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ABSTRACT we define its clusteringX]. to be a collection of non-intersecting

. . subsets ofX such that ifd(z;, z;) < ¢, z; andz; must belong to
The Video Signature method has been proposed in [1, 2, 3] &S ae same subset or cluster[i].. Such a clustering can be easily

technique to efficiently summarize video for visual sinityanea- computed using the single-link algorithm [6]. When definthg

fsurementi.t In thlis p?ﬁ.er, Wteh dgv\?\l/OPd t?.e necetssaryt th;-gireti similarity between two video sequenc&sandY’, we consider the
ramework to analyze this method. Ve definé our target ViMeo S ¢ stared uniof.X UY].. We call the clusters ifiX U Y], Similar

ilarity measure based on the fraction of similar clusterarsid be- Clusters if they contains frames from both sequences, afidede
tween two video sequences. This measure is too computhtiona IVS as the percentage of Similar Clusterg ;U Y].: '
complex to be deployed in database applications. By corisgle €

this measure geometrically on the image feature space, Wit ivs(X,Y;¢€) 2 ( Z lenx - leny)/|[XUY) (@)
it can be approximated by the volume of the intersection &etw CEIXUY].

Voronoi cells of similar clusters. In the Video Signaturetinoel,
sampling is used to estimate this volume. By choosing amappr
priate distribution to generate samples, and ranking thegkes
based upon their distances to the boundary between Voreitisj c
we demonstrate that our target measure can be well apprdridna
by the Video Signature method. Experimental results on gelar
dataset of web video and a set of MPEG-7 test sequences with ar
tificially generated similar versions are used to demortstrine
retrieval performance of our proposed techniques.

wherel 4 is the indicator function anfl- | denotes the cardinality

of a set. Itis complex to precisely compute IVS. The clusigri
used in IVS depends on the distances between frames from the
two sequences. Thus, we need to compute all pairwise dieganc
before running the clustering algorithm. In addition, tlenpu-
tation requires the entire video to be stored. The complex-co
putation and large storage requirements are clearly uradésifor

large database applications. The main theme of this paper is
develop efficient algorithms in estimating 1VS.

1. INTRODUCTION Since our overall goal is to detect “near duplicate” video se

The proliferation of video content on the web makes sintijade- quences, the exact similarity value is not required. Sargggch-
tection an indispensable tool in web data management, liagrc niques can thus be used to estimate IVS. Specifically, tweovid

and navigation. In [, 2, 3], we have proposed a randomized al sequences are declared to be similar if there are suffigitarje

gorithm, called the Video Signature (ViSig) method, to itiign number of “similay" sampled .frames between them. The naive
highly similar video sequences in large databases. In tiep scheme of sampling frames independently from two sequences

we further develop the necessary theoretical framewornhtespret however, .does ng)tt WO”B‘ E;]/en th;]ertl the IVS gz}ivg:en t|vv3 Se-
and enhance our algorithms. This paper is organized asvilin ?uences IS onea 'dctanf. gls ?wn at anf a.ve.rla ; amp eh
Section 2, we define our target similarity measure, calleddeal rames are needed 1o find Just one pair of simiiar frames, e/her
Video Similarity (IVS), and explain how we use the ViSig medh denotes the number of frames in each sequence [4]. This ifodue

to estimate IVS. In Section 3, we analyze the scenarios wi@e  the Small probability of finding a pair of similar frames betm
cannot be reliably estimated by ViSig, and propose a number o two independent sets of sampled frames. Instead of indepénd

heuristics to improve the estimation. Experimental resaite pre- samplln_g, the ViSig method |ntr9d_uces dependence by_a;mtj)sct
sented in Section 4 to demonstrate the retrieval performaric frames in each video that are similar to a set of predefined ran

our proposed methods. Due to space limitation, proofs tmwar ldonf1 featurfe vecttors. .dAS a FSUlt'.ttr??Vperk;abi”tY in fincﬂ]i'r;]gii
propositions in this paper are not included, and interestaders _?rr‘ rameg rorfn WO V'f eo (':|Ipsf wi f odol?eﬂ'f T/USC I%Ither.
are referred to [4] for details. e number of pairs of similar frames found by the ViSig metho

strongly depends on the IVS, but does not have a one-to-ene re
2 IDEAL VIDEO SIMILARITY AND VIDEO SIGNATURE lationship with it. We call the form of similarity estimatdxy the
This section defines the video similarity model used in this p V1519 method the Voronoi Video Similarity (VVS), as des@tb
per, and describes how it can be efficiently estimated by {B&V below. B - . .
method. We assume that individual frames in a video are tepre | N€ term “Voronoi” in VVS is borrowed from a geometri-
sented by high-dimensional feature vectors from a metrawsp ~ ¢&! concept called the Voronoi Diagram. Giveri-iame video
(F,d(-,-)). In order to be robust against editing changes in tem- X = ﬁ{.xf it =1,....1} the Voronoi DlagraW(X) of X'is
poral domain, we define a video to be a finite set of featureovect & pavtition of the feature spad€ into [ Voronoi Cells Vi (z+).
and ignore any temporal ordering. The metdie, y) measures By definition, the Voronoi CellVx (z:) contains all the vectors
the visual dissimilarity between framesandy. We assume that I £’ closer toz; < X than to any other frames i, i.e.
framesz andy are visually similar to each other if and only if  Vx (z:) = {s € F : gx(s) =z andz: € X}, wheregx(s)
d(z,y) < eforane > 0independent of andy. Given a videaX, denotes the frame IX closest tas. We can extend the idea of the
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Voronoi Diagram to video clusters by merging Voronoi Celfs o
all the frames belonging to the same cluster. Given two viEko
guencesX andY and their corresponding Voronoi Diagrams, we
define the Similar Voronoi Region (SVR), denotedR”y(sX, Y; ¢),

to be the union of all the intersection between the VorondIsCe
Vx (z) andVy (y) with d(z,y) < e:

RX,Y;)2 | Vx(@)nW(y).
d(z,y)<e
It is easy to see that SVR is large if vidéd andY have a large
number of frames that are similar to each other. Thus, we @efin
the VVS betweenX andY’, vvs(X, Y;¢€), to be the volume of the
corresponding SVR:

vvs(X,Y;¢€) 2 Z Vol(Vx (z) N Vy (y)).
d(z,y)<e

The volume functiorVol : Q — R is the Lebesgue measure over
the set(?, of all the measurable subsetsinh F is assumed to be
compact withVol(F') = 1. A simple pictorial example to demon-
strate the use of VVS is shown in Figure 1(a). The featureesjgc
represented as a 2D square. Dots and crosses signify fraomes f
two different video sequences, whose Voronoi Cells arerségpa
by solid and broken lines respectively. Frames closer thare
connected by dotted lines. The shaded region represen®&Re

@)

@)

The VVS, which measures the area of the shaded region, ig abou

1/3, the same as the IVS in this case.

It is straightforward to estimate VVS by random sampling:
we first generate a sét of m independent uniformly-distributed
Seed Vectors (S\91, . . ., sm. We can then estimaters(X, Y; €)
based on the percentage of SV's that are indi{&X, Y;¢). To
determine if a particular S\ falls inside R(X,Y;¢€), we only
need to check whetherx (s), the frame closest te in X, and
gy (s) are withine of each other. In other words, we can esti-
mate VVS betweenX andY by using only them-frame tuple

X 2 (gx(s1), ..., 9x(sm)) from video X andYs from Y. We
—
call Xs the signature ofX" with respect toS. We define Basic

ViSig Similarity (VSS,) betweenfs) and?s) to be the percentage
of gx (s) andgy (s) that are withine from each other:

—_— A liis
vssy(Xs, Vsi€,m) 2 (3 Latox (sioy s<ey)/m (8)

=1

the IVS. On the other hand, if the Similar Clusters are in éuiger
Voronoi Cells, the VVS becomes much larger. As the Basic/iSi
method estimates IVS based on uniformly-distributed StHg,
variation in the sizes of Voronoi Cells affects the accuratyhe
estimation. One possible method to amend the Basic ViSihodet
is to generate SV’s based on a probability distribution shehthe
probability of a SV being in a Voronoi Cell is independent loé t
size of the Cell. Specifically, for two sequencEsandY’, we can
define the Probability Density Function (PDF) at the feats®tor

u based on the distribution of Voronoi Cells[if UY']. as follows:

f(u; X UY) 2 1/[[X UY]| - Vol(Vxuy (C))] (5)
whereC' is the cluster inNX U Y]. with v € Vxuy(C). With
this PDF, the probability of a random vectarbeing inside the
Voronoi Cell Vx (C) for an arbitrary clusteC’ € [X U Y] is
given byfvx(c) fu; X UY)du =1/|[X UY]c|. This probabil-
ity does not depend off, and thus, it is equally likely for to be
inside the Voronoi Cell of any cluster jtX U Y].. Recall that if
we use uniform distribution to generate random SV'SS;, forms
an unbiased estimate of the VVS defined in Equation (3). Ifse u
f(u; X UY) to generate SV's instealf;SS, becomes an estimate
of the following general form of VVS:

/ flu; X UY) du.
Vx (z)NVy (y)

Equation (6) reduces to Equation (3) whifu; XUY) is replaced
by the uniform distribution, i.ef(u; X UY) = 1. As shown by
the following proposition, this general form of VVS is eqalient
to IVS under certain conditions.

(6)

d(z,y)<e

Proposition 3.1 Given two video sequence$ and Y, assume
clusters in[X]. and [Y]. are either identical, or share no frames
that are withine of each other. Thenys(X,Y’; €) is equivalent to
the general form of VVS given by Equation (6).

The significance of this proposition is that if we can gere@\¥'s
with f(u; X UY), it is possible to estimate IVS using the same
tool as to estimate VVS, nameWSS,. The condition that all clus-
ters inX areY are either identical or far away from each other is
to avoid the formation of VG, which is expounded in Sectiaa 3.
In practice, it is impossible to usg(u; X U Y') to generate
SV’s. This is becausg(u; X U Y) is specific to the two se-

vssb()@,?s); ¢,m) forms an unbiased estimate of the VVS be- quences being compared, while the Basic ViSig method reguir
tweenX andY. We refer to this approach of generating signatures the same set of SV's to be used by all sequences in the database
and computingVSS, as the Basic ViSig method. In order to apply A heuristic approach for SV generation is to first select alset

the Basic ViSig method to a large number of video sequences, w 0f training video sequences that resemble video sequendbe i
must use the same SV set to generate all the signatures before  target database. Denofe 2 Uzew Z. We can then generate

can computé/SS,, between an arbitrary pair of video sequences.

3. DIFFERENCESBETWEEN IVSAND VVS

SV based on the PDF(u; T"), which ideally resembles the target
f(u; X UY) for an arbitrary pair of andY in the database. To
generate a random S¥based onf(u; T"), we follow a four-step

We have shown in the previous section that the VVS between two gy, generation method as follows: Given a particular value, of

video sequences can be efficiently estimated by the BasiigViS
method. Unfortunately, the estimated VVS does not necibgsar
reflect the target measure of IVS as defined in Equation (1p Tw
problems can arise: first, VVS can be either larger or sméikm
IVS because of the non-uniform sizes of the Voronoi Cellsc-Se

we firstidentify all the clustersif{].,, using the single-link algo-
rithm. Second, ag(u; T') assigns equal probability to the Voronoi
Cell of each cluster ifT].,,, a clusterC’ is randomly selected
from [T].,, so that we can generate the SWithin Vr(C”’). As
(u; T) is constant ovelb’r-(C”), we should ideally generateas

ond, VVS can be smaller than IVS because of the presence ofy uniformly-distributed random vector ové(C”). One possi-

a special region in the Voronoi Diagram called the VoronopGa
(VG). In this section, we explain these two problems and psep
heuristic solutions to improve the estimation.

ble way is to repeatedly generate uniform sample vectorstoee
entire feature space until a vector is found insidg(C’). This
procedure may take an exceedingly long tim&if(C’) is small.

31. Seed Vector Generation To simplify the generation, we select one of the frameg'inat
When all clusters in the clustered union between two video se random and output it as the next SV. Finally, we repeat the@bo
quences clump together in a small area, some Voronoi Cetls ca Process until the required number of SV’s have been seletted

be significantly larger than the others. If the Similar Glusthap- ~ Section 4, we compare retrieval performances on real viéeo s

pen to reside in the smaller Voronoi Cells, the VVS is smalian quences based on SV's generated using this algorithm anththe
form distribution.



3.2. Voronoi Gap (VG)

We have shown in Proposition 3.1 that the general form of VVS ranked signature frames:

using an appropriate PDF is identical to the IVS, providext #il
clusters between the two sequences are either identicat anfay
from each other. As feature vectors are not perfect in mogdeli
human visual system, visually similar clusters may resufieia-
ture vectors that are close but not identical to each othet.uk

consider the example in Figure 1(b) where frames from two se-

guences are not identical but withéinfrom each other. Clearly,

the IVS is one. Consider the Voronoi Diagrams of the two se-

define the Ranked ViSig Similarity(SS,.) based on the tops/2

m/2
—_— T A
vss(Xs, Ysie,m) = m Z[l{d(gx(sj[i])’gy(sj'[i]))Sﬁ} +
i=1
L{d(ax (sipp)sgy (skpip)<ed) (8)
where j[1], ..., j[m’] and k[1],..., k[m']'s denote the relative

rankings of the signature Frames)?}; and§7s> respectively, i.e.
(9x(s511)) = ... = Qgx(sjmmn)) and Q(gy (skpy)) >

quences. Since the boundaries of the two Voronoi Diagrams do: -+ = Q(9v (sk(mr))). We call this method of generating signa-

not exactly coincide with each other, the SVR, as indicated b
the shaded area, does not occupy the entire feature spadhe As
general form of VVS defined in Equation (6) is the weighted vol
ume of the SVR, it is strictly less than the IVS. The differenc
between the two similarities is due to the unshaded regidtign
ure 1(b). If a SVs falls within the unshaded region in Figure 1(b),
we can make two observations about the corresponding signat
framesgx (s) andgy (s): (1) they are far apart from each other,
i.e. d(gx(s),gv(s)) > € (2) they both have similar frames in
the other video, i.e. there exisise X andy € Y such that
d(z,gx(s)) < eandd(y, gy (s)) < e. These observations define
a unique characteristics of the unshaded region, which fee e

as the Voronoi Gap (VG) and denote@&X, Y'; €). Any SV in the
VG between two sequences produces a pair of dissimilarsigna
Frames, even though both signature frames have a similathmat
in the other video.

The example in Figure 1(b) seems to suggest that VG is small

tures and computiny’SS,. the Ranked ViSig method. Notice in
the right hand side of Equation (8), the first term uses theitgg

ranked signature frames froﬁs) to compare with the correspond-
—
ing signature frames il's, and the second term uses the topg2

ranked frames fronﬁ . ComputingV'SS, thus requiresn metric
computations, the same &$S,. This provides an equal footing
in complexity to compare the retrieval performances betwikese
two methods in Section 4.
4. EXPERIMENTAL RESULTS

In this section, we present experimental results to dematest
the performance of the ViSig methods. Four 178-bin HSV color
histograms, each representing a quadrant of a frame, isased
the feature vector in all our experiments. We compare cdkr h
tograms with botli; metric and a modified; distance, which dis-
cards the dominant color from the measurement [4].

Two sets of data are used in our experiments. The first dataset

if ¢ is small. Nonetheless, in some particular feature spaagts su CONSists of 15 video sequences selected from the MPEG-D vide
as the hamming cube, the volume of VG can be quite significant €D Set: V1, v3, v4, v5,v6, v7, v8, and v9 [S]. The average lengt

even for smalle [4]. As such, it is important to identify those
SV’s that are inside the VG and discard the correspondingasig
ture frames in the estimation of IVS. In Figure 1(b), we oliser
that for an arbitrary vectos in VG, each sequence has a pair of
dissimilar frames that are roughly equidistantstoxr and gx (s)

in the “dot” sequence, ang and gy (s) in the “cross” sequence.
This “equidistant” condition is refined in the following posi-
tion to upper-bound the difference between distance ahd z,
and distance of andgx (s) by 2e:

of the test sequences is 30 minutes. We perform two expetimen
with this dataset to verify the heuristics proposed in $ec8. In
the first experiment, we demonstrate the effect of the chofce
SV’s in the ViSig methods on approximating IVS. We randomly
drop frames from each sequence to artificially create simaéa
sions at different levels of IVS. Signatures with respectwio
different sets of SV’s are created for all the sequences lagid t
similar versions. The first set of SV’'s are independent ramdo
vectors, uniformly distributed on the high-dimensionadtbgram
space. We use the seed generation method described inrfS&dtio

Proposition 3.2 Let X andY be two video sequences. Assume With es, = 2.0 to generate the second set of SV's. The training

all the frames in each cluster ¢X U Y. are withine from each
other. For any S\ € G(X,Y;¢), there exists a frame € X
with d(z, gx (s)) > e such thatd(z, s) — d(gx(s), s) < 2e.

We can use the converse of Proposition 3.2 to test if as®¥n
ever be inside a VG aK: define a Ranking Functio@(-) for the
signature Framex (s),

Qlox(s) = min - d(z,s) = d(gx(s).5).  (7)

Based on Proposition 3.2, @(gx(s)) > 2¢, s cannot be inside
the VG formed betweeX and any other sequence. In practice,
however, this condition might be too restrictive in that ight not
allow us to find any SV. Recall that Proposition 3.2 only pdas
a sufficient and not a necessary condition for a SV to be in Vi
Thus, even ifQ(gx (s)) < 2e, it does not necessarily imply that
will be inside the VG betweeX and any particular sequence. In-
tuitively, in order to minimize the chance of being insidg &G,

it makes sense to use a SWwvith as large of aQ(gx(s)) value

as possible. Thus, we can generate a large number of signatur

frames and only use those with the largest ranking functalp v
ues for similarity measurements. Let > m be the number of

frames in each signature. After we generate the signat—'érwith
respect to a sef of m’ SV’s, we compute and rar®(gx (s)) for

all gx(s)in )@ Analogous toVSS, defined in Equation (4), we

set consists of 4000 random images from the Corel Stock Photo
Collection. We use 100 SV's to generate each signature, &ad m
sure theVSS, between all sequences and their similar versions at
IVS levels of 0.8, 0.6, 0.4 and 0.2. Table 1 shows the averagés
standard deviations of tHéSS, values over all the test sequences.
As expected, th& SS, based on Corel images are closer to the un-
derlying IVS than those based on random vectors. In additien
fluctuations in the estimates are far smaller with the Conelges.
The experiment thus shows that it is advantageous to usetSat's
approximate the feature vector distribution of the targead

In the second experiment, we compare the Basic ViSig method
with the Ranked ViSig method in identifying sequences WitB |
of one, under small feature vector displacements. In this ex

G periment, we create similar video by adding noise to indigid

frames. Most of the real-life noise processes such as campre
sion are highly video dependent, and cannot provide a vadge

of controlled noise levels for our experiment. As such, weoi
duce noise at different levels by randomly changing the colors
of different percentages of pixels in each frame. Fivevels are
tested in our experiments: 0.2, 0.4, 0.8, 1.2 and 1.6. Afiect-

ing noise to create the similar video, a 100-frame Basic 8ige

(m = 100) and a 500-frame Ranked Signatyre’ = 500) are
generated for each video. All SV’'s are randomly sampled from
the Corel dataset. To ensure the same computational coityplex
between the two methods, the top 50-ranked signature franees
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Fig. 1. (a) The shaded area, normalized by the area of the entireesgacequal to the VVS. (b) The unshaded area represents toedidGap. (c)
Precision-Recall graphs for the Ranked ViSig methods mitk: 2, 6, 10, 14. (d) Precision-Recall graphs for the Ranked ViSig methdt mi = 6 (solid)
and k-medoid with 7 representative frames (broken).

used in computing/SS... The averages and standard deviations of better retrieval performance. The advantage seems to decema
VSSy's andVSS,'s over all test sequences are shown in Table 2. sidering the complexity advantage of the ViSig method.
Since the IVS is fixed at one, the closer the average simjilait

to one, the better the approximation is. Even though botfhoukst 5. CONCLUSION
show degradation as the noise level increases, as exp&ti&d, In this paper, we have proposed the ViSig method which summa-
measurements are much closer to one #i&8,. rizes a video sequence by extracting the frames closest & a s

We also use a much larger dataset to demonstrate how theof randomly selected SV’s called signatures. By comparirgy t
Ranked ViSig method can be applied in a realistic applicatio signature frames between two video sequences, we obtain-an u
The dataset consists of 46,356 video sequences, crawladifie biased estimate of their VVS. In order to reconcile the déffece
web between August and December in 1999. We test our al- between VVS and IVS, the SV’s used must resemble the frame
gorithms based on their retrieval performance using a niprua  statistics of video in the target database. In addition, rep@se a
derived ground-truth set, which consists of 443 video seces ranking method to identify those SV's that are least likelpé in-

in 107 clusters [3]. We declare two video sequen&eandY to side the VG. Experimental results on a large dataset of wedsovi
be similar if VSST()TS’7 17’—3; e,m) < 0.5. A spectrum of differ- and a set of MPEG-7 test sequences are presented to denmnstra
ent recall and precision values are measured by vargingV's the retrieval performance of our proposed techniques.

are randomly selected by the seed vector generation method o
Section 3.1, withe,, set to 2.0, from a set of keyframes repre- P ) I
senting the video sequences in the dataset. A 100-frame-sign [ f,'r'o((::' SCS%’C(?I’ %éakhgz_éis}g:atzlggoof web video mulitity,
ture (m’ = 100) is generated for each video and we measure ' ' P T

the precision and recall for four different values: 2, 6, 10 and  [2] S.-C.Cheung, A. Zakhor, “Efficient video similarity meaement and
14. The resultant plot is shown in Figure 1(c). There is a sub-  S€arch,1CIP 2000 vol. I, p. 85-9, Sept. 2000.

stantial gain in performance when increases from two to six.  [3] S.-C. Cheung, A. Zakhor, “Video similarity detectiontivivideo sig-
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[ Seed Vectors] Uniform [ Non-uniform based on Corel Imaggs
IVS 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2

Average 0.873 ] 0.499 | 0.429 | 0.166 || 0.828 | 0.581 | 0.428 0.187

Stddev 0.146 | 0.281 | 0.306 | 0.169 || 0.060 | 0.083 | 0.051 0.046
Table 1. Comparison between using uniform random and corel image.SV’

[ Algorithm | VSS, I VSS,- |

€ 0.2 0.4 0.8 12 16 0.2 0.4 0.8 12 16

Average [ 0.879] 0.761 [ 0.628 | 0.518 | 0.424 || 1.000 | 0.998 | 0.933 | 0.837 | 0.744
Stddev 0.038 | 0.061 | 0.061 [ 0.080 | 0.082 ]| 0.000 | 0.006 | 0.052 | 0.070 | 0.088

Table 2. Comparison between using the Basic and the Ranked ViSigdettter different levels of perturbation.




