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Image geo-localization is an important problem with many 

applications such as augmented reality and navigation.  The 

most common ways to geo-localize an image are to use its 

meta-data such as GPS or to match it against a geo-tagged 

database.  When neither of those is available, it is still possible 

to apply shadow analysis to determine the camera heading for 

outdoor images.  In this paper, we develop a novel method for 

deducing the global heading of a query image using the 

shadows in it.  We start by constructing a model of the sun-

earth system to determine all shadows possible at a given 

latitude, and compare shadows within the query to those 

possible under the model to determine the range of possible 

headings.  We demonstrate this on 54 query images with 

known ground truth, and show that in 52 cases the ground 

truth lies in the computed range. 

1 Introduction 

Image geo-localization is an important problem with many 

applications such as augmented reality and navigation. The 

easiest way to geo-localize an image is to use the meta data 

from the sensors integrated with the imaging device such as 

GPS or compass in order to determine the location and the 

heading of the captured imagery. However, many images lack 

such meta data, or have erroneous meta data due to various 

physical conditions. For example GPS is known to be 

erroneous in urban canyon areas, can at times be jammed by 

adversarial forces, and is unavailable indoors. Furthermore, 

compass data which relies on detecting Earth’s magnetic field 

is unreliable in the presence of power lines which produce 

their own magnetic field, or steel cabinets which could distort 

the magnetic field indoors [1].  

 

One approach to image localization is to match the query 

image to overhead databases such as Digital Elevation Maps 

(DEM) or satellite imagery. An example of this approach 

involves matching skylines from query images to synthetic 

skylines from DEM data [2,3]. Another approach to 

geolocation is to match the query image against a pre-

collected geo-tagged image database [4-6,9-15].  It is also 
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possible to geolocate an image from the content of the image 

itself without matching it to any databases, be it overhead or 

terrestrial. For example, the shadows in an image can be used 

to deduce its heading, if time of day and time of year are 

known. In the absence of the latter, it is possible to derive a 

range of possible headings for the captured image based on 

shadow analysis. This is reminiscent of the fact that hunters,  

hikers, and others who spend substantial periods of time in 

northern hemisphere wildernesses use an analog watch as a 

makeshift compass; they do so by simply pointing the hour 

hand of the watch toward the sun, resulting in south lying  

about halfway between the hour hand and 12:00 noon.  While 

this simple example is not directly applicable to the problem 

of determining the heading of a camera taking a picture at an 

unknown time it motivates an avenue of analysis based on 

shadows. 

 

In this paper, we propose a novel method for deducing the 

global heading of a query image using the shadows in it. We 

start by constructing a model of the sun-earth system to 

determine all shadows possible at a given latitude, and 

compare shadows within the query to those possible under the 

model to determine heading. In Section 2, we review prior 

work, Section 3 includes proposed method, and Section 4 

shows results. 

 

2 Related Work 

Similar to the analog watch example, our proposed method 

exploits the position of the sun in order to prune the space of 

possible headings.  This relationship is well studied, with 

empirical models on solar altitude and azimuth predicting 

heading to within a tenth of a second of angle, or rapidly 

computing them to within a minute of angle [7]. 

 

In our problem set up though, since the position of the query 

image is assumed to be known only to within a degree in 

latitude and longitude, such positional precision by models in 

[7] is unnecessary. Further, these models require precise 

capture time information, which in our problem set up is not  



 
Figure 1: Illustration of sun angle, shadow heading, and 

shadow length for a vertical object such as a flagpole. 

  

known.  Thus, our approach is to iterate over the many times 

and dates in a year in order to arrive at a range of possible 

headings, rather than to estimate one value for it. 

 

Given the less rigid precision requirements, and the need to 

evaluate the model many times in short order, we choose to 

simplify the model in [7] further, neglecting higher-order 

effects such as the action of the Moon and Jupiter, and the 

eccentricity of the Earth’s orbit and wobble of its axis. This  

simplified model allows us to relate the position of the sun in 

the sky  to shadow attributes such as “sun angle” and “shadow 

heading” as shown in Figure 1. As seen, shadow heading is 

defined as the counterclockwise angle from the North 

direction to the direction of the shadow. “Sun Angle” α is 

defined to be the angle between the shadow caster which is 

assumed to be vertical, and the line connecting the end of the 

shadow to the top of the caster. From simple geometry, we 

conclude that 
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An example of the results of the simplified model  in [7] 

which has been iterated over date and time for “sun angle” 

and “shadow heading” at an approximate latitude of 30o North 

is shown in Figures 2(a) and 2(b) respectively. In this Figure, 

vertical axis indicates time of year with September 21st, the 

autumnal equinox, at the top and bottom of the axis. The 

horizontal axis denotes time of day, with the left most point 

indicating 5 am and the right most point indicating 7 pm. In 

Figure 2(a) darker regions correspond to larger sun angles, i.e. 

closer to 90o than zero, and consequently longer shadows; in 

Figure 2(b) lighter (darker) indicates westerly (easterly), with 

North being neutral gray.  Isocontours of length from Figure 

2(a) are reproduced in Figure 2(b) for visualization purposes 

only.  Combining Figures 2(a) and 2(b), we obtain Figure 3, 

which shows a two dimensional histogram of the sun angle in 

the horizontal axis and shadow heading on the vertical axis.  

The intensity in Figure 3 corresponds to the relative frequency 

of a particular sun angle and shadow heading occurring over 

the time period 5 am to 7 pm of all days of a year. Thus, 
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Figure 2: (a) sun angle; (b) shadow heading. 

 

brighter points correspond to higher temporal “likelihood” of 

sun angle and shadow headings measured over a year.   

 

3 Proposed Approach 
Our approach is to compare extracted information from the 

query image against that of the model whose precision 

matches the 1o ambiguity in our latitude and longitude 

information.  Specifically, we extract two quantities shown in 

Figure 4 from the query image: sun angle α and angle of offset 

from shadow to camera heading. 

 

As shown in Figure 1, the length of the query shadows, 

relative to the heights of the objects casting them, provides an 

estimate of sun angle α. This together with the 2D plot in 

Figure 2(a) allows us to narrow the range of times at which 

the query could have been taken; by range of times, we mean 

both time of day, and time of year. Intuitively, a man casting 

a shadow five or more meters, for example,  is not doing so at 

noon on the summer solstice, nor is a tree whose shadow does 

not extend from below its leaves photographed early in the 

morning, late in the evening, or in the depths of winter.  

Furthermore, by only recording information for sun angles 

from the model that match the sun angle of the shadows in 

the query, we can narrow the range of possible shadow 

headings for the query. This can be done by utilizing the 2D 

density plots such as the one shown in Figure 3. Specifically, 

the estimated sun angle specifies a vertical line in the plot 

which, when intersected with the non-zero portion of the 

density plot results in possible range of values for shadow 

headings. 

 

We now need to devise a mechanism to derive camera 

heading from shadow heading. This amounts to estimating 

the angle of offset between the two headings, measured in the 

ground plane from the camera’s optical axis to the shadows 

in the query. Both offset angle and sun angle can ideally be 

estimated   by a user with a good eye and a strong grasp of 

spatial reasoning, but a more principled approach that relies 

less on the skill of the user would consist of using camera  



 

 
Figure 3: A histogram of co-occurrences of shadow 

heading and sun angle. 

 

                         
Figure 4: Offset is the angle between the shadow (blue) 

and the camera's optical axis (orange), measured in the 

ground plane. 

 

parameters roll, pitch, and focal length to extract them.  

 

The estimation of camera parameters from a single image is a 

well-studied topic [8]. Their use in the analysis of shadows 

boils down to building three-dimensional models of the 

shadows present in the query.  This is done by making two 

simplifying assumptions that generally hold in practice: (a) 

level ground plane: we assume that the ground that the 

shadows fall onto is locally planar with a vertical normal; (b) 

vertical shadow caster: we assume that the tops of objects 

casting shadows stand directly above their bases. Operating 

under these assumptions, and using camera parameters to 

translate pixel coordinates into rays in the world frame, 3D 

coordinates of the following three points describing the 

shadow can be estimated: the common base of both shadow 

and caster, the tip of the shadow, and the top of the shadow 

caster. 

 

To do so, we define the world coordinate frame such that the 

ground plane coincides with the xy-plane as shown in Figure 

5; the camera lies on the z-axis at a fixed, arbitrary distance 

from the origin, the x-axis extends below the camera’s optical 

axis, and the y-axis extends to the camera’s left, or into the 

 
Figure 5: Geometry of the camera with respect to world 

coordinates. 
 

plane of Figure 5.  We take (u, v) to be the real-valued 

coordinate of a pixel with respect to the image center at (0, 0), 

after a rotation of the image to compensate for camera roll. 

 

A point in space can be uniquely identified by the intersection 

of three non-parallel planes; our pixel coordinates can provide 

two such planes, with the third being supplied by our 

assumptions.  Specifically, a plane of constant u = u0, as 

shown in Figure 5, is the image of the yz-plane rotated pitch 

+ θu = pitch + arctan(u0 / focal length) about the vector 𝒓⃑  = 

<0, –1, 0> centered on the camera and extending out of the 

plane of the figure.  Similarly, a plane of constant v = v0 (not 

shown in the figure), is the image of the zx-plane rotated θv = 

arctan(v0 / focal length) around the camera and the vector 𝒑⃑⃑  = 

<cos(pitch), 0, sin(pitch)>, or directly up from the camera’s 

point of view.  For the two points at the base and tip of the 

shadow, the third plane is the ground plane; for the point at 

the top of the caster, the third plane is one parallel to the yz-

plane and containing the common point at the base of the 

shadow and caster. 

 

Given the 3D coordinates of these points, (xbase,ybase,0), 

(xtip,ytip,0), and  (xbase,ytop,ztop), length and offset are given by: 

  
Regardless of how they are acquired, once we estimate length 

and offset, we can run our model for all times and at the 

latitude of our region of interest, recording the headings of 

any shadows in the model that match the length of the query 

shadows, adding the offset to each one to produce a candidate 

camera heading.  As shown in the right column of Figure 6, 

these camera headings are collected into a list that can be 

interpreted as a probability density function, if one assumes 

that any time is equally likely as any other time for the picture 

to have been taken.  Under such an interpretation, the range(s) 

of possible headings, mean, and standard deviation can also 

be extracted. 
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4 Results 

The proposed analysis was applied to 54 images or video 

frames with ground truth, from 5 regions of interest with 

latitudes from 32o North to 33o South and terrains from desert 

to jungle and development from urban through rural to none. 

In all chosen images and/or video frames shadows and their 

casters are clearly visible.  25 of the 54 queries come from a 

region in Jordan, around Ammon, with fewer numbers 

coming from the other 4 regions, in Taiwan, India, the 

Philippines, and Chile; the desert terrain and climate provided 

consistently good visibility with little cloud cover. 

 

Typical ranges of possible headings for the 54 queries varied 

from 0.8π to 1.2π, in either one contiguous arc as shown for 

the top two images in Figure 6, or two disjoint arcs that were 

independently contiguous as shown in the bottom three 

images in Figure 6.  The former typically corresponds to 

midday queries and the latter to morning/evening queries. The 

proposed analysis was successful on 52;  “success” in this 

case is defined as “ground truth heading is within the returned 

range of possible headings”, and the probability of achieving 

such a success rate by chance alone is less than 1.62*10–13.  

Five examples of “success”, together with the heading ranges, 

are shown in Figure 6. The two failures are shown in Figure 

7.  

 

Use of camera calibration in the analysis was applied to 22 of 

the 54 queries; for 32 queries, length and offset were extracted 

manually by a user, as the values produced by computation 

from camera parameters produced implausible results which 

did not match the approximate results generated by 3D spatial 

reasoning of a skilled human operator: estimated offsets 

nearly perpendicular to what human eyes see, or computed 

lengths with exceedingly large values, or negative ones.  The 

reasons for these calibration failures varied from query to 

query, but fell into three categories: (a) Queries in which the 

shadows being examined did not fall on the ground, but rather 

on the sides of buildings or other objects; these were typically 

urban queries; (b) Queries for which estimating camera 

parameters without metadata is difficult due to a lack of 

prominent vanishing points; these were typically in rural or 

undeveloped areas; (c) Queries in which the shadows were 

distant or the camera was not elevated significantly above the 

ground plane, leading to increased response in x-coordinates 

to noise in pitch, focal length, or pixel coordinate u.  For the 

two failure query images shown in the left column of Figure 

7, neither camera calibration nor manual eye-balling resulted 

in a heading range in which the ground truth lay, as shown in 

the right column of Figure 7. 

 

For the 22 queries in which calibration was successful, the 

sun angles and offsets estimated manually differed from those 

extracted by calibration by an RMS average of 7.9o and 16.0o 

and a maximum of 14.8o and 32.7o, respectively.  The bulk of 

the discrepancies in sun angle were on queries for which the 

offset was near either 0o or 180o; the bulk of the offset 

discrepancies were near offsets or ±90o.  Arithmetic mean 

discrepancies of –5.3o and –0.19o for sun angle and offset 

respectively indicate that the user in question either had an 

underestimation bias for shadow lengths and sun angles, or 

more strictly rejected calibration results reporting shorter 

shadows, but was not significantly biased in estimates of 

offset.  In all cases where calibration was successful, the 

ground truth lay in the obtained heading range, regardless of 

whether manual processing or camera calibration was used to 

extract length and offset.  

 

 
Figure 7: The two miss cases. 

 

 

 

 

 
Figure 6: A sampling of success cases.  The blue 

marks indicate means of distributions; the red, ground 

truth headings. 
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