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ABSTRACT

The Video Signature method has been proposed in [1, 2, 3] as a
technique to efficiently summarize video for visual similarity mea-
surements. In this paper, we develop the necessary theoretical
framework to analyze this method. We define our target video sim-
ilarity measure based on the fraction of similar clusters shared be-
tween two video sequences. This measure is too computationally
complex to be deployed in database applications. By considering
this measure geometrically on the image feature space, we find that
it can be approximated by the volume of the intersection between
Voronoi cells of similar clusters. In the Video Signature method,
sampling is used to estimate this volume. By choosing an appro-
priate distribution to generate samples, and ranking the samples
based upon their distances to the boundary between Voronoi cells,
we demonstrate that our target measure can be well approximated
by the Video Signature method. Experimental results on a large
dataset of web video and a set of MPEG-7 test sequences with ar-
tificially generated similar versions are used to demonstrate the
retrieval performance of our proposed techniques.

1. INTRODUCTION
The proliferation of video content on the web makes similarity de-
tection an indispensable tool in web data management, searching,
and navigation. In [1, 2, 3], we have proposed a randomized al-
gorithm, called the Video Signature (ViSig) method, to identify
highly similar video sequences in large databases. In this paper,
we further develop the necessary theoretical framework to interpret
and enhance our algorithms. This paper is organized as follows: in
Section 2, we define our target similarity measure, called the Ideal
Video Similarity (IVS), and explain how we use the ViSig method
to estimate IVS. In Section 3, we analyze the scenarios whereIVS
cannot be reliably estimated by ViSig, and propose a number of
heuristics to improve the estimation. Experimental results are pre-
sented in Section 4 to demonstrate the retrieval performance of
our proposed methods. Due to space limitation, proofs to various
propositions in this paper are not included, and interestedreaders
are referred to [4] for details.

2. IDEAL VIDEO SIMILARITY AND VIDEO SIGNATURE
This section defines the video similarity model used in this pa-
per, and describes how it can be efficiently estimated by the ViSig
method. We assume that individual frames in a video are repre-
sented by high-dimensional feature vectors from a metric space
(F, d(·, ·)). In order to be robust against editing changes in tem-
poral domain, we define a video to be a finite set of feature vectors
and ignore any temporal ordering. The metricd(x, y) measures
the visual dissimilarity between framesx andy. We assume that
framesx and y are visually similar to each other if and only if
d(x, y) ≤ ε for anε > 0 independent ofx andy. Given a videoX,

we define its clustering[X]ε to be a collection of non-intersecting
subsets ofX such that ifd(xi, xj) ≤ ε, xi andxj must belong to
the same subset or cluster in[X]ε. Such a clustering can be easily
computed using the single-link algorithm [6]. When definingthe
similarity between two video sequencesX andY , we consider the
clustered union[X ∪Y ]ε. We call the clusters in[X ∪Y ]ε Similar
Clusters if they contains frames from both sequences, and define
IVS as the percentage of Similar Clusters in[X ∪ Y ]ε:

ivs(X, Y ; ε)
∆
= (

∑
C∈[X∪Y ]ε

1C∩X · 1C∩Y )/|[X ∪ Y ]ε| (1)

where1A is the indicator function and| · | denotes the cardinality
of a set. It is complex to precisely compute IVS. The clustering
used in IVS depends on the distances between frames from the
two sequences. Thus, we need to compute all pairwise distances
before running the clustering algorithm. In addition, the compu-
tation requires the entire video to be stored. The complex com-
putation and large storage requirements are clearly undesirable for
large database applications. The main theme of this paper isto
develop efficient algorithms in estimating IVS.

Since our overall goal is to detect “near duplicate” video se-
quences, the exact similarity value is not required. Sampling tech-
niques can thus be used to estimate IVS. Specifically, two video
sequences are declared to be similar if there are sufficiently large
number of “similar” sampled frames between them. The naive
scheme of sampling frames independently from two sequences,
however, does not work. Even when the IVS between two se-
quences is one, it can be shown that an average of

√
l sampled

frames are needed to find just one pair of similar frames, where l
denotes the number of frames in each sequence [4]. This is dueto
the small probability of finding a pair of similar frames between
two independent sets of sampled frames. Instead of independent
sampling, the ViSig method introduces dependence by selecting
frames in each video that are similar to a set of predefined ran-
dom feature vectors. As a result, the probability in finding simi-
lar frames from two video clips with IVS of one is much higher.
The number of pairs of similar frames found by the ViSig method
strongly depends on the IVS, but does not have a one-to-one re-
lationship with it. We call the form of similarity estimatedby the
ViSig method the Voronoi Video Similarity (VVS), as described
below.

The term “Voronoi” in VVS is borrowed from a geometri-
cal concept called the Voronoi Diagram. Given al-frame video
X = {xt : t = 1, . . . , l}, the Voronoi DiagramV (X) of X is
a partition of the feature spaceF into l Voronoi CellsVX(xt).
By definition, the Voronoi CellVX(xt) contains all the vectors
in F closer toxt ∈ X than to any other frames inX, i.e.

VX(xt)
∆
= {s ∈ F : gX(s) = xt andxt ∈ X}, wheregX(s)

denotes the frame inX closest tos. We can extend the idea of the
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Voronoi Diagram to video clusters by merging Voronoi Cells of
all the frames belonging to the same cluster. Given two videose-
quencesX andY and their corresponding Voronoi Diagrams, we
define the Similar Voronoi Region (SVR), denoted asR(X, Y ; ε),
to be the union of all the intersection between the Voronoi Cells
VX(x) andVY (y) with d(x, y) ≤ ε:

R(X,Y ; ε)
∆
=

⋃
d(x,y)≤ε

VX(x) ∩ VY (y). (2)

It is easy to see that SVR is large if videoX andY have a large
number of frames that are similar to each other. Thus, we define
the VVS betweenX andY , vvs(X, Y ; ε), to be the volume of the
corresponding SVR:

vvs(X, Y ; ε)
∆
=

∑
d(x,y)≤ε

Vol(VX(x) ∩ VY (y)). (3)

The volume functionVol : Ω → R is the Lebesgue measure over
the set,Ω, of all the measurable subsets inF . F is assumed to be
compact withVol(F ) = 1. A simple pictorial example to demon-
strate the use of VVS is shown in Figure 1(a). The feature space is
represented as a 2D square. Dots and crosses signify frames from
two different video sequences, whose Voronoi Cells are separated
by solid and broken lines respectively. Frames closer thanε are
connected by dotted lines. The shaded region represents theSVR.
The VVS, which measures the area of the shaded region, is about
1/3, the same as the IVS in this case.

It is straightforward to estimate VVS by random sampling:
we first generate a setS of m independent uniformly-distributed
Seed Vectors (SV)s1, . . . , sm. We can then estimatevvs(X, Y ; ε)
based on the percentage of SV’s that are insideR(X, Y ; ε). To
determine if a particular SVs falls insideR(X, Y ; ε), we only
need to check whethergX(s), the frame closest tos in X, and
gY (s) are within ε of each other. In other words, we can esti-
mate VVS betweenX and Y by using only them-frame tuple
−→
XS

∆
= (gX(s1), . . . , gX(sm)) from videoX and

−→
YS from Y . We

call
−→
XS the signature ofX with respect toS. We define Basic

ViSig Similarity (VSSb) between
−→
XS and

−→
YS to be the percentage

of gX(s) andgY (s) that are withinε from each other:

vssb(
−→
XS ,

−→
YS; ε, m)

∆
= (

m∑
i=1

1{d(gX (si),gY (si))≤ε})/m (4)

vssb(
−→
XS,

−→
YS ; ε, m) forms an unbiased estimate of the VVS be-

tweenX andY . We refer to this approach of generating signatures
and computingVSSb as the Basic ViSig method. In order to apply
the Basic ViSig method to a large number of video sequences, we
must use the same SV set to generate all the signatures beforewe
can computeVSSb between an arbitrary pair of video sequences.

3. DIFFERENCES BETWEEN IVS AND VVS
We have shown in the previous section that the VVS between two
video sequences can be efficiently estimated by the Basic ViSig
method. Unfortunately, the estimated VVS does not necessarily
reflect the target measure of IVS as defined in Equation (1). Two
problems can arise: first, VVS can be either larger or smallerthan
IVS because of the non-uniform sizes of the Voronoi Cells. Sec-
ond, VVS can be smaller than IVS because of the presence of
a special region in the Voronoi Diagram called the Voronoi Gap
(VG). In this section, we explain these two problems and propose
heuristic solutions to improve the estimation.

3.1. Seed Vector Generation
When all clusters in the clustered union between two video se-
quences clump together in a small area, some Voronoi Cells can
be significantly larger than the others. If the Similar Clusters hap-
pen to reside in the smaller Voronoi Cells, the VVS is smallerthan

the IVS. On the other hand, if the Similar Clusters are in the larger
Voronoi Cells, the VVS becomes much larger. As the Basic ViSig
method estimates IVS based on uniformly-distributed SV’s,the
variation in the sizes of Voronoi Cells affects the accuracyof the
estimation. One possible method to amend the Basic ViSig method
is to generate SV’s based on a probability distribution suchthat the
probability of a SV being in a Voronoi Cell is independent of the
size of the Cell. Specifically, for two sequencesX andY , we can
define the Probability Density Function (PDF) at the featurevector
u based on the distribution of Voronoi Cells in[X∪Y ]ε as follows:

f(u; X ∪ Y )
∆
= 1/[|[X ∪ Y ]ε| · Vol(VX∪Y (C))] (5)

whereC is the cluster in[X ∪ Y ]ε with u ∈ VX∪Y (C). With
this PDF, the probability of a random vectoru being inside the
Voronoi Cell VX(C) for an arbitrary clusterC ∈ [X ∪ Y ]ε is
given by

∫
VX (C)

f(u; X ∪ Y ) du = 1/|[X ∪ Y ]ε|. This probabil-
ity does not depend onC, and thus, it is equally likely foru to be
inside the Voronoi Cell of any cluster in[X ∪ Y ]ε. Recall that if
we use uniform distribution to generate random SV’s,VSSb forms
an unbiased estimate of the VVS defined in Equation (3). If we use
f(u; X ∪Y ) to generate SV’s instead,VSSb becomes an estimate
of the following general form of VVS:

∑
d(x,y)≤ε

∫
VX (x)∩VY (y)

f(u; X ∪ Y ) du. (6)

Equation (6) reduces to Equation (3) whenf(u; X∪Y ) is replaced
by the uniform distribution, i.e.f(u; X ∪ Y ) = 1. As shown by
the following proposition, this general form of VVS is equivalent
to IVS under certain conditions.

Proposition 3.1 Given two video sequencesX and Y , assume
clusters in[X]ε and [Y ]ε are either identical, or share no frames
that are withinε of each other. Then,ivs(X, Y ; ε) is equivalent to
the general form of VVS given by Equation (6).

The significance of this proposition is that if we can generate SV’s
with f(u; X ∪ Y ), it is possible to estimate IVS using the same
tool as to estimate VVS, namelyVSSb. The condition that all clus-
ters inX areY are either identical or far away from each other is
to avoid the formation of VG, which is expounded in Section 3.2.

In practice, it is impossible to usef(u; X ∪ Y ) to generate
SV’s. This is becausef(u; X ∪ Y ) is specific to the two se-
quences being compared, while the Basic ViSig method requires
the same set of SV’s to be used by all sequences in the database.
A heuristic approach for SV generation is to first select a setΨ
of training video sequences that resemble video sequences in the

target database. DenoteT
∆
=

⋃
Z∈Ψ Z. We can then generate

SV based on the PDFf(u; T ), which ideally resembles the target
f(u; X ∪ Y ) for an arbitrary pair ofX andY in the database. To
generate a random SVs based onf(u; T ), we follow a four-step
SV generation method as follows: Given a particular value ofεsv,
we first identify all the clusters in[T ]εsv using the single-link algo-
rithm. Second, asf(u; T ) assigns equal probability to the Voronoi
Cell of each cluster in[T ]εsv , a clusterC′ is randomly selected
from [T ]εsv so that we can generate the SVs within VT (C′). As
f(u; T ) is constant overVT (C′), we should ideally generates as
a uniformly-distributed random vector overVT (C′). One possi-
ble way is to repeatedly generate uniform sample vectors over the
entire feature space until a vector is found insideVT (C′). This
procedure may take an exceedingly long time ifVT (C′) is small.
To simplify the generation, we select one of the frames inC′ at
random and output it as the next SV. Finally, we repeat the above
process until the required number of SV’s have been selected. In
Section 4, we compare retrieval performances on real video se-
quences based on SV’s generated using this algorithm and theuni-
form distribution.



3.2. Voronoi Gap (VG)
We have shown in Proposition 3.1 that the general form of VVS
using an appropriate PDF is identical to the IVS, provided that all
clusters between the two sequences are either identical or far away
from each other. As feature vectors are not perfect in modeling
human visual system, visually similar clusters may result in fea-
ture vectors that are close but not identical to each other. Let us
consider the example in Figure 1(b) where frames from two se-
quences are not identical but withinε from each other. Clearly,
the IVS is one. Consider the Voronoi Diagrams of the two se-
quences. Since the boundaries of the two Voronoi Diagrams do
not exactly coincide with each other, the SVR, as indicated by
the shaded area, does not occupy the entire feature space. Asthe
general form of VVS defined in Equation (6) is the weighted vol-
ume of the SVR, it is strictly less than the IVS. The difference
between the two similarities is due to the unshaded region inFig-
ure 1(b). If a SVs falls within the unshaded region in Figure 1(b),
we can make two observations about the corresponding signature
framesgX(s) andgY (s): (1) they are far apart from each other,
i.e. d(gX(s), gY (s)) > ε; (2) they both have similar frames in
the other video, i.e. there existsx ∈ X and y ∈ Y such that
d(x, gX(s)) ≤ ε andd(y, gY (s)) ≤ ε. These observations define
a unique characteristics of the unshaded region, which we refer to
as the Voronoi Gap (VG) and denote asG(X, Y ; ε). Any SV in the
VG between two sequences produces a pair of dissimilar signature
Frames, even though both signature frames have a similar match
in the other video.

The example in Figure 1(b) seems to suggest that VG is small
if ε is small. Nonetheless, in some particular feature spaces such
as the hamming cube, the volume of VG can be quite significant
even for smallε [4]. As such, it is important to identify those
SV’s that are inside the VG and discard the corresponding signa-
ture frames in the estimation of IVS. In Figure 1(b), we observe
that for an arbitrary vectors in VG, each sequence has a pair of
dissimilar frames that are roughly equidistant tos: x andgX(s)
in the “dot” sequence, andy andgY (s) in the “cross” sequence.
This “equidistant” condition is refined in the following proposi-
tion to upper-bound the difference between distance ofs andx,
and distance ofs andgX(s) by 2ε:

Proposition 3.2 Let X and Y be two video sequences. Assume
all the frames in each cluster of[X ∪ Y ]ε are withinε from each
other. For any SVs ∈ G(X, Y ; ε), there exists a framex ∈ X
with d(x, gX(s)) > ε such thatd(x, s) − d(gX(s), s) ≤ 2ε.

We can use the converse of Proposition 3.2 to test if a SVs can
ever be inside a VG ofX: define a Ranking FunctionQ(·) for the
signature FramegX(s),

Q(gX(s))
∆
= min

x∈X, d(x,gX(s))>ε
d(x, s) − d(gX(s), s). (7)

Based on Proposition 3.2, ifQ(gX(s)) > 2ε, s cannot be inside
the VG formed betweenX and any other sequence. In practice,
however, this condition might be too restrictive in that it might not
allow us to find any SV. Recall that Proposition 3.2 only provides
a sufficient and not a necessary condition for a SV to be in VG.
Thus, even ifQ(gX(s)) ≤ 2ε, it does not necessarily imply thats
will be inside the VG betweenX and any particular sequence. In-
tuitively, in order to minimize the chance of being inside any VG,
it makes sense to use a SVs with as large of aQ(gX(s)) value
as possible. Thus, we can generate a large number of signature
frames and only use those with the largest ranking function val-
ues for similarity measurements. Letm′ > m be the number of
frames in each signature. After we generate the signature

−→
XS with

respect to a setS of m′ SV’s, we compute and rankQ(gX(s)) for

all gX(s) in
−→
XS . Analogous toVSSb defined in Equation (4), we

define the Ranked ViSig Similarity (VSSr) based on the top-m/2
ranked signature frames:
vssr(

−→
XS ,

−→
YS; ε, m)

∆
=

1

m

m/2∑
i=1

[1{d(gX (sj[i]),gY (sj[i]))≤ε} +

1{d(gX (sk[i]),gY (sk[i]))≤ε}] (8)

where j[1], . . . , j[m′] and k[1], . . . , k[m′]’s denote the relative

rankings of the signature Frames in
−→
XS and

−→
YS respectively, i.e.

Q(gX(sj[1])) ≥ . . . ≥ Q(gX(sj[m′])) and Q(gY (sk[1])) ≥
. . . ≥ Q(gY (sk[m′])). We call this method of generating signa-
tures and computingVSSr the Ranked ViSig method. Notice in
the right hand side of Equation (8), the first term uses the top-m/2

ranked signature frames from
−→
XS to compare with the correspond-

ing signature frames in
−→
YS , and the second term uses the top-m/2

ranked frames from
−→
YS . ComputingVSSr thus requiresm metric

computations, the same asVSSb. This provides an equal footing
in complexity to compare the retrieval performances between these
two methods in Section 4.

4. EXPERIMENTAL RESULTS
In this section, we present experimental results to demonstrate
the performance of the ViSig methods. Four 178-bin HSV color
histograms, each representing a quadrant of a frame, is usedas
the feature vector in all our experiments. We compare color his-
tograms with bothl1 metric and a modifiedl1 distance, which dis-
cards the dominant color from the measurement [4].

Two sets of data are used in our experiments. The first dataset
consists of 15 video sequences selected from the MPEG-7 video
CD set: v1, v3, v4, v5,v6, v7, v8, and v9 [5]. The average length
of the test sequences is 30 minutes. We perform two experiments
with this dataset to verify the heuristics proposed in Section 3. In
the first experiment, we demonstrate the effect of the choiceof
SV’s in the ViSig methods on approximating IVS. We randomly
drop frames from each sequence to artificially create similar ver-
sions at different levels of IVS. Signatures with respect totwo
different sets of SV’s are created for all the sequences and their
similar versions. The first set of SV’s are independent random
vectors, uniformly distributed on the high-dimensional histogram
space. We use the seed generation method described in Section 3.1
with εsv = 2.0 to generate the second set of SV’s. The training
set consists of 4000 random images from the Corel Stock Photo
Collection. We use 100 SV’s to generate each signature, and mea-
sure theVSSb between all sequences and their similar versions at
IVS levels of 0.8, 0.6, 0.4 and 0.2. Table 1 shows the averagesand
standard deviations of theVSSb values over all the test sequences.
As expected, theVSSb based on Corel images are closer to the un-
derlying IVS than those based on random vectors. In addition, the
fluctuations in the estimates are far smaller with the Corel images.
The experiment thus shows that it is advantageous to use SV’sthat
approximate the feature vector distribution of the target data.

In the second experiment, we compare the Basic ViSig method
with the Ranked ViSig method in identifying sequences with IVS
of one, under small feature vector displacements. In this ex-
periment, we create similar video by adding noise to individual
frames. Most of the real-life noise processes such as compres-
sion are highly video dependent, and cannot provide a wide-range
of controlled noise levels for our experiment. As such, we intro-
duce noise at differentε levels by randomly changing the colors
of different percentages of pixels in each frame. Fiveε levels are
tested in our experiments: 0.2, 0.4, 0.8, 1.2 and 1.6. After inject-
ing noise to create the similar video, a 100-frame Basic Signature
(m = 100) and a 500-frame Ranked Signature(m′ = 500) are
generated for each video. All SV’s are randomly sampled from
the Corel dataset. To ensure the same computational complexity
between the two methods, the top 50-ranked signature framesare
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Fig. 1. (a) The shaded area, normalized by the area of the entire space, is equal to the VVS. (b) The unshaded area represents the Voronoi Gap. (c)
Precision-Recall graphs for the Ranked ViSig methods withm = 2, 6, 10, 14. (d) Precision-Recall graphs for the Ranked ViSig method with m = 6 (solid)
and k-medoid with 7 representative frames (broken).

used in computingVSSr. The averages and standard deviations of
VSSb’s andVSSr ’s over all test sequences are shown in Table 2.
Since the IVS is fixed at one, the closer the average similarity is
to one, the better the approximation is. Even though both methods
show degradation as the noise level increases, as expected,VSSr

measurements are much closer to one thanVSSb.
We also use a much larger dataset to demonstrate how the

Ranked ViSig method can be applied in a realistic application.
The dataset consists of 46,356 video sequences, crawled from the
web between August and December in 1999. We test our al-
gorithms based on their retrieval performance using a manually-
derived ground-truth set, which consists of 443 video sequences
in 107 clusters [3]. We declare two video sequencesX andY to
be similar if vssr(

−→
XS ,

−→
YS; ε, m) ≤ 0.5. A spectrum of differ-

ent recall and precision values are measured by varyingε. SV’s
are randomly selected by the seed vector generation method of
Section 3.1, withεsv set to 2.0, from a set of keyframes repre-
senting the video sequences in the dataset. A 100-frame signa-
ture (m′ = 100) is generated for each video and we measure
the precision and recall for four differentm values: 2, 6, 10 and
14. The resultant plot is shown in Figure 1(c). There is a sub-
stantial gain in performance whenm increases from two to six.
Further increase inm does not produce any significant gain. All
the precision-recall curves decline sharply once they reach beyond
75% recall and 90% precision. Thus,m = 6 is adequate in re-
trieving our ground-truth from the dataset. We also comparethe
retrieval performance between the Ranked ViSig method and an-
other summarization method called thek-medoid method[8, 9].
The k-medoid method represents each video byk of its frames,
or medoids, which minimize the sum of distances between the
medoids and all other frames in the video. The method of com-
puting thek-medoid representation is significantly more complex
than the Ranked ViSig method: for a video withl frames, thek-
medoid algorithm is iterative with each iteration running at O(l2)
time [8]. On the other hand, the Ranked ViSig method is a single-
pass linear algorithm. We plot the precision-recall curvesfor the
k-medoid method withk = 7 and the six-frame Ranked ViSig
method in Figure 1(d). The k-medoid technique provides a slightly

better retrieval performance. The advantage seems to be small con-
sidering the complexity advantage of the ViSig method.

5. CONCLUSION
In this paper, we have proposed the ViSig method which summa-
rizes a video sequence by extracting the frames closest to a set
of randomly selected SV’s called signatures. By comparing the
signature frames between two video sequences, we obtain an un-
biased estimate of their VVS. In order to reconcile the difference
between VVS and IVS, the SV’s used must resemble the frame
statistics of video in the target database. In addition, we propose a
ranking method to identify those SV’s that are least likely to be in-
side the VG. Experimental results on a large dataset of web video
and a set of MPEG-7 test sequences are presented to demonstrate
the retrieval performance of our proposed techniques.
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Seed Vectors Uniform Non-uniform based on Corel Images
IVS 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2

Average 0.873 0.499 0.429 0.166 0.828 0.581 0.428 0.187
Stddev 0.146 0.281 0.306 0.169 0.060 0.083 0.051 0.046

Table 1. Comparison between using uniform random and corel image SV’s.
Algorithm VSSb VSSr

ε 0.2 0.4 0.8 1.2 1.6 0.2 0.4 0.8 1.2 1.6
Average 0.879 0.761 0.628 0.518 0.424 1.000 0.998 0.933 0.837 0.744
Stddev 0.038 0.061 0.061 0.080 0.082 0.000 0.006 0.052 0.070 0.088

Table 2. Comparison between using the Basic and the Ranked ViSig method under different levels of perturbation.


