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ABSTRACT In this paper, we propose a novel feature extraction mapping to be

. . . used in GEMINI for fast similarity search on signature data.

Video signatures are compact representations of video sequences s most commonly used feature extraction is the Principal
designed for efficient similarity measurement. In this paper, we comnonent Analysis (PCA), which is optimal in approximating
propose a feature extraction technique to support fast similarity gcjigean distance [5]. If the underlying metric is not Euclidean
search on large databases of video signatures. Our proposed techpca g no longer optimal and more general schemes need to be
nique transforms the high dimensional video signatures into low \,qe4 ~ One such technique is the Fastmap, a heuristics algorithm
dimensional vectors where similarity search can be efficiently per- - approximates general metric by Euclidean distance [6]. An-
formed. We exploit both the upper and lower bounds of the tri- i1 jass of techniques construct mappings based on distances

angle inequalities in approximating the high-dimensional metric, poryeen the high-dimensional vectors and a set of random vec-
and combine this approximation with the classical PCA to achieve (.o [7, 8, 9, 10]. These kinds of “random mappings” have been

the target dimension. Experimental results on a large set of web g6y’ to possess certain favorable theoretical properties [7, 8].
video sequences show that our technqu_Je outp_erforms FastmapSuch mappings, however, are very complex, and effectively re-
Haar wavelet, PCA, and Triangle-Inequality Pruning. quire the computations of all pairwise distances between entries
1. INTRODUCTION in the database. A more practical version has been proposed in [9]
. . , for protein matching. An even simpler version, called the Triangle-
Thanks to W|despre§1d avallablllt.y.of broadband connections gnd Inequality Pruning (TIP), has been proposed for similarity search
decreasing cost of disk storage, it is now commonplace to publish, 5 image databases [10]. TIP exploits the lower bound of the
broadcast, or stream video sequences over the Internet. As V'deggiangle inequality in approximating the high-dimensional metric.
content becomes more popular on the web, there is a growing neegyyr proposed technigue improves upon TIP by taking into account
to develop tools for analyzing, searching, and organizing visually poth the upper and lower bounds offered by the triangle-inequality.

similar video sequences. In the development of such tools, we arej aqdition, it takes advantage of the classical PCA technique to
faced with two major algorithmic challenges: how to efficiently 5chieve any user-defined target dimension.

measure the similarity between two video sequences, and how t0 hig paper is organized as follows: in Section 2, we briefly

identify video sequences similar to a given query out of possibly e\ the ViSig method and the GEMINI approach. The proposed

millions of entries on the web. In [1], we introduce a class of fgaqre extraction mapping and its performance evaluation on a
techniques called ViSig for efficient video similarity measurement. large database of signatures are presented in Section 3.

The ViSig method summarizes a video sequence into a compact

video signature, consisting of a small number of representative 2. REVIEW OF VISIG AND GEMINI

feature vectors from the video. Compared to other summarization, . v i- with a brief overview of the ViSiq method [1]. We as-

techniques, video signatures are simple to compute, robust agains!lljme t%at each video is represented b agset of hi h-dimensional

temporal re-ordering, and capable of identifying similar video se- pres y 1 9

guences regardless of their length. In this paper, we consider thefgature vectors X, from a metric spacgF, .d('7 ) S Th‘? met-

problem of searching for signatures similar to a user-defined query i functiond(-, -) is used to measure the visual dis-similarity be-

in a very large database. tween two feature vectors. In this paper, we use four concate-
The naive approach of sequential search is typically too slow nated 178-bin HSV color histograms as our feature vector, each

to handle large databases. Faster-than-sequential solutions haviEPresenting a quadrant of a video frame, &nds the metric be-

been extensively studied by the database community. ElaborateVeen two histograms. In order to reduce the complexity in com-

data structures, collectively known as the Spatial Access Methodsp%”ng;v‘.’o ;’k']deg ?eguenqets, the_\ﬁsltg methc;]ql ?]umma_rltzes feach
(SAM), have been proposed to facilitate similarity search [2, 3]. video X In the database into a signatuié;, which consists o
Most of these methods, however, do not scale well to high dimen- the feature vectors @( that are closest to a set séed vectors
sional metric spaces [4]. One strategy to mitigate this problem is © — {s1,82,..., sm}:

to design a featu_re ext(action mapping to map the original metric Xs = (gx(s1),9x(52),...,9x(5m))

space to a low-dimensional space where a SAM structure can be
efficiently applied. The approach of combining feature extraction
with SAM is called GEneric Multimedia INdexIng (GEMINI) [3].

wheregx (s) = argmin_ y d(z, s). 1)

The central idea behind the ViSig method is that if two video clips
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ermore National Laboratory under Contract No. W-7405-Eng-48. interchangeably.




from a training set that resembles the target video data under con- 3. FEATURE EXTRACTION FOR SIGNATURE
sideration. The robustness of an individual signature vector can bEOur proposed mapping consists of two steps: first, each signa-

evaluated by the following function [1]: ture vector is mapped into a particular form of low-dimensional
Qgx(s)) = min d(z,s) —d(gx(s),s), (2) range vector called projection vector Second, classical PCA is
v€X, d(w,gx(s))>cc applied to transform the projection vector into iadex vectorof

whereec is the maximum distance between similar vectors within €ven lower dimension, as specified by the user. The motivation be-
the video. In order to guarantee the existence of robust signaturehind our proposed mapping is explained in Section 3.1. In Section
vectors, we typically set the number of signature vectors in a signa- 3.2, We present experimental results to compare our scheme with
ture,m, to be fairly large, but use only the most robust, or highest- other techniques proposed in the literature.

) ! . . e
ranked,m’ vectors in comparing two signatures. Specifically, two g 4 Proposed feature extraction

signatureX's andY’s are compared using the following asymmet- | ot andy, be the signature vectors in signatufés andY’s that

ric signature distance correspond to the same seed veetar S. Consider the following
dsig(Xs,Ys) = median=1,.. . d(gx (sji1), 9v (s51)),  (3) m-dimensional vector,

wheregx (s;1)), - - -, 9x (8;m7)) have them' largestQ(-) values T(zs) = (d(zs,51),d(zs, 52), - - d(2s, 5m)), 9)

among all the signature vectors Kis. We declareY’s to be sim- as a feature extraction mapping ©f. We are interested in this

ilar to X5 if dsig(Xs,Ys) is less than or equal to themilarity particular formulation because of two reasons: first, it makes use

thresholde. Given a query signatur’s, the goal of asignature of quantities that have already been computed in (1). Second, the
similarity searchis to identify all signature¥’s in a given database distanced(z, y;) can be related to the coordinates®fz.) and

that are similar taX's. To provide a fast solution to this problem, T (ys) by th‘e7tri‘angle inequalities: )

we propose an approach based on a generic technique called GEM-

INI which tackles the specific problem afetric-space similarity ld(2s, 5i) — d(ys, si)| < d(ws,ys) <
search[3, ch. 7]. d(zs, 8i) +d(ys,s:), 1=1,2,...,m (20)
Given a queryc and a databasé, of feature vectors, the goal
of a metric-space similarity search is to identify the following: The above inequalities are instrumental in designing the feature
A(z;e) ={y € D :d(z,y) < e} 4) extraction mapping. The mappirif(-) and its variations have

been previously proposed in the literature for feature extraction [7,
8, 9, 10]. These techniques typically usé,ametric as the range
metric betweer? (zs) and7 (ys). Forp = 1,2, ..., thel, metric

is defined as follows:

It is easy to see that the signature similarity searctXgncan be
solved by applying the metric-space similarity search on each of
the m’ top-ranked signature vectors ids [11, ch. 4]. Rather
than computingd(x; €) by a sequential search, GEMINI first uses
afeature extraction mapping@ to map feature vectors into a very (T (%), T (ys)) = (& 30, |d(ws, 5:) — d(ys, s1)|?) e
low dimensionalrange metric spacéF”,d’'(-,-)). A similarity (11)
search on the transformed quéfyz) is performed to identify the  On the other hand,. is defined as,

didate se€(z; ¢') defined below:
candies ecs(x;(:’c)l){;énep : :le’(oqv'v(x)j(y)) < (5) loo (T (25), T (ys)) = maxi=1,....m |d(2s, 5:) = d(ys, si)| (12)

¢ is called apruning thresholdwhich depends om, 7 and the We use a normalization factor af/m in the definition ofl, so
data. As mentioned in Section 1, such a low-dimensional searchthat it has the same order of magnitude aslthemetric. All the
problem can be efficiently solved by any SAM method. The final l,-metric functions are composed of different powers of the abso-
step of GEMINI to identify those vectors ifi(z, ¢’) that are truly lute differences between the coordinateg¢fc.) and7 (ys), i.e.
within e of 2 |d(zs,s:) — d(ys, si)| fori = 1,...,m. These absolute differ-
Al(zye,e') = {y € Cz;€) : d(z,y) < €} (6) ences appear only in the lower-bound half of the triangle inequal-
ities in (10). By using a simple experiment, we can demonstrate
that better pruning-accuracy trade-off can be achieved by combin-
ing both the upper and lower bounds of the triangle inequalities.
Our experiment is based on sampling random pairs of video
sequences from a database of 46,331 web video sequences called
SIGDB [11, ch. 4]. We sample 100,000 pairs and generate their
signature vectors with respect to a randemrhosen from a set of
m = 100 diverse seed vectors, also sampled from SIGDB using
the seed vector generation algorithm described in [1]. For each
pair of signature vectors, andy,, we computed(zs,ys) and

By applying GEMINI to each top-ranked vectors s, we can
define As(Xs;e), Cs(Xs;€), and A (Xs;e, €) for similarity
search on a databag#s of signatures that are analogous to those
defined in (4), (5), and (6) respectively.

GEMINI is more efficient than sequential search if a typical
candidate set is small enough so that few full metric computations
are required in the last step of GEMINI. To assess the average
complexity reduction of GEMINI over a large set of query signa-
tures R, we measure th@runing parameter defined below. It is
based on the relative difference in the total number of full metric yeir gistances with respect to all seed vectors. The distribution
computations between GEMINI and sequential search: of d(zs, ys) is shown in Figure 1 as a function of a single lower
T xger|Cs(Xsie)| @) and upper bound, defined as follows: for the lower bound, we take

(RFDs]) the maximum over all the individual lower bounds in (10), which
As suggested in Equation (7), a high level of pruning can be achievei@ identical tol (7 (xs),7 (ys)). For the upper bound, we use
by making candidate sets small. On the other hand, small candi-a similar approach and take the minimum of the individual upper
date sets may adversely affect taecuracyof GEMINI, which is bounds in (10) to form an(-) function:

defined belo/\;v: | Sxeen AL(Xsied) o a(7T (z5), 7T (ys)) = minj—1,2,... m[d(zs, si) + d(ys, si)] (13)
ccuracy(€') = TxgerlAs(Xsil ®)

Pruning(¢’) =1 —

In Figure 1, data points of different shapes and shades represent
Our goal is to design a feature extraction mapghthat provides metric values in different ranges. We separate all data points into
a reasonable trade-off between pruning and accuracy. In the nextwo classes: the crosses and circles arestiall-metricpoints,
section, we introduce a novel design®ffor signature data. and the dots in different shades correspond to ltinige-metric



We call P(z) the projection vector ok, and the collection of
projection vectors for all the signature vectors in a signaty®a
jection In Section 3.2, we demonstrate experimentally that using
the Il metric onP(x,) produces much better pruning and accu-
racy trade-off than using tHe, metric or the3(-) function in (14)

on7 (zs).

Besides the superior pruning and accuracy performance, there
is another reason for choosing to apply thenetric on the pro-
jection vectors. The dimension of a projection vectomis= 100
in the case of SIGDB. Despite the fact thatis smaller than the
dimension of our original feature vectors, i.B(8 x 4 = 712, it
is still much larger than what most SAM structures can handle. If
‘ % I, metric is used between two projection vectors, we can reduce
2 3456 7 809 101112131415 the dimension of the projection vectors with minimum distortion

UT(x),T(y) by applying the classical PCA technique [5]. We call the resulting
lower-dimensional vector thmdex vectoy and the collection of
Fig. 1. Distribution of the metricd(zs,ys) for 100,000 random index vectors for all the signature vectors in a signaturdrtlex
pairs of signature vectors in the coordinates ®f7 (zs),7 (ys)) and In the next section, we compare our proposed indices with other
loo (T (x5), T (ys))- dimension reduction schemes proposed in the literature.

o)

. . . ) . 3.2. Experimental results
points. Small-metric points are those with metric values smaller We first justify the use of the projection mapping with met-

thane = 3.0, which we experimentally find to be a reasonable ric based on the experimental results on full signature data. The
value to identify visually similar video clips. The goal of a simi-  database consists of signatures of all the video sequences in SIGDB
larity search is to separate the small-metric points from the large- with respect to the same setwof = 100 seed vectors. A random
metric ones. If we usé.(-) as the range metric, a typical can- query set of 1000 signatures are drawn from the database, and used
didate set based on the inequallty (7 (z), 7 (ys)) < € will as the sefR in Equations (7) and (8) for computing pruning and
include all the points below a horizontal line at levél This is, accuracy for different values af. For the signature similarity
as a matter of fact, the TIP scheme proposed in [10]. An exam- search, we setto be 3.0 and usex’ = 6 for computing the sig-
ple of such a set with’ = 3 is shown in Figure 1. Even though nature distance in (3). We measure the accuracy and pruning for
all the small-metric points are within the candidate set, many of three different feature extraction mappings used within GEMINI:
the large-metric points are also erroneously included as they havea) the “lower-bound” scheme based on the mapr(g) in (9)
smalllw(-) values. It is clear, based on the shape of the distri- and thel..-metric; (b) the “product” scheme based @r{-) and
bution of the small-metric points, that a better separating function the 3(-) function defined in (14); and (c) the projection mapping
should combine both.. () anda(-). One possible choice is to  scheme based oR(-) in (17) and thel,-metric. The resulting
base on their producg(-): plots of pruning versus accuracy, withvarying across each plot,
_ . are shown in Figure 2. A good feature extraction mapping should

AT (@s), Tys)) = (T (22), T(ya)) Loo(T (22), T(ys)) (14) achieve pruning and accuracy that are as close to one as possible.
As shown in Figure 1, even though the candidate set defined byAs shown in the figure, our proposed scheme clearly out-performs
B(T (z5), T (ys)) < 9 misses a few small-metric points, it ex- both the “lower-bound"” and “product” schemes by achieving much

cludes a much larger set of large-metric points tha(). Never- higher pruning at the same accuracy level. Also, as expected, the
theless, we cannot directly usg-) because it is not a true metric ~ “product” scheme out-performs the “lower-bound” scheme as the
function. “product” scheme exploits both the upper and lower bounds of the

The3(-) function in (14) is defined as the productef-) and triangle inequality.
s (+), which represent the aggregate bounds of all the inequalities

in (10). Rather than using the two aggregate bounds, it is sim- 1
pler to form a metric by using the product of the bounds from the 975
individual inequalities as follows: Jos

[d(xs,5:) + d(ys, si)] - |d(@s, 8:) — d(ys, 5:)] = 925}

|d(ZCS,S7;)2 *d(ys,Si)2|, t=1,2,...,m (15) 0.9r
Note that Equation (15) is in the form of an absolute difference. 8751
While absolute differences also appear in the definitiorig ofet- 285 ,
rics in Equation (11), the one in (15) is the absolute difference of a5 | o Proposed A
squaref 7 (-)'s coordinates. Thus, it is conceivable to propose a | == Lower-bound
new metric¢(-) that combines, with this absolute difference of %86 065 07 o075 08 o085 09 095 1
squaresof coordinates as follows: Accuracy (e=3.0)
m 1/p Fig. 2. Pruning-versus-Accuracy plots for the “lower-bound”, the “prod-
1 2 2 uct” and the proposed schemes.
T s T s = —_— d sy 51 —d sy 54 P . . . .

(T (), T(ys)) (m ;[ (s, 81) (v 50)°] ) In the following experiments, we apply PCA to the projection

_ vectors, and compare the resulting index vectors with other ap-

= W(P(ws), Pys)) (16) proaches in terms of their accuracy and pruning trade-off. These

whereP(z,) is defined as: approaphes include: a_) P(;A—while in our proposed scheme, PCA
is applied on the projection vectors, it can also be directly ap-

Plxs) = (d(ws, 51)2,d(xs, 82)2, ..., d(xs, 5m)?) a7) plied onto the 712-dimensional color histogram feature vectors



for dimension reduction; b) Fastmap, as described in [6]; and c) ments for the above four schemes on a particular platform. The

Haar wavelet on color histogram as described in the MPEG-7 stan-
dard [12]. Since most of the schemes require training data to gen-

erate the mappings, we arbitrary split SIGDB into two halves —
we call one half the “training” SIGDB, which is used to build the

mapping, and the other half the “testing” SIGDB, which is used
for the actual testing. In order to ensure the suitability of incor-
porating these schemes into GEMINI, we focus on very low di-

experiments are run on a Dell PowerEdge 6300 Server with four
550MHz Intel Xeon processors and 1 Giga-bytes of memory. As
all the tests are run under a single thread, only a single processor is
used. The testing SIGDB, which contains 23,206 signatures, each
consisting of 100 vectors, and their corresponding 8-dimensional
indices are first loaded inside the memory. 100 queries are ran-
domly sampled for testing. No SAM structure is implemented and

mensional index vectors. We test all the schemes for dimensionsa simple sequential search is used for the indices. Pruning thresh-
two, four and eight. The corresponding pruning-accuracy plots are olds are chosen, based on the previous experiments, to hit the 90%
shown in Figures 3(a) through (c). These plots are generated byaccuracy level for similarity searcheset= 3.0. As a reference,

the same procedure used in the first experiment. As seen, our prowe also measure the performance of sequential search on signa-
posed scheme results in the best performance in all the dimensionsures with no feature extraction. The results are tabulated below:

tested, followed by Haar, Fastmap and PCA. The gain of the pro-
posed scheme over the second best scheme, however, diminishe:

as the dimension increases.

- Proposed
—o- Haar
—4- FastMap
—— Sig. PCA

-~ Proposed
—o— Haar
—&- FastMap
—— Sig. PCA
66 065 07 075 08 08 09 095 1
Accuracy

(b) 4-D

6 065 07 075 08 08 09 09 1
Accuracy

(a) 2-D

o

*TEE,

set 1
x set2
set 3

1 2 3 4
Pruning Threshold, €'
e NP
B -3

-~ Proposed
-6— Haar
—&— Fastmap

—— Sig. PCA

06 065 07 075 08 085 09 095 1 - 3 4
Accuracy Pruning Threshold, €'

(c)8-D (d)
Fig. 3. (a)-(c) Pruning-versus-accuracy plots for two-, four- and eight-

dimensional spaces. (d) Pruning and Accuracy versus pruning threshold

for three independent sets of queries.

In applying the feature extraction scheme in a fast similarity

search, we need to choose a particular value of pruning threshold
€' in order to compute the candidate set. Given the target dimen- [4]

sion, accuracy, and pruning, one possible approach is td et
a value that attains the particular level of performance in a previ-

,L_Schemes [ Sequential[ Proposed| Fastmap | Haar [ PCA |
Accuracy 1.00 0.89 0.91 0.92 0.89
Index time | - 131 £ | I31 £ | 152 £ | 130 £
(ms) 0.8 1.5 1.3 1.4
Refine time | 6730 £ | 33£8 /SEIT [ 123 £ | 401 £
(ms) 35 28 75
Candidate | - 109 £ | 262 £ [ 428 £ | 1386 £
Size/query 27 39 97 257

The Index time is the time required for the sequential search on
indices to identify the candidate sets. The averages and their stan-
dard error at 95% confidence interval are shown. As the Sequential
scheme does not use any indices, no number is reported. The pro-
posed scheme, Fastmap, and PCA all usé4iistance on range
vectors and thus, result in roughly the same index time. Haar re-
quires slightly larger index time for it distance computation.
The refine time is the time required to perform the full signature
distance computations on the candidate sets, and is proportional to
the size of the candidate sets as shown in the last row. Our pro-
posed scheme outperforms all other feature extraction schemes in
refinement time. The large standard error in the refinement time is
due to the variation in the size of candidate sets. Combining the
index time and refinement time, the proposed scheme is roughly
41 times faster than the sequential search on signatures.
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