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ABSTRACT

Video signatures are compact representations of video sequences
designed for efficient similarity measurement. In this paper, we
propose a feature extraction technique to support fast similarity
search on large databases of video signatures. Our proposed tech-
nique transforms the high dimensional video signatures into low
dimensional vectors where similarity search can be efficiently per-
formed. We exploit both the upper and lower bounds of the tri-
angle inequalities in approximating the high-dimensional metric,
and combine this approximation with the classical PCA to achieve
the target dimension. Experimental results on a large set of web
video sequences show that our technique outperforms Fastmap,
Haar wavelet, PCA, and Triangle-Inequality Pruning.

1. INTRODUCTION
Thanks to widespread availability of broadband connections and
decreasing cost of disk storage, it is now commonplace to publish,
broadcast, or stream video sequences over the Internet. As video
content becomes more popular on the web, there is a growing need
to develop tools for analyzing, searching, and organizing visually
similar video sequences. In the development of such tools, we are
faced with two major algorithmic challenges: how to efficiently
measure the similarity between two video sequences, and how to
identify video sequences similar to a given query out of possibly
millions of entries on the web. In [1], we introduce a class of
techniques called ViSig for efficient video similarity measurement.
The ViSig method summarizes a video sequence into a compact
video signature, consisting of a small number of representative
feature vectors from the video. Compared to other summarization
techniques, video signatures are simple to compute, robust against
temporal re-ordering, and capable of identifying similar video se-
quences regardless of their length. In this paper, we consider the
problem of searching for signatures similar to a user-defined query
in a very large database.

The naive approach of sequential search is typically too slow
to handle large databases. Faster-than-sequential solutions have
been extensively studied by the database community. Elaborate
data structures, collectively known as the Spatial Access Methods
(SAM), have been proposed to facilitate similarity search [2, 3].
Most of these methods, however, do not scale well to high dimen-
sional metric spaces [4]. One strategy to mitigate this problem is
to design a feature extraction mapping to map the original metric
space to a low-dimensional space where a SAM structure can be
efficiently applied. The approach of combining feature extraction
with SAM is called GEneric Multimedia INdexIng (GEMINI) [3].
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In this paper, we propose a novel feature extraction mapping to be
used in GEMINI for fast similarity search on signature data.

The most commonly used feature extraction is the Principal
Component Analysis (PCA), which is optimal in approximating
Euclidean distance [5]. If the underlying metric is not Euclidean,
PCA is no longer optimal and more general schemes need to be
used. One such technique is the Fastmap, a heuristics algorithm
that approximates general metric by Euclidean distance [6]. An-
other class of techniques construct mappings based on distances
between the high-dimensional vectors and a set of random vec-
tors [7, 8, 9, 10]. These kinds of “random mappings” have been
shown to possess certain favorable theoretical properties [7, 8].
Such mappings, however, are very complex, and effectively re-
quire the computations of all pairwise distances between entries
in the database. A more practical version has been proposed in [9]
for protein matching. An even simpler version, called the Triangle-
Inequality Pruning (TIP), has been proposed for similarity search
on image databases [10]. TIP exploits the lower bound of the
triangle inequality in approximating the high-dimensional metric.
Our proposed technique improves upon TIP by taking into account
both the upper and lower bounds offered by the triangle-inequality.
In addition, it takes advantage of the classical PCA technique to
achieve any user-defined target dimension.

This paper is organized as follows: in Section 2, we briefly
review the ViSig method and the GEMINI approach. The proposed
feature extraction mapping and its performance evaluation on a
large database of signatures are presented in Section 3.

2. REVIEW OF VISIG AND GEMINI
We begin with a brief overview of the ViSig method [1]. We as-
sume that each video is represented by a set of high-dimensional
feature vectors,X, from a metric space(F, d(·, ·))1. The met-
ric functiond(·, ·) is used to measure the visual dis-similarity be-
tween two feature vectors. In this paper, we use four concate-
nated 178-bin HSV color histograms as our feature vector, each
representing a quadrant of a video frame, andl1 as the metric be-
tween two histograms. In order to reduce the complexity in com-
paring two video sequences, the ViSig method summarizes each
video X in the database into a signatureXS , which consists of
the feature vectors inX that are closest to a set ofseed vectors
S = {s1, s2, . . . , sm}:

XS = (gX(s1), gX(s2), . . . , gX(sm))

wheregX(s) = arg minx∈X d(x, s). (1)

The central idea behind the ViSig method is that if two video clips
share a large fraction of similar feature vectors, their signature vec-
tors with respect to the same seed vectors are likely to be similar
as well. The seed vectors are feature vectors randomly sampled

1In the remainder of this paper, we refer to video and its feature vectors
interchangeably.



from a training set that resembles the target video data under con-
sideration. The robustness of an individual signature vector can be
evaluated by the following function [1]:

Q(gX(s)) = min
x∈X, d(x,gX (s))>εC

d(x, s)− d(gX(s), s), (2)

whereεC is the maximum distance between similar vectors within
the video. In order to guarantee the existence of robust signature
vectors, we typically set the number of signature vectors in a signa-
ture,m, to be fairly large, but use only the most robust, or highest-
ranked,m′ vectors in comparing two signatures. Specifically, two
signatureXS andYS are compared using the following asymmet-
ric signature distance:

dsig(XS , YS) = mediani=1,...,m′d(gX(sj[i]), gY (sj[i])), (3)

wheregX(sj[1]), . . . , gX(sj[m′]) have them′ largestQ(·) values
among all the signature vectors inXS . We declareYS to be sim-
ilar to XS if dsig(XS , YS) is less than or equal to thesimilarity
thresholdε. Given a query signatureXS , the goal of asignature
similarity searchis to identify all signaturesYS in a given database
that are similar toXS . To provide a fast solution to this problem,
we propose an approach based on a generic technique called GEM-
INI which tackles the specific problem ofmetric-space similarity
search[3, ch. 7].

Given a queryx and a database,D, of feature vectors, the goal
of a metric-space similarity search is to identify the following:

A(x; ε) = {y ∈ D : d(x, y) ≤ ε} (4)

It is easy to see that the signature similarity search onXS can be
solved by applying the metric-space similarity search on each of
the m′ top-ranked signature vectors inXS [11, ch. 4]. Rather
than computingA(x; ε) by a sequential search, GEMINI first uses
a feature extraction mappingT to map feature vectors into a very
low dimensionalrange metric space(F ′, d′(·, ·)). A similarity
search on the transformed queryT (x) is performed to identify the
candidate setC(x; ε′) defined below:

C(x; ε′) = {y ∈ D : d′(T (x), T (y)) ≤ ε′} (5)

ε′ is called apruning threshold, which depends onε, T and the
data. As mentioned in Section 1, such a low-dimensional search
problem can be efficiently solved by any SAM method. The final
step of GEMINI to identify those vectors inC(x, ε′) that are truly
within ε of x:

A′(x; ε, ε′) = {y ∈ C(x; ε′) : d(x, y) ≤ ε}. (6)

By applying GEMINI to each top-ranked vectors inXS , we can
defineAS(XS ; ε), CS(XS ; ε′), andA′S(XS ; ε, ε′) for similarity
search on a databaseDS of signatures that are analogous to those
defined in (4), (5), and (6) respectively.

GEMINI is more efficient than sequential search if a typical
candidate set is small enough so that few full metric computations
are required in the last step of GEMINI. To assess the average
complexity reduction of GEMINI over a large set of query signa-
turesR, we measure thePruning parameter defined below. It is
based on the relative difference in the total number of full metric
computations between GEMINI and sequential search:

Pruning(ε′) = 1−
P

XS∈R |CS(XS ;ε′)|
(|R|·|DS |) . (7)

As suggested in Equation (7), a high level of pruning can be achieved
by making candidate sets small. On the other hand, small candi-
date sets may adversely affect theaccuracyof GEMINI, which is
defined below:

Accuracy(ε′) =
P

XS∈R |A′S(XS ;ε,ε′)|P
XS∈R |AS(XS ;ε)| . (8)

Our goal is to design a feature extraction mappingT that provides
a reasonable trade-off between pruning and accuracy. In the next
section, we introduce a novel design ofT for signature data.

3. FEATURE EXTRACTION FOR SIGNATURE
Our proposed mapping consists of two steps: first, each signa-
ture vector is mapped into a particular form of low-dimensional
range vector called aprojection vector. Second, classical PCA is
applied to transform the projection vector into anindex vectorof
even lower dimension, as specified by the user. The motivation be-
hind our proposed mapping is explained in Section 3.1. In Section
3.2, we present experimental results to compare our scheme with
other techniques proposed in the literature.

3.1. Proposed feature extraction
Letxs andys be the signature vectors in signaturesXS andYS that
correspond to the same seed vectors ∈ S. Consider the following
m-dimensional vector,

T (xs) = (d(xs, s1), d(xs, s2), . . . , d(xs, sm)), (9)

as a feature extraction mapping ofxs. We are interested in this
particular formulation because of two reasons: first, it makes use
of quantities that have already been computed in (1). Second, the
distanced(xs, ys) can be related to the coordinates ofT (xs) and
T (ys) by the triangle inequalities:

|d(xs, si)− d(ys, si)| ≤ d(xs, ys) ≤
d(xs, si) + d(ys, si), i = 1, 2, . . . , m (10)

The above inequalities are instrumental in designing the feature
extraction mapping. The mappingT (·) and its variations have
been previously proposed in the literature for feature extraction [7,
8, 9, 10]. These techniques typically use alp-metric as the range
metric betweenT (xs) andT (ys). Forp = 1, 2, . . ., thelp metric
is defined as follows:

lp(T (xs), T (ys)) =
�

1
m

Pm
i=1 |d(xs, si)− d(ys, si)|p

�1/p

(11)
On the other hand,l∞ is defined as,

l∞(T (xs), T (ys)) = maxi=1,...,m |d(xs, si)− d(ys, si)| (12)

We use a normalization factor of1/m in the definition oflp so
that it has the same order of magnitude as thel∞-metric. All the
lp-metric functions are composed of different powers of the abso-
lute differences between the coordinates ofT (xs) andT (ys), i.e.
|d(xs, si) − d(ys, si)| for i = 1, . . . , m. These absolute differ-
ences appear only in the lower-bound half of the triangle inequal-
ities in (10). By using a simple experiment, we can demonstrate
that better pruning-accuracy trade-off can be achieved by combin-
ing both the upper and lower bounds of the triangle inequalities.

Our experiment is based on sampling random pairs of video
sequences from a database of 46,331 web video sequences called
SIGDB [11, ch. 4]. We sample 100,000 pairs and generate their
signature vectors with respect to a randoms chosen from a set of
m = 100 diverse seed vectors, also sampled from SIGDB using
the seed vector generation algorithm described in [1]. For each
pair of signature vectorsxs and ys, we computed(xs, ys) and
their distances with respect to allm seed vectors. The distribution
of d(xs, ys) is shown in Figure 1 as a function of a single lower
and upper bound, defined as follows: for the lower bound, we take
the maximum over all the individual lower bounds in (10), which
is identical tol∞(T (xs), T (ys)). For the upper bound, we use
a similar approach and take the minimum of the individual upper
bounds in (10) to form anα(·) function:

α(T (xs), T (ys)) = mini=1,2,...,m[d(xs, si) + d(ys, si)] (13)

In Figure 1, data points of different shapes and shades represent
metric values in different ranges. We separate all data points into
two classes: the crosses and circles are thesmall-metricpoints,
and the dots in different shades correspond to thelarge-metric



Fig. 1. Distribution of the metricd(xs, ys) for 100,000 random
pairs of signature vectors in the coordinates ofα(T (xs), T (ys)) and
l∞(T (xs), T (ys)).

points. Small-metric points are those with metric values smaller
than ε = 3.0, which we experimentally find to be a reasonable
value to identify visually similar video clips. The goal of a simi-
larity search is to separate the small-metric points from the large-
metric ones. If we usel∞(·) as the range metric, a typical can-
didate set based on the inequalityl∞(T (xs), T (ys)) ≤ ε′ will
include all the points below a horizontal line at levelε′. This is,
as a matter of fact, the TIP scheme proposed in [10]. An exam-
ple of such a set withε′ = 3 is shown in Figure 1. Even though
all the small-metric points are within the candidate set, many of
the large-metric points are also erroneously included as they have
small l∞(·) values. It is clear, based on the shape of the distri-
bution of the small-metric points, that a better separating function
should combine bothl∞(·) andα(·). One possible choice is to
base on their product,β(·):
β(T (xs), T (ys)) = α(T (xs), T (ys))·l∞(T (xs), T (ys)) (14)

As shown in Figure 1, even though the candidate set defined by
β(T (xs), T (ys)) ≤ 9 misses a few small-metric points, it ex-
cludes a much larger set of large-metric points thanl∞(·). Never-
theless, we cannot directly useβ(·) because it is not a true metric
function.

Theβ(·) function in (14) is defined as the product ofα(·) and
l∞(·), which represent the aggregate bounds of all the inequalities
in (10). Rather than using the two aggregate bounds, it is sim-
pler to form a metric by using the product of the bounds from the
individual inequalities as follows:

[d(xs, si) + d(ys, si)] · |d(xs, si)− d(ys, si)| =
|d(xs, si)

2 − d(ys, si)
2|, i = 1, 2, . . . , m (15)

Note that Equation (15) is in the form of an absolute difference.
While absolute differences also appear in the definitions oflp met-
rics in Equation (11), the one in (15) is the absolute difference of
squaresof T (·)’s coordinates. Thus, it is conceivable to propose a
new metricζ(·) that combineslp with this absolute difference of
squaresof coordinates as follows:

ζ(T (xs), T (ys)) =

 
1

m
·

mX
i=1

[d(xs, si)
2 − d(ys, si)

2]p
!1/p

= lp(P(xs),P(ys)) (16)

whereP(xs) is defined as:

P(xs) = (d(xs, s1)
2, d(xs, s2)

2, . . . , d(xs, sm)2) (17)

We callP(xs) the projection vector ofxs, and the collection of
projection vectors for all the signature vectors in a signature apro-
jection. In Section 3.2, we demonstrate experimentally that using
the l2 metric onP(xs) produces much better pruning and accu-
racy trade-off than using thel∞ metric or theβ(·) function in (14)
onT (xs).

Besides the superior pruning and accuracy performance, there
is another reason for choosing to apply thel2 metric on the pro-
jection vectors. The dimension of a projection vector ism = 100
in the case of SIGDB. Despite the fact thatm is smaller than the
dimension of our original feature vectors, i.e.178 × 4 = 712, it
is still much larger than what most SAM structures can handle. If
l2 metric is used between two projection vectors, we can reduce
the dimension of the projection vectors with minimum distortion
by applying the classical PCA technique [5]. We call the resulting
lower-dimensional vector theindex vector, and the collection of
index vectors for all the signature vectors in a signature theIndex.
In the next section, we compare our proposed indices with other
dimension reduction schemes proposed in the literature.

3.2. Experimental results
We first justify the use of the projection mapping withl2 met-
ric based on the experimental results on full signature data. The
database consists of signatures of all the video sequences in SIGDB
with respect to the same set ofm = 100 seed vectors. A random
query set of 1000 signatures are drawn from the database, and used
as the setR in Equations (7) and (8) for computing pruning and
accuracy for different values ofε′. For the signature similarity
search, we setε to be 3.0 and usem′ = 6 for computing the sig-
nature distance in (3). We measure the accuracy and pruning for
three different feature extraction mappings used within GEMINI:
a) the “lower-bound” scheme based on the mappingT (·) in (9)
and thel∞-metric; (b) the “product” scheme based onT (·) and
theβ(·) function defined in (14); and (c) the projection mapping
scheme based onP(·) in (17) and thel2-metric. The resulting
plots of pruning versus accuracy, withε′ varying across each plot,
are shown in Figure 2. A good feature extraction mapping should
achieve pruning and accuracy that are as close to one as possible.
As shown in the figure, our proposed scheme clearly out-performs
both the “lower-bound” and “product” schemes by achieving much
higher pruning at the same accuracy level. Also, as expected, the
“product” scheme out-performs the “lower-bound” scheme as the
“product” scheme exploits both the upper and lower bounds of the
triangle inequality.
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Fig. 2. Pruning-versus-Accuracy plots for the “lower-bound”, the “prod-
uct” and the proposed schemes.

In the following experiments, we apply PCA to the projection
vectors, and compare the resulting index vectors with other ap-
proaches in terms of their accuracy and pruning trade-off. These
approaches include: a) PCA – while in our proposed scheme, PCA
is applied on the projection vectors, it can also be directly ap-
plied onto the 712-dimensional color histogram feature vectors



for dimension reduction; b) Fastmap, as described in [6]; and c)
Haar wavelet on color histogram as described in the MPEG-7 stan-
dard [12]. Since most of the schemes require training data to gen-
erate the mappings, we arbitrary split SIGDB into two halves –
we call one half the “training” SIGDB, which is used to build the
mapping, and the other half the “testing” SIGDB, which is used
for the actual testing. In order to ensure the suitability of incor-
porating these schemes into GEMINI, we focus on very low di-
mensional index vectors. We test all the schemes for dimensions
two, four and eight. The corresponding pruning-accuracy plots are
shown in Figures 3(a) through (c). These plots are generated by
the same procedure used in the first experiment. As seen, our pro-
posed scheme results in the best performance in all the dimensions
tested, followed by Haar, Fastmap and PCA. The gain of the pro-
posed scheme over the second best scheme, however, diminishes
as the dimension increases.
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(a) 2-D
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(b) 4-D
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(c) 8-D
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Fig. 3. (a)-(c) Pruning-versus-accuracy plots for two-, four- and eight-
dimensional spaces. (d) Pruning and Accuracy versus pruning threshold
for three independent sets of queries.

In applying the feature extraction scheme in a fast similarity
search, we need to choose a particular value of pruning threshold
ε′ in order to compute the candidate set. Given the target dimen-
sion, accuracy, and pruning, one possible approach is to setε′ to
a value that attains the particular level of performance in a previ-
ously completed experiment. Thus, an important question to an-
swer is whether the relationship betweenε′ and the correspond-
ing pruning and accuracy extends to other queries. To answer
this question, we measure the pruning and accuracy, as defined
in Equations (7) and (8), for three independent sets of random
queries. Each set has 1000 signatures randomly drawn from the
testing SIGDB. For each set of queries, different values of prun-
ing and accuracy are measured by varyingε′. The experiment is
also repeated for three different values ofε, namely 2, 3, and 4.
The resulting plots of pruning and accuracy versusε′ for the three
query sets and different values ofε are shown in Figure 3(d). As
shown in the figure, there is little variation in the amount of prun-
ing among the three sets. There is some variation in the accuracy
for smallε, but the variation diminishes asε becomes larger. The
maximum differences in accuracy among the three sets over all
possible values ofε′ are 0.12, 0.06, and 0.04 forε = 2, 3, and
4 respectively. These fluctuations are small compared to the high
accuracy required by typical applications.

We conclude this section with a number of speed measure-

ments for the above four schemes on a particular platform. The
experiments are run on a Dell PowerEdge 6300 Server with four
550MHz Intel Xeon processors and 1 Giga-bytes of memory. As
all the tests are run under a single thread, only a single processor is
used. The testing SIGDB, which contains 23,206 signatures, each
consisting of 100 vectors, and their corresponding 8-dimensional
indices are first loaded inside the memory. 100 queries are ran-
domly sampled for testing. No SAM structure is implemented and
a simple sequential search is used for the indices. Pruning thresh-
olds are chosen, based on the previous experiments, to hit the 90%
accuracy level for similarity searches atε = 3.0. As a reference,
we also measure the performance of sequential search on signa-
tures with no feature extraction. The results are tabulated below:

Schemes Sequential Proposed Fastmap Haar PCA
Accuracy 1.00 0.89 0.91 0.92 0.89
Index time
(ms)

- 131 ±
0.8

131 ±
1.5

152 ±
1.3

130 ±
1.4

Refine time
(ms)

6730 ±
35

33± 8 75± 11 123 ±
28

401 ±
75

Candidate
Size/query

- 109 ±
27

262 ±
39

428 ±
97

1386 ±
257

The Index time is the time required for the sequential search on
indices to identify the candidate sets. The averages and their stan-
dard error at 95% confidence interval are shown. As the Sequential
scheme does not use any indices, no number is reported. The pro-
posed scheme, Fastmap, and PCA all use thel2 distance on range
vectors and thus, result in roughly the same index time. Haar re-
quires slightly larger index time for itsl1 distance computation.
The refine time is the time required to perform the full signature
distance computations on the candidate sets, and is proportional to
the size of the candidate sets as shown in the last row. Our pro-
posed scheme outperforms all other feature extraction schemes in
refinement time. The large standard error in the refinement time is
due to the variation in the size of candidate sets. Combining the
index time and refinement time, the proposed scheme is roughly
41 times faster than the sequential search on signatures.

4. REFERENCES

[1] S.-C. Cheung and A. Zakhor, “Efficient video similarity measurement with
video signature,”IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 13, no. 1, pp. 59–74, Jan. 2003.

[2] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-
Wesley, 1989.

[3] C. Faloutsos,Searching Multimedia Databases by Content, Kluwer Academic
Publishers, 1996.

[4] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces,” inProceed-
ings of the 24th International Conference on Very-Large Databases (VLDB’98),
New York, NY, USA, Aug. 1998, pp. 194–205.

[5] J. Hotelling, “Analysis of a complex of statistical variables into principal com-
ponents,”J. of Educational Psychology, vol. 24, pp. 417–441, 1933.

[6] C. Faloutsos and King-Ip Lin, “Fastmap: a fast algorithm for indexing, data-
mining and visualization of traditional and multimedia datasets,” inProceed-
ings of ACM-SIGMOD, May 1995, pp. 163–174.

[7] J. Bourgain, “On lipschitz embedding of finite metric spaces in hilbert space,”
Israel Journal of Mathematics, vol. 52, pp. 46–52, 1985.

[8] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and some of
its algorithmic applictions,”Combinatorica, vol. 15, no. 2, pp. 215–45, 1995.

[9] G. Hristescu and M. Farach-Colton, “Cluster-preserving embedding of pro-
teins,” Tech. Rep. DIMACS 99-50, Rutgers University, Piscataway, USA, 1999.

[10] A. P. Berman and L. G. Shapiro, “A flexible image database system for content-
based retrieval,”Computer Vision and Image Understanding, vol. 75, no. 1/2,
pp. 175–195, July/August 1999.

[11] S.-C. Cheung, Efficient Video Similarity Measurement and Search,
Ph.D. thesis, University of California, Berkeley, 2002, http://www-
video.eecs.berkeley.edu/papers/cheungsc/PhdThesis.pdf.

[12] L. Cieplinski, S. Jeannin, M. Kim, and J.-R. Ohm, “Visual working draft 4.0,”
Tech. Rep. W3522, ISO/IEC JTC1/SC29/WG11, July 2000.


