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ABSTRACT 

Future lithography systems must produce microchips with smaller feature sizes, while maintaining throughputs 
comparable to those of today’s optical lithography systems. This places stringent constraints on the effective data 
throughput of any maskless lithography system. In recent years, we have developed a datapath architecture for direct-
write lithography systems, and have shown that compression plays a key role in reducing throughput requirements of 
such systems. Our approach integrates a low complexity hardware-based decoder with the writers, in order to 
decompress a compressed data layer in real time on the fly. In doing so, we have developed a spectrum of lossless 
compression algorithms for integrated circuit layout data to provide a tradeoff between compression efficiency and 
hardware complexity, the latest of which is Block Golomb Context Copy Coding (Block GC3).  In this paper, we present 
a modified version of Block GC3 called Block RGC3, specifically tailored to the REBL direct-write E-beam lithography 
system. Two characteristic features of the REBL system are a rotary stage and E-beam corrections prior to writing the 
data. The former results in arbitrarily-rotated layout imagery to be compressed, and as such, presents significant 
challenges to the lossless compression algorithms, including Block GC3. We characterize the performance of Block 
RGC3 in terms of compression efficiency and encoding complexity on a number of rotated layouts at various angles, and 
show that it outperforms existing lossless compression algorithms. 
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1. INTRODUCTION 
Future lithography systems must produce chips with smaller feature sizes, while maintaining throughputs comparable to 
today’s optical lithography systems. This places stringent data handling requirements on the design of any direct-write 
maskless system. Optical projection systems use a mask to project the entire chip pattern in one flash. An entire wafer 
can then be written in a few hundreds of such flashes. To be competitive with today’s optical lithography systems, 
direct-write maskless lithography needs to achieve throughput of one wafer layer per minute. In addition, to achieve the 
required 1nm edge placement with 22 nm pixels in 45 nm technology, a 5-bit per pixel data representation is needed. 
Combining these together, the data rate requirement for a maskless lithography system is about 12 Tb/s [4]. To achieve 
such a data rate, we have recently proposed a data path architecture shown in Fig. 1[1]. In this architecture, rasterized, 
flattened layouts of an integrated circuit (IC) are compressed and stored in a mass storage system. The compressed 
layouts are then transferred to the processor board with enough memory to store one layer at a time. This board then 
transfers the compressed layout to the writer chip, composed of a large number of decoders and actual writing elements. 
The outputs of the decoders correspond to uncompressed layout data, and are fed into D/A converters driving the writing 
elements such as a micro-mirror array or E-beam writers. In this architecture, the writer system is independent of the 
data-delivery path, and as such, the path and the compression algorithm can be applied to arbitrary direct-write 
lithography systems. 
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Fig. 1. The data-delivery path of the direct-write systems. 

In the proposed data-delivery path, compression is needed to minimize the transfer rate between the processor board and 
the writer chip, and also to minimize the required disk space to store the layout. Since there are a large number of 
decoders operating in parallel on the writer chip, an important requirement for any compression algorithm is to have an 
extremely low decode complexity. To this end, we have developed a class of lossless layout compression algorithms for 
flattened, rasterized data [1-4], the latest of which, Block Golomb Context Copy Coding (Block GC3), has been shown 
to outperform all existing techniques such as BZIP2, 2D-LZ, and LZ77 in terms of compression efficiency, especially 
with limited decoder buffer size and hardware complexity, as required for hardware implementation[2][4].  

A new writing system, called Reflective Electron Beam Lithography (REBL), is currently under development at KLA-
Tencor[5]. In this system, the layout patterns are written on a rotary writing stage, resulting in layout data which is 
rotated at arbitrary angles with respect to the pixel grid. Moreover, the data is subjected to E-beam proximity correction 
effects. We have empirically found that applying the Block GC3 algorithm [4] to E-beam proximity corrected and 
rotated layout data results in poor compression efficiency far below those obtained on Manhattan geometry and without 
E-beam proximity correction. Consequently, Block GC3 needs to be modified to accommodate the characteristics of 
REBL data while maintaining a low-complexity decoder for the hardware implementation. In this paper, we modify 
Block GC3 in a number of ways in order to make it applicable to the REBL system; we refer to this new algorithm as 
Block Rotated Golomb Context Copy Coding (Block RGC3). 

The outline of this paper is as follows. Section 2 provides a brief overview of the Block GC3 algorithm. Section 3 
introduces the data-delivery path of the REBL system and the requirements it imposes on the compression technique. 
Section 4 describes the modifications that form Block RGC3. These include an alternate copy algorithm, which better 
suits layout patterns rotated with respect to the pixel grid, as well as a modified Block GC3 encoder, which introduces 
spatial coherence among neighboring blocks of Block GC3. Section 5 characterizes the additional encoding complexity 
required to implement our proposed changes to Block GC3. Section 6 presents results for different layout data with 
different parameters. Conclusions and future work are presented in Section 7. 

2. REVIEW OF BLOCK GC3 
The Block GC3 architecture is shown in Fig. 2, and is detailed in [4]. A summary of the algorithm is as follows. Each 
non-overlapping H×W section of pixels is grouped together as a “block”. Each block is assigned a “segmentation value,” 
which takes on either (a) a copy distance selecting an already-decoded H×W image section to copy from in LZ77 
fashion, or (b) a copy distance of “0”, which signals the decoder to predict the pixel values based on the properties of 
neighboring pixels. The set of segmentation values for the blocks forms its own pixel grid called the segmentation map, 
which is compressed by the region encoder block using a similar prediction method. Copy distances are strictly aligned 
either above or to the left of the block being encoded; diagonal copying is not allowed, in order to minimize encoding 
complexity. In essence, Block GC3 attempts to exploit the benefits of both LZ-style copying and local context-based 
prediction. However, neither the segmentation values nor the image pixels are likely to be encoded free of errors. 
Specifically, to achieve higher compression efficiency, we allow errors to be introduced within the copy/prediction 
operation for the image and within the prediction operation for the segmentation map. For both the image and the 
segmentation map, error correction is performed by separating the bitstream into two sections: (a) an error map, in which 
a “zero” (“one”) pixel signifies a correctly (incorrectly) predicted value for the corresponding pixel, and (b) a list of error 
values. Both the image and segmentation error maps are compressed using Golomb run-length codes. The image error 
values are compressed using Huffman codes, while the segmentation error values are transmitted uncompressed. 
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Fig. 2. The encoder/decoder architecture of Block GC3. 
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Each Block GC3 copy distance points to a location in a history buffer, which stores the most recently decoded pixels. A 
larger buffer increases the range of possible copy distances, and tends to improve compression efficiency at the expense 
of higher encoding complexity. In our previous work [4], limited decoder layout area led to the choice of a 1.7 KB 
buffer, which did not greatly degrade compression efficiency for non-rotated image patterns. However, in the REBL 
system, layout area considerations allow for a maximum buffer of 40 KB; this extra buffer is potentially valuable, since 
finding repetition is more challenging for arbitrarily-rotated image patterns. 

3. DATA PATH FOR REBL SYSTEM 
The REBL system is visualized in Fig. 3(a), and detailed in [5][6]. REBL’s goal is to produce the high resolution of 
electron-beam lithography while maintaining throughputs comparable to those of today’s optical lithography systems. 
The Digital Pattern Generator (DPG) uses reflective electron optics to constantly shape the electron beam as it scans 
across the wafers, which are located on a rotary stage shown in Fig. 3(b). This paper focuses on the data delivery path of 
the REBL system, which constrains the compression hardware implementation. As shown in Fig. 4, the compressed 
layout data is decoded by Block GC3 decoders in parallel, and then fed into the DPG, which can be located on the same 
chip as the decoder. In order to meet the required minimum wafer layer throughput of the REBL system, namely 5-7 
wafer layers per hour (WPH), given the data rate of the available optical input data link of about 10Gb/s/link, a required 
minimum compression ratio of 5 is projected. 
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(a) (b) 

Fig. 3. (a) Block diagram of the REBL Nanowriter; (b) detailed view of the rotary stage [5]. 
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Fig. 4. The data-delivery path of the REBL system. 

In the REBL system architecture, similar to the architecture presented in [1], every data path can be handled 
independently, with its own input data link. Moreover, in the REBL system, the DPG reads layout patterns from the 
decoders in a column-by-column fashion. Every decoder provides data for a set number of pixel rows: either 64 or 256 
rows. The number of columns in each compressed 64- or 256-row “image” effectively can be thought of as being 
infinite, since the writing system runs continuously until the entire wafer is written. For testing purposes, we restrict the 
number of columns to either 1024 or 2048. Properties of the test layout images for this paper are listed in Table 1. 

Table 1. Properties of the test layout images. 

Image Size 64×1024, 64×2048, 256×1024, 256×2048 

Pixel Value 0-31 (5 bit) 

Tilting Angle 25, 35, 38 

Each image pixel can take on one of 32 gray levels, in order to guarantee a 1 nm edge placement. In addition, due to the 
unique rotating writing stage of the REBL system, shown in Fig. 3, the layout images are rotated at arbitrary angles, 
ranging from 15° to 75°. In our testing set, we have collected layout images of three angles, as listed in Table 1. All the 
images have undergone E-beam proximity correction (EPC) compatible with the REBL system. 
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4. ADAPTING BLOCK RGC3 TO REBL DATA 
In this section, we discuss the modifications that distinguish Block RGC3 from Block GC3. To ensure a feasible 
hardware implementation for the decoder, modifications have been added mainly to the encoding process, while keeping 
the decoding process as simple as possible.  As shown in Sections 4.1 and 4.2, a diagonal copying algorithm and a 
smaller block size allow repetition in rotated layouts to be better exploited. A region-growing technique described in 
Section 4.3 adds spatial coherence to the segmentation values, increasing the compression efficiency. 

4.1 Modifying the copy algorithm 

Fig. 5(a) shows the Block GC3 encoding process as it progresses from left to right. A history buffer stores the most 
recently decoded pixels, as shown in the dashed region. The current block is encoded and decoded using a strictly 
horizontal or vertical copy distance. Fig. 6(a) shows an example of a 25°-rotated REBL layout image. Notice that 
repetition does not occur in either the horizontal or vertical direction for rotated layout images. Therefore, we need to 
modify the copy method to allow the decoder to copy from anywhere within the buffer range, at any arbitrary direction 
and distance, as shown in Fig. 5(b). This facilitates repetition discovery regardless of the layout’s angle of rotation. Note 
that the buffered image area does not increase for diagonal copying; however, the number of possible copy distances to 
choose from has increased, thereby increasing the encode complexity, as discussed in Section 5. 

  
                          (a)                               (b) 
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Current block 
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d 

Fig. 5. Two copying methods: (a) Block GC3: only horizontal/vertical copying is allowed; (b) Block RGC3: blocks may be 
copied from anywhere within the search range. In both cases, the dashed areas must be stored in the history buffer. 
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Fig. 6. Layout image of the REBL system: (a) Original layout image; (b) fitting the image to an H×W block grid; (c) an 
example of image repetition, given an edge oriented at tan-1(2) with respect to the pixel grid. 

All results in Section 4 refer to 25°-oriented Metal 1 layout images, which are the most challenging to compress; a 40 
KB buffer is assumed unless otherwise stated. A performance comparison between diagonal copying and the original 
horizontal/vertical copying is shown in Table 2. As seen, for a fixed buffer size, diagonal copying improves compression 
efficiency by 25-70%. As compared to horizontal/vertical copying, diagonal copying decreases image errors from 17.8% 
to 12.1% for a 1.7 KB buffer, or from 15.9% to 6.2% for a 40 KB buffer. In other words, diagonal copying significantly 
improves the ability to find repetition for arbitrarily-rotated layout images. 
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Table 2. Average compression efficiency comparison of two copy methods. 

 1.7 KB Buffer 40 KB Buffer 

Image size Hor. / Ver. Copying Diagonal Copying  Hor. / Ver. Copying Diagonal Copying 

64×1024 3.12 3.89 3.35 4.91 
64×2048 3.13 3.91 3.44 5.22 
256×1024 3.19 3.96 3.36 5.60 
256×2048 3.19 3.97 3.37 5.71 

 

4.2 Decreasing the block size 

Fig. 6(a) shows a typical rotated rasterized layout image of the REBL system. Although the image is visually repetitive, 
copy blocks closely approximating each H×W image block shown in Fig. 6(b) may not be found if the block size is too 
large. Thus, the block size should be sufficiently small to ensure that repetition in the image is fully exploited. However, 
as the block size decreases, the number of copy regions in the image tends to increase, requiring more segmentation 
information to be transmitted to the decoder. Specifically, reducing the block size from 8×8 to 4×4, using a 40 KB 
buffer, reduces the image error rate from 6.2% to 2.2%,1 while increasing the number of segmentation errors by a factor 
of 2.6. 

This latter effect is aggravated by the fact that rotated layout images introduce more copy regions than 0°-rotated layout 
images, thus decreasing the effectiveness of the segmentation prediction method of [4]. Fig. 6(c) shows a simple 
example of repetition in a rotated layout image. Each pixel value represents the percentage of the pixel that lies to the 
right of the diagonal “edge”, which in this case is rotated by exactly tan-1(2) with respect to the pixel grid. Note that all 
boundary pixels can be correctly copied using a (dx, dy) copy distance of (1, 2). Ignoring second-order EPC effects, the 
angle of rotation can generally be approximated as tan-1(b/a), where integers a and b are as small as possible, given the 
approximation remains valid; this likely leads to (dx, dy) = (a, b). If a or b are too large, however, implementing such a 
large copy distance may be infeasible, due to finite buffer size, finite image width, or simply a change in the local layout 
feature pattern; in this case, the best copy distance may change from one block to the next. This phenomenon becomes 
more pronounced as the block size is reduced. Fig. 7 shows a typical segmentation image for a 25°-rotated Metal 1 
layout, where each pixel represents a 4×4 block and each copy distance is randomly assigned a different color. For each 
block, the first-discovered copy distance resulting in minimal image errors is chosen. This segmentation map looks fairly 
random, making it hard to compress. In particular, after applying the segmentation prediction method in [4], only 35% of 
the segmentation values in Fig. 7 are correctly predicted. 

 
Fig. 7. Segmentation map of a 256×1024, 25°-oriented image. 

In general, encoding the segmentation map is perhaps the most challenging part of compressing REBL data using Block 
RGC3, especially if a small block size such as 4×4 is used. Table 3 shows the percentage of each data stream after 
compression, using a 4×4 block size in Block GC3. As the buffer size increases, the number of image errors decreases; 
however, the higher number of possible copy distances for each block results in an increase of segmentation regions. 
Notice that segmentation information contributes up to 76% of the total compressed data, for a 40KB buffer size. The 

                                                 
1 Note that a smaller block size also implicitly requires more buffers for the region decoder shown in Fig. 2, which stores segmentation information from the previous row of blocks in 

order to decode the compressed segmentation values [4]. A small block size leads to more blocks per row, which increases the required buffer size.  However, compared with the size of 

the layout image’s history buffer, especially under the 40 KB constraint, this change is negligible. 
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next subsection describes a more compression-efficient way of encoding this segmentation information. With this 
method in place, and assuming a square block size, we have empirically found that a 4×4 block size optimizes 
compression efficiency. 

Table 3. Bit allocation of the Block GC3 compressed streams, using diagonal copying. 

Buffer size Image Error Map Image Error Values Seg. Error Map Seg. Error Values 
1.7 KB 28.7% 22.9% 5.2% 43.1% 

20 KB 16.3% 10.9% 5.9% 66.8% 

40 KB 14.5% 9.4% 5.9% 70.2% 

 

4.3 Growing one-dimensional copy regions  

As detailed in [13], we have empirically found that for all rotated layouts tested, the “copy” function consistently 
generates fewer image errors per block than the “predict” function. Thus, for the remainder of this paper, we assume all 
image blocks to be copied from previously-encoded blocks. In other words, each segmentation value represents a (dx, dy) 
copy distance. As implied by Table 3, maximizing compression efficiency involves minimizing both the number of 
image errors and the number of copy distance errors. The latter can be reduced by enforcing spatial coherence among the 
copy distances of neighboring blocks, as explained shortly. Unfortunately, these two metrics are not independent: 
minimizing image errors likely reduces the potential for spatial coherence, while enforcing maximum coherence 
increases image errors. 
Enforcing spatial coherence in the segmentation map is made possible by the fact that multiple copy distances often lead 
to the minimum number of image errors for a given image block. This flexibility can be utilized by creating “regions” 
consisting of one or more adjacent blocks, each assigned the same copy distance. Regions can be grown in any preferred 
2-dimensional way. The optimal region-growing metric is to minimize the total number of 2-D regions, assuming a 
known fixed number of image errors for each block. However, this problem is NP-complete, even if the number of 
image errors per block is already known, as we have shown in the Appendix. An alternative is to grow 1-D regions after 
first assuming each block contains minimal image errors. We have empirically determined that one-dimensional regions 
of size 1×N blocks result in higher compression efficiencies than polynomial-time 2-D region-growing heuristics. We 
refer to dimension N as the “length” of the region, which may be oriented either in the horizontal or vertical direction. 
Since the images associated with the REBL system may require a height as small as 64 pixels, we have chosen to grow 
regions horizontally in order to maximize N. 

The following region-growing heuristic shown in Fig. 8 is solvable in polynomial time, and is proven to minimize the 
number of 1-D regions, if the number of image errors per block is first minimized [12]. Starting at the left of each image 
row, the longest possible region is assigned. This is iterated, region by region, until the entire row has been assigned: 

Let M  = image width / block width.    Let k = 1. 

For each non-overlapping 1×M block image row Cj

        For each block BBi ∈ Cj 
                Determine Si, the set of all copy distances which generates the minimum # image errors 
        While (k ≤ M) 
                Find/assign the longest region in Cj with a common copy distance in {Sk,...,Sk+N-1}, BBk ∈ Cj  

             k = k + N. 
Fig. 8. Region-growing algorithm. 

To encode the 1-D horizontal segmentation regions, we propose a new prediction method shown in Fig. 9(a), whereby 
each block’s copy distance is predicted to be equal to that of the block to its left. This ensures that the (dx, dy) copy 
distance associated with a given horizontally-oriented region is only sent once. Specifically, only the left-most block in a 
region is predicted incorrectly. The prediction method for Block GC3 is shown in Fig. 9(b). 
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Fig. 9. The block-based prediction method of (a) Block RGC3, (b) Block GC3. 

4.4 Determining the optimal block shape 

In Section 4.2, we discussed the tradeoffs of changing the block size; in this section, we discuss the optimal block aspect 
ratio. We assume that layout features are not preferentially oriented in either a horizontal or vertical direction, regardless 
of layout rotation. Regardless of the region-growing method utilized, we expect square-shaped segm

c z

maximize the average region size, and therefore improve compression efficiency. This is because the longer dimension 
of an oblong segmentation region is likely to infringe on neighboring features, thus limiting repetition discovery and 
compression efficiency. In effect, square segmentation regions minimize the effect of this limitation.  

Block GC3 uses square blocks [4] and grows regions in either a horizontal or vertical direction, thus resulting in 
approximately square-shaped segmentation regions. In contrast, Block RGC3 clearly grows regions using a directional 
preference, by using identical copy distances for neighboring blocks along the horizontal direction only. For a square 
block size, the average Block RGC3 region has a greater horizontal width than a vertical height. For example, assuming 
a 4×4 block size, the average Metal 1 region contains 2.7 blocks, which corresponds to a region size of 4×10.8. Since 
square-s
shapes resulting in more or less square regions. Since Block RGC3 grows segmentation regions in a horizontal direction, 
this would mean that the block shape resulting in near-square segmentation regions is likely to have smaller width than 
height. 

Table 4 compares compression and encoding time results for various block sizes, using the final Block RGC3 algorithm 
which includes the region-absorbing method discussed in Section 4.5. Two factors improve compression efficiency. 
First, the image error rate decreases as the block size decreases, as justified in Section 4.2; the resulting increase in 
blocks per image area also increases the encoding ti
yields a more square-shaped average region, which, in turn, increases the average region size. As verified in Table 4, 
block shapes resulting in more square-shaped average regions are likely to have a larger average region size, and hence 
fewer regions, and hence a higher compression ratio. 

For our final design, we have decided to use a 5
n though 7×1 and 6×1 block sizes slightly improve compression efficiency in the example shown, the encoding ti

re nearly twice as much as for 5×3; furthermore, the compression gains are lost if the buffer size is reduce
 a Via layer i d of M tal 1. 

Table 4. Performance comparison of various blo k sizes, using a 1024×256 25°-oriented Metal 1 image and a 40 KB bu fer. 

Block Size 4×4 5×3 3×5 7x2 2x7 6×2 2x6 4x3 3x4 7x1 6x1 

Average region shape (pixels) 4  3 2 2 4 3  ×10.8 5×9.3 ×12.6 7×7.1 ×15.3 6×7.9 ×15.0 ×10.5 ×12.4 7×6.6 6×7.5

Average region size (pixels) 43.2 46.5 37.8 49.7 30.6 47.4 30.0 42.0 37.2 46.2 45.0 

Number of regions 6065 5572 6878 5185 8555 5412 8706 6198 7020 5557 5761

Image error rate (%) 2.67 2.60 2.64 2.70 2.83 2.41 2.55 2.32 2.37 2.08 1.84 

Compression ratio 6.79 7.12 6.32 7.24 5.46 7.32 5.50 6.93 6.40 7.39 7.43 

Encoding time (seconds) 182 180 189 191 213 209 230 202 226 295 334 

Assuming a 4×4 block size and comparing with Section 4.1’s results, growing regions as per Section 4.3 increases the 
number of correctly-predicted copy distances from 35% to 55%, while the image error rate remains unchanged at 2.18%. 
Now using a 5×3 block size, 59% of the blocks’ copy distances are correctly predicted, while the image error rate is 
reduced to 2.09%. Thus, growing regions and utilizing a 5×3 block size both improve compression efficiency, as shown 
in Table 5. A sample of 25° Metal 1 copy regions is shown in Fig. 10 and Fig. 11(a), where each copy distance is 
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randomly assigned a different color. The effectiveness of region-growing is loosely proportional to the number of 
candidate copy distances per block which generate minimal image errors. A cumulative distribution function of this is 
shown in Fig. 12; notice that 71% of blocks in the given layout have at least ten optimal copy distances, assuming a 
40KB buffer size. As this number increases, the probability of finding a common copy distance among neighboring 
blocks also increases, thereby resulting in larger 1-D regions. 

 
Fig. 10. Segmentation map, utilizing 1-D region-growing. 

(a) (b) 

Fig. 11. (a) Zoomed in portion of Fig. 10. (b) Regions after applying the region-absorbing method. 

  

 
Fig. 12. Cumulative distribution function (cdf) of the number of copy distances per block which generate minimal image 

ptimizing five regions and shifting by three, the new set of five regions includes two regions from the 
previo tions of one or two regions to be carried out, including those 

errors. 

4.5 Combining neighboring regions 

As mentioned in Section 4.3, maximizing the compression ratio requires a tradeoff between minimizing image errors and 
maximizing spatial coherence of copy distances. However, our 1-D region-growing method minimizes image errors as 
much as possible, at the expense of reducing spatial coherence. This constraint can be alleviated by adding a post-
processing step, which combines neighboring regions while accepting a small penalty of image errors. The encoder 
judges this tradeoff using two parameters: α1, the marginal decrease of transmitted bits resulting from one fewer 
segmentation error, and α2, the marginal increase of transmitted bits resulting from one additional image error. α1 and α2 
are empirically calibrated, since these marginal changes depend on how effectively Huffman codes and Golomb run-
length codes compress the segmentation/image error maps and values. For each image row, we apply the following 
heuristic to optimally combine the first five regions by finding combinations which maximize the expression: α1 × [# 
regions absorbed] – α2 × [# image errors incurred]; if no beneficial combinations are found, the set of five observed 
regions is shifted by three. We iterate on this until the entire row has been inspected. Region absorbing is only effective 
if α1 > α2; otherwise, a single additional image error more than negates the benefit of combining two regions.  
Empirically, we find α1 = 14 and α2 = 10 to optimize compression efficiency for 25°-rotated Metal 1, with a 40 KB 
buffer. By o

us set; this allows nearly all beneficial absorp
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ling the boundary of each five-region set. Fig. 13 shows the pseudo-code for our p
hm. 

Let M = image width / block th.   wid  Let k = 

For each non-overlapping 1×M block image row Cj, containing regions Rj,1 through Rj,m 
      While (k < m) 
            For the su row Db- j,k = {Rj,k,…,Rj,k+4} 
                  For each region Rj,k+n ∈ Dj,k
                         For each “optimal” copy distance for Rj,k+n, as determined in Fig. 8
                                List costs associ ons from Dj,k into Rj,k+nated with absorbing one or more regi
                                 - break if the number of image errors exceeds a known threshold 
                  If the “best” cost is beneficial, re-assign regions accordingly. 
                  Else, k = k + 3. 

Fig. 13. Region-absorbing algorithm. 
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 11(b) shows how the regions shown in Fig. 11(a) have been modified by the region-a
cifically, the number of correctly-predicted copy distances has increased from 59% to 68%, but

 f .09% to 2.60%. This tradeoff h s improved the compression ef iency overall, as shown in th

le 5. Compre  efficien k RGC ed with less compre lgorithm

 1-D re ing, 4×
S

1-D re ing, 5×
Sect

 region g, 5x3 
Se

Image size Avg. Min. Avg. Min. Avg. Min. 
64×1024 5.73 5.53 5.87 5.70 6.19 6.00 
64×2048 6.13 5.98 6.28 6.16 6.60 6.46 
256×1024 6.51 5 7.12 7.12 6. 0 6.76 6.75 
256×2048 6.67 6 7.29 7.29 6. 7 6.91 6.91 

 

5. ENCODING COMPLEXITY 
The total encoding time required to compress a given image is dominated by three main factors: (1) determining a list of 
optimal copy distances for each block, allowing diagonal copies, (2) choosing a copy distance for each block from this 
list such that the total number of regions is minimized, and (3) absorbing neighboring regions. 

Contribution #1 essentially requires each image pixel to be compared with the pixel associated with each available copy 
distance. Thus, this portion of the encoding time is independent of the input image pattern. The image is both encoded 
and decoded in a column-by-column fashion. For Block RGC3, the number of possible copy distances per block is dx,max 

× dy,max, where dy,max typically equals the height of  the image and dx,max = buffer_size/dy,max; in contrast, for Block GC3’s 
horizontal/vertical copying, the copy candidate range is dx,max + dy,max. Due to extra computational overhead which is 

rsely proportional to the block size, we have empirically found encoding time to v  with 1/β + 1/(H×W), where 
×W represents the block size and β ≈ 10. The β-dependent and block size-dependent ctors equally affect encoding 

time when H×W = β. Thus, Block RGC3 encoding time for a given image area is proportional to 

inve ary
H fa

 ,max ,max
1 1 1 1_x yO d d O buffer size

HW HWβ β
⎛ ⎞ ⎛

+ = +⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝⎝ ⎠ ⎝

Contribution #2 depends on 

⎛ ⎞ ⎛ ⎞⎞
⎟⎟
⎠⎠

. 

,matches block
d , the average number of copy distances per block resulting in minimal image 

errors. Contribution #3 depends on N , the average number of blocks per region, and
,matches region

d , the average number 

of copy distances common to all the blocks in an entire region which result in minimal image errors. These three 
parameters depend on the layout image and the buffer size. Regions are grown by searching through each block’s list of 
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copy distances until the longest region is found. Similarly, regions are absorbed by applying each region’s list of copy 
istances to its neighboring regions, to find the best possible abso tions.  Encoding time increases as the block size 

decreases, since each block corresponds to a smaller image area. Thus, for a given image area, Contribution #2’s 

 

d rp

encoding complexity is proportional to 

,matches blockd
O

HW

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 

while Contribution #3’s encoding complexity is proportional to  

,mad
O ⎜
⎜

tches region⎛ ⎞
⎟
⎟ .  

NHW⎝ ⎠

Note that encoding time increases substantially if 
,matches block

d is very high; this typically occurs in images containing 

large amounts of background area, such as the Via layer. 

Table 6 shows examples of software enco  for v ts and encoding parameters, using a 2ding times arious layou .66GHz Intel 
Xeon processor with 2.75GB RAM. As expected, encoding times are proportional to image size and inversely 
proportional to block size. Notice that the easily-compressible via layer, composed of 96% background pixels, requires 
more time to encode because of its high

,matches block
d . Additionally, larger buffer sizes increase the number of possible 

copy distances per block; this increases 
,matches block

d  and
,matches region

d , resulting in larger encoding times. 

The  in Block 
RGC3 encoding times is due to the use pyin d copy ra in 
Fig. 5. In the worst case, if dy,max = d  in e or 
of ap tel e ei xels 32 r a age f 6 56 ely.

Ta  Bloc 3 en  time conds arious ts, im zes, b uffer 

butio C butio C butio T codin  

 encoding and decoding times for Block GC3 are shown in Table 7 as a comparison. The vast increase
of diagonal co g, which greatly increases t

 diagonal copying
he allowe

creases the allow
nge, as shown 

d copy range by a factx,max = image height,
proxima y half th

k RGC

 image h
coding

ght, in pi , e.g.,  or 128 fo n im  height o 4 or 2 , respectiv  
ble 6. s in se  for v  layou age si lock sizes, and b sizes. 

 Contri n #1 ontri n #2 ontri n #3 otal en g time

Image 
size 

Block 
 

 Metal 1 Metal 1 Metal 1 Metal 1 
size

Buffer
size 25° 

Via 
25° 25° 

Via 
25° 25° 

Via 
25° 25° 

Via 
25° 

64×2048 5×3 20KB 35.3 35.4 1.6 5.4 0.2 0.6 37.0 41.4 
256×1024 5×3 20KB 87.7 92.9 3.9 15.1 0.4 1.2 92.1 109.2 
64×2048 5×3 40KB 63.6 66.8 2.4 11.0 0.2 0.9 66.2 78.7 
256×1024 5×3 40KB 166.3 184.0 7.0 40.9 0.5 2.0 173.9 226.9 
64× 048 2 8×8 20KB 28.2 28.4 0.2 2.5 0.2 0.8 28.6 31.7 
256×1024 8×8 20KB 66.9 62.8 0.4 4.9 0.4 2.1 67.7 69.8 
64×2048 8×8 40KB 49.1 49.1 0.3 4.3 0.2 1.2 49.7 54.6 
256×1024 8×8 40KB 124.5 116.2 0.7 9.6 0.5 3.3 125.7 129.1 
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Table 7. Encoding and Decoding Times: Comparison between Block RGC3 and Block GC3. 

 Encoding Time (sec)
(Block GC3) 

Encoding Time (sec)
(Block RGC3) 

Decoding Time (ms) 
(Block GC3) 

Decoding Time (ms)
(Block RGC3) 

Image 
size 

Block 
size 

Buffer 
size 

Metal 1 
25° 

Via 
25° 

Metal 1 
25° 

Via 
25° 

Metal 1 
25° 

Via 
25° 

Metal 1 
25° 

Via 
25° 

64×2048 5×3 20KB 0.58 0.55 37.0 41.4 6.7 5.5 6.3 4.7 
256×1024 5×3 20KB 0.69 0.63 92.1 109.2 16.0 11.8 12.5 12.7 
64×2048 5×3 40KB 1.00 0.92 66.2 78.7 6.1 5.0 6.3 5.3 

256×1024 5×3 40KB 0.92 0.88 173.9 226.9 13.7 11.2 12.0 10.8 
64×2048 8×8 20KB 0.52 0.45 28.6 31.7 6.8 4.8 6.1 4.8 

256×1024 8×8 20KB 0.53 0.47 67.7 69.8 13.8 10.2 11.7 10.8 
64×2048 8×8 40KB 0.859 0.734 49.7 54.6 6.8 4.5 5.8 5.5 

256×1024 8×8 40KB 0.766 0.672 125.7 129.1 14.7 10.8 11.6 10.6 
 

6. COMPRESSION RESULTS 
6.1 Block RGC3 Results 

Table 8 shows the average compression efficiency for several layout samples of different buffer and image sizes. In 
total, three block sizes, three buffer sizes, three image sizes, and over four different layers were tested. Different wafer 
layers have significantly different compression ratios, ranging from 18.6 for the via layer, to 13.2 for the poly layer, to 
7.3 for Metal 1. From most significant to least significant, the factors affecting compression efficiency are: wafer layer, 
buffer size, block size, image size, and angle of rotation. 
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Table 8. Average Block RGC3 compression efficiency for various layouts, image sizes, block sizes, and buffer sizes. 

Metal 1 Metal 
1b2

Poly Via 
Image size Block size Buffer size 

25° 35° 38° 25° 35° 25° 35° 
64×2048 5×3 1.7KB 4.92 5.37 5.14 -- 8.49 13.14 12.67 
256×1024 5×3 1.7KB 5.09 5.43 5.33 8.55 8.47 13.58 13.17 
256×2048 5×3 1.7KB 5.10 5.45 5.35 -- 8.51 13.62 13.22 
64×2048 5×3 40KB 6.60 6.79 6.71 -- 11.91 15.86 16.11 
256×1024 5×3 40KB 7.12 7.23 7.34 14.87 12.80 17.05 17.27 
256×2048 5×3 40KB 7.29 7.41 7.50 -- 13.17 17.45 17.79 

64×2048 4×4 1.7KB 4.93 5.38 5.22 -- 8.64 13.21 12.88 
256×1024 4×4 1.7KB 4.99 5.32 5.22 8.40 8.24 13.46 13.02 
256×2048 4×4 1.7KB 5.01 5.33 5.23 -- 8.29 13.54 13.10 
64×2048 4×4 40KB 6.40 6.69 6.60 -- 11.43 15.84 16.15 
256×1024 4×4 40KB 6.81 6.98 7.05 14.29 12.09 16.76 16.94 
256×2048 4×4 40KB 6.97 7.14 7.19 -- 12.44 17.16 17.43 

64×2048 8×8 1.7KB 3.97 4.55 4.47 -- 7.61 13.54 13.24 
256×1024 8×8 1.7KB 4.02 4.51 4.5 7.71 7.34 13.92 13.41 
256×2048 8×8 1.7KB 4.03 4.52 4.51 -- 7.37 13.96 13.48 
64×2048 8×8 40KB 5.38 5.96 5.91 -- 10.59 16.94 17.36 
256×1024 8×8 40KB 5.75 6.26 6.30 13.66 11.52 18.09 18.48 
256×2048 8×8 40KB 5.88 6.39 6.43 -- 11.86 18.55 19.08 

 

The 5×3 block size consistently outperforms the 4×4 block size, independent of the buffer size, the layout, or its angle of 
rotation. Note the 8×8 block size actually performs best for the via layer, because of its sparse pattern density. 

The 38° Metal 1 layout has been tested in an effort to minimize pixel repetition, as per the tan-1(b/a) approximation 
discussed in Section 4.2.  Since 38° ≈ tan-1(25/32), we expect the integers in this ratio to be too large for a copy distance 
of (dx, dy) = (32, 25) to be utilized. However, due to REBL’s E-beam proximity correction, repetition is often found 
using (dx, dy) = (9, 7), where tan-1(7/9) is a less accurate approximation for 38°. As a result, 38° compression results are 
not significantly different from results using rotations of 25° and 35°, which can be approximated by tan-1(7/15) and tan-

1(7/10), respectively. 

256×1024 images outperform 64×2048 images, partially due to their larger size. In addition, the buffer is more square-
shaped for 256×1024 images, assuming the buffer size is greater than 10KB. This increases the overall likelihood of 
finding repetition at an arbitrary diagonal direction. While encoding the first blocks of an image, very few copy distances 
are available to choose from; this detrimental effect dies out as the history buffer becomes “full”, and is less prominent 
for larger image sizes. Thus, 256×2048 images perform still better than 256×1024 images. In the REBL system, the 
expected image width approaches infinity, resulting in a further increase in compression efficiency. 

                                                 
2 Only one 720×256 image is available for Metal 1b. The “Metal 1” and “Metal 1b” image samples are taken from different locations of the Metal 1 layer.
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6.2 Performance Comparison: Block RGC3 vs. Other Compression Algorithms 
Table 9. Avg. compression efficiency for various layouts, image sizes, block sizes, buffer sizes, compression algorithms. 

Metal 1, 25° Via, 25° Image 
size 

Block 
size 

Buffer 
size Block 

RGC3 
Block 
GC3 

ZIP 
(30 KB)

BZIP2 
(900 KB)

JPEG-LS
(2.2 KB)

Block 
RGC3

Block 
GC3

ZIP 
(30 KB) 

BZIP2 
(900 KB)

JPEG-LS
(2.2 KB)

64×2048 5×3 1.7KB 4.92 3.04 3.23 3.95 0.95 13.14 10.11 10.64 14.24 3.91 
256×2048 5×3 1.7KB 5.10 3.05 3.43 4.68 0.97 13.62 9.88 11.68 15.98 4.03 
64×2048 5×3 40KB 6.60 3.54 3.23 3.95 0.95 15.86 11.00 10.64 14.24 3.91 
256×2048 5×3 40KB 7.29 3.42 3.43 4.68 0.97 17.45 10.26 11.68 15.98 4.03 

64×2048 8×8 1.7KB 3.97 3.13 3.23 3.95 0.95 13.54 10.81 10.64 14.24 3.91 
256×2048 8×8 1.7KB 4.03 3.19 3.43 4.68 0.97 13.96 10.79 11.68 15.98 4.03 
64×2048 8×8 40KB 5.38 3.44 3.23 3.95 0.95 16.94 11.93 10.64 14.24 3.91 
256×2048 8×8 40KB 5.88 3.37 3.43 4.68 0.97 18.55 11.34 11.68 15.98 4.03 

 

Table 9 compares the compression efficiency of Block RGC3 with that of Block GC3, ZIP, BZIP2, and JPEG-LS, for 
both Metal 1 and Via layers [7][8][10][11]. Block RGC3 and Block GC3 are tested using buffer sizes of 1.7 KB and 40 
KB, while ZIP, BZIP2, and JPEG-LS have constant buffer sizes of 30 KB, 900 KB, and 2.2 KB, respectively. In terms of 
compression efficiency, Block RGC3 consistently outperforms Block GC3, ZIP, and JPEG-LS, even using a 1.7 KB 
buffer size. BZIP2 outperforms Block RGC3 only when compressing the via layer using a 1.7 KB buffer. However, 
impractical hardware implementation and high buffer requirements prevent BZIP2 from being a practical solution. 

Block RGC3 and Block GC3 compression efficiency and encoding complexity, as a function of buffer size, are 
compared in Fig. 14. Even though higher buffer sizes result in steadily higher compression ratios, this comes at a high 
price. First, larger buffer sizes result in memory occupying more decoder chip area, which is likely severely constrained 
to begin with. Second, Block RGC3 encoding time is linearly proportional to the buffer size. Although the encoding 
process may be completed offline in software, there are practical limits to how long this process may take. For example, 
using Block RGC3 with a 40KB buffer to compress a 20mm × 10mm 25° via layer in 64×2048 pixel segments would 
require 7.9 CPU years, assuming each pixel corresponds to a 22nm × 22nm area. If a 1.7KB buffer is used instead, 
computing time is reduced to 110 CPU days; this is clearly practical if several multiple-core processors are used in 
parallel. 

As shown in Fig. 14, Block RGC3 is capable of producing significantly higher compression efficiencies than Block 
GC3. Also, for a given compression ratio, Block RGC3 requires less encoding time and buffering in almost every 
instance. The only exception occurs when compressing Via and Poly using a 60 byte buffer size, at which Block RGC3 
and Block GC3 have an identical 64×1-pixel copy range. At such a small copy range, region-growing is somewhat 
ineffective; thus, the main design distinction is Block GC3’s 8×8 block size, which yields similar compression efficiency 
but requires four times lower encoding time than Block RGC3’s 5×3 block size. 
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(a) (b) (c) 

Fig. 14. Avg. compression ratios and encoding times vs. buffer size for 64×2048 (a) 25° Metal 1; (b) 35° Poly; (c) 25° Via. 

The largest Block RGC3 buffer size shown in Fig. 14, 40 KB, allows each block to be assigned one of 216 copy 
distances; the smallest buffer size represents the trivial case in which each pixel is always copied from the pixel 
immediately below it. For a given compression ratio, we have found that the encoding time can be reduced by roughly a 
factor of two with respect to Fig. 14 if the copy range is not searched thoroughly. Most of this reduction results from, 
whenever possible, blindly picking the first discovered copy distance resulting in zero image errors. Further reduction 
results from checking, at most, a small percentage of the available copy range, specifically those copy distances in close 
proximity to the copy range from Fig. 5(a), but rotated to match the wafer pattern’s current angle of orientation. 

 

6.3 Removing Huffman Coding from Block RGC3 

If the complexity of the decoder’s hardware is too high, because of area constraints or other factors, it may become 
necessary to simplify the compression algorithm. Block GC3 typically Huffman codes the image error values, as shown 
in Fig. 2 [9].  However, as shown in Table 10, we have found that eliminating Huffman coding reduces compression 
efficiency only slightly, i.e. 0-2%. Accordingly, removing the Huffman decoder from the decoder hardware reduces the 
area by 4.4% [4]. 

Table 10. Average Block RGC3 compression ratios, assuming a 40KB buffer, both with and without Huffman coding. 

Metal 1 Metal 1b3 Poly Via 
Image size Block size Use 

Huffman? 25° 35° 38° 25° 35° 25° 35° 
64×2048 5×3 Yes 6.60 6.79 6.71 -- 11.91 15.86 16.11 
256×1024 5×3 Yes 7.12 7.23 7.34 14.87 12.80 17.05 17.27 
256×2048 5×3 Yes 7.29 7.41 7.50 -- 13.17 17.45 17.79 
64×2048 5×3 No 6.51 6.68 6.59 -- 11.66 15.90 16.21 
256×1024 5×3 No 7.02 7.11 7.20 14.71 12.48 17.05 17.33 
256×2048 5×3 No 7.18 7.28 7.36 -- 12.84 17.43 17.82 

 

7. CONCLUSIONS AND FUTURE WORK 
This paper has described Block RGC3, a lossless compression algorithm which optimizes compression efficiency for 
layouts compatible with the REBL direct-write E-beam lithography system. Layouts are assumed to be rotated at an 
arbitrary angle with respect to the pixel grid, and have undergone E-beam proximity correction compatible with the 
REBL system. Three main modifications to the original Block GC3 algorithm have been described. First, diagonal 
copying allows repetition of image data to be exploited, regardless of the layout’s rotation. Second, a region-growing 
method assigns equal segmentation values to neighboring blocks, reducing the impact of segmentation information on 
compression efficiency. The effect of block size and shape on the number of regions, image errors, and encoding time 
has been explored. Third, pixel-based prediction is removed, thus simplifying the decoder’s hardware implementation 
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without degrading performance. On average, Block RGC3 has compressed Metal 1 images by a factor of 7.3, assuming a 
worst-case rotation of 25°. This compares with a compression ratio of 3.3, if the original Block GC3 algorithm is used. 
The drawback of Block RGC3 is increased encoding time, which is roughly proportional to the allowed copy range. 

For future research, it would be worthwhile to test our algorithm on a larger, more diverse set of layout images, in order 
to better characterize both compression efficiency and encoding complexity. In particular, Section 5 notes that portions 
of the encoding complexity are image-dependent. In order to bound the maximum encoding time, it may be necessary to 
set a hard limit on the size of dmatches,block. 

In a practical implementation, controlling the position of the writer chip relative to the wafer to within 1 nm accuracy at 
all times may not be feasible. If so, this uncertainty dictates that layout data must be compressed in real-time through 
hardware, instead of being compressed in advance through software. Given the significant encoding complexity of Block 
RGC3, the process of exhaustively searching through the history buffer to find optimal copy distances for each image 
block likely must be restricted. 

APPENDIX: NP-COMPLETENESS PROOF OF 2-D REGION-GROWING 

Assume that each block is given a list of copy distances which yield no more than some pre-determined number of 
image errors, as described in Section 4.3. In this Appendix, we show that the process of choosing one copy distance from 
each block’s list such that the total number of regions is minimized is NP-complete. We define a “region” as a group of 
4-connected blocks each having the same copy distance. Let X1 be an image with n optimal copy distances D(p) = {d1(p), 
d2(p), … dn(p)} for all blocks p∈X1. Our goal is to minimize the number of regions in X1, such that each block in a given 
region has at least one copy distance in common. More formally, the following uniformity predicate holds: 

1 1 1,( )  true  iff  ,   s.t. ( )iU X p X a a D p= ∀ ∈ ∃ ∈ , 

where X1,i is any region in X1. As proven by MIN2DSEG in [12], minimizing the number of 2-D regions in an image X2 
is an NP-complete problem, assuming the uniformity predicate 

2 2 2,( )  true  iff   ,    , ( ) ( ) 1iU X p q X I p I q= ∀ ∈ − ≤ , 

where I(p) are the block values for all blocks p∈X2. For X2, let D(p) = {I(p), I(p) + 1}. U1(X2) and U2(X2) are equivalent; 
this proves the reduction from MIN2DSEG in [12] to our 2-D region-growing method, which is thus NP-complete. 
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