
Efficient Video Similarity Measurement with Video Signature

∗Sen-ching S. Cheung and Avideh Zakhor

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley, CA 94720 USA

email: {cheungsc avz}@eecs.berkeley.edu

Abstract

The proliferation of video content on the web makes similarity detection an indispensable tool in web

data management, searching, and navigation. In this paper, we propose a number of algorithms to

efficiently measure video similarity. We define video as a set of frames, which are represented as high

dimensional vectors in a feature space. Our goal is to measure Ideal Video Similarity (IVS), defined

as the percentage of clusters of similar frames shared between two video sequences. Since IVS is too

complex to be deployed in large database applications, we approximate it with Voronoi Video Similarity

(VVS), defined as the volume of the intersection between Voronoi Cells of similar clusters. We propose

a class of randomized algorithms to estimate VVS by first summarizing each video with a small set

of its sampled frames, called the Video Signature (ViSig), and then calculating the distances between

corresponding frames from the two ViSig’s. By generating samples with a probability distribution that

describes the video statistics, and ranking them based upon their likelihood of making an error in the

estimation, we show analytically that ViSig can provide an unbiased estimate of IVS. Experimental

results on a large dataset of web video and a set of MPEG-7 test sequences with artificially generated

similar versions are provided to demonstrate the retrieval performance of our proposed techniques.

1 Introduction

The amount of information on the world wide web has grown enormously since its creation in 1990. By

February 2000, the web had over one billion uniquely indexed pages and 30 million audio, video and

image links [1]. Since there is no central management on the web, duplication of content is inevitable.

A study done in 1998 estimated that about 46% of all the text documents on the web have at least one

∗The authors thank Professor A. Sinclair, Dr. W.-t. Tan, and anonymous reviewers for providing them with valuable

comments on this paper.

“near-duplicate” - document which is identical except for low level details such as formatting [2]. The

problem is likely to be more severe for web video clips as they are often stored in multiple locations,

compressed with different algorithms and bitrates to facilitate downloading and streaming. Similar

versions, in part or as a whole, of the same video can also be found on the web when some web users

modify and combine original content with their own productions. Identifying these similar contents is

beneficial to many web video applications:

• As users typically do not view beyond the first result screen from a search engine [3], it is

detrimental to have all “near-duplicate” entries cluttering the top retrievals. Rather, it is ad-

vantageous to group together similar entries before presenting the retrieval results to users.

• When a particular web video becomes unavailable or suffers from slow network transmission,

users can opt for a more accessible version among similar video content identified by the video

search engine.

• Similarity detection algorithms can also be used for content identification when conventional

techniques such as watermarking are not applicable. For example, multimedia content brokers

may use similarity detection to check for copyright violation as they have no right to insert

watermarks into original material.

One definition of a video similarity measure suitable for these applications is in terms of the percentage

of visually similar frames between two video sequences. This is the video similarity measure used in

this paper. An analogous measure, called the Tanimoto measure, is commonly used in comparing text

documents where the similarity is defined as the percentage of words common to the two documents [2,

4]. There are other similarity measures proposed in the literature and some of them are reviewed in

this paper. No matter which measure is used, the major challenge is how to efficiently perform

the measurement. As video is a complex data type, many of the proposed similarity measures are

computationally intensive. On the other hand, for every new video added to the database or a

query video presented by a user, similarity measurements need to be performed with possibly millions

of entries in the database. Thus, it is imperative to develop fast methods in computing similarity

measurements for database applications.

Finding visually similar content is the central theme in the area of Content-Based Information

Retrieval (CBIR). In the past decade, numerous algorithms have been proposed to identify visual

content similar in color, texture, shape, motion and many other attributes. These algorithms typically

2

identify a particular attribute of an image or a video shot as a high-dimensional feature vector. Visual

similarity between two feature vectors can then be measured by a metric defined on the feature vector

space. The basic premise of this process is that the visual content being analyzed is homogeneous in

the attribute of interest. Since a full-length video is typically a collection of video shots with vastly

different content, it must be modeled as a set or a time-series of feature vectors, usually with one

vector per video shot. When extending the similarity measurement to video, the first challenge is to

define a single measurement to gauge the similarity between two video sequences. Multiple proposals

can be found in the literature: in [5, 6, 7], warping distance is used to measure the temporal edit

differences between video sequences. Hausdorff distance is proposed in [8] to measure the maximal

dissimilarity between shots. Template matching of shot change duration is used by Indyk et al. [9] to

identify the overlap between video sequences. A common step shared by all the above schemes is to

match similar feature vectors between two video sequences. This usually requires searching through

part of or the entire video. The full computations of these measurements thus require the storage of

the entire video, and time complexity that is at least linear in the length of the video. Applying such

computations in finding similar contents within a database of millions of video sequences may be too

complex in practice.

On the other hand, the precise value of a similarity measurement is typically not required. As

feature vectors are idealistic models and do not entirely capture the process of how similarity is

judged in the human visual system [10], many CBIR applications only require an approximation of

the underlying similarity value. As such, it is unnecessary to maintain full fidelity of the feature vector

representations, and approximation schemes can be used to alleviate high computational complexity.

For example, in a video similarity search system, each video in the database can be first summarized

into a compact fixed-size representation. Then, the similarity between two video sequences can be

approximated by comparing their corresponding representations.

There are two types of summarization techniques for similarity approximation: the higher-order and

the first-order techniques. The higher-order techniques summarize all feature vectors in a video as a

statistical distribution. These techniques are useful in classification and semantic retrieval as they are

highly adaptive and robust against small perturbation. Nonetheless, they typically assume a restricted

form of density models such as Gaussian, or mixtures of Gaussian, and require computationally inten-

sive method like Expectation-Maximization for parameter estimation [11, 12, 13]. As a result, they

may not be applicable for matching the enormous amount of and extremely diverse video content on

3

the web. The first-order techniques summarize a video by a small set of representative feature vectors.

One approach is to compute the “optimal” representative vectors by minimizing the distance between

the original video and its representation. If the metric is finite-dimensional Euclidean and the distance

is the sum of squared metric, the well-known k-means method can be used [14]. For general metric

spaces, we can use the k-medoid method which identifies k feature vectors within the video to minimize

the distance [15, 8]. Both of these algorithms are iterative with each iteration running at O(l) time

for k-means, and O(l2) for k-medoids, where l represents the length of the video. To summarize long

video sequences such as feature-length movies or documentaries, such methods are clearly too complex

to be used in large databases.

In this paper, we propose a randomized first-order video summarization technique called the Video

Signature (ViSig) method. The ViSig method can be applied to any metric space. Unlike the k-

means or k-medoid methods, it is a single-pass O(l) algorithm in which each video is represented

by a set of “randomly” selected frames called the ViSig. In this paper, we show analytically and

experimentally that we can obtain a reliable estimate of the underlying video similarity by using a

very small ViSig to represent each video in the database. Based on a ground-truth set extracted from

a large database of web video clips, we show that the ViSig method is able to achieve almost the same

retrieval performance as the k-medoid of the same size, without the O(l2) complexity of k-medoid.

This paper is organized as follows: we describe the ViSig method and show a number of analytical

results in Section 2. Experimental results on a large dataset of web video and a set of MPEG-7

test sequences with simulated similar versions are used in Section 3 to demonstrate the retrieval

performance of our proposed algorithms. We conclude this paper in Section 4 by discussing related

research. The proofs for all the propositions can be found in the appendices. The following is a list of

acronyms and notations used in this paper:

Acronyms

NVS Näıve Video Similarity

IVS Ideal Video Similarity

VVS Voronoi Video Similarity

ViSig Video Signature

SV Seed Vector

VSSb Basic ViSig Similarity

PDF Probability Density Function

VG Voronoi Gap

VSSr Ranked ViSig Similarity

Notations

4

(F, d(·, ·)) Feature vector space F with metric d(·, ·)

x, y Video frames, represented as feature vectors

X,Y Video sequences, represented as sets of feature vec-

tors

ε Frame Similarity Threshold

1X Indicator function

|X| Cardinality of set X

nvs(X,Y ; ε) NVS between X and Y

[X]ε Collection of clusters in X

[X ∪ Y]ε Clustered union between X and Y

ivs(X,Y ; ε) IVS between X and Y

V (X) Voronoi Diagram of video X

VX(x) Voronoi Cell of x ∈ X

VX(C) Voronoi Cell of a cluster C ∈ [X]ε

gX(s) The frame in X closest to s

R(X,Y ; ε) Similar Voronoi Region

Vol(A) Volume of a region A

Prob(A) Probability of event A

vvs(X,Y ; ε) VVS between X and Y

−→
XS ViSig of X with respect to the SV set S

vssb(
−→
XS ,

−→
YS ; ε,m) VSSb between

−→
XS and

−→
YS

f(u;X ∪ Y) PDF that assigns equal probability to the

Voronoi Cell of each cluster in [X ∪ Y]ε

G(X,Y ; ε) VG between X and Y

Q(gX(s)) Ranking function for the ViSig frame gX(s)

vssr(
−→
XS ,

−→
YS ; ε,m) VSSr between

−→
XS and

−→
YS

dq(x, y), d
′
q(x, y) l1 and modified l1 color histogram dis-

tances

d(x, y), d′(x, y) Quadrant dq(x, y) and d′q(x, y)

ρ Dominant Color Threshold

rel(X) The set of video sequences that are subjectively

similar (relevant) to video X

ret(X, ε) The set of video sequences that are declared to

be similar to X by the ViSig method at ε level

Recall(ε) The recall in retrieving the ground-truth by the

ViSig method at ε level

Precision(ε) The precision in retrieving the ground-truth

by the ViSig method at ε level

2 Measuring Video Similarity

This section defines the video similarity models used in this paper, and describes how they can be

efficiently estimated by our proposed algorithms. We assume that individual frames in a video are

represented by high-dimensional feature vectors from a metric space (F, d(·, ·))1. In order to be robust

against editing changes in temporal domain, we define a video X as a finite set of feature vectors and

ignore any temporal ordering. For the remainder of this paper, we make no distinction between a

video frame and its corresponding feature vector. The metric d(x, y) measures the visual dissimilarity

between frames x and y. We assume that frames x and y are visually similar to each other if and only

if d(x, y) ≤ ε for an ε > 0 independent of x and y. We call ε the Frame Similarity Threshold.

In Section 2.1, we define our target measure, called the Ideal Video Similarity (IVS), used in this

1 For all x, y in a metric space F , the function d(x, y) is a metric if a) d(x, y) ≥ 0; b) d(x, y) = 0 ⇔ x = y; c)
d(x, y) = d(y, x); d) d(x, y) ≤ d(x, z) + d(z, y), for all z.

5

paper to gauge the visual similarity between two video sequences. As we explain in the section,

this similarity measure is complex to compute exactly, and requires a significant number of frames

to represent each video. An alternative form of video similarity, called VVS, is proposed in Section

2.2. This particular form of similarity leads directly to an efficient technique for representation and

estimation called the ViSig method which is described in Section 2.3. From Sections 2.4 through 2.7,

we analyze the scenarios where IVS cannot be reliably estimated by our proposed algorithm, and

propose a number of heuristics to rectify the problems.

2.1 Ideal Video Similarity (IVS)

As mentioned in Section 1, we are interested in defining a video similarity measure that is based on the

percentage of visually similar frames between two sequences. A naive way to compute such a measure

is to first find the total number of frames from each video sequence that have at least one visually

similar frame in the other sequence, and then compute the ratio of this number to the overall total

number of frames. We call this measure the Näıve Video Similarity (NVS):

Definition 2.1 Näıve Video Similarity
Let X and Y be two video sequences. The number of frames in video X that have at least one
visually similar frame in Y is represented by

∑

x∈X 1{y∈Y : d(x,y)≤ε}, where 1A is the indicator function
with 1A = 1 if A is not empty, and zero otherwise. The Näıve Video Similarity between X and Y ,
nvs(X,Y ; ε), can thus be defined as follows:

nvs(X,Y ; ε)
∆
=

∑

x∈X 1{y∈Y : d(x,y)≤ε} +
∑

y∈Y 1{x∈X: d(y,x)≤ε}

|X|+ |Y | , (1)

where | · | denotes the cardinality of a set, or in our case the number of frames in a given video.

If every frame in video X has a similar match in Y and vice versa, nvs(X,Y ; ε) = 1. If X and Y share

no similar frames at all, nvs(X,Y ; ε) = 0.

Unfortunately, NVS does not always reflect our intuition of video similarity. Most real-life video

sequences can be temporally separated into video shots, within which the frames are visually similar.

Among all possible versions of the same video, the number of frames in the same shot can be quite

different. For instance, different coding schemes modify the frame rates for different playback capa-

bilities, and video summarization algorithms use a single keyframe to represent an entire shot. As

NVS is based solely on frame counts, its value is highly sensitive to these kinds of manipulations. To

illustrate this with a pathological example, consider the following: given a video X, create a video

Y by repeating one single frame in X for a great many times. If |Y | À |X|, nvs(X,Y ; ε) ≈ 1 even

though X and Y share one common frame. It is possible to rectify the problem by using shots as the

6

fundamental unit for similarity measurement. Since we model a video as a set and ignore all temporal

ordering, we instead group all visually similar frames in a video together into non-intersecting units

called clusters.

A cluster should ideally contain only similar frames, and no other frames similar to the frames in a

cluster should be found in the rest of the video. Mathematically, we can express these two properties

as follows: for all pairs of frames xi and xj in X, d(xi, xj) ≤ ε if and only if xi and xj belong to

the same cluster. Unfortunately, such a clustering structure may not exist for an arbitrary video X.

Specifically, if d(xi, xj) ≤ ε and d(xj , xk) ≤ ε, there is no guarantee that d(xi, xk) ≤ ε. If d(xi, xk) > ε,

there is no consistent way to group all the three frames into clusters.

In order to arrive at a general framework for video similarity, we adopt a relatively relaxed clustering

structure by only requiring the forward condition, i.e. d(xi, xj) ≤ ε implies that xi and xj are in the

same cluster. A cluster is simply one of the connected components [16, ch.5] of a graph in which each

node represents a frame in the video, and every pair of frames within ε from each other are connected

by an edge. We denote the collection of all clusters in videoX as [X]ε. It is possible for such a definition

to produce chain-like clusters where one end of a cluster is very far from the other end. Nonetheless,

given an appropriate feature vector and a reasonably small ε, we have empirically found most clusters

in real video sequences to be compact, i.e. all frames in a cluster are similar to each other. We call

a cluster ε-compact if all its frames are within ε from each other. The clustering structure of a video

can be computed by a simple hierarchical clustering algorithm called the single-link algorithm [17].

In order to define a similarity measure based on the visually similar portion shared between two

video sequences X and Y , we consider the clustered union [X ∪ Y]ε. If a cluster in [X ∪ Y]ε contains

frames from both sequences, these frames are likely to be visually similar to each other. Thus, we

call such a cluster Similar Cluster and consider it as part of the visually similar portion. The ratio

between the number of Similar Clusters and the total number of clusters in [X∪Y]ε forms a reasonable

similarity measure between X and Y . We call this measure the Ideal Video Similarity (IVS):

Definition 2.2 Ideal Video Similarity, IVS
Let X and Y be two video sequences. The IVS between X and Y , or ivs(X,Y ; ε), is defined to be
the fraction of clusters in [X ∪ Y]ε that contain frames from both sequences, i.e. C ∈ [X ∪ Y]ε with
1C∩X · 1C∩Y = 1. Specifically, ivs(X,Y ; ε) can be expressed by the following equation:

ivs(X,Y ; ε)
∆
=

∑

C∈[X∪Y]ε
1C∩X · 1C∩Y

|[X ∪ Y]ε|
(2)

7

The main theme of this paper is to develop efficient algorithms to estimate the IVS between a pair of

video sequences. A simple pictorial example to demonstrate the use of IVS is shown in Figure 1(a).

The feature space is represented as a 2D square. Dots and crosses signify frames from two different

video sequences, and frames closer than ε are connected by dotted lines. There are altogether three

clusters in the clustered union, and only one cluster has frames from both sequences. The IVS is thus

1/3.

It is complex to precisely compute the IVS. The clustering used in IVS depends on the distances

between frames from the two sequences. This implies that for two l-frame video sequences, one needs

to first compute the distance between l2 pairs of frames before running the clustering algorithm and

computing the IVS. In addition, the computation requires the entire video to be stored. The complex

computation and large storage requirements are clearly undesirable for large database applications.

As the exact similarity value is often not required in many applications, sampling techniques can be

used to estimate IVS. Consider the following simple sampling scheme: let each video sequence in the

database be represented by m randomly selected frames. We estimate the IVS between two sequences

by counting the number of similar pairs of frames Wm between their respective sets of sampled frames.

As long as the desired level of precision is satisfied, m should be chosen as small as possible to achieve

low complexity. Nonetheless, even in the case when the IVS is as large as one, we show in the following

proposition that we need a large m to find even one pair of similar frames among the sampled frames.

Proposition 2.1 Let X and Y be two l-frame video sequences. Assume for every frame x in X, Y
has exactly one frame y similar to it, i.e. d(x, y) ≤ ε. We also assume the same for every frame in
Y . Clearly, ivs(X,Y ; ε) = 1. The expectation of the number of similar frame pairs Wm found between
m randomly selected frames from X and from Y is given below:

E(Wm) =
m2

l
. (3)

Despite the fact that the IVS between the video sequences is one, Equation (3) shows that we need, on

average, m =
√
l sample frames from each video to find just one similar pair. Furthermore, comparing

two sets of
√
l frames requires l high-dimensional metric computations. A better random sampling

scheme should use a fixed-size record to represent each video, and require far fewer frames to identify

highly similar video sequences. Our proposed ViSig method is precisely such a scheme and is the topic

of the following section.

8

2.2 Voronoi Video Similarity

As described in the previous section, the simple sampling scheme requires a large number of frames

sampled from each video to estimate IVS. The problem lies in the fact that since we sample frames from

two video sequences independently, the probability that we simultaneously sample a pair of similar

frames from them is rather small. Rather than independent sampling, the ViSig method introduces

dependence by selecting frames in each video that are similar to a set of predefined random feature

vectors common to all video sequences. As a result, the ViSig method takes far fewer sampled frames

to find a pair of similar frames from two video sequences. The number of pairs of similar frames

found by the ViSig method depends strongly on the IVS, but does not have a one-to-one relationship

with it. We call the form of similarity estimated by the ViSig method the Voronoi Video Similarity

(VVS). In this section, we explain VVS and in Section 2.3, we discuss how it is estimated by the ViSig

method. The discrepancies between VVS and IVS, and how they can be rectified by modifying the

ViSig method are addressed in Sections 2.4 and 2.5.

The term “Voronoi” in VVS is borrowed from a geometrical concept called the Voronoi Diagram.

Given a l-frame video X = {xt : t = 1, . . . , l}, the Voronoi Diagram V (X) of X is a partition of

the feature space F into l Voronoi Cells VX(xt). By definition, the Voronoi Cell VX(xt) contains

all the vectors in F closer to xt ∈ X than to any other frames in X, i.e. VX(xt)
∆
= {s ∈ F :

gX(s) = xt and xt ∈ X}, where gX(s) denotes the frame in X closest2 to s. A simple Voronoi Diagram

of a 3-frame video is shown in Figure 1(b). We can extend the idea of the Voronoi Diagram to video

clusters by merging Voronoi Cells of all the frames belonging to the same cluster. In other words,

for C ∈ [X]ε, VX(C)
∆
=
⋃

x∈C VX(x). Given two video sequences X and Y and their corresponding

Voronoi Diagrams, we define the Similar Voronoi Region R(X,Y ; ε) as the union of all the intersection

between the Voronoi Cells of those x ∈ X and y ∈ Y where d(x, y) ≤ ε:

R(X,Y ; ε)
∆
=

⋃

d(x,y)≤ε

VX(x) ∩ VY (y). (4)

It is easy to see that if x and y are close to each other, their corresponding Voronoi Cells are very

likely to intersect in the neighborhood of x and y. The larger number of frames from X and from Y

2 If there are multiple x’s in X that are equidistant to s, we choose gX(s) to be the one closest to a predefined vector
in the feature space such as the origin. If there are still multiple candidates, more predefined vectors can be used until
a unique gX(s) is obtained. Such an assignment strategy ensures that gX(s) depends only on X and s but not some
arbitrary random choices. This is important to the ViSig method which uses gX(s) as part of a summary of X with
respect to a randomly selected s. Since gX(s) depends only on X and s, sequences identical to X produce the same
summary frame with respect to s.

9

that are close to each other, the larger the resulting R(X,Y ; ε) becomes. A simple pictorial example of

two video sequences with their Voronoi Diagrams is shown in Figure 1(c): dots and crosses represent

the frames of the two sequences; the solid and broken lines are the boundary between the two Voronoi

Cells of the two sequences represented by dots and crosses respectively. The shaded region shows

the Similar Voronoi Region between these two sequences. Similar Voronoi Region is the target region

whose volume defines VVS. Before providing a definition of VVS, we need to first clarify what we

mean by the volume of a region in the feature space.

We define volume function Vol : Ω → R to be the Lebesgue measure over the set, Ω, of all the

measurable subsets in feature space F [18]. For example, if F is the real line and the subset is an

interval, the volume function of the subset is just the length of the interval. We assume all the Voronoi

Cells considered in our examples to be measurable. We further assume that F is compact in the sense

that Vol(F) is finite. As we are going to normalize all volume measurements by Vol(F), we simply

assume that Vol(F) = 1. To compute the volume of the Similar Voronoi Region R(X,Y ; ε) between

two video sequences X and Y , we first notice that individual terms inside the union in Equation (4)

are disjoint from each other. By the basic properties of Lebesgue measure, we have

Vol(R(X,Y ; ε)) = Vol(
⋃

d(x,y)≤ε

VX(x) ∩ VY (y)) =
∑

d(x,y)≤ε

Vol(VX(x) ∩ VY (y)).

Thus, we define the VVS, vvs(X,Y ; ε), between two video sequences X and Y as,

vvs(X,Y ; ε)
∆
=

∑

d(x,y)≤ε

Vol(VX(x) ∩ VY (y)) (5)

The VVS of the two sequences shown in Figure 1(c) is the area of the shaded region, which is about

1/3 of the area of the entire feature space. Notice that for this example, the IVS is also 1/3. VVS

and IVS are close to each other because the Voronoi Cell for each cluster in the cluster union has

roughly the same volume (area). In general, when the clusters are not uniformly distributed over the

feature space, there can be a large variation among the volumes of the corresponding Voronoi Cells.

Consequently, VVS can be quite different from IVS. In the following section, we ignore the differences

between VVS and IVS and introduce the Basic ViSig method to estimate either similarity measure.

2.3 Video Signature Method

It is straightforward to estimate vvs(X,Y ; ε) by random sampling: First, generate a set S of m

independent uniformly distributed random vectors s1, . . . , sm, which we call Seed Vectors (SV). By

10

uniform distribution, we mean for every measurable subset A in F , the probability of generating a

vector from A is Vol(A). Second, for each random vector s ∈ S, determine if s is inside R(X,Y ; ε). By

definition, s is inside R(X,Y ; ε) if and only if s belongs to some Voronoi Cells VX(x) and VY (y) with

d(x, y) ≤ ε. Since smust be inside the Voronoi Cell of the frame closest to s in the entire video sequence,

i.e. gX(s) in X and gY (s) in Y , an equivalent condition for s ∈ R(X,Y ; ε) is d(gX(s), gY (s)) ≤ ε. Since

we only require gX(s) and gY (s) to determine if each SV s belongs to R(X,Y ; ε), we can summarize

video X by the m-tuple
−→
XS

∆
= (gX(s1), . . . , gX(sm)) and Y by

−→
YS . We call

−→
XS and

−→
YS the Video

Signature (ViSig) with respect to S of video sequences X and Y respectively. In the final step, we

compute the percentage of ViSig frame pairs gX(s) and gY (s) with distances less than or equal to ε

to obtain:

vssb(
−→
XS ,
−→
YS ; ε,m)

∆
=

m
∑

i=1

1{d(gX(si),gY (si))≤ε}

m
. (6)

We call vssb(
−→
XS ,
−→
YS ; ε,m) the Basic ViSig Similarity (VSSb) between ViSig’s

−→
XS and

−→
YS . As every SV

s ∈ S in the above algorithm is chosen to be uniformly distributed, the probability of s being inside

R(X,Y ; ε) is Vol(R(X,Y ; ε)) = vvs(X,Y ; ε). Thus, vssb(
−→
XS ,
−→
YS ; ε,m) forms an unbiased estimator of

the VVS between X and Y . We refer to this approach of generating ViSig and computing VSSb the

Basic ViSig method. In order to apply the Basic ViSig method to a large number of video sequences,

we must use the same SV set S to generate all the ViSig’s in order to compute VSSb between an

arbitrary pair of video sequences.

The number of SV’s in S, m, is an important parameter. On one hand, m represents the number

of samples used to estimate the underlying VVS and thus, the larger m is, the more accurate the

estimation becomes. On the other hand, the complexity of the Basic ViSig method directly depends

on m. If a video has l frames, it takes l metric computations to generate a single ViSig frame. The

number of metric computations required to compute the entire ViSig is thus m · l. Also, computing the

VSSb between two ViSig’s requires m metric computations. It is, therefore, important to determine an

appropriate value of m that can satisfy both the desired fidelity of estimation and the computational

resource of a particular application. The following proposition provides an analytical bound on m in

terms of the maximum error in estimating the VVS between any pair of video sequences in a database:

Proposition 2.2 Assume we are given a database Λ with n video sequences and a set S of m random
SV’s. Define the error probability Perr(m) to be the probability that any pair of video sequences in Λ

11

has their m-frame VSSb different from the true VVS value by more than a given γ ∈ (0, 1], i.e.

Perr(m)
∆
= Prob

(

⋃

X,Y ∈Λ

{|vvs(X,Y ; ε)− vssb(
−→
XS ,
−→
YS ; ε,m)| > γ}

)

(7)

A sufficient condition to achieve Perr(m) ≤ δ for a given δ ∈ (0, 1] is as follows:

m ≥ 2 lnn− ln δ

2γ2
(8)

It should be noted that the bound (8) in Proposition 2.2 only provides a sufficient condition and

does not necessarily represent the tightest bound possible. Nonetheless, we can use such a bound to

understand the dependencies of m on various factors. First, unlike the random sampling described

in Section 2.1, m does not depend on the length of individual video sequences. This implies that it

takes far fewer frames for the ViSig method to estimate the similarity between long video sequences

than random frame sampling. Second, we notice that the bound on m increases with the natural

logarithm of n, the size of the database. The ViSig size depends on n because it has to be large

enough to simultaneously minimize the error of all possible pairs of comparisons, which is a function

of n. Fortunately, the slow-growing logarithm makes the ViSig size rather insensitive to the database

size, making it suitable for very large databases. The contribution of the term ln δ is also quite

insignificant. Comparatively, m is most sensitive to the choice of γ. A small γ means an accurate

approximation of the similarity, but usually at the expense of a large number of sample frames m to

represent each video. The choice of γ should depend on the particular application at hand.

2.4 Seed Vector Generation

We have shown in the previous section that the VVS between two video sequences can be efficiently

estimated by the Basic ViSig method. Unfortunately, the estimated VVS does not necessarily reflect

the target measure of IVS as defined in Equation (2). For example, consider the two pairs of sequences

in Figure 2(a) and Figure 2(b). As in Figure 1(c), dots and crosses are frames from the two sequences,

whose Voronoi Diagrams are indicated by solid and broken lines respectively. The IVS’s in both cases

are 1/3. Nonetheless, the VVS in Figure 2(a) is much smaller than 1/3, while that of Figure 2(b) is

much larger. Intuitively, as mentioned in Section 2.2, IVS and VVS are the same if clusters in the

clustered union are uniformly distributed in the feature space. In the above examples, all the clusters

are clumped in one small area of the feature space, making one Voronoi Cell significantly larger than

the other. If the Similar Cluster happens to reside in the smaller Voronoi Cells, as in the case of

12

Figure 2(a), the VVS is smaller than the IVS. On the other hand, if the Similar Cluster is in the larger

Voronoi Cell, the VVS becomes larger. This discrepancy between IVS and VVS implies that VSSb,

which is an unbiased estimator of VVS, can only be used as an estimator of IVS when IVS and VVS

is close. Our goal in this section and the next is to modify the Basic ViSig method so that we can still

use this method to estimate IVS even in the case when VVS and IVS are different.

As the Basic ViSig method estimates IVS based on uniformly-distributed SV’s, the variation in the

sizes of Voronoi Cells affects the accuracy of the estimation. One possible method to amend the Basic

ViSig method is to generate SV’s based on a probability distribution such that the probability of a

SV being in a Voronoi Cell is independent of the size of the Cell. Specifically, for two video sequences

X and Y , we can define the Probability Density Function (PDF) based on the distribution of Voronoi

Cells in [X ∪ Y]ε at an arbitrary feature vector u as follows:

f(u;X ∪ Y)
∆
=

1

|[X ∪ Y]ε|
· 1

Vol(VX∪Y (C))
(9)

where C is the cluster in [X ∪Y]ε with u ∈ VX∪Y (C). f(u;X ∪Y) is constant within the Voronoi Cell

of each cluster, with the value inversely proportional to the volume of that Cell. Under this PDF, the

probability of a random vector u inside the Voronoi Cell VX∪Y (C) for an arbitrary cluster C ∈ [X∪Y]ε

is given by
∫

VX∪Y (C)
f(u;X ∪ Y) du = 1/|[X ∪ Y]ε|. This probability does not depend on C, and thus,

it is equally likely for u to be inside the Voronoi Cell of any cluster in [X ∪ Y]ε.

Recall that if we use uniform distribution to generate random SV’s, VSSb forms an unbiased estimate

of the VVS defined in Equation (5). If we use f(u;X∪Y) to generate SV’s instead, VSSb now becomes

an estimate of the following general form of VVS:
∑

d(x,y)≤ε

∫

VX(x)∩VY (y)
f(u;X ∪ Y) du. (10)

Equation (10) reduces to Equation (5) when f(u;X ∪ Y) is replaced by the uniform distribution, i.e.

f(u;X ∪ Y) = 1. It turns out, as shown by the following proposition, that this general form of VVS

is equivalent to the IVS under certain conditions.

Proposition 2.3 Assume we are given two video sequences X and Y . Assume clusters in [X]ε and

clusters in [Y]ε either are identical, or share no frames that are within ε from each other. Then, the

following relation holds:

ivs(X,Y ; ε) =
∑

d(x,y)≤ε

∫

VX(x)∩VY (y)
f(u;X ∪ Y) du. (11)

13

The significance of this proposition is that if we can generate SV’s with f(u;X ∪ Y), it is possible to

estimate IVS using VSSb. The condition that all clusters in X are Y are either identical or far away

from each other is to avoid the formation of a special region in the feature space called a Voronoi Gap

(VG). The concept of VG is expounded in Section2.5.

In practice, it is impossible to use f(u;X ∪ Y) to estimate the IVS between X and Y . This is

because f(u;X ∪ Y) is specific to the two video sequences being compared, while the Basic ViSig

method requires the same set of SV’s to be used by all video sequences in the database. A heuristic

approach for SV generation is to first select a set Ψ of training video sequences that resemble video

sequences in the target database. Denote T
∆
=
⋃

Z∈Ψ Z. We can then generate SV based on the

PDF f(u;T), which ideally resembles the target f(u;X ∪ Y) for an arbitrary pair of X and Y in the

database.

To generate a random SV s based on f(u;T), we follow a four-step algorithm, called the SV

Generation method, as follows:

1. Given a particular value of εsv, identify all the clusters in [T]εsv using the single-link algorithm.

2. As f(u;T) assigns equal probability to the Voronoi Cell of each cluster in [T]εsv , randomly select

a cluster C ′ from [T]εsv so that we can generate the SV s within VT (C
′).

3. As f(u;T) is constant over VT (C
′), we should ideally generate s as a uniformly-distributed

random vector over VT (C
′). Unless VT (C

′) can be easily parameterized, the only way to achieve

this is to repeatedly generate uniform sample vectors over the entire feature space until a vector

is found inside VT (C
′). This procedure may take an exceedingly long time if VT (C

′) is small. To

simplify the generation, we select one of the frames in C ′ at random and output it as the next

SV s.

4. Repeat the above process until the required number of SV’s has been selected.

In Section 3, we compare performance of this algorithm against uniformly distributed SV generation

in retrieving real video sequences.

2.5 Voronoi Gap

We show in Proposition 2.3 that the general form of VVS using an appropriate PDF is identical to

the IVS, provided that all clusters between the two sequences are either identical or far away from

each other. As feature vectors are not perfect in modeling human visual system, visually similar

14

clusters may result in feature vectors that are close but not identical to each other. Let us consider

the example in Figure 2(c) where frames in Similar Clusters between two video sequences are not

identical but within ε from each other. Clearly, the IVS is one. Consider the Voronoi Diagrams of

the two sequences. Since the boundaries of the two Voronoi Diagrams do not exactly coincide with

each other, the Similar Voronoi Region, as indicated by the shaded area, does not occupy the entire

feature space. As the general form of VVS defined in Equation (10) is the weighted volume of the

Similar Voronoi Region, it is strictly less than the IVS. The difference between the two similarities is

due to the unshaded region in Figure 2(c). The larger the unshaded region is, the larger the difference

between the two similarities. If a SV s falls within the unshaded region in Figure 2(c), we can make

two observations about the corresponding ViSig frames gX(s) and gY (s) from the two sequences X and

Y : (1) they are far apart from each other, i.e. d(gX(s), gY (s)) > ε; (2) they both have similar frames in

the other video, i.e. there exists x ∈ X and y ∈ Y such that d(x, gY (s)) ≤ ε and d(y, gX(s)) ≤ ε. These

observations define a unique characteristic of a particular region, which we refer to as Voronoi Gap

(VG). Intuitively, any SV in VG between two sequences produces a pair of dissimilar ViSig frames,

even though both ViSig frames have a similar match in the other video. More formally, we define VG

as follows:

Definition 2.3 Voronoi Gap (VG)
Let X and Y be two video sequences. The VG G(X,Y ; ε) of X and Y is defined by all s ∈ F that
satisfy the following criteria:

1. d(gX(s), gY (s)) > ε,

2. there exists x ∈ X such that d(x, gY (s)) ≤ ε,

3. there exists y ∈ Y such that d(y, gX(s)) ≤ ε.

In section 2.6, we show that the volume of VG is non-trivial by computing its volume for a particular

feature space, namely the Hamming Cube. This implies that it is quite possible to find some of the

SV’s used in the Basic ViSig method to fall inside the VG. As a result, the performance of the Basic

ViSig method in estimating IVS may be adversely affected. In section 2.7, we introduce the Ranked

ViSig method, which mitigates this problem by avoiding SV’s that are likely to be inside a VG.

2.6 Voronoi Gap in Hamming Cube

The example in Figure 2(c) seems to suggest that VG is small if ε is small. An important question is

how small ε should be before we can ignore the contribution of the VG. It is obvious that the precise

15

value of the volume of a VG depends on the frame distributions of the two video sequences, and the

geometry of the feature space. It is, in general, difficult to compute even a bound on this volume

without assuming a particular feature space geometry and frame distributions. In order to get a rough

idea of how large VG is, we compute a simple example using a h-dimensional hamming cube. A

hamming cube is the set containing all the h-bit binary numbers. The distance between two vectors is

simply the number of bit-flips to change the binary representation of one vector to the other. Since it

is a finite space, the volume function is simply the cardinality of the subset divided by 2h. We choose

the hamming cube because it is easy to analyze, and some commonly used metrics such as l1 and l2

can be embedded inside the hamming cube with low distortion [19].

To simplify the calculations, we only consider two-frame video sequences in the h-dimensional

hamming cube H. Let X = {x1, x2} be a video in H. Let the distance between x1 and x2 be a

positive integer k. We assume the two frames in X are not similar, i.e. the distance between them is

much larger than ε. In particular, we assume that k > 2ε. We want to compute the “gap volume”, i.e.

the probability of choosing a SV s that is inside the VG formed between X and some video sequence

in H. Based on the definition of VG, if a two-frame video sequence Y has a non-empty VG with X,

Y must have a frame similar to each frame in X. In other words, the IVS between X and Y must be

one. Let Γ be the set of all two-frame sequences whose IVS with X is one. The gap volume is thus

the volume of the union of the VG formed between X and each video in Γ. As shown by the following

proposition, this gap probability can be calculated using the binomial distribution.

Proposition 2.4 Let X = {x1, x2} be a two-frame video in the Hamming cube H, and Γ be the set of

all two-frame sequences whose IVS with X is one. Define A to be the union of the VG formed between

X and every video in Γ, i.e.

A
∆
=
⋃

Y ∈Γ

G(X,Y ; ε).

Then, if k = d(x1, x2) is an even number larger than 2ε, the volume of A can be computed as follows:

Vol(A) = Prob(k/2− ε ≤ R < k/2 + ε)

=
1

2k

k/2+ε−1
∑

r=k/2−ε

(

k

r

)

(12)

where R is a random variable that follows a binomial distribution with parameters k and 1/2.

We compute Vol(A) numerically by using the right hand side of Equation (12). The resulting plot of

Vol(A) versus the distance k between the frames in X for ε = 1, 5, 10 is shown in Figure 3(a). Vol(A)

16

decreases as k increases and as ε decreases, but it is hardly insignificant even when k is substantially

larger than ε. For example, at k = 500 and ε = 5, Vol(A) ≈ 0.34. It is unclear whether the same

phenomenon occurs for other feature spaces. Nonetheless, rather than assuming that all VG’s are

insignificant and using any random SV, intuitively it makes sense to identify those SV’s that are inside

the VG, and discard them when we estimate the corresponding video similarity.

2.7 Ranked ViSig Method

Consider again the example in Figure 2(c). Assume that we generatem random SV’s to compute VSSb.

If n out of m SV’s are inside the unshaded VG, we can reject these n SV’s and use the remaining

(m − n) SV’s for the computation. The resulting VSSb becomes one which exactly matches the IVS

in this example. The only caveat in this approach is that we need an efficient algorithm to determine

whether a SV is inside the VG. Direct application of Definition 2.3 is not very practical, because

conditions (2) and (3) in the definition require computing the distances between a ViSig frame of one

video and all the frames in the other video. Not only does the time complexity of comparing two

ViSig’s is significantly larger than the VSSb, it defeats the very purpose of using a compact ViSig to

represent a video. A more efficient algorithm is thus needed to identify if a SV is inside the VG.

In this section, we propose an algorithm, applied after generating the ViSig, that can identify those

SV’s which are more likely to be inside the VG. In Figure 2(c), we observe that the two sequences

have a pair of dissimilar frames that are roughly equidistant from an arbitrary vector s in the VG: x

and gX(s) in the “dot” sequence, and y and gY (s) in the “cross” sequence. They are not similar as

both d(x, gX(s)) and d(y, gY (s)) are clearly larger than ε. Intuitively, since vectors such as s inside

the VG are close to the boundaries between Voronoi Cells in both sequences, it is not surprising to

find dissimilar frames such as x and gX(s) that are on either side of the boundaries to be roughly

equidistant to s. This “equidistant” condition is refined in the following proposition to upper-bound

the difference between distance of s and x, and distance of s and gX(s) by 2ε:

Proposition 2.5 Let X and Y be two video sequences. Assume all clusters in [X∪Y]ε are ε-compact.
If a SV s ∈ G(X,Y ; ε), there exists a frame x ∈ X such that

1. x is not similar to gX(s), the ViSig frame in X with respect to s, i.e. d(x, gX(s)) > ε.

2. x and gX(s) are roughly equidistant to s. Specifically, d(x, s)− d(gX(s), s) ≤ 2ε.

Similarly, we can find a y ∈ Y that share the same properties with gY (s).

17

The significance of Proposition 2.5 is that it provides a test for determining whether a SV s can ever

be inside the VG between a particular video X and any other arbitrary sequence. Specifically, if there

are no frames x in X such that x is dissimilar to gX(s) and d(x, s) is within 2ε from d(s, gX(s)), we

can guarantee that s will never be inside the VG formed between X and any other sequence. The

condition that all Similar Clusters must be ε-compact is to avoid pathological chain-like clusters as

discussed in Section 2.1. Such an assumption is not unrealistic for real-life video sequences.

To apply Proposition 2.5 in practice, we first define a Ranking Function Q(·) for the ViSig frame

gX(s),

Q(gX(s))
∆
= min

x∈X, d(x,gX(s))>ε
d(x, s)− d(gX(s), s). (13)

An example of Q() as a function of a 2-D SV s is shown as a contour plot in Figure 3(b). The three

crosses represent the frames of a video. Lighter color regions correspond to the area with larger Q()

values, and thus farther away from the boundaries between Voronoi Cells. By Proposition 2.5, if

Q(gX(s)) > 2ε, s cannot be inside the VG formed between X and any other sequence. In practice,

however, this condition might be too restrictive in that it might not allow us to find any SV. Recall

that Proposition 2.5 only provides a sufficient and not a necessary condition for a SV to be inside VG.

Thus, even if Q(gX(s)) ≤ 2ε, it does not necessarily imply that s will be inside the VG between X

and any particular sequence.

Intuitively, in order to minimize the chances of being inside any VG, it makes sense to use a SV s

with as large of a Q(gX(s)) value as possible. As a result, rather than using only the ViSig frames

with Q(gX(s)) > 2ε, we generate a large number of ViSig frames for each ViSig, and use the few ViSig

frames with the largest Q(gX(s)) for similarity measurements. Let m′ > m be the number of frames

in each ViSig. After we generate the ViSig
−→
XS by using a set S of m′ SV’s, we compute and rank

Q(gX(s)) for all gX(s) in
−→
XS . Analogous to VSSb defined in Equation (6), we define the Ranked ViSig

Similarity (VSSr) between two ViSig’s
−→
XS and

−→
YS based on their top-ranked ViSig frames:

vssr(
−→
XS ,
−→
YS ; ε,m)

∆
=

1

m
(

m/2
∑

i=1

1{d(gX(sj[i]),gY (sj[i]))≤ε} +

m/2
∑

i=1

1{d(gX(sk[i]),gY (sk[i]))≤ε}) (14)

j[1], . . . , j[m′] and k[1], . . . , k[m′]’s denote the rankings of the ViSig frames in
−→
XS and

−→
YS respectively,

i.e. Q(gX(sj[1])) ≥ . . . ≥ Q(gX(sj[m′])) and Q(gY (sk[1])) ≥ . . . ≥ Q(gY (sk[m′])). We call this method

of generating ViSig and computing VSSr the Ranked ViSig method. Notice that the right hand side

18

of Equation (14), the first term uses the top-ranked m/2 ViSig frames from
−→
XS to compare with the

corresponding ViSig frames in
−→
YS , and the second term uses the top-ranked m/2 frames from

−→
YS .

Computing VSSr thus requires m metric computations, the same as computing VSSb. This provides

an equal footing in complexity to compare the retrieval performances between these two methods in

Section 3.

3 Experimental Results

In this section, we present experimental results to demonstrate the performance of the ViSig method.

All experiments use color histograms as video frame features described in more detail in Section 3.1.

Two sets of experiments are performed. Results of a number of controlled simulations are presented

in Section 3.2 to demonstrate the heuristics proposed in Section 2. In Section 3.3, we apply the ViSig

method to a large set of real-life web video sequences.

3.1 Image Feature

In our experiments, we use four 178-bin color histograms on the Hue-Saturation-Value (HSV) color

space to represent each individual frame in a video. Color histogram is one of the most commonly

used image features in content-based retrieval system. The quantization of the color space used in the

histogram is shown in Figure 4. This quantization is similar to the one used in [20]. The saturation

(radial) dimension is uniformly quantized into 3.5 bins, with the half bin at the origin. The hue

(angular) dimension is uniformly quantized at 20◦-step size, resulting in 18 sectors. The quantization

for the value dimension depends on the saturation value. For those colors with the saturation values

near zero, a finer quantizer of 16 bins is used to better differentiate between gray-scale colors. For the

rest of the color space, the value dimension is uniformly quantized into three bins. The histogram is

normalized such that the sum of all the bins equals one. In order to incorporate spatial information

into the image feature, the image is partitioned into four quadrants, with each quadrant having its

own color histogram. As a result, the total dimension of a single feature vector becomes 712.

We use two distance measurements in comparing color histograms: the l1 metric and a modified

version of the l1 distance with dominant color first removed. The l1 metric on color histogram was

first used in [21] for image retrieval. It is defined by the sum of the absolute difference between each

bin of the two histograms. We denote the l1 metric between two feature vectors x and y as d(x, y),

19

with its precise definition stated below:

d(x, y)
∆
=

4
∑

i=1

dq(xi, yi) where dq(xi, yi)
∆
=
178
∑

j=1

|xi[j]− yi[j]| (15)

where xi and yi for i ∈ {1, 2, 3, 4} represent the quadrant color histograms from the two image feature

vectors. A small d() value usually indicates visual similarity, except when two images share the same

background color. In those cases, the metric d() does not correctly reflect the differences in the

foreground as it is overwhelmed by the dominant background color. Such scenarios are quite common

among the videos found on the web. Examples include those video sequences composed of presentation

slides or graphical plots in scientific experiments. To mitigate this problem, we develop a new distance

measurement which first removes the dominant color, then computes the l1 metric for the rest of the

color bins, and finally re-normalizes the result to the proper dynamic range. Specifically, this new

distance measurement d′(x, y) between two feature vectors x and y can be defined as follows:

d′(x, y)
∆
=

4
∑

i=1

d′q(xi, yi)

where d′q(xi, yi)
∆
=

2
2−xi[c]−yi[c]

178
∑

j=1,j 6=c

|xi[j]− yi[j]| if xi[c] > ρ and yi[c] > ρ

178
∑

j=1

|xi[j]− yi[j]| otherwise.

(16)

In Equation (16), the dominant color is defined to be the color c with bin value exceeding the Dominant

Color Threshold ρ. ρ has to be larger than or equal to 0.5 to guarantee a single dominant color. We

set ρ = 0.5 in our experiments. When the two feature vectors share no common dominant color, d′()

reduces to d().

Notice that the modified l1 distance d
′() is not a metric. Specifically, it does not satisfy the triangle

inequality. Thus, it cannot be directly applied to measuring video similarity. The l1 metric d() is used

in most of the experiments described in Sections 3.2 and 3.3. We only use d′() as a post-processing

step to improve the retrieval performance in Section 3.3. The process is as follows: first, given a query

video X, we declare a video Y in a large database to be similar to X if the VSS, either the Basic or

Ranked version, between the corresponding ViSig
−→
XS and

−→
YS exceeds a certain threshold λ. The l1

metric d() is first used in computing all the VSS’s. Denote the set of all similar video sequences Y

in the database as ret(X, ε). Due to the limitation of l1 metric, it is possible that some of the video

sequences in Π may share the same background as the query video but are visually very different. In

20

the second step, we compute the d′()-based VSS between
−→
XS and all the ViSig’s in ret(X, ε). Only

those ViSig’s whose VSS with
−→
XS larger than λ are retrained in ret(X, ε), and returned to the user as

the final retrieval results.

3.2 Simulation Experiments

In this section, we present experimental results to verify the heuristics proposed in Section 2. In the

first experiment, we demonstrate the effect of the choice of SV’s on approximating the IVS by the ViSig

method. We perform the experiment on a set of 15 video sequences selected from the MPEG-7 video

data set [22]3. This set includes a wide variety of video content including documentaries, cartoons,

and television drama, etc. The average length of the test sequences is 30 minutes. We randomly drop

frames from each sequence to artificially create similar versions at different levels of IVS. ViSig’s with

respect to two different sets of SV’s are created for all the sequences and their similar versions. The first

set of SV’s are independent random vectors, uniformly distributed on the high-dimensional histogram

space. To generate such random vectors, we follow the algorithm described in [23]. The second set of

SV’s are randomly selected from a set of images in the Corel Stock Photo Collection. These images

represent a diverse set of real-life images, and thus provide a reasonably good approximation to the

feature vector distribution of the test sequences. We randomly choose around 4000 images from the

Corel collection, and generate the required SV’s using the SV Generation Method, with εsv set to

2.0, as described in Section 2.4. Table 1 shows the VSSb with m = 100 SV’s per ViSig at IVS levels

of 0.8, 0.6, 0.4 and 0.2. VSSb based on Corel images are closer to the underlying IVS than those

based on random vectors. In addition, the fluctuations in the estimates, as indicated by the standard

deviations, are far smaller with the Corel images. The experiment thus shows that it is advantageous

to use SV’s that approximate the feature vector distribution of the target data.

In the second experiment, we compare the Basic ViSig method with the Ranked ViSig method

in identifying sequences with IVS one under the presence of small feature vector displacements. As

described in Section 2.5, when two frames from two video sequences are separated by a small ε, the

Basic ViSig method may underestimate the IVS because of the presence of VG. To combat such a

problem, we propose the Ranked ViSig method in Section 2.5. In this experiment, we create similar

video by adding noise to individual frames. Most of the real-life noise processes such as compression are

highly video dependent, and cannot provide a wide-range of controlled noise levels for our experiment.

3 The test set includes video sequences from MPEG-7 video CD’s v1, v3, v4, v5, v6, v7, v8, and v9. We denote each
test sequence by the CD they are in, followed by a number such as v8 1 if there are multiple sequences in the same CD.

21

As such, we introduce artificial noise that directly corresponds to the different noise levels as measured

by our frame metric. As shown in [21], the l1 metric used in histograms is equal to twice the percentage

of the pixels between two images that are of different colors. For example, if the l1 metric between two

histograms is 0.4, it implies that 20% of the pixels in the images have different color. Thus, to inject a

particular ε noise level to a frame, we determine the fraction of the pixels that need to have different

colors and randomly assign colors to them. The color assignment is performed in such a way that ε

noise level is achieved exactly. Five ε levels are tested in our experiments: 0.2, 0.4, 0.8, 1.2 and 1.6.

In our definition of a feature vector, four histograms are used per frame. This means that an ε of, for

example, 1.6 results in an average noise level of 0.4 for each histogram. After injecting noise to create

the similar video, a 100-frame Basic ViSig (m = 100) and a 500-frame Ranked ViSig (m′ = 500) are

generated for each video. All SV’s are randomly sampled from the Corel dataset. To ensure the same

computational complexity between the two methods, the top m/2 = 50 Ranked ViSig frames are used

in computing VSSr. The results are shown in Table 2. The averages and standard deviations over

the entire set are shown in the last two rows. Since the IVS is fixed at one, the closer the measured

similarity is to one, the better the approximation is. Even though both methods show a general trend

of increasing error as the noise level increase, as expected, VSSr measurements are much closer to one

than VSSb.

3.3 Web Video Experiments

To further demonstrate how the ViSig method can be applied to a realistic application, we test our

algorithms on a large dataset of web video and measure their retrieval performance using a ground-

truth set. Its retrieval performance is further compared with another summarization technique called

the k-medoid. k-medoid was first proposed in [15] as a clustering method used in general metric spaces.

One version of k-medoid was used by Chang et al. for extracting a predefined number of representative

frames from a video [8]. Given a l-frame video X = {xt : t = 1, . . . , l}, the k-medoid of X is defined

to be a set of k frames xt1 , . . . , xtk in X that minimize the following cost function:

l
∑

t=1

min
j=1,...,k

d(xt, xtj) (17)

Due to the large number of possible choices in selecting k frames from a set, it is computationally im-

practical to precisely solve this minimization problem. In our experiments, we use the PAM algorithm

proposed in [15] to compute an approximation to the k-medoid. This is an iterative algorithm and

the time complexity for each iteration is on the order of l2. After computing the k-medoid for each

22

video, we declare two video sequences to be similar if the minimum distance between frames in their

corresponding k-medoids is less than or equal to ε.

The dataset for the experiments is a collection of 46,356 video sequences, crawled from the web

between August and December, 1999. The URL addresses of these video sequences are obtained by

sending dictionary entries as text queries to the AltaVista video search engine [24]. Details about

our data collection process can be found in [25]. The statistics of the four most abundant formats

of video collected are shown in Table 3. The ground-truth is a set of manually identified clusters

of almost-identical video sequences. We adopt a best-effort approach to obtain such a ground-truth.

This approach is similar to the pooling method [26] commonly used in text retrieval systems. The

basic idea of pooling is to send the same queries to different automatic retrieval systems, whose top-

ranked results are pooled together and examined by human experts to identify the truly relevant ones.

For our system, the first step is to use meta-data terms to identify the initial ground-truth clusters.

Meta-data terms are extracted from the URL addresses and other auxiliary information for each video

in the dataset [27]. All video sequences containing at least one of the top 1000 most frequently used

meta-data terms are manually examined and grouped into clusters of similar video. Clusters which

are significantly larger than others are removed to prevent bias. We obtain 107 clusters which form

the initial ground-truth clusters. This method, however, may not be able to identify all the video

clips in the dataset that are similar to those already in the ground-truth clusters. We further examine

those video sequences in the dataset that share at least one meta-data term with the ground-truth

video, and add any similar video to the corresponding clusters. In addition to meta-data, k-medoid is

also used as an alternative visual similarity scheme to enlarge the ground-truth. A 7-frame k-medoid

is generated for each video. For each video X in the ground-truth, we identify 100 video sequences

in the dataset that are closest to X in terms of the minimum distance between their k-medoids, and

manually examine them to search for any sequence that is visually similar to X. As a result, we

obtain a ground-truth set consisting of 443 video sequences in 107 clusters. The cluster size ranges

from 2 to 20, with average size equal to 4.1. The ground-truth clusters serve as the subjective truth

for comparison against those video sequences identified as similar by the ViSig method.

When using the ViSig method to identify similar video sequences, we declare two sequences to be

similar if their VSSb or VSSr is larger than a certain threshold λ ∈ [0, 1]. In the experiments, we

fix λ at 0.5 and report the retrieval results for different numbers of ViSig frames, m, and the Frame

Similarity Threshold, ε. Our choice of fixing λ at 0.5 is based on the following reason: as the dataset

23

consists of extremely heterogeneous contents, it is rare to find partially similar video sequences. We

notice that most video sequences in our dataset are either very similar to each other, or not similar at

all. If ε is appropriately chosen to match subjective similarity, and m is large enough to keep sampling

error small, we would expect the VSS for an arbitrary pair of ViSig’s to be close to either one or zero,

corresponding to either similar or dissimilar video sequences in the dataset. We thus fix λ at 0.5 to

balance the possible false-positive and false-negative errors, and vary ε to trace the whole spectrum

of retrieval performance. To accommodate such a testing strategy, we make a minor modification in

the Ranked ViSig method: recall that we use the Ranking Function Q() as defined in Equation (13)

to rank all frames in a ViSig. Since Q() depends on ε and its computation requires the entire video

sequence, it is cumbersome to recompute it whenever a different ε is used. ε is used in the Q() function

to identify the clustering structure within a single video. Since most video sequences are compactly

clustered, we notice that their Q() values remain roughly constant for a large range of ε. As a result,

we a priori fix ε to be 2.0 to compute Q(), and do not recompute them even when we modify ε to

obtain different retrieval results.

The performance measurements used in our experiments are recall and precision as defined below.

Let Λ be the web video dataset and Φ be the ground-truth set. For a video X ∈ Φ, we define the

Relevant Set to X, rel(X), to be the ground-truth cluster that contains X, minus X itself. Also recall

the definition of the Return Set to X, ret(X, ε), from Section 3.1, as the set of video sequences in

the database which are declared to be similar to X by the ViSig method, i.e. ret(X, ε)
∆
= {Y ∈ Λ :

vss(
−→
XS ,
−→
YS) ≤ λ} \ {X}. vss(·) can be either VSSb or VSSr. By comparing the Return and Relevant

Sets of the entire ground-truth, we can define the recall and precision as follows:

Recall(ε)
∆
=

∑

X∈Φ |rel(X) ∩ ret(X, ε)|
∑

X∈Φ |rel(X)| and Precision(ε)
∆
=

∑

X∈Φ |rel(X) ∩ ret(X, ε)|
∑

X∈Φ |ret(X, ε)| .

Thus, recall computes the fraction of all ground-truth video sequences that can be retrieved by the

algorithm. Precision measures the fraction retrieved by the algorithm that are relevant. By varying

ε, we can measure the retrieval performance of the ViSig methods for a wide range of recall values.

The goal of the first experiment is to compare the retrieval performance between the Basic and

the Ranked ViSig methods at different ViSig sizes. The modified l1 distance on the color histogram

is used in this experiment. SV’s are randomly selected by the SV Generation Method, with εsv set

to 2.0, from a set of keyframes representing the video sequences in the dataset. These keyframes are

extracted by the AltaVista search engine and captured during data collection process; each video is

24

represented by a single keyframe. For the Ranked ViSig method, m′ = 100 keyframes are randomly

selected from the keyframe set to produce the SV set which is used for all ViSig sizes, m. For each

ViSig size in the Basic ViSig method, we average the results of four independent sets of randomly

selected keyframes in order to smooth out the statistical variation due to the limited ViSig sizes. The

plots in Figure 5(a) show the precision versus recall curves for four different ViSig sizes: m = 2, 6,

10, and 14. The Ranked ViSig method outperforms the Basic ViSig method in all four cases. Figure

5(b) shows the Ranked method’s results across different ViSig sizes. There is a substantial gain in

performance when the ViSig size is increased from two to six. Further increase in ViSig size does not

produce much significant gain. The precision-recall curves all decline sharply once they reach beyond

75% for recall and 90% for precision. Thus, six frames per ViSig is adequate in retrieving ground-truth

from the dataset.

In the second experiment, we test the difference between using the modified l1 distance and the

l1 metric on the color histogram. The same Ranked ViSig method with six ViSig frames is used.

Figure 5(c) shows that the modified l1 distance significantly outperforms the straightforward l1 metric.

Finally, we compare the retrieval performance between k-medoid and the Ranked ViSig method. Each

video in the database is represented by seven medoids generated by the PAM algorithm. We plot

the precision-recall curves for k-medoid and the six-frame Ranked ViSig method in Figure 5(d). The

k-medoid technique provides a slightly better retrieval performance. The advantage seems to be small

considering the complexity advantage of the ViSig method over the PAM algorithm – First, computing

VSSr needs six metric computations but comparing two 7-medoid representations requires 49. Second,

the ViSig method generates ViSig’s in O(l) time with l being the number of frames in a video, while

the PAM algorithm is an iterative O(l2) algorithm.

4 Concluding Remarks

In this paper, we have proposed a class of techniques named ViSig which are based on summarizing

a video sequence by extracting the frames closest to a set of randomly selected SV’s. By comparing

the ViSig frames between two video sequences, we have obtained an unbiased estimate of their VVS.

In applying the ViSig method to a large database, we have shown that the size of a ViSig depends on

the desired fidelity of the measurements and the logarithm of the database size. In order to reconcile

the difference between VVS and IVS, the SV’s used must resemble the frame statistics of video in

the target database. In addition, ViSig frames whose SV’s are inside the VG should be avoided when

25

comparing two ViSig’s. We have proposed a ranking method to identify those SV’s that are least likely

to be inside the VG. By experimenting with a set of MPEG-7 test sequences and their artificially-

generated similar versions, we have demonstrated that IVS can be better approximated by using (a)

SV’s based on real images than uniformly random generation, and (b) the ranking method than the

basic method. We have further characterized the retrieval performance of different ViSig methods

based on a groundtruth set from a large set of web video.

The basic premise of our work is on the importance of IVS as a similarity measurement. IVS defines

a general similarity measurement between two sets of objects endowed with a metric function. By

using the ViSig method, we have demonstrated one particular application of IVS, which is to identify

highly similar video sequences found on the web. As such, we are currently investigating the use of

IVS on other types of pattern matching and retrieval problems. We have also considered other aspects

of the ViSig method in conjunction with its use on large databases. In our recent work [28], we have

proposed a novel dimension reduction technique on signature data for fast similarity search, and a

clustering algorithm on a database of signatures for improving retrieval performance.

References

[1] Inktomi Corp., “Inktomi webmap,” http://www2.inktomi.com/webmap, January 2000.

[2] N. Shivakumar and H. Garcia-Molina, “Finding near-replicas of documents on the web,” in World Wide Web and

Databases. International Workshop WebDB’98, Valencia, Spain, Mar. 1998, pp. 204–12.

[3] C. Silverstein, M. Henzinger, J. Marais, and Michael Moricz, “Analysis of a very large altavista query log,” Tech.
Rep. SRC-Technical Note 1998-014, Compaq Systems Research Center, 1998.

[4] A.Z. Broder, S.C. Glassman, M.S. Manasse, and G. Zweig, “Syntactic clustering of the web,” in Sixth International

World Wide Web Conference, Sept. 1997, vol. 29, no.8-13 of Computer Networks and ISDN Systems, pp. 1157–66.

[5] M.R. Naphade, R. Wang, and T.S. Huang, “Multimodal pattern matching for audio-visual query and retrieval,” in
Proceedings of the Storage and Retrieval for Media Datbases 2001, San Jose, USA, jan 2001, vol. 4315, pp. 188–195.

[6] D. Adjeroh, I. King, and M.C. Lee, “A distance measure for video sequence similarity matching,” in Proceedings

International Workshop on Multi-Media Database Management Systems, Dayton, OH, USA, Aug. 1998, pp. 72–9.

[7] R. Lienhart, W. Effelsberg, and R. Jain, “VisualGREP: A systematic method to compare and retrieve video
sequences,” in Proceedings of storage and retrieval for image and video databases VI. SPIE, Jan. 1998, vol. 3312,
pp. 271–82.

[8] H.S. Chang, S. Sull, and S.U. Lee, “Efficient video indexing scheme for content-based retrieval,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 9, no. 8, pp. 1269–79, Dec 1999.

[9] P. Indyk, G. Iyengar, and N. Shivakumar, “Finding pirated video sequences on the internet,” Tech. Rep., Stanford
Infolab, Feb. 1999.

[10] S. Santini and R. Jain, “Similarity measures,” IEEE Tran. on Pattern Analysis and Machine Intelligence, vol. 21,
no. 9, pp. 871–83, Sept 1999.

[11] H. Greenspan, J. Goldberger, and A. Mayer, “A probabilistic framework for spatio-temporal video representation
and indexing,” in Proc. of the 7th European Conference on Computer Vision, Part IV, 2002, pp. 461–75.

[12] G. Iyengar and A.B. Lippman, “Distributional clustering for efficient content-based retrieval of images and video,”
in Proceedings 1998 International Conference on Image Processing, Vancouver, B.C., Canada, 2000, vol. III, pp.
81–4.

26

[13] N. Vasconcelos, “On the complexity of probabilistic image retrieval,” in Proceedings Eighth IEEE International

Conference on Computer Vision, Vancouver, B.C., Canada, 2001, vol. 2, pp. 400–407.

[14] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in 5th Berkeley Sympo-

sium on Mathematical Statistics, 1967, vol. 1, pp. 281–97.

[15] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data, John Wiley & Sons, New York, 1990.

[16] T. Cormen, C. Leiserson, and R. Riverst, Introduction to Algorithms, The MIT Press, Cambridge, Massachusetts,
2nd edition, 2001.

[17] R. Sibson, “Slink: An optimally efficient algorithm for the single-link cluster method,” The Computer Journal, vol.
16, no. 1, pp. 30–4, 1973.

[18] H.L. Royden, Real Analysis, Macmillan Publishing Company, 1988.

[19] P. Indyk, High-dimensional computational geometry, Ph.D. thesis, Stanford University, 2000.

[20] J.R. Smith, Integrated Spatial and Feature Image Systems: Retrieval, Analysis and Compression, Ph.D. thesis,
Columbia University, 1997.

[21] M.J. Swain and D.H. Ballard, “Color indexing,” International Journal of Computer Vision, vol. 7, no. 1, pp. 11–32,
November 1991.

[22] MPEG-7 Requirements Group, “Description of mpeg-7 content set,” Tech. Rep. N2467, ISO/IEC
JTC1/SC29/WG11, 1998.

[23] A. Woronow, “Generating random numbers on a simplex,” Computers and Geosciences, vol. 19, no. 1, pp. 81–88,
1993.

[24] AltaVista, http://www.altavista.com, AltaVista Image, Audio and Video search.

[25] S.-C. Cheung and A. Zakhor, “Estimation of web video multiplicity,” in Proceedings of the SPIE – Internet Imaging,
San Jose, California, Jan. 2000, vol. 3964, pp. 34–6.

[26] K. Sparck Jones and C. van Rijsbergen, “Report on the need for and provision of an “ideal” information retrieval test
collection,” Tech. Rep. British Library Research and Development Report 5266, Computer Laboratory, University
of Cambridge, 1975.

[27] S.-C. Cheung and A. Zakhor, “Efficient video similarity measurement and search,” in Proceedings of 7th IEEE

International Conference on Image Processing, Vancouver, British Columbia, Sept. 2000, vol. 1, pp. 85–88.

[28] S.-C. Cheung and A. Zakhor, “Towards building a similar video search engine for the world-wide-web,” Submitted

to IEEE Transactions on Multimedia, 2002.

[29] G.R. Grimmett and D.R. Stirzaker, Probability and Random Processes, Oxford Science Publications, 1992.

Appendices

A Proof of Proposition 2.1

Without loss of generality, let X = {x1, x2, . . . , xl} and Y = {y1, y2, . . . , yl} with d(xi, yi) ≤ ε for i = 1, . . . , l.
Let Zi be a binary random variable such that Zi = 1 if both xi and yi are chosen as sampled frames, and 0
otherwise. Since Wm is the total number of similar pairs between the two set of sampled frames, it can be
computed by summing all the Zi’s:

Wm =
l
∑

i=1

Zi

E(Wm) =

l
∑

i=1

E(Zi) =

l
∑

i=1

Prob(Zi = 1)

Since we independently sample m frames from each sequence, the probability that Zi = 1 for any i is (m/l)2.
This implies that E(Wm) = m2/l.

27

B Proof of Proposition 2.2

To simplify the notation, let ρ(X,Y) = vvs(X,Y ; ε) and ρ̂(X,Y) = vssb(
−→
XS ,

−→
YS ; ε,m). For an arbitrary pair of

X and Y , we can bound the probability of the event |ρ(X,Y)− ρ̂(X,Y)| > γ by the Hoeffding Inequality [29]:

Prob(|ρ(X,Y)− ρ̂(X,Y)| > γ) ≤ 2 exp(−2γ2m) (18)

To find an upper bound for Perr(m), we can combine (18) and the union bound as follows:

Perr(m) = Prob
(

⋃

X,Y ∈Λ

|ρ(X,Y)− ρ̂(X,Y)| > γ
)

≤
∑

X,Y ∈Λ

Prob(|ρ(X,Y)− ρ̂(X,Y)| > γ)

≤ n2

2
· 2 exp(−2γ2m)

A sufficient condition for Perr(m) ≤ δ is thus

n2

2
· 2 exp(−2γ2m) ≤ δ

m ≥ 2 lnn− ln δ
2γ2

C Proof of Proposition 2.3

For each term inside the summation on the right hand side of Equation (11), d(x, y) must be smaller than or
equal to ε. If d(x, y) ≤ ε, our assumption implies that both x and y must be in the same cluster C belonging to
both [X]ε and [Y]ε. As a result, we can rewrite the right hand side of Equation (11) based only on clusters in
[X]ε ∩ [Y]ε:

∑

d(x,y)≤ε

∫

VX(x)∩VY (y)

f(u;X ∪ Y) du. =
∑

C∈[X]ε∩[Y]ε

∑

z∈C

∫

VX(z)∩VY (z)

f(u;X ∪ Y) du (19)

Based on the definition of a Voronoi Cell, it is easy to see that VX(z) ∩ VY (z) = VX∪Y (z) for all z ∈ C with
C ∈ [X]ε ∩ [Y]ε. Substituting this relationship into Equation (19), we obtain:

∑

d(x,y)≤ε

∫

VX(x)∩VY (y)

f(u;X ∪ Y) du =
∑

C∈[X]ε∩[Y]ε

∫

VX∪Y (C)

f(u;X ∪ Y) du

=
∑

C∈[X]ε∩[Y]ε

∫

VX∪Y (C)

1

|[X ∪ Y]ε| ·Vol(VX∪Y (C))
du

=
1

|[X ∪ Y]ε|
∑

C∈[X]ε∩[Y]ε

∫

VX∪Y (C)
du

Vol(VX∪Y (C))

= |[X]ε ∩ [Y]ε|/|[X ∪ Y]ε|

Finally, we note that [X]ε∩ [Y]ε is in fact the set of all Similar Clusters in [X ∪Y]ε, and thus the last expression
equals to the IVS. The reason is that for any Similar Cluster C in [X ∪ Y]ε, C must have at least one x ∈ X
and one y ∈ Y such that d(x, y) ≤ ε. By our assumption, C must be in both [X]ε and [Y]ε.

D Proof of Proposition 2.4

Without loss of generality, we assume that x1 is at the origin with all zeros, and x2 has k 1’s in the rightmost
positions. Clearly, d(x1, x2) = k. Throughout this proof, when we mention a particular sequence Y ∈ Γ, we
adopt the convention that Y = {y1, y2} with d(x1, y1) ≤ ε and d(x2, y2) ≤ ε.

28

We first divide the region A into two partitions based on the proximity to the frames in X:

A1
∆
= {s ∈ A : gX(s) = x1} and A2

∆
= {s ∈ A : gX(s) = x2}

We adopt the convention that if there are multiple frames in a video Z that are equidistant to a random vector
s, gZ(s) is defined to be the frame furthest away from the origin. This implies that all vectors equidistant to
both frames in X are elements of A2. Let s be an arbitrary vector in H, and R be the random variable that
denotes the number of 1’s in the rightmost k bit positions of s. The probability that R equals to a particular r
with r ≤ k is as follows:

Prob(R = r) =
1

2k

(

k

r

)

Thus, R follows a binomial distribution of parameters k and 1/2. In this proof, we show the following relationship
between A2 and R:

Vol(A2) = Prob(k/2 ≤ R < k/2 + ε) (20)

With an almost identical argument, we can show the following:

Vol(A1) = Prob(k/2− ε ≤ R < k/2) (21)

Since Vol(A) = Vol(A1) + Vol(A2), the desired result follows.
To prove Equation (20), we first show if k/2 ≤ R < k/2 + ε, then s ∈ A2. Be the definitions of A and A2,

we need to show two things: (1) gX(s) = x2; (2) there exists a Y ∈ Γ such that s ∈ G(X,Y ; ε), or equivalently,
gY (s) = y1. To show (1), we rewrite R = k/2 + N where 0 ≤ N < ε and let the number of 1’s in s be L.
Consider the distances between s and x1, and between s and x2. Since x1 is all zeros, d(s, x1) = L. As x2 has
all its 1’s in the rightmost k position, d(s, x2) = (L−R) + (k −R) = L+ k − 2R. Thus,

d(s, x1)− d(s, x2) = L− (L+ k − 2R)
= 2R− k

= 2N ≥ 0,

which implies that gX(s) = x2. To show (2), we define y1 to be a h-bit binary number with all zeros, except for
ε 1’s in the positions which are randomly chosen from the R 1’s in the rightmost k bits of s. We can do that
because R ≥ k/2 ≥ ε. Clearly, d(x1, y1) = ε and d(s, y1) = L− ε. Next, we define y2 by toggling ε out of k 1’s
in x2. The positions we toggle are randomly chosen from the same R 1’s bits in s. As a result, d(x2, y2) = ε

and d(s, y2) = (L−R) + (k −R+ ε) = L+ ε− 2N . Clearly, Y ∆
= {y1, y2} belongs to Γ. Since

d(s, y2)− d(s, y1) = (L+ ε− 2N)− (L− ε)

= 2(ε−N) > 0,

gY (s) = y1 and consequently, s ∈ G(X,Y ; ε).
Now we show the other direction: if s ∈ A2, then k/2 ≤ R < k/2+ε. Since s ∈ A2, we have gX(s) = x2 which

implies that L = d(s, x1) ≥ d(s, x2) = L+k−2R or k/2 ≤ R. Also, there exists a Y ∈ Γ with s ∈ G(X,Y ; ε). This
implies gY (s) = y1, or equivalently, d(s, y1) < d(s, y2). This inequality is strict as equality will force gY (s) = y2
by the convention we adopt for gY (·). The terms on both sides of the inequality can be bounded using the
triangle inequality: d(s, y1) ≥ d(s, x1)− d(x1, y1) = L− ε and d(s, y2) ≤ d(s, x2) + d(x2, y2) = L+ k − 2R + ε.
Combining both bounds, we have

L− ε < L+ k − 2R+ ε⇒ R < k/2 + ε

This completes the proof for Equation (20). The proof of Equation (21) follows the same argument with the
roles of x1 and x2 reversed. Combining the two equations, we obtain the desired result.

29

E Proof of Proposition 2.5

We prove the case for video X and the proof is identical for Y . Since s ∈ G(X,Y ; ε), we have d(gX(s), gY (s)) > ε
and there exists x ∈ X with d(x, gY (s)) ≤ ε. Since all Similar Clusters in [X ∪ Y]ε are ε-compact, gX(s)
cannot be in the same cluster with x and gY (s). Thus, we have d(gX(s), x) > ε. It remains to show that
d(x, s)− d(gX(s), s) ≤ 2ε. Using the triangle inequality, we have

d(x, s)− d(gX(s), s) ≤ d(x, gY (s)) + d(gY (s), s)− d(gX(s), s)

≤ ε+ d(gY (s), s)− d(gX(s), s) (22)

s ∈ G(X,Y ; ε) also implies that there exists y ∈ Y such that d(y, gX(s)) ≤ ε. By the definition of gY (s),
d(gY (s), s) ≤ d(y, s). Thus, we can replace gY (s) with y in (22) and combine with the triangle inequality to
obtain:

d(x, s)− d(gX(s), s) ≤ ε+ d(y, s)− d(gX(s), s)

≤ ε+ d(y, gX(s))

≤ 2ε.

Seed Vectors Uniform Random Corel Images

IVS 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2

v1 1 0.59 0.37 0.49 0.20 0.85 0.50 0.49 0.23
v1 2 0.56 0.38 0.31 0.05 0.82 0.63 0.41 0.18
v3 0.96 0.09 0.06 0.02 0.82 0.52 0.40 0.21
v4 0.82 0.75 0.55 0.24 0.92 0.44 0.48 0.25
v5 1 0.99 0.71 0.28 0.18 0.76 0.66 0.39 0.12
v5 2 0.84 0.35 0.17 0.29 0.81 0.68 0.36 0.10
v5 3 0.97 0.36 0.74 0.07 0.76 0.59 0.51 0.15
v6 1.00 0.00 0.00 0.00 0.79 0.61 0.46 0.25
v7 0.95 0.89 0.95 0.60 0.86 0.60 0.49 0.16
v8 1 0.72 0.70 0.47 0.17 0.88 0.69 0.38 0.20
v8 2 1.00 0.15 0.91 0.01 0.86 0.53 0.35 0.21
v9 1 0.95 0.85 0.54 0.15 0.93 0.56 0.44 0.18
v9 2 0.85 0.70 0.67 0.41 0.86 0.56 0.39 0.17
v9 3 0.90 0.51 0.30 0.10 0.78 0.70 0.45 0.15
v9 4 1.00 0.67 0.00 0.00 0.72 0.45 0.42 0.24

Average 0.873 0.499 0.429 0.166 0.828 0.581 0.428 0.187
Stddev 0.146 0.281 0.306 0.169 0.060 0.083 0.051 0.046

Table 1: Comparison between using uniform random and corel image SV’s. The second through fifth columns
are the results of using uniform random SV’s and the rest are the corel image SV’s. Each row contains the
results of a specific test video at IVS levels 0.8, 0.6, 0.4 and 0.2. The last two rows are the averages and
standard deviations of the estimated IVSs over all the test sequences. The IVSs estimated with corel image SVs
are closer to the ideal values in row two, and have much less variations than those estimated with random SVs.

30

Algorithm VSSb VSSr

ε 0.2 0.4 0.8 1.2 1.6 0.2 0.4 0.8 1.2 1.6

v1 1 0.89 0.76 0.62 0.54 0.36 1.00 1.00 0.90 0.87 0.74
v1 2 0.81 0.73 0.55 0.47 0.34 1.00 0.98 0.83 0.73 0.62
v3 0.90 0.76 0.70 0.42 0.36 1.00 1.00 0.96 0.87 0.72
v4 0.86 0.74 0.64 0.48 0.38 1.00 1.00 0.96 0.83 0.74
v5 1 0.90 0.77 0.64 0.45 0.41 1.00 1.00 0.98 0.79 0.86
v5 2 0.96 0.81 0.52 0.66 0.56 1.00 1.00 1.00 0.86 0.78
v5 3 0.88 0.83 0.59 0.42 0.39 1.00 1.00 0.90 0.83 0.74
v6 0.88 0.72 0.64 0.49 0.49 1.00 1.00 0.98 0.92 0.78
v7 0.89 0.84 0.68 0.46 0.43 1.00 1.00 1.00 0.91 0.78
v8 1 0.85 0.67 0.58 0.52 0.30 1.00 1.00 0.87 0.79 0.73
v8 2 0.90 0.80 0.72 0.59 0.56 1.00 1.00 0.99 0.95 0.86
v9 1 0.87 0.77 0.62 0.67 0.48 1.00 0.99 0.89 0.84 0.82
v9 2 0.82 0.70 0.55 0.50 0.37 1.00 1.00 0.90 0.78 0.59
v9 3 0.86 0.65 0.66 0.49 0.40 1.00 1.00 0.91 0.70 0.58
v9 4 0.92 0.86 0.71 0.61 0.53 1.00 1.00 0.93 0.89 0.82

Average 0.879 0.761 0.628 0.518 0.424 1.000 0.998 0.933 0.837 0.744
Stddev 0.038 0.061 0.061 0.080 0.082 0.000 0.006 0.052 0.070 0.088

Table 2: Comparison between VSSb and VSSr under different levels of perturbation. The table follows the same
format as in Table 1. The perturbation levels ε tested are 0.2, 0.4, 0.8, 1.2 and 1.6. The average VSSrs are
much closer to the ideal IVS value of one than the average VSSbs.

Video Type % over all clips Duration (mean ± std-dev in minutes)
MPEG 31 0.26 ± 0.7

QuickTime 30 0.51 ± 0.6
RealVideo 22 9.57 ± 18.5
AVI 16 0.16 ± 0.3

Table 3: Statistics of collected web video sequences

(a) (b) (c)

Figure 1: (a) Two video sequences with IVS equal to 1/3. (b) The Voronoi Diagram of a 3-frame video X.
(c) The shaded area, normalized by the area of the entire space, is equal to the VVS between the two sequences
shown.

31

(a) (b) (c)

Figure 2: (a), (b) Two examples of sequences with identical IVSs but very different VVSs. (c) The VG for X
and Y corresponds to the unshaded region in the figure. There are two characteristics to any SV s inside VG:
1) gX(s) and gY (s) are not similar, 2) there exist x ∈ X similar to gY (s), and y ∈ Y similar to gX(s).

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance between frames, k

E
rr

or
 P

ro
ba

bi
lit

y,
 V

ol
(A

)

ε = 1
ε = 5
ε = 10

0
0

(a) (b)

Figure 3: (a) The error probability for the hamming cube at different values of ε and distances k between
the frames in the video. (b) Values of ranking function Q(·) for a three-frame video sequence. Lighter colors
correspond to larger values.

Figure 4: Quantization of the HSV color space.

32

0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1
Signature Size m=2

0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1
Signature Size m=6

0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

Signature Size m=10

Basic
Rank

0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1
Signature Size m=14

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Rank, m=2
Rank, m=6
Rank, m=10
Rank, m=14

(a) (b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

l
1
 metric

Modified l
1

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Medoid, m=7
Rank, m=6

(c) (d)

Figure 5: Precision-recall plots for web video experiments: (a) Comparisons between the Basic (broken-line)
and Ranked (solid) ViSig methods for four different ViSig sizes: m = 2, 6, 10, 14; (b) Ranked ViSig methods for
the same set of ViSig sizes; (c) Ranked ViSig methods with m = 6 based on l1 metric (broken) and modified l1
distance (solid) on color histograms; (d) Comparison between the Ranked ViSig method with m = 6 (solid) and
k-medoid with 7 representative frames (broken).

33

