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ABSTRACT

Image geo-localization is an important problem with many applica-

tions such as augmented reality and navigation. The most common

ways to geo-localize an image are to use its meta-data such as GPS

or to match it against a geo-tagged database. When neither of those

is available, it is still possible to apply shadow analysis to determine

the camera heading for outdoor images. This could be useful prun-

ing the search space in geo-localization applications, for example by

removing roads with incompatible orientations from a database such

as Open Street Map. In this paper, we develop a novel interactive

method for deducing the global heading of a query image using the

shadows in it. We start by constructing a model of the sun-earth

system to determine all shadows possible at a given approximate lat-

itude, and compare shadows within the query to those possible under

the model to determine the range of possible headings. We demon-

strate this on 54 query images with known ground truth, and show

that in 52 cases the ground truth lies in the computed range.

1. INTRODUCTION

Image geo-localization is an important problem with many applica-

tions such as augmented reality and navigation. The easiest way to

geo-localize an image is to use the meta-data from sensors integrated

with the imaging device such as GPS or compass in order to deter-

mine the location and heading of the captured imagery. However,

many images lack such meta-data, or have erroneous meta-data due

to various physical conditions. For example, GPS is known to be

erroneous in urban canyon areas, can at times be jammed by adver-

sarial forces, and is unavailable indoors. Compass data, which relies

on detection of Earth’s magnetic field, is unreliable in the presence of

power transmission lines which generate their own magnetic fields

and steel cabinets which disturb existing magnetic fields [1].

One approach to image localization is to match the query im-

age to overhead databases such as Digital Elevation Maps (DEM) or

satellite imagery. An example of this approach involves matching

skylines from query images to synthetic skylines from DEM data

[2, 3]. Another approach to geo-localization is to match the query

against a pre-collected geo-tagged image database [4, 5, 6, 7, 8, 9,

10, 11, 12, 13]. It is also possible to geo-localize an image from the

content of the image itself without matching it to any databases, be

they overhead or terrestrial. For example, the sunlight and shadows

in an outdoor image can be used to deduce its heading, if time of day
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and time of year are known. Even in the absence of the latter, a rough

approximation of heading may be made: for instance, hunters, hik-

ers, and other outdoorsmen wandering northern hemisphere wilder-

nesses often use their analog watches as makeshift compasses by

pointing the hour hand of the watch toward the sun, knowing that

South lies halfway between that hour hand and 12:00 noon. While

this simple example is not directly applicable to the problem of de-

termining the heading of a camera taking a picture at an unknown

time, it nonetheless motivates an avenue of analysis based on shad-

ows.

In this paper, we propose a novel interactive method for deduc-

ing the global heading of a query image using the shadows in it. We

start by constructing a model of the sun-earth system to determine all

shadows possible at a given approximate latitude, and compare shad-

ows within the query to those possible under the model to determine

heading. In Section 2, we review prior work, Section 3 includes the

proposed method, and Section 4 shows results.

2. RELATEDWORK

Similar to the analog watch example, our proposed method exploits

the position of the sun in order to prune the space of possible head-

ings. The position of the sun as a function of time is well studied,

with empirical models on solar altitude and azimuth predicting head-

ing to within a tenth of a second of angle, or rapidly computing them

to within a minute of angle [14].

In our problem set up, where the position of the query image

is assumed known only to within 100 kilometers or about a degree

and a half of latitude, such positional precision as the models in [14]

provide is unnecessary. Further, evaluation of these models requires

precise capture time information, which in our problem set up is not

known. Thus, our approach is to iterate over the many times and

dates in a year to arrive at a range of possible headings, rather than
to estimate one value for heading.

Given the less rigid precision requirements, and the need to eval-

uate the model many times in short order, we choose to simplify the

model in [14] further, neglecting higher-order effects such as the ac-

tion of the Moon and Jupiter, the eccentricity of the Earth’s orbit and

the wobble of its axis, and human constructs such as time zones and

daylight savings time. The resulting model provides the position of

the sun as its angle of altitude above the horizon, and its angle of

azimuth clockwise from North, as a function of the time of day, the

time of year, and the coarse latitude of our query.

The position of the sun (altitude and azimuth) provided by the
model is related via one-to-one mapping to attributes of the shadow

such as its length ratio and heading, as shown in Equation 1 [14].

length ratio = cot(altitude)
heading = azimuth+ π

(1)



Fig. 1. Illustration of key shadow descriptors.

Shown in Figure 1, the shadow’s heading is defined to be the angle

clockwise between North and the ground-plane direction the shadow

falls in. Its length ratio is the shadow length normalized by divid-

ing out the height of the shadow’s caster; this allows information

contained in the length to be compared to other shadows possible

under the model.

An example of the results of the simplified model which has

been iterated over date and time for length ratio and heading at

an approximate latitude of 30◦ North is shown in Figures 2(a) and

2(b) respectively. In this figure, the vertical axis indicates time of

year with September 21 the autumnal equinox at the top and bottom

of the axis. The horizontal axis denotes time of day, with the left

most point indicating 5 am and the rightmost point indicating 7 pm.

In Figure 2(a) darker regions correspond to longer shadows; in Fig-

ure 2(b) lighter/darker indicates westerly/easterly, with North being

neutral gray. Isocontours of length ratio from Figure 2(a) are re-

produced in Figure 2(b) for visualization purposes only. Combining

Figures 2(a) and 2(b), we obtain Figure 3, which shows a two di-

mensional histogram of shadow length ratio in the horizontal axis

and heading on the vertical. The intensity in Figure 3 corresponds

to the relative frequency of a particular length ratio/heading co-

occurrence within the time window, 5 am to 7 pm of every day of

the year. Thus, brighter points correspond to higher temporal ”likeli-

hood” of shadow length ratio and heading, measured over a year.

In the event that capture time is known, length ratio and heading
can be pinpointed.

3. PROPOSED APPROACH

Our approach is to compare information extracted from the query

image against that of the model, narrowing the possible camera head-

ings from a range 2π to something more discriminative. Specifically,

we extract the two quantities shown in Figure 4: shadow length rel-

ative to caster height or length ratio and offset angle from the

shadow heading clockwise to the camera axis. The main concept is

to use the length ratio from the query together with our model to

arrive at a range of possible shadow headings in the global coordi-

nate frame, and then to add the offset angle angle to these shadow

(a) (b)

Fig. 2. Plots of shadow (a) length ratio and (b) heading

Fig. 3. A histogram of co-occurrences of shadow heading and

length ratio.

headings to derive the range of possible camera headings.

The length ratio of a query shadow, together with the infor-

mation contained in the plot of Figure 2(a), allows us to narrow the

range of times at which the query could have been taken; by “range

of times”, we mean the tuple of (time of day, time of year), rather

than the ranges of the two values independently. Intuitively, a man

casting a shadow five or more meters is not doing so at noon on the

summer solstice, nor is a tree whose shadow does not extend beyond

its dripline photographed early in the morning, late in the evening,

or in the depths of winter. With this range in hand we look up the

shadow headings possible at those times, either from a plot such

as Figure 2(b), or more directly from a corresponding plot in the

form of the one in Figure 3, where the shadow length ratio selects

a vertical line in the plot, whose non-zero values represent possible

shadow headings. We then need to devise a mechanism to derive

camera heading from shadow heading. This amounts to estimat-

ing the offset angle between the two headings, measured in the

ground plane from the shadows in the query to the camera’s optical

axis.



Fig. 4. offset angle is the angle between the shadow (blue) and

the camera’s optical axis (orange), measured in the ground plane.

Both offset angle and length ratio can be estimated by a hu-

man user with a good eye and a strong grasp of spatial reasoning,

but a more principled approach that relies less on the skill of the

user would consist of using camera calibration parameters such as

roll, pitch, and focal length to estimate world coordinates for a

trio of points describing the shadow, and compute length ratio and
offset angle from those. Even in the latter scenario of using cam-

era parameters, a user is still required to click on the trio of points,

namely the base of an object casting a shadow, the tip of that shadow,

and the top of the object corresponding to that tip.

The estimation of camera calibration parameters from a single

image is a well studied topic [15]. In this work, camera calibration

parameters obtained via vanishing point/line analysis were supplied

to us. As discussed later, these parameters are noisy and not nec-

essarily error free. However, the use of vanishing point analysis

allows us to both calibrate and take measurements from the same

image. The use of roll, pitch, and focal length in the analysis of

the shadows boils down to providing the basis for a transformation

from the pixel coordinates of the camera frame to world coordinates.

However, camera parameters and pixel coordinates alone only spec-

ify a ray in the world frame, rather than a unique point; therefore,

additional information is needed. This additional information is pro-

vided by making two simplifying assumptions that seem reasonable

and generally hold: (a) we assume a level ground plane into which

the shadow falls, locally planar and with a vertical normal; (b) we

assume a vertical shadow caster, with its top directly above its base.

Operating under these assumptions, along with camera parameters

and pixel coordinates, 3D coordinates of the shadow tip, caster top,

and shared base can be computed.

To do so, we define the world coordinate frame such that the

ground plane coincides with the xy-plane, as shown in Figure 5; the

camera lies on the z-axis at a fixed, arbitrary distance from the origin

z0, the x-axis extends below the camera’s optical axis, and the y-axis

extends to the camera’s left, or into the plane of Figure 5. We take

pixel coordinates (u,v)pixel to be the real-valued coordinates of a

pixel with respect to the image center at (0,0)pixel, after applying a

2D rotation in the pixel space to compensate for camera roll.

Fig. 5. Geometry of the camera with respect to world coordinates.

A point in space can be uniquely identified by the intersection of

three non-parallel planes; our pixel coordinates can provide two such

planes, with the third being supplied by our assumptions. Specif-

ically, a plane of constant pixel coordinate u = u0, as shown in

Figure 5, is the image of the yz-plane rotated pitch+ θu = pitch+
arctan(u0/focal length) about the vector ~r =< 0,−1, 0 > cen-

tered on the camera and extending out of the plane of the figure; such

a plane appears as a horizontal line in the camera image. Similarly,

a plane of constant pixel coordinate v = v0 (appearing as a vertical

line in the camera image and not shown in the Figure) is the image

of the zx-plane rotated θv = arctan(v0/focal length) around the

camera and the vector ~p =< cos(pitch), 0, sin(pitch) >, or di-

rectly up from the camera’s point of view. For the two points on the

ground, at the base and the tip of the shadow, the third plane is the

xy-plane, which we defined to be coincident with the ground plane;

for the point at the top of the caster, the third plane is one parallel to

the yz-plane and containing the point of the shared base.

Given the coordinates of these points, (xbase,ybase,0)world,

(xtip,ytip,0)world, and (xbase,ybase,ztop)world, length ratio and

offset angle are given by:

length ratio =

√
(xtip−xbase)

2+(ytip−ybase)
2

ztop

offset angle = arctan
(

ytip−ybase

xtip−xbase

)

(2)

Once we estimate the length ratio and offset angle of the

query shadow, we can run our model at the latitude of our region of

interest and for all times, recording the headings of any model shad-

ows that have length ratios matching that of the query, adding the

offset angle to each one to produce a candidate camera heading.

As shown in the right column of Figure 6, these camera headings

are collected into a list that can be interpreted as a probability den-

sity function, if one assumes that any capture time is as likely as any

other. Under such an interpretation, the range(s) of possible camera

headings, mean(s), and standard deviation(s) can also be extracted.

In summary, the end-to-end processing of a query is an interac-

tive process and consists of the following stages: (1) the user selec-

tion of the three points in an image that describe a shadow: the base

of shadow and caster, the top of the caster, and the tip of the shadow,

(2) the automatic extraction of vanishing points and estimation of

camera parameters roll, pitch, and focal length, (3) the compu-

tation of world coordinates of the selected points and calculation of

shadow length ratio and offset angle angle; this can be done in

two ways, either through spatial reasoning of an interactive user as



Fig. 6. A sampling of success cases; the blue marks indicate means

of distributions; the red, ground truth headings.

described in Section 4, or automatically from Equation 2 and Fig-

ure 5, (4) selection of shadow headings from model shadows that

match the length ratio from the query as shown in Figure 3, (5) ad-

dition of query offset angle to determine the final range of query
camera headings.

4. RESULTS

The proposed analysis was applied to 54 images or video frames with

ground truth, from 5 regions of interest with latitudes from 32◦ North

to 33◦ South and terrains from desert to jungle and development

from urban through rural to none. Coarse latitude of each query is

assumed to be known to within 1.5◦. In all chosen images and/or

video frames shadows and their casters are clearly visible.

Typical ranges of possible headings for the 54 queries varied

from 0.8π to 1.2π, in either one contiguous arc as in the top two

images in Figure 6, or two disjoint arcs that were independently con-

tiguous, as in the bottom three. The former typically corresponds to

midday queries and the latter to morning/evening queries. The pro-

posed analysis was successful on 52 out of 54; “success” in this case

is defined as “ground truth heading is within the returned range of

possible headings”; the probability of flipping 52 heads on 54 coin

Fig. 7. The two miss cases.

tosses is less than 1.62×10−13, and since the returned ranges tended

toward π, it may be expected that achieving the same success rate for

the proposed method through chance alone would have comparably

minuscule probability. Five examples of “success”, together with the

heading ranges, are shown in Figure 6. The two failures are shown

in Figure 7.

Two major weaknesses of the proposed method are that (a) we

presently have no way to automatically extract the pixel coordi-

nates of points describing shadows of interest, and (b) the proposed

method is highly vulnerable to noise, both in the estimation of cam-

era parameters and in selection of pixel coordinates of shadow tip,

caster top, and shared base. As such, user interaction was required on

all queries, to select the points describing the shadows. Furthermore,

user intervention was required on 32 of the 54 queries, to estimate

length ratio and offset angle manually. In all such intervention

cases, shadow length ratios or offset angles computed auto-

matically were clearly erroneous, e.g. length ratios differing by a

factor of three or more from what the expected, or offset angles
differing by π/3 or more. The failures of the automated estimation

fall into three classes: (a) queries in which the shadows are small,

occupying no more than tens of pixels; (b) queries in which the

shadows are distant, and the plane of constant u shown in Figure 5

and discussed in Section 3 is nearly parallel to the ground xy-plane;

and (c) queries in which the shadows fell on the sides of buildings,

such that the shared “base” of shadow and caster was a point in open

air and difficult to select precisely. For the two failure cases shown

in Figure 7, neither manual nor automated estimation of shadow

descriptors resulted in success.

For the 22 queries in which no user intervention was needed,

the manually estimated values for altitudes of the sun (computed

from the shadow length ratios as in Equation 1) and shadow

offset angles differed from those computed automatically by an

RMS average of 7.9◦ and 16.0◦ and a maximum of 14.8◦ and 32.7◦,

respectively. The bulk of the discrepancies in length ratio and

thus altitude were on queries for which the offset angle was

near 0◦ or 180◦; the bulk of the offset angle discrepancies were

near offsets of ±90◦. In all cases where automated computation of

shadow descriptors length ratio and heading was accepted, the

ground truth lay within the obtained camera heading range. Had

the user intervention been skipped for the 32 queries requiring it, 13

would have remained “successes”, but that is likely due to chance.
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