c,

as described in Equation (3.17), is used between color histograms, and ε is again

2Technically, ζ(·) forms a metric only for real vectors with non-negative (or non-positive) coordi-
nates, which is the case for our T (·) vectors. If both positive and negative coordinates are allowed,
ζ(·) fails to become a metric as ζ(u, v) = 0 when the coordinates u and v have the same magnitudes
but different signs.

96

set at 3.0. The three schemes tested are the “lower-bound” scheme based on the

mapping T (·) in Equation (4.6) and the l∞-metric, the “product” scheme based on

T (·) and the β(·) function defined in (4.11), and the proposed scheme based on P(·)

in Equation (4.14) and the l2-metric. A random query set of 1000 signatures are

drawn from the SIGDB, and the Pruning and Accuracy values, as defined in (4.5)

and (4.4) respectively, are measured at different ε′. The resulting plots of Pruning

versus Accuracy are shown in Figure 4.2. A good feature extraction mapping should

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.8

0.825

0.85

0.875

0.9

0.925

0.95

0.975

1

Accuracy (ε=3.0)

P
ru

ni
ng

Proposed
Product
Lower−bound

Figure 4.2: Pruning-versus-Accuracy plots for the “lower-bound”, the “product” and
the proposed schemes.

achieve pruning and Accuracy that are as close to one as possible. As shown in

the figure, our proposed scheme clearly out-performs both the “lower-bound” and

97

“product” schemes by achieving much higher Pruning at the same Accuracy level.

Also, as expected, the “product” scheme out-performs the “lower-bound” scheme

as the “product” scheme exploits both the upper and lower bounds of the triangle

inequality.

4.3 PCA on projection vectors

The last experiment in the previous section clearly demonstrates the superiority

of the projection vector mapping P(xs) with l2-metric. Nevertheless, the dimension

of P(xs) is m = 100 for the SIGDB. Despite the fact that m is smaller than the

dimension of our original feature vectors, i.e. 712, it is still much larger that what

most SAM structures can handle. We address this problem by applying the classical

PCA to transform the projection vectors into vectors of any target dimension, which

we call Index Vectors. The collection of index vectors for each of the signature

vectors in a signature is called an Index. It has been shown that, among all possible

linear dimension reduction mappings, index vectors computed by the PCA method

produce the least distortion in l2 distances [32]. This further justifies our choice of

using l2 between projection vectors in Equation (4.13). PCA is straightforward to

compute as well – it can be computed by first scanning all the data to estimate

the covariance matrix, and then projecting the data to the subspace spanned by the

most significant eigenvectors of the covariance matrix. Many numerical methods,

such as SVD or variants of QR methods, have been developed to find eigenvectors

98

of covariance matrices [33]. If the dimension of the original space is too large, online

update algorithms such as Lanczos Recursions or Subspace Iteration may be more

appropriate [75].

The transformation from a signature, first to a projection, and finally to an index

can in principal be considered as one feature extraction mapping to be used in GEM-

INI. In the remainder of this section, we present experimental results comparing our

proposed scheme with other existing approaches of feature extraction mapping in the

literature. Here are the descriptions of the schemes we have tested:

PCA While PCA is applied on the projection vectors in our proposed scheme, it

can also be applied directly onto the 712-dimensional color histogram feature

vectors. In this scheme, we apply PCA to reduce the dimension of the color

histograms, and use l2-metric on the resulting range vectors. The use of PCA

on the color histogram can be justified as follows: even though PCA is only

optimal for l2 metric, the dc metric used between the color-histogram feature

vectors can be bounded above and below by l2 as follows
3:

1√
712
· l2(xs, ys) ≤ dc(xs, ys) ≤ l2(xs, ys) (4.15)

It is thus conceivable to use the l2 metric to approximate the dc metric.

Fastmap Faloutsos and Lin have proposed a feature extraction mapping called the

Fastmap to approximate a general metric space with a low-dimensional l2 space [35].

3The proof of the inequality can be found in [33]. Following the same convention as in Equation
(4.8), the l2 metric is normalized by the dimension of the vector.

99

Fastmap is a randomized algorithm that iteratively computes each dimension

of a range vector by projecting the data onto the “axis” spanned by the two

points with maximal separation. l2 distance is used to compare range vectors.

Haar Another method for feature extraction in color histograms is to apply a Haar

wavelet transform on the histogram bin values according to the adjacency of

colors in the color space. The index vector is composed of a few low-pass coeffi-

cients from the transform. The Haar wavelet approach used in this dissertation

is based on the scheme described in the MPEG-7 standard [76]. The l1 metric

is used to compare range vectors.

To compute an appropriate feature extraction mapping for a database, our proposed

method and the PCA scheme must scan the entire database once. Fastmap requires

multiple scans to find maximally separated data points in the database. The simplest

technique is Haar as it is a fixed transform and does not depend on the data at

all. We exclude all quadratic-time methods such as Multidimensional scaling [34] or

SparseMap [38] in our comparisons as they do not scale well to large databases.

We follow the same procedure described in Section 4.2 to measure Accuracy and

Pruning for all the schemes being tested. Since most of the schemes require training

data to generate the mappings, we arbitrarily split SIGDB into two halves – we call

one half the “training” SIGDB, which is used for building the mapping, and the other

half the “testing” SIGDB, which is used for the actual testing. In order to ensure the

suitability of incorporating these schemes into GEMINI, we focus on using very low

100

dimensions for range vectors. We test all the schemes for dimensions two, four and

eight. The corresponding Pruning-Accuracy plots are shown in Figures 4.3 through

4.5. Our proposed scheme produces the best performance in all dimensions tested,

followed by Haar, Fastmap and PCA. The gain of the proposed scheme over the

second best scheme, however, diminishes as the dimension increases.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
2−D Feature Extraction

Accuracy (ε=3.0)

P
ru

ni
ng

Proposed
Haar
FastMap
Sig. PCA

Figure 4.3: Pruning-versus-accuracy plot for two dimension.

In applying the feature extraction scheme in a fast similarity search, we need to

choose a particular value of the pruning threshold ε′ to compute the candidate set.

Given the target dimension, Accuracy, and Pruning, one possible approach is to set ε′

to a value that attains the particular level of performance in a previously completed

experiment. Thus, an important question to answer is whether the relationship be-

101

tween ε′ and the corresponding Pruning and Accuracy holds for queries other than

the ones being tested. To answer this question, we repeat the experiments on our

proposed scheme at dimension eight for three independent sets of random queries.

Each set has 1000 signatures randomly drawn from the testing SIGDB. For each set

of queries, different values of Pruning and Accuracy are measured by varying ε′. The

experiment is also repeated for three different values of ε, namely 2, 3, and 4. The

resulting Pruning and Accuracy versus ε′ plots for the three query sets and different

values of ε are shown in Figure 4.6. As shown in the figure, there is little variation

in the amount of Pruning among the three sets. There is some variation in the Ac-

curacy for small ε, but the variation diminishes as ε becomes larger. The maximum

differences in Accuracy among the three sets over all possible values of ε′ are 0.12,

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Accuracy (ε=3.0)

P
ru

ni
ng

4−D Feature Extraction

Proposed
Haar
FastMap
Sig. PCA

Figure 4.4: Pruning-versus-accuracy plot for four dimension.

102

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Accuracy (ε=3.0)

P
ru

ni
ng

8−D Feature Extraction

Proposed
Haar
Fastmap
Sig. PCA

Figure 4.5: Pruning-versus-accuracy plot for eight dimension.

0.06, and 0.04 for ε = 2, 3, and 4 respectively. These fluctuations are small compared

to the high Accuracy required by typical applications.

We conclude this section with a number of speed measurements on a particular

platform. Rather than measuring the performance of the entire GEMINI system,

we make some simplifications so as to focus on measuring the performance of vari-

ous feature extraction techniques. The most significant simplification is the absence

of a SAM structure in our implementation. The primary function of a SAM struc-

ture is to provide fast similarity search on the low-dimensional range vectors. In our

implementation, we have chosen to replace it with a simple sequential search. How-

ever, we measure time for sequential search separately so we can compare different

103

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.25

0.5

0.75

1

Pruning Threshold, ε’

A
cc

ur
ac

y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.85

0.9

0.95

1

Pruning Threshold, ε’

P
ru

ni
ng

set 1
set 2
set 3

ε=2

ε=3

ε=4

Figure 4.6: Pruning and Accuracy versus pruning threshold for three independent sets
of queries.

schemes. Another function provided by a SAM structure is memory management for

large databases. When a database is too large to fit within main memory, a SAM

structure stores similar data items in contiguous regions on disk. This representation

can minimize the number of slow random disk accesses during a similarity search. As

the size of our test dataset is moderate, we fit the entire database of signatures and

indices within main memory which eliminates the need for memory management4

We perform our experiments on a Dell PowerEdge 6300 Server with four 550MHz

Intel Xeon processors and 1 Gigabyte of memory. As all the tests are run under a single

4To put the entire database inside the memory, we have made some modifications on how queries
are compared against the signature database. Details of the modifications can be found in Appendix
4.A.

104

thread, only a single processor is used. The testing SIGDB, which contains 23,206

video signatures each consisting of 100 signature vectors, and their corresponding 8-

dimensional indices are loaded into memory. 100 queries are randomly sampled from

the testing SIGDB, and the time to perform the similarity search for a single query

is measured. Pruning thresholds are chosen, based on the previous experiments, to

hit the 90% Accuracy level for similarity searches at ε = 3.0. As a reference, we also

measure the performance of sequential search on signatures with no feature extraction.

The results are shown in Table 4.1.

Feature Extraction Sequential Proposed Fastmap Haar PCA

Accuracy 1.00 0.89 0.91 0.92 0.89
Index time (ms) - 131 ± 0.8 131 ± 1.5 152 ± 1.3 130 ± 1.4

Refinement time (ms) 6730 ± 35 33 ± 8 75 ± 11 123 ± 28 401 ± 75
Candidate Size/query - 109 ± 27 262 ± 39 428 ± 97 1386 ± 257

Table 4.1: Speed comparisons among the sequential search, the proposed scheme,
Fastmap, and Haar Wavelet.

The Index time is the time required for the sequential search on range vectors to

identify the candidate sets. The averages and their standard error at 95% confidence

interval are shown. As the Sequential scheme does not use range vectors, no number

is reported. The proposed scheme, fastmap, and PCA all use the l2 distance on

range vectors and thus, result in roughly the same index time. Haar requires slightly

larger index time for its l1 distance computation. The refinement time is the time

required to perform the full signature distance computations on the candidate sets.

Our proposed scheme outperforms all other feature extraction schemes in refinement

105

time. The large standard error in the refinement time is due to the variation in the

size of candidate sets, as depicted in the last row of the table. Combining the index

time and refinement time, the proposed scheme is roughly 41 times faster than the

sequential search on signatures.

4.4 Summary

This chapter discussed the GEMINI framework for fast similarity search on met-

ric data. In particular, we have focused on the feature extraction mapping which is

the key design step in GEMINI. We have proposed a novel feature extraction map-

ping, and applied it to a large database of video signatures. The feature extraction

mapping consists of two steps. In the first step, each signature vector is mapped

into a projection vector. The projection vector is composed of the squared distances

between the signature vectors and the seed vectors. Unlike other designs proposed in

the literature, the projection-vector mapping provides better search performance by

taking advantage of both the upper and lower bounds of the triangle inequalities. In

the second step, the dimension of the projection vectors is further reduced by using

PCA. PCA is appropriate as we have designed the projection vectors to be used with

the l2 distance. We have shown experimentally that this technique provides a better

trade-off between Accuracy and Pruning as compared with PCA on feature vectors,

Fastmap, and Haar Wavelet.

106

4.A Appendix: Modification for speed tests

The modification is illustrated in Figure 4.A. The figure on the left shows the

original design while the one on the right shows the modification. Both figures show

a query signature being compared with a database of signatures. To simplify the

explanation, we assume that each signature has only four signature vectors, generated

with respect to the seed vectors s1, s2, s3, s4, and the two signature vectors with the

highest ranks are used in the comparison. In other words, we use m = 4 and m′ = 2

in computing the asymmetric VSSr between the query and each signature in the

database.

The left diagram in Figure 4.A depicts the second step in Procedure 4.0.1 where

each of the top-ranked vectors from the query is compared with the database. This

step is nothing more than a series of metric-based similarity searches, which is sup-

ported by most SAM structures. There is, however, one drawback of this design:

similarity search for different query signatures may access different portions of the

database, as these query signatures have different top-ranked vectors. If the main

memory is not large enough to hold the entire signature database, part of the database

must be stored in the file system, which have much longer access time than the mem-

ory. To support fast response time for similarity search, many SAM structures thus

implement sophisticated memory management techniques to minimize access to the

slow file system.

Since we have not incorporated any SAM structure in our experiments, we resolve

107

Figure 4.A: The left figure shows the signature similarity search that uses the ranking
of the query signature. The system on the right uses the rankings of the signatures
in the database. Since the right system only needs to access the top-ranked signature
vectors, less memory is required to store the database.

this problem by reversing the roles of the query signature and the signature in the

database. Specifically, rather than using the ranking of the query signature in cal-

culating the asymmetric VSSr, we use the ranking of the signature in the database

instead. This simple modification enables us to keep only the top-ranked vectors

of each signature from the database in the memory, regardless of the input queries.

We can illustrate this concept using the right diagram in Figure 4.A. We first load

into the memory the top-ranked vectors of all the signatures in the database. For

108

each query signature XS presented to the system, it is sequentially compared with

each signature YS in the database using YS’s ranking. For example, to compute the

similarity between XS and Y 1S, we use the vectors with respect to s1 and s3; for

XS and Y 2S, we use the vectors with respect to s2 and s3, and so on. There is no

need to access the lower-ranked vectors of the signatures in the database as they are

never used. To understand the significance of this change, consider the SIGDB in our

experiments which stores m = 100 vectors for each signature, and uses only m′ = 6

top-ranked vectors for computing the similarity. This simple modification allows us to

reduce the memory requirement by more than a factor of 100/6 ≈ 16, and enable us

to store the entire signature database in the memory. Furthermore, all the feature ex-

traction mappings discussed before can be directly applied to this design as the same

ranking applies to both signature and index vectors. On the other hand, it should

be noted that this design is not appropriate in the systems where SAM is used. The

reason is that the comparison is now done in a signature-by-signature basis, which

implies that the signature similarity search can no longer be decomposed into a series

of metric-based similarity search. It should also be noted that this new design does

not necessarily produce identical retrieval results as the old one where the ranking

of the query is used. Nevertheless, we have found little discrepancy between the two

schemes in the experimental results with our ground-truth set.

109

Chapter 5

Similarity signature clustering

By applying the similarity search techniques described in Chapter 4 to every

signature in a database, it is possible to identify rapidly video sequences that are

similar in the database to a given query. Beyond the limited capability of the feature

vector in capturing visual similarity, there are a number of reasons for less than

perfect retrieval performance from the above process. First, as explained in Section

3.5, if an overwhelming number of seed vectors fall inside the voronoi gap, the ViSig

method may underestimate the true similarity between two video sequences. Second,

the fast similarity search techniques, introduced in Chapter 4, trade off accuracy with

speed performance. As a result, some similar signature pairs in the database may be

erroneously left out. Third, we have assumed thus far that ε is known and constant

for all signatures, which is certainly not the case for the diverse content found on

the web. To address the above problems, we need a post-processing step to further

110

process the information computed by the similarity search step.

This chapter turns to one example of a post-processing step – identifying clusters

of similar signatures within the database. Based on the measured signature sim-

ilarities and some assumptions about visually similar video clips, we run an offline

clustering algorithm to partition the entire database into clusters of signatures. Video

clips within the same cluster are assumed to be similar to each other, and an indi-

vidual cluster, rather than a video clip, is made the smallest unit for retrieval. We

attempt to use this clustering structure to mitigate the aforementioned problems by

simultaneously considering the relationship among all the signatures in a database. In

particular, we propose a new hierarchical clustering algorithm that is robust against

erroneous or missing measurement, and capable of adaptively choosing the distance

threshold based on local statistics among similar signatures. We demonstrate that our

proposed algorithm produces better retrieval performance than simple thresholding

used in Chapter 3, and other clustering algorithms proposed in the literature.

This chapter is organized as follows. Section 5.1 describes the graphical represen-

tation of a signature database for developing the clustering algorithm. The details of

the algorithm are presented in Section 5.2. In Section 5.3, we compare our algorithm

to other techniques based on retrieval performance of the ground-truth set. Finally,

Section 5.4 presents a number of interesting statistics about the distribution of similar

clusters that we identify in our web video database.

111

5.1 Graphical representation of signature database

To describe our clustering algorithm in a general framework, we treat the set of

signatures and their similarity relationship as a graph. A graph G has a set of vertices

V (G) and a set of edges E(G) ⊂ V (G) × V (G). All edges are undirected. In many

occasions, we only consider a portion of a graph. G ′ is a subgraph of G if V (G ′) ⊂ V (G)

and E(G ′) ⊂ E(G). If the subgraph G ′ inherits all the edges between its vertices from

the original graph, G ′ is called an induced subgraph. In our application, each signature

in the database is represented as a vertex in a graph. Before applying the clustering

algorithm on the signature data, we assume that there is an edge between every

pair of signatures, with the edge length indicating the measured signature similarity

between the two signatures. Because it is more convenient to use a distance function

to measure the edge length, we define the following Signature Distance:

dsig(XS, YS)
∆
= median{d(gX(sj[i]), gY (sj[i])) : i = 1, 2, . . . ,m}, (5.1)

where j[i] denotes the ranking of the signature vector gX(si), for i = 1, 2, ...,m. We

ignore the rankings of the signature vectors in YS in order to make it compatible with

the fast similarity search algorithm presented in Chapter 4. As we have experimentally

shown before, there is little difference between using the ranking of one signature

and using the rankings of both. Thus, we ignore the asymmetry in Equation (5.1)

and treat every edge as undirected. The median operator is used in Equation (5.1)

because of the following reason. Recall the ground-truth experiment in Section 3.7.3,

112

we defined two signatures XS and YS to be similar if more than half of their signature

vectors are within ε of each other. By using the median operator in dsig(·), we can

simply state the same condition by using dsig(XS, YS) ≤ ε).

Given a graph of signatures, the goal of a clustering algorithm is to identify truly

similar video clips based on the overall structure of the graph. We can interpret

the clustering process as a process of removing edges between pairs of vertices that

represent dissimilar video clips. Typically, an edge should be removed if the two cor-

responding vertices have large signature distances. Nevertheless, even if the signature

distance between two vertices is large, there might still be a need for an edge if, for

example, there has been an error in the distance measurement. Such an error may be

revealed if there are many other signatures that are simultaneously close to both of

them. Thus, the clustering algorithm needs to make use of all measured distance rela-

tionships to infer the most reasonable placement of edges. Since it is computationally

infeasible to search all possible placements of edges, we only consider a special subset

of subgraphs called threshold graphs. A threshold graph P (V , ρ) has a vertex set V ,

and has an edge between every two of its vertices if the distance between them is

strictly less than ρ > 0.

In the absence of any error in distance measurement and similarity search, we

assume that the largest possible signature distance between two truly similar video

clips is µ. The choice of µ depends on the feature vector as well as the data. For

the feature vector to be useful in similarity detection, µ is typically much smaller

113

Figure 5.1: A threshold graph with three connected components.

than the maximum distance value, and the threshold graph P (V , µ) is very sparse.

Our algorithm considers all the threshold graphs P (V , ρ) with ρ ≤ µ. Since each of

the subgraph P (V , ρ) is sparse, they are likely to contain many isolated connected

components. A connected component, or CC, of a graph is an induced subgraph in

which all vertices are reachable from each other, but completely disconnected from

the rest of the graph. A pictorial example of a threshold graph with three CC’s is

shown in Figure 5.1.

CC’s in the threshold graph P (V , ρ) are prime candidates for similar clusters: all

signatures in a CC C are at least ρ away from the rest of the database. If C is also a

complete graph, which means that there is an edge between every pair of signatures,

intuitively it corresponds to what a similar cluster should be. All video sequences

114

in the cluster are similar to each other but far away from the rest of the database.

In practice, full completeness is too stringent of a requirement to impose because

the randomness in signatures may erroneously amplify the distance between similar

video sequences. Thus, as long as C is close to a complete subgraph, it is reasonable

to assume that it represents a similar cluster. To this end, we need a measurement of

the density of edges inside a CC. Note that for any CC C, there are at least |V (C)|−1

edges as C is connected, and at most |V (C)| · (|V (C)| − 1)/2 edges if there is one edge

between every pair of vertices. We can thus define an edge density function Γ(C)

between these two extremes as:

Γ(C) ∆=

|E(C)|−(|V (C)|−1)

|V (C)|·
(|V (C)|−1)

2
−(|V (C)|−1)

if |V (C)| > 2

1 otherwise,

(5.2)

Γ(C) evaluates to 0 when C is barely connected, and to 1 when C is complete. For the

three clusters shown in Figure 5.1, the edge densities for A, B, and C are 0, 1, and

2/3 respectively. We define a similar cluster to be a CC whose edge density exceeds

a fixed threshold γ ∈ (0, 1].

5.2 Signature clustering

We are now ready to describe our clustering algorithm: given a database of signa-

tures V , we compute P (V , µ) by performing a fast similarity search on each signature

to identify all those that are within distance µ away. The resulting P (V , µ) is com-

posed of CC’s with varying edge densities. Those CC’s with edge densities larger than

115

γ are identified as similar clusters and removed from the graph. For the remaining

CC’s, we start removing edges in decreasing order of length until some similar clusters

emerge. To avoid bias, edges of the same length are removed simultaneously. This

process of edge removal is equivalent to lowering the distance threshold ρ until the

graph is partitioned into multiple CC’s. CC’s with high enough edge densities are

identified as similar clusters. This process of lowering distance threshold and checking

edge density is repeated until we exhaust all the CC’s.

The key step of the above algorithm is to find the appropriate distance threshold

to partition a CC C once it is found not be a similar cluster. A naive approach is to

check whether C remains connected after recursively removing the longest edge, or

edges, from C. This approach is computationally expensive as we need to check con-

nectedness after each edge removal. A more efficient approach is to use the Minimum

Spanning Tree (MST) of C. A MST T of a connected graph C is a subgraph that

connects all vertices with the least sum of edge lengths. The following proposition

explains why it is possible to use MST in our clustering algorithm:

Proposition 5.2.1 Let C be a connected component in P (V , ρ) and T be a MST of

C. Let d be the length of the longest branch in T . Consider the following partition of

T :

T = E ∪ T1 ∪ T2 ∪ . . . ∪ TN , (5.3)

where E consists of all the branches of length d, and Ti’s are individual connected

components in T after the removal of E. We can characterize the connectedness of

116

the threshold graphs P (V (C), ρ′) for ρ′ ≥ d as follows:

1. for ρ′ > d, the threshold graph P (V (C), ρ′) is connected;

2. for ρ′ = d, the threshold graph P (V (C), ρ′) is composed of N connected compo-

nents {C〉, i = 1, 2, . . . N} with V (C〉) = V (T〉). As a consequence, T〉 is a MST

of C〉.

The proof of Proposition 5.2.1 can be found in Appendix 5.A. The implications of

Proposition 5.2.1 are as follows. First, it shows that C stays connected until the

distance threshold is lowered beyond d, the length of the longest branch in the MST.

In other words, d is the correct threshold to decompose C into CC’s. Second, we

also show that, after partitioning C into a new set of CC’s, the subtree of T in each

newly-formed CC is also a MST. Hence, we can further partition the new CC’s without

computing a new MST for them. In a nutshell, all the distance thresholds required

for clustering can be obtained by computing the MST for the original threshold graph

P (V , µ).

Based on Proposition 5.2.1, we can efficiently implement our clustering algorithm

in two steps. In the first step, we use the Kruskal algorithm described in [66, ch. 23]

to construct the MST: edges are examined in increasing order of length and the tree

is progressively built by including edges that join CC’s together. The only difference

is that whenever a new branch is added to the MST, we compute the edge density of

the CC on either side of this branch. As explained before, the length of each MST

117

branch is the right distance threshold to partition a graph into CC’s, and the edge

density of each CC is computed based on all their edges shorter than the threshold.

Recall that the Kruskal algorithm builds the MST by sequentially examining all edges

in the increasing order of their lengths. When a new MST branch is identified, all

the edges that contribute to the edge densities of the CC’s on either side of this new

branch must already have been examined by the algorithm. Thus, we can compute

the edge density by simply keeping track of the number of edges in each CC thus

far examined by the Kruskal algorithm, before it is linked by a new MST branch.

The time complexity of the first step of this algorithm is the same as the Kruskal

algorithm, which is O(e log e) where e is the number of edges in P (V , µ).

In the second step, we identify similar clusters by repeatedly setting the distance

threshold to the length of the branches in the MST, and checking the pre-computed

edge density for each newly-formed CC. A CC becomes a similar cluster if its edge

density exceeds γ. For each threshold tested, all the information required to identify

similar clusters is pre-computed, and the time complexity is simply O(1). As a result,

the time complexity of the second step is O(|V|), the same order as the maximum

number of edges in the MST. The time complexity of the entire algorithm is thus

O(e log e)+O(|V|) ≈ O(e log e). A pseudo-code implementation of this algorithm can

be found in Appendix 5.B.

In the actual implementation, we compute the edge lengths by performing a simi-

larity search on each video in the database. The maximum distance threshold µ is set

118

at 4.0 and the pruning threshold ε′ for similarity search is set at 3.0. The resulting

threshold graph has 1,094,691 edges and 36,311 nodes. The edges are then stored

in a sorted database of edges based on a public-domain embedded database system

called the Berkeley DB version 4.0. The construction of the sorted edge database

takes around 201 seconds on a 500 MHz Intel Xeon with 1GB of memory. Running

on the same machine, the MST construction and the clustering requires 3.8 seconds

and 0.3 seconds, respectively.

5.3 Ground-truth results

This section compares the experimental results on applying the proposed al-

gorithm with simple-thresholding, single-link and complete-link techniques to the

SIGDB described in Section 4.1. The performance is measured based on how well an

algorithm can identify the ground-truth set introduced in Section 2.3.

Recall from Section 3.7.3, retrieval performance is measured based on recall and

precision defined in (3.19). Recall and precision are defined with respect to the con-

cepts of relevant and return sets. Given a query XS in the ground-truth, the relevant

set is always the similar cluster in the ground-truth that contains XS, excluding XS

itself. In Section 3.7.3, simple thresholding is used and the return set is all signatures

in SIGDB that are within a certain distance threshold of XS. Different recall and

precision values can be obtained by changing the distance threshold. When a cluster-

119

ing algorithm is used, the return set is simply the cluster that contains q1. To obtain

a full spectrum of different recall and precision values, the parameter used for single-

link and complete-link is the distance threshold that defines the minimum distance

between clusters. For our proposed algorithm, it is the edge density threshold γ.

Figure 5.2 shows precision versus recall for the four algorithms. As shown in Fig-

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Proposed
Complete−link
Single−link
Thresholding

Figure 5.2: Precision versus recall for different clustering algorithms and simple
thresholding.

ure 5.2, the single-link algorithm exhibits the worst performance. As the distance

threshold increases, the single-link algorithm erroneously chains together non-similar

1For the general case when q is not part of the database, we can define an ad-hoc distance between
q and each cluster based on, for example, the minimum of the distances between q and each of the
elements in the cluster. The return set will simply be the cluster closest to q.

120

video clips together in a cluster. This significantly reduces precision if one of the

query signatures falls within these large clusters. Simple thresholding does not look

beyond the immediate neighbors and thus produces much better performance as com-

pared with the single-link algorithm. The complete-link algorithm adds an additional

constraint that neighbors can be grouped in the same cluster if they are all within

the same distance threshold. Initially, this translates into a small improvement in

precision over simple thresholding. Due to the strict cluster-forming criterion, the

complete-link algorithm ignores many similar video clips in the ground-truth set un-

til the distance threshold is raised to almost the maximum value. As the distance

threshold is global to the entire dataset in complete-link, some of the smaller clusters

begin to join together when the threshold is large. This joining results in a drop in

the precision as recall improves. Our proposed algorithm delivers a good trade-off

between precision and recall – before the steep descend in precision, our algorithm

achieves retrieval performance of around 80% recall and 90% precision.

Figure 5.3 shows the corresponding plots of precision and recall versus the edge

density threshold γ. Larger γ values correspond to more strict criterion in forming

clusters, leading to larger precision and smaller recall. The retrieval performance

stays around 80% recall and 90% precision for the γ value in between 0.1 and 0.35.

Even though recall starts to degrade when γ becomes larger, it stays relatively close

to 80% for γ as large as 0.9. This implies that our clustering algorithm should work

for a relatively large range of γ values.

121

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Edge Density (γ)

R
ec

al
l &

 P
re

ci
si

on

recall
precision

Figure 5.3: Precision and Recall versus edge density threshold γ.

5.4 Similar cluster statistics for web video

To further study how similar video clips are distributed on the web, we set γ to

0.2, and produce a clustering structure on our experimental database. The resultant

clustering structure has a total of 7,056 clusters, with average cluster size of 2.95.

Since there are 46,331 video clips in the database, 7056 · 2.95/46331 ≈ 45% of the

video clips in our database have at least one possibly similar version. Figure 5.4 shows

the distribution of cluster sizes. The majority of the clusters are very small – 25%

of the clusters have only two video clips in them. Nonetheless, there are a few very

large clusters. The abundance of similar versions in these clusters may indicate that

122

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

Cluster Size

N
um

be
r

of
 c

lu
st

er
s

Figure 5.4: Distribution of cluster sizes.

these video clips are very popular in the web community. Table 5.1 lists the top ten

clusters identified in the clustering structure.

We provide each cluster with a label in the first column for ease of reference. The

second column indicates the size of each cluster. In the third column, we consider the

diversity of web locations where similar video clips are found. We notice that it is quite

common for a content creator to put similar video clips such as those compressed in

different formats on the same web-page. Diversity is the ratio between the number of

distinct web-pages in each cluster and the cluster size. A large ratio implies that video

clips in that cluster originated from diverse locations. The fourth column indicates

123

Label Size Diversity Misclassified? Descriptions or Explanations
A 263 0.12 Y Share a segment of red letters on black

background
B 172 0.70 N Dancing Baby from tv show “Ally McBeal”
C 126 0.43 Y Share a segment of “MTV News” sign
D 95 0.01 Y Share a segment of “chv.net” sign
E 68 0.01 N An error message from chv.net server
F 56 0.98 N Angry man hitting a computer
G 48 0.19 N Mathematical plots of wave equation
H 46 0.09 N Segments of President Clinton taped testi-

mony
I 43 0.42 N SOHO Astronomical Video
J 42 0.08 N Synthetic Aperture Radar Video

Table 5.1: Statistics of the largest ten clusters in the database.

the correctness of the cluster – an “N” indicates that more than 95% of the video clips

in the cluster are declared to be similar by manual inspection. As shown in the table,

clusters A, C and D are wrongly classified. Upon careful examination, we found that

all the video clips in each of these clusters share a visually-similar segment, from which

multiple signature vectors are selected. As a result, they are classified to be “similar”

even though the remainder of the content in these clips is very different. A possible

remedy to this problem is to raise the required number of similar signature vectors

shared between two signatures before declaring them as similar. Among those which

are correctly classified, clusters E, G, H and J consist of clips that are mostly from

the same web-page. Some of them are identical, such as the error message found in

cluster E. Others have very similar visual contents such as those in G, H and J. These

types of sequences are generated intentionally by the content creators, and provide

124

little information on how video sequences are copied and modified by different web

users. On the other hand, clusters B, F, and I have relatively high diversity values.

Video sequences in cluster B are from a popular television show, cluster F contains

a humorous sequence of a man’s frustration towards his computer, and cluster I

contains astronomical video clips from a large-scale, multi-nation research project.

Large clusters with high diversity values seem to indicate that the corresponding

video content is of interest to a large number of web users. Such information can

be used to provide better ranking for retrieval results – popular content should be

ranked higher as they are more likely to be requested by users.

5.5 Summary

This chapter discussed the use of clustering algorithms on large databases of

video signatures. We have applied clustering algorithms to mitigate possible error

incurred by signature distance measurement and fast similarity search, and to adap-

tively choose the distance threshold based on local statistics. To this end, we have

proposed a novel graph-theoretical algorithm that identifies clusters based on graph

connectivity. In this algorithm, the database of signatures is modeled as a threshold

graph. Starting from a reasonably large distance threshold, the algorithm consid-

ers all connected components formed at each distance threshold, and identifies those

with large edge densities as clusters. Rather than checking for every possible distance

threshold, we have shown that it is sufficient to consider only those belonged to the

125

minimum spanning tree (MST) of the original threshold graph. As a result, we have

implemented our clustering algorithm based on Kruskal’s classical MST algorithm.

Our algorithm outperforms simple-thresholding, single-link, and complete-link clus-

tering algorithms in terms of the retrieval performance of the ground-truth set from

SIGDB. We have also applied our algorithm to identify similar clusters in the SIGDB.

The majority of the clusters we have found are small, but there are a number of large

clusters. We have found that large clusters with video clips originating from diverse

locations are good indicators of popular video content.

5.A Appendix: Proof of Proposition 5.2.1

The first statement is obvious – since the lengths of all the edges in T are at most

d, T is a subgraph of P (V (C), ρ′) for all ρ′ > d. As T and P (V (C), ρ′) share the same

set of vertices and T is connected, P (V (C), ρ′) is connected.

To prove the second statement, we first show that P (V (C), d) is not connected.

Pick any edge e of length d in T . By removing this edge, we partition T into two

disjoint trees Ta and Tb. If P (V (C), d) is connected, vertices in Ta and in Tb must be

connected by some edges in P (V (C), d). Let (u, v) be such an edge with u ∈ V (Ta)

and v ∈ V (Tb) as illustrated in Figure 5.A(a). By adding (u, v) to Ta and Tb, we

form a new spanning tree of C, T ′. Since (u, v) is an edge in P (V (C), d), the length

of (u, v) must be strictly less than d. As a result, the total length of all the branches

in T ′ is shorter than that of T . This contradicts the assumption that T is a MST.

126

Hence, P (V (C), d) must be disconnected.

Since all the subtrees Tj’s have edges shorter than d, they are all subgraphs of

P (V (C), d). Thus, each of the connected component Ci must contain an integral

number of Tj’s. If Ci has only one subtree Ti, Ti must be the MST of Ci – otherwise

we can reduce the total edge length of T by using the MST of Ci to replace Ti.

The goal thus is to show that each Ci corresponds to exactly one Tj. Assume it is

not the case and there exists a Ci which contains two or more subtrees. Choose two

subtrees Ti and Tj in Ci such that there exists an (u, v) ∈ E(Ci) with u ∈ Ti, v ∈ Tj.

Such a triplet of Ti, Tj and (u, v) must exist as Ci is connected. In addition, (u, v)

is not a branch in T otherwise it would be part of Ti or Tj. On the original tree T ,

there exists a path P between u and v. Since Ti and Tj are disconnected with respect

to T , and all the edges connecting them to the rest of T are of length d, P must

contain an edge e of length d. This is demonstrated in Figure 5.A(b). Replacing e

with (u, v) in the original T will form a new spanning tree of C with shorter total

length as d(u, v) < d. Again we obtain a contradiction and hence, each Ci corresponds

to one and only one Tj.

5.B Appendix: Clustering algorithm

In this appendix, we describe a pseudo-code implementation of the clustering al-

gorithm introduced in Section 5.2. The implementation consists of two main routines:

BUILD-MST for the construction of the MST and calculations of the edge densities,

127

(a) (b)

Figure 5.A: For both illustrations, we obtain a contradiction by replacing e of length
d with a shorter edge (u, v) to obtain a better MST.

and CLUSTER for identifying the clusters based on the computed MST and edge

densities.

The BUILD-MST routine is a simple extension of the Kruskal algorithm. Our

implementation is based on the version of Kruskal found in [66, p. 569]. The input

to BUILD-MST is a G with N vertices. There are two output objects to this routine:

T is the MST of G, and edgeDensity is a two-dimensional array that stores the edge

densities of the two CC’s attached to each branch (XS, YS) in T , with the distance

threshold setting at dsig(XS, YS). The pseudo-code implementation of BUILD-MST

is as follows:

BUILD-MST(G)
1 T ← Ø
2 for each vertex v ∈ V (G)
3 do MAKE-SET(v)
4 sort E(G) by nondecreasing dsig(·, ·)
5 i← 0
6 for each edge (XS, YS) ∈ E(G), in order by nondecreasing dsig(XS, YS)

128

7 do

8 a← FIND-SET(XS)
9 b← FIND-SET(YS)
10 w ← dsig(XS, YS)
11 if a = b
12 then

13 a.numEdge← a.numEdge+ 1
14 if w 6= a.longestEdge
15 then

16 a.longestEdge← w
17 a.numLongEdge← 1
18 else

19 a.numLongEdge← a.numLongEdge+ 1
20 else

21 T ← T ∪ (XS, YS)
22 edgeDensity[i]← (GAMMA(a, w),GAMMA(b, w))
23 COMBINE(a, b)
24 i← i+ 1
25 return (T , edgeDensity)

To understand BUILD-MST, we need to introduce the disjoint-set data structure

used in the routine. The disjoint-set is used to represent a partition of a data set [66,

ch. 21]. In our application, the data set is the set of all vertices and the partition

is formed by the sets of vertices inside each connected component. Associated with

each set are a number of status variables: numNode and numEdge are the number

of vertices and edges inside the CC; longestEdge is the length of the longest edge

inside the CC; numLongEdge is the number of edges in the CC with their lengths

equal to longestEdge, and finally, lastBranch represents the length of the last MST

branch attached to the CC. We use three routines from the disjoint-set data structure

described in [66, ch. 21]: MAKE-SET(XS) creates a singleton set with XS; FIND-

SET(XS) returns the set containingXS as an element, and COMBINE(XS,YS) merges

129

the two sets containing XS, YS.

Line 1-3 in BUILD-MST initializes the data structures by creating a singleton set

for each vertex in the graph. In line 4, all the edges in the input graph are sorted

in increasing order of their lengths. These edges are then sequentially added to the

disjoint sets, which join to form CC’s based on how they are connected by the new

edges. For each edge (XS, YS), lines 8 and 9 identify the CC’s that contain XS and YS.

If XS and YS belong to the same CC, (XS, YS) is not part of the MST. In this case, we

only need to update the status variables to account for the new edge added to the CC.

Line 13 updates numEdge in the CC, while lines 15 through 19 update longestEdge

and numLongEdge. If XS and YS belong to different CC’s, edge (XS, YS) is the

shortest edge joining the two CC’s, and thus become part of the MST as indicated

in line 13. The edge densities of the two CC’s are computed by the routine GAMMA

in line 21. GAMMA is shown as follows:

GAMMA(CC a, Distance w)
1 if w = a.lastBranch
2 then

3 return -1
4 if w = a.longestEdge
5 then

6 return Γ(a.numNode, a.numEdge− a.numLongEdge)
7 else

8 return Γ(a.numNode, a.numEdge)

Lines 1 to 3 of GAMMA handles the case when the new MST edge is the same

length as the last MST edge attached to the CC. Recall that we are interested in

computing the edge density of the CC when the distance threshold is set to be the

130

length of the new MST edge. In this scenario, the set of vertices in this CC are actually

disconnected as the MST edge(s) added earlier disappear as well. As a result, it is

meaningless to compute the edge density and thus we set it t -1. If the new MST edge

is longer than lastBranch but is the same length as the longest internal edges of the

CC, we need to discount those internal edges as they will disappear. Hence, in line 6,

we compute the edge density Γ, as defined in Equation (5.2), based on a discounted

number of edges numEdge−numLongEdge. Line 8 represents the default case when

the MST edge is longer than all edges in the CC.

Back to line 23 in BUILD-MST: after computing the edge densities, we combine

the two CC’s into one by using the COMBINE routine. COMBINE is listed below:

COMBINE(CC a, CC b, Distance w)
1 CC c← UNION(a, b)
2 c.lastBranch← w
3 c.longestEdge← w
4 c.numNode← a.numNode+ b.numNode
5 c.numEdge← a.numEdge+ b.numEdge
6 c.numLongEdge← 0
7 if w = a.longestEdge
8 then

9 c.numLongEdge← c.numLongEdge+ a.numLongEdge
10 if w = b.longestEdge
11 then

12 c.numLongEdge← c.numLongEdge+ b.numLongEdge

COMBINE is a simple routine that first joins the two sets by invoking the UNION

routine, and then updates all the status variables to reflect the new CC. This concludes

the BUILD-MST routine. The time complexity of BUILD-MST is in the same order

of Kruskal which is O(e log e), where e is the number of edges in the graph.

131

The second part of the clustering algorithm, CLUSTER, identifies clusters based

on the MST and the edge densities computed in the first part. It is listed below:

CLUSTER(Graph T , Array edgeDensity, Edge Density γ)
1 i← 0
2 for each edge (XS, YS) ∈ E(T), in reverse order of insertion
3 do

4 Delete (XS, YS) from T
5 if edgeDensity[i][0] ≥ γ
6 then

7 Remove connected components in T that contains XS

8 if edgeDensity[i][1] ≥ γ
9 then

10 Remove connected components in T that contains YS

11 i← i+ 1

In CLUSTER, all MST branches are scanned and deleted in the reverse order of

how they are created in BUILD-MST. For each branch, the edge densities on either

side of the branch are examined. If the edge density exceeds the density threshold, the

whole CC is identified as a cluster and subsequently deleted. The deletion of branches

and CC’s can be easily implemented by using an adjacency-list data structure – for

each vertexXS of the MST, we associate a double linked list that stores all the vertices

adjacent to XS. Rather than searching for the next MST branch to delete, we can

implement line 3 by simply deleting the last elements in the linked lists corresponding

to the end vertices of the branch. This is because the deletion follows the reverse order

of insertion. The time complexity for this step is O(1). To delete the whole CC, we

need to carry out a depth-first or breadth-first search to identify all the connected

vertices. The time complexity is the same as the number of MST branches in that

132

CC, which is one less than its number of vertices. The above analysis shows that the

complexity of the entire routine is simply O(N), where N is the number of vertices.

133

Chapter 6

Summary and Future Work

This dissertation considered the problem of building a similarity search engine

for a large and diverse database of video sequences such as the web. We tackled

this problem from three different aspects: efficient and effective representation of

video sequences, fast similarity search, and search result organization. Our main

contribution towards the representation of video sequences is the development of a

class of randomized techniques called Video Signature (ViSig). ViSig summarizes

an entire video sequence, in linear time of the length of the video, into a small

set of representative feature vectors called a signature. We performed analytical

analysis, simulations, as well as ground-truth experiments to demonstrate the validity

of ViSig – we demonstrated that it is possible to use small, fixed-size signatures to

reliably estimate the underlying complex video similarity measurement. Signature

thus constitutes the fundamental unit of similarity search and retrieval for our video

134

database system.

In developing a fast similarity search technique for large databases of signatures,

we considered the more general problem of similarity search for metric data. In

particular, we focused on the Generic Multimedia Indexing (GEMINI) approach of

similarity search, and developed a novel feature extraction mapping that combines

random projections and classical Principal Component Analysis (PCA). We first uti-

lized the squared distances between signature vectors and seed vectors to form a

projection vector. Then, the dimension of the projection vectors was further reduced

by using PCA. Experimental results show that this new mapping can provide bet-

ter trade-off between accuracy and pruning than other techniques, specifically, PCA,

Fastmap, Haar Wavelet, and Triangle-Inequality Pruning (TIP).

To provide a compact organization of similarity search results, we investigated the

use of clustering algorithms to group video sequences into similar clusters. Due to the

random nature of ViSig and the less-than-perfect accuracy of fast search techniques,

we developed a robust clustering algorithm that identifies densely connected com-

ponents formed at different distance thresholds as clusters. This algorithm admits

an efficient implementation based on the classical Kruskal algorithm. We showed

experimentally that this clustering algorithm provides better retrieval performance

than schemes such as simple thresholding, single-link, and complete-link hierarchical

clustering algorithms.

As a proof of concepts, we combined all the proposed algorithms to construct

135

a video similarity search engine that contains more than 46,000 video clips crawled

from the world-wide-web. Our analysis on this large dataset indicated that more than

45% of the web video clips had at least one visually similar version. Even though the

majority of similar clusters we found had no more than two video clips, there were a

few very large clusters with their sizes exceeded 100. These large clusters are good

indications of popular and important video content.

We have described, in this dissertation, our initial effort in tackling the main chal-

lenges in providing similarity search for large video databases. There are, nonethe-

less, many exciting and challenging issues remained to be solved. In the sequel, we

highlight some of the key problems pertaining to the algorithms proposed in this

dissertation.

In developing the ViSig methods, we focused on two design heuristics: 1) the use

of seed vectors that closely resemble the feature vector distribution of the real data,

and 2) the use of ranking in comparing two signatures. The performance of these two

heuristics are experimentally demonstrated. Nevertheless, some remaining issues still

deserve further investigation. First, how the difference between the distributions of

the real data and the seed vectors can affect the performance of ViSig? Second, the

introduction of ranking creates a bias in the estimation of Ideal Video Similarity (IVS),

as ranking favors seed vectors that are further away from the Voronoi cell boundary.

Can such a bias be estimated based on some easily computed quantities from the

video sequence? Beyond these specific design issues, a perhaps more important area

136

to explore is the extension of ViSig to other applications. The basic premise of our

development of ViSig is the recognition of the importance of IVS as a similarity

measurement. IVS defines a general similarity measurement between two sets of

objects endowed with a metric function. By using ViSig, we have demonstrated one

particular application of IVS, which is to identify highly similar video sequences found

on the web. It should be an interesting and fruitful research direction to apply the

entire ViSig framework to other types of pattern matching and retrieval problems.

The motivation of using squared distances in our proposed feature extraction map-

ping is to capture both the upper and lower bounds from the triangle inequalities.

Even though we only demonstrated the merit of the proposed mapping on the color

histogram data, the triangle inequality concept is a general property of any met-

ric space. As such, we expect that our proposed technique can also be applied to

other metric spaces, and we are currently exploring the feasibility of this mapping in

genomic data.

Another research direction is to study the effect of seed vectors on the performance

of similarity search. The proposed feature extraction mapping is based on distances

between signature vectors and seed vectors randomly sampled from a training dataset.

It is conceivable that more sophisticated methods can be used to select better seed

vectors so the resulting mapping produces a better trade-off between accuracy and

pruning. A study on the similar TIP approach has shown that search performance

137

can indeed be improved by carefully choosing the seed vectors1 to match the data [39].

Another issue that we did not addressed in this dissertation was how to main-

tain the clustering structure when video signatures are inserted or deleted from the

database. Based on the current design, we can first update the sorted edge database,

then re-build the minimum spanning tree, and finally re-cluster based on the new

tree. The update of the edge database can be carried out efficiently using B-tree

index. On the other hand, re-building the MST runs in linear time with respect to

the number of edges and re-clustering in linear time with respect to the number of

nodes. One possible approach to speed up the last two steps is to perform a local

repair on the MST in the case when the new signatures affect only a small portion of

the graph.

1The term “key” was used in the original paper.

138

Bibliography

[1] A.Z. Broder, S.C. Glassman, M.S. Manasse, and G. Zweig, “Syntactic clustering
of the web,” in Sixth International World Wide Web Conference, Sept. 1997,
vol. 29, no.8-13 of Computer Networks and ISDN Systems, pp. 1157–66.

[2] N. Shivakumar and H. Garcia-Molina, “Finding near-replicas of documents
on the web,” in World Wide Web and Databases. International Workshop
WebDB’98, Valencia, Spain, Mar. 1998, pp. 204–12.

[3] K. Bharat and A. Broder, “Mirror, mirror on the web: a study of host pairs
with replicated content,” in Proceedings of the Eighth International World Wide
Web Conference, May 1999, vol. 31, no.11-16 of Computer Networks and ISDN
Systems, pp. 1579–90.

[4] K. Bharat, A. Broder, J. Dean, and M. Henzinger, “A comparison of techniques
to find mirrored hosts on the WWW,” Journal of the American Society of
Information Science, vol. 51, no. 12, pp. 1114–1122, 2000.

[5] T. Kelly and J. Mogul, “Aliasing on the world wide web: Prevalence and
performance implications,” in Proceedings of the 11th International World Wide
Web Conference, Honolulu, Hawaii, May 2002.

[6] C. Silverstein, M. Henzinger, J. Marais, and Michael Moricz, “Analysis of a very
large altavista query log,” Tech. Rep. SRC-Technical Note 1998-014, Compaq
Systems Research Center, 1998.

[7] I. Witten, A. Moffat, and T. Bell, Managing Gigabytes: Compressing and
Indexing Documents and Images, Kaufmann Publishers, second edition, 1999.

[8] C. Fellbaum, Ed., WordNet: An Electronic Lexical Database, MIT Press, 1998.

[9] C. Faloutsos, Searching Multimedia Databases by Content, Kluwer Academic
Publishers, 1996.

[10] M. Maybury and K. Jones, Eds., Intellignet Multimedia Information Retrieval,
MIT Press, 1997.

139

[11] B. Perry et al., Content-based access to multimedia information – from tech-
nology trends to state of the art, chapter 4.3, Kluwer Academic Publishers,
Massachusetts, U.S.A., 1999.

[12] V. Castelli and L. D. Bergman, Eds., Image Databases: Search and Retrieval
of Digital Imagery, John Wiley & Sons, 2001.

[13] S. Santini and J. D. Gibson, Exploratory Image Databases, Academic Press,
2001.

[14] R. Lienhart, C. Kuhmunch, and W. Effelsberg, “On the detection and recogni-
tion of television commercials,” in Proceedings of IEEE International Confer-
ence on Multimedia Computing and Systems, Ottawa, Ontario, June 1997, pp.
509–16.

[15] R. Mohan, “Video sequence matching,” in Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing, Seattle, WA, May 1998,
vol. 6, pp. 3697–3700.

[16] A. Hampapur and R. Bolle, “Feature based indexing for media tracking,” in
Proceedings of IEEE International Conference on Multimedia and Expo, New
York, NY, July 2000, vol. 3, pp. 1709–12.

[17] A. Hampapur, K.-H. Hyun, and R. Bolle, “Comparison of sequence matching
techniques for video copy detection,” in Proceedings of SPIE – Storage and
Retrieval for Media Databases 2002, San Jose, CA, January 2002, vol. 4676,
pp. 194–201.

[18] M.R. Naphade, R. Wang, and T.S. Huang, “Multimodal pattern matching for
audio-visual query and retrieval,” in Proceedings of the Storage and Retrieval
for Media Datbases 2001, San Jose, USA, jan 2001, vol. 4315, pp. 188–195.

[19] D. Adjeroh, I. King, and M.C. Lee, “A distance measure for video sequence
similarity matching,” in Proceedings International Workshop on Multi-Media
Database Management Systems, Dayton, OH, USA, Aug. 1998, pp. 72–9.

[20] R. Lienhart, W. Effelsberg, and R. Jain, “VisualGREP: A systematic method to
compare and retrieve video sequences,” in Proceedings of storage and retrieval
for image and video databases VI. SPIE, Jan. 1998, vol. 3312, pp. 271–82.

[21] H.S. Chang, S. Sull, and S.U. Lee, “Efficient video indexing scheme for content-
based retrieval,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 9, no. 8, pp. 1269–79, Dec 1999.

[22] P. Indyk, G. Iyengar, and N. Shivakumar, “Finding pirated video sequences on
the internet,” Tech. Rep., Stanford Infolab, Feb. 1999.

140

[23] S. Santini and R. Jain, “Similarity measures,” IEEE Tran. on Pattern Analysis
and Machine Intelligence, vol. 21, no. 9, pp. 871–83, Sept 1999.

[24] H. Greenspan, J. Goldberger, and A. Mayer, “A probabilistic framework for
spatio-temporal video representation,” in IEEE Conf. on Computer Vision and
Pattern Recognition, 2001.

[25] G. Iyengar and A.B. Lippman, “Distributional clustering for efficient content-
based retrieval of images and video,” in Proceedings 1998 International Confer-
ence on Image Processing, Vancouver, B.C., Canada, 2000, vol. III, pp. 81–4.

[26] N. Vasconcelos, “On the complexity of probabilistic image retrieval,” in Pro-
ceedings Eighth IEEE International Conference on Computer Vision, Vancou-
ver, B.C., Canada, 2001, vol. 2, pp. 400–407.

[27] J. MacQueen, “Some methods for classification and analysis of multivariate
observations,” in 5th Berkeley Symposium on Mathematical Statistics, 1967,
vol. 1, pp. 281–97.

[28] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data, John Wiley & Sons,
New York, 1990.

[29] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley,
1989.

[30] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method for
similarity search in metric spaces,” in VLDB’97, Proceedings of 23rd Inter-
national Conference on Very Large Data Bases, August 25-29, 1997, Athens,
Greece. 1997, pp. 426–435, Morgan Kaufmann.

[31] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces,” in Proceedings
of the 24th International Conference on Very-Large Databases (VLDB’98), New
York, NY, USA, Aug. 1998, pp. 194–205.

[32] J. Hotelling, “Analysis of a complex of statistical variables into principal com-
ponents,” J. of Educational Psychology, vol. 24, pp. 417–441, 1933.

[33] G. Golub and C. van Loan, Matrix Computation, The Johns Hopkins University
Press, 3rd edition, 1996.

[34] Trevor F. Cox and Michael A.A. Cox, Multidimensional scaling, Boca Raton :
Chapman & Hall, second edition, 2001.

141

[35] C. Faloutsos and King-Ip Lin, “Fastmap: a fast algorithm for indexing, data-
mining and visualization of traditional and multimedia datasets,” in Proceedings
of ACM-SIGMOD, May 1995, pp. 163–174.

[36] J. Bourgain, “On lipschitz embedding of finite metric spaces in hilbert space,”
Israel Journal of Mathematics, vol. 52, pp. 46–52, 1985.

[37] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and some
of its algorithmic applictions,” Combinatorica, vol. 15, no. 2, pp. 215–45, 1995.

[38] G. Hristescu and M. Farach-Colton, “Cluster-preserving embedding of pro-
teins,” Tech. Rep. DIMACS 99-50, Rutgers University, Piscataway, USA, 1999.

[39] A. P. Berman and L. G. Shapiro, “A flexible image database system for content-
based retrieval,” Computer Vision and Image Understanding, vol. 75, no. 1/2,
pp. 175–195, July/August 1999.

[40] S. Krishnamachari and M. Abdel-Mottaleb, “Image browsing using hierarchical
clustering,” in IEEE International Symposium on computer and communica-
tions, July 1999.

[41] A. Vellaikal and C.-C.J. Kuo, “Hierarchical clustering techniques for image
database organization and summarization,” in Proceedings of the SPIE – Mul-
timedia Storage and Archiving Systems III, Boston, USA, Nov 1998, vol. 3527,
pp. 68–79.

[42] A. Hanjalic, R.L. Lagendijk, and J. Biemond, “Automated high-level movie
segmentation for advanced video-retrieval systems,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 9, no. 4, pp. 580–8, June 1999.

[43] M. Yeung, B.-L. Yeo, and B. Liu, “Segmentation of video by clustering and
graph analysis,” Computer Vision and Image Understanding, vol. 71, no. 1, pp.
94–109, July 1998.

[44] K. Sparck Jones and C. van Rijsbergen, “Report on the need for and provision
of an “ideal” information retrieval test collection,” Tech. Rep. British Library
Research and Development Report 5266, Computer Laboratory, University of
Cambridge, 1975.

[45] S. Aksoy and R.M. Haralick, “Graph-theoretic clustering for image grouping
and retrieval,” in Proceedings IEEE CVPR., June 1999, vol. 1, pp. 63–8.

[46] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press,
1999.

142

[47] J.B. Kruskal, “On the shortest spanning subtree of a graph and the travelling
salesman problem.,” Proceedings of the American Mathematical Society, vol. 7,
pp. 48–50, 1956.

[48] C.T. Zahn, “Graph-theoretcial methods for detecting and describing gestalt
clusters,” IEEE Transactions on Computers, vol. 20, no. 1, pp. 65–86, January
1971.

[49] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905,
Aug 2000.

[50] R. Shamir and R. Sharan, “Algorithmic approaches to clustering gene expres-
sion data,” in Current Topics in Computational Molecular Biology, T. Jiang,
M. Zhang, and Y. Xu, Eds., pp. 269–300. MIT Press, Feb 2002.

[51] S.-C. Cheung and A. Zakhor, “Estimation of web video multiplicity,” in Pro-
ceedings of the SPIE – Internet Imaging, San Jose, California, Jan. 2000, vol.
3964, pp. 34–6.

[52] S.-C. Cheung and A. Zakhor, “Efficient video similarity measurement and
search,” in Proceedings of 7th IEEE International Conference on Image Pro-
cessing, Vancouver, British Columbia, Sept. 2000, vol. 1, pp. 85–88.

[53] S.-C. Cheung and A. Zakhor, “Efficient video similarity measurement with
video signature,” Accepted to IEEE Transactions on Circuits and Systems for
Video Technology, 2003.

[54] S.-C. Cheung and A. Zakhor, “Efficient video similarity measurement with
video signature,” Proceedings of the 9th IEEE International Conference on
Image Processing, vol. 1, pp. 621–624, Sept. 2002.

[55] S.-C. Cheung and A. Zakhor, “Efficient video similarity measurement using
video signatures,” in Handbook of Video Databases, B. Furht and O. Marques,
Eds., chapter 31. CRC Press, 2003.

[56] S.-C. Cheung and A. Zakhor, “Video similarity detection with video signature
clustering,” in Proceedings of 8th IEEE International Conference on Image
Processing, Thessaloniki, Greece, Sept. 2001, vol. 1, pp. 649–652.

[57] S.-C. Cheung and A. Zakhor, “Towards building a similar video search engine
for the world-wide-web,” Submitted to IEEE Transactions on Multimedia, 2002.

[58] K. Bharat and A. Broder, “A technique for measuring the relative size and over-
lap of public web search engines,” in Proceedings of the Seventh International

143

World Wide Web Conference, 1998, vol. 30, no.1-7 of Computer Networks and
ISDN Systems, pp. 379–88.

[59] Yahoo! Inc., http://www.yahoo.com, Yahoo! Categories.

[60] VideoSeeker, http://www.videoseeker.com, VideoSeeker.

[61] International Computer Science Institute, http://www.icsi.berkeley.edu/ dpwe/isrintro,
ICSI Speech recognition software.

[62] M. Swain, “Searching for multimedia on the world wide web,” Tech. Rep. Tech.
Rep. CRL99/1, Cambridge Research Laboratory, 1999.

[63] ISO/IEC, ISO/IEC 11172-2:1993 : Information technology – Coding of moving
pictures and associated audio for digital storage media at up to about 1,5 Mbit/s
– Part 2:Video, Nov. 1992.

[64] RealNetworks, http://www.real.com/devzone/library/whitepapers/overview.html,
RealVideo Technical White Paper, Feb. 1997.

[65] S. Lawrence and C. Lee Giles, “Searching the world wide web,” Science, vol.
280, pp. 98–100, Apr. 1998.

[66] T. Cormen, C. Leiserson, and R. Riverst, Introduction to Algorithms, The MIT
Press, Cambridge, Massachusetts, 2nd edition, 2001.

[67] R. Sibson, “Slink: An optimally efficient algorithm for the single-link cluster
method,” The Computer Journal, vol. 16, no. 1, pp. 30–4, 1973.

[68] H.L. Royden, Real Analysis, Macmillan Publishing Company, 1988.

[69] P. Indyk, High-dimensional computational geometry, Ph.D. thesis, Stanford
University, 2000.

[70] J.R. Smith, Integrated Spatial and Feature Image Systems: Retrieval, Analysis
and Compression, Ph.D. thesis, Columbia University, 1997.

[71] M.J. Swain and D.H. Ballard, “Color indexing,” International Journal of
Computer Vision, vol. 7, no. 1, pp. 11–32, November 1991.

[72] MPEG-7 Requirements Group, “Description of mpeg-7 content set,” Tech.
Rep. N2467, ISO/IEC JTC1/SC29/WG11, 1998.

[73] A. Woronow, “Generating random numbers on a simplex,” Computers and
Geosciences, vol. 19, no. 1, pp. 81–88, 1993.

144

[74] G.R. Grimmett and D.R. Stirzaker, Probability and Random Processes, Oxford
Science Publications, 1992.

[75] P. Comon and G. Golub, “Tracking a few extreme singular values and vectors
in signal processing,” Proceedings of the IEEE, vol. 78, pp. 1327–1343, 1990.

[76] L. Cieplinski, S. Jeannin, M. Kim, and J.-R. Ohm, “Visual working draft 4.0,”
Tech. Rep. W3522, ISO/IEC JTC1/SC29/WG11, July 200.

[77] T. Gevers and A.W.M. Smeulders, “Image retrieval by multi-scale illumination
invariant indexing,” in Multimedia Information Analysis and Retrieval. IAPR
International Workshop, MINAR’98, Hong Kong, China, Aug. 1998, pp. 96–
108.

[78] M. Flicker et al., “Automatic and semiautomatic methods for image annotation
and retrieval in qbic,” in Proceedings of storage and retrieval for image and video
databases III. SPIE, Jan. 1995, vol. 2420, pp. 24–35.

[79] A. Girgensohn and J. Boreczky, “Time-constrained keyframe selection tech-
nique,” Multimedia Tools and Applications, vol. 11, pp. 347–358, 2000.

[80] B. Günsel, Y. Fu, and A.M. Tekalp, “Hierarchical temporal video segmentation
and content characterization,” in Proceedings of the SPIE – Multimedia Storage
and Archiving Systems II, Dallas, USA, 1997, vol. 3229, pp. 46–56.

[81] X. Sun, M.S. Kankanhalli, Y. Zhu, and J. Wu, “Content-based representative
frame extraction for digital video,” in IEEE Conference of Multimedia Com-
puting and Systems, Austin, USA, 1998, pp. 190–3.

[82] E. Sahouria and A. Zakhor, “Content analysis of video using principal com-
ponents,” in Proceedings 1998 International Conference on Image Processing,
volume 3, Chicago, IL, USA, Oct. 1998, pp. 541–5.

[83] M. R. Naphade, M.M. Yeung, and B.-L. Yeo, “A novel scheme for fast and
efficient video sequence matching using compact signatures,” in Proceedings of
SPIE – Storage and Retrieval for Media Databases 2000, San Jose, CA, January
2000, vol. 3972, pp. 564–572.

[84] M.A. Smith and T. Kanade, “Video skimming and characterization through
the combination of image and language understanding,” in Proceedings 1998
IEEE International Workshop on Content-Based Access of Image and Video
Database, Bombay, India, Jan. 1998, pp. 61–70.

[85] J.M. Gauch et al., “Real time video scene detection and classification,” Infor-
mation Processing & Management, vol. 35, no. 3, pp. 381–400, 1999.

145

[86] S.-F. Chang, W. Chen, and H. Sundaram, “VideoQ: a fully automated video
retrieval system using motion sketches,” in Proceedings Fourth IEEE Workshop
on Applications of Computer Vision, Princeton, New Jersey, Oct. 1998, pp.
270–1.

[87] S. Park, J.-S. Cho, and K.-H. Hyun, “Indexing technique for similarity matching
in large video databases,” in Proceedings of SPIE – Storage and Retrieval for
Media Databases 2002, San Jose, CA, January 2002, vol. 4676, pp. 214–22.

[88] E. Kushilevitz, R. Ostrovsky, and Y. Rabani, “Efficient search for approximate
nearest neighbor in high dimensional spaces,” in Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, May 1998, pp. 614–23.

[89] Jon M. Kleinberg, “Two algorithms for nearest-neighbor search in high dimen-
sions,” in Proceedings of the Twelveth Annual ACM Symposium on Theory of
Computing, May 1997, pp. 599–608.

[90] J. Barros et al., “Using the triangle inequality to reduce the number of compar-
isons required for similarity-based retrieval,” in Proceedings of SPIE – Storage
and Retrieval for Still Image and Video Databases, San Jose, CA, Feb 1996,
vol. 2670, pp. 392–403.

[91] G.R. Hjaltason and H. Samet, “Contractive embedding methods for similar-
ity searching in metric spaces,” Tech. Rep. CS-TR-4102, Computer Science
Department, University of Maryland, College Park, USA, Jan 2000.

[92] G. Hristescu and M. Farach-Colton, “Cofe: a scalable method for feature extrac-
tion from complex objects,” in Proceedings of Second International Conference
on Data Warehousing and Knowledge Discovery, DaWaK 2000, London, UK,
Sept 2000, pp. 358–71.

[93] P.M. Aoki, “Generalizing ”search” in generalized search trees,” in Proceedings
of the 14th International Conference on Data Engineering, Orlando, FL, Feb
1998, pp. 380–9.

[94] R. L. Scheaffer, W. Mendenhall III, and R. L. Ott, Elementary Survey Sampling,
Duxbury Press, fifth edition, 1996.

[95] P. S. Levy and S. Lemeshow, Sampling of Populations Methods and Applica-
tions, John Wiley & Sons, Inc., third edition, 1999.

[96] F. Aurenhammer, “Voronoi diagrams – a survey of a fundamental geometric
data structure,” Computing Surveys, vol. 23, no. 3, pp. 345–405, Sept. 1991.

[97] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval,
McGraw-Hill computer science series, 1983.

146

[98] NIST, http://trec.nist.gov, Text REtrieval Conference (TREC) Home page.

[99] E. M. Voorhees and D. Harman, “Overview of the seventh text retrieval confer-
ence (trec-7),” in Proceedings of the 7th Text Retrieval Conference (TREC-7),
November 1998.

[100] C. J. van Rijsbergen, Information retrieval, Butterworth & Co (Publishers)
Ltd, second edition, 1979.

[101] S. Deerwester, S.T. Dumas, G.W. Furnas, T.K. Landauer, and R. Harshman,
“Indexing by latent semantic analysis,” Journal of the American Society for
Information Science, vol. 41, no. 6, pp. 391–407, Sept. 1990.

[102] AltaVista, http://www.altavista.com, AltaVista Image, Audio and Video
search.

[103] Ditto.com, http://www.ditto.com.

[104] Scour Inc., http://www.scour.net, Scour.

[105] AltaVista Company, “Press release: Altavista extends multimedia search
capabilities with rich new content and web’s largest multimedia index,”
http://doc.altavista.com/company info/press/pr020700.html, February 2000.

[106] Inktomi Corp., “Inktomi webmap,” http://www2.inktomi.com/webmap, Jan-
uary 2000.

[107] S. Lawrence and L. Giles, “Accessibility and distribution of information on the
web,” Nature, vol. 400, pp. 107–9, July 1999.

[108] W. Cohen, H. Kautz, and D. McAllester, “Hardening soft information sources,”
in Knowledge Discovery and Data Mining, 2000, pp. 255–259.

[109] Alvaro E. Monge and Charles Elkan, “An efficient domain-independent algo-
rithm for detecting approximately duplicate database records,” in Proceedings
of SIGMOD WOrkshop on Research Issues on Data Mining and Knowledge
Discovery (DMKD’97), 1997.

[110] N. Shivakumar, Detecting Digital Copyright Violations on the Internet, Ph.D.
thesis, Stanford University, August 1999.

[111] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “Trawling the web
for emerging cyber-communities,” in Proceedings of the Eight International
World Wide Web Conference, May 1999, pp. 1481–93.

[112] A.Z. Broder et al., “Graph structure in the web,” in Proceedings of the Ninth
International World Wide Web Conference, May 2000.

147

[113] G.C. Langelaar, I. Setyawan, and R.L. Lagendijk, “Watermarking digital image
and video data. a state-of-the-art overview,” IEEE Signal Processing Magazine,
vol. 17, no. 5, pp. 20–46, Sept 2000.

[114] R.A. Fisher, “The user of multiple measurements in taxonomic problems,”
Ann. Eugenics, vol. 7, no. 2, pp. 111–132, 1936.

[115] F. Murtagh, “Comments on “parallel algorithms for hierarchical clustering
and cluster validity”,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 10, pp. 1056–8, Oct 1992.

[116] B.S. Everitt, Cluster Analysis, Halsted Press, third edition, 1993.

[117] S. Pettie and V. Ramachandran, “An optimal minimum spanning tree algo-
rithm,” in Proceedings 27th International Colloquium on Automata, Languages
and Programming, July 2000, vol. LNCS 1853, pp. 49–60.

[118] Bela Bollobas, Random Graphs, Academic Press, 1985.

[119] S.N. Bernstein, The Theory of Probabilities, Gastehizdat Publishing House,
1946.

