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Abstract

Anticipating the future in a dynamic scene is critical
for many fields such as autonomous driving and robotics.
In this paper we propose a class of novel neural network
architectures to predict future LiDAR frames given previous
ones. Since the ground truth in this application is simply
the next frame in the sequence, we can train our models
in an self-supervised fashion. Our proposed architectures
are based on FlowNet3D and Dynamic Graph CNN. We
use Chamfer Distance (CD) and Earth Mover’s Distance
(EMD) as loss functions and evaluation metrics. We train
and evaluate our models using the newly released nuScenes
dataset, and characterize their performance and complex-
ity with several baselines. Compared to directly using
FlowNet3D, our proposed architectures achieve CD and
EMD nearly an order of magnitude lower. In addition, we
show that our predictions generate reasonable scene flow
approximations without using any labelled supervision.

1. Introduction
Several autonomous driving companies such as nuTon-

omy, Waymo, and Lyft have recently released large scale
datasets [5, 22] with high resolution LiDAR point clouds
and numerous annotations. Perhaps more interestingly, they
provide high frequency temporal LiDAR frames, or LiDAR
“videos”, opening doors to the use of temporal information
in LiDAR point cloud analysis. This paper aims to take
advantage of the temporal data offered by the newly re-
leased datasets and tackles the point cloud prediction task
using deep learning methods, that is, given a sequence of
past point cloud frames, to predict future frames. While
this task can easily be applied to other contexts, we imple-
ment and evaluate our models specifically in the context of
autonomous driving and LiDAR. Much of the autonomous
driving problem has to do with helping cars anticipate
events and avoid collisions. To this end, predicted point
clouds could be used to enhance object tracking pipelines,
or to generate preliminary region proposals for future de-

tections. Furthermore, no data labelling is required for this
task; the label is the next frame of the LiDAR sequence, so
our networks can be trained in a self supervised fashion.

Extracting temporal information from point clouds is a
difficult task and little work has been done in this area. Con-
ventional architectures for sequential data such as LSTMs
cannot be applied directly to point clouds due to their ir-
regular structure. Voxelizing the point cloud could work
around this, but it reduces the resolution of the point cloud
and introduces quantization artifacts into the prediction. In
this paper, we explore a number of end to end architectures
that operate directly on point clouds to extract temporal fea-
tures and predict future frames. In particular, we design a
general architecture framework and implement and evaluate
several of its variations. Through experiments we evaluate
the performance and complexity of our models and assess
the tradeoffs of various architectural design choices.

2. Related Work
2.1. Deep Learning on Point Sets

Feature Extraction Early attempts at learning on point
clouds involved converting them to voxels and using CNNs
to extract features. Works such as [16, 28] are able to
achieve reasonable results on classification and detection.
However, these methods tend to be limited by their high
computation costs and quantization artifacts. In 2017, Qi et
al. proposed PointNet [19], the first deep learning architec-
ture that operated directly on point clouds by utilizing sym-
metric functions such as max pooling to make the network
invariant to input permutations. Later works [20, 23, 10]
would take advantage of the local structures in point clouds
to learn local feature descriptors. Dynamic Graph CNN
(DGCNN) [24] is a special case among these. While most
architectures group points and learn features based on Eu-
clidean distance, DGCNN dynamically groups them based
on their distance in the feature space, allowing greater ex-
pressive power and more useful local features. We take ad-
vantage of these properties in our proposed architectures.

Generative Models Recently, generative models such as
GANs and autoencoders have been applied to point clouds.



Figure 1: Generic architecture framework. Our framework takes in the past 4 frames and generates motion vectors to
predict the next frame. The specific architecture is determined by which feature extractor is used and whether or not down-
sampling is used. The refinement module may use any of the previous learned features, as indicated by the dashed lines. For
specific architecture details refer to Section 3 and the supplementary material.

This introduces the need for a point cloud similarity met-
ric. [8] proposes two such metrics, i.e. Chamfer Distance
(CD) and Earth Mover’s Distance (EMD). We train our net-
works to minimize these distance functions over our pre-
dicted point clouds and the ground truth.

2.2. Temporal Learning on Point Sets

Temporal Learning with Neural Networks Recurrent
networks are well studied and known for their application
on sequential data. In the past decade they have been ap-
plied to the task of video prediction [15], which is concep-
tually similar to our task. However, recently feedforward
networks have been shown to perform just as well, if not
better than recurrent networks on sequential data [2]. They
do not suffer from vanishing gradients and other training in-
stabilities common in recurrent networks, tend to be faster
and more parallelizable, and typically require less memory
during training. Similar to recurrent networks, feedforward
models have also been applied to temporal video processing
and prediction tasks [27]. Inspired by this, we choose to use
feedforward networks for our proposed architectures.

Temporal Learning on Point Sets In 2018, Liu et al.
published Flownet3D [11], which takes two point clouds
and predicts the scene flow from one to another. Our pro-
posed architectures are inspired by FlowNet3D but are tai-
lored more specifically to the prediction task and leverage
more modern feature extractors. In the short time follow-
ing FlowNet3D, a handful of other works tackled the point
cloud scene flow problem as well [7, 12], while others uti-
lized temporal information in object detection [21]. Re-
cently, a few papers have tackled point cloud prediction. [6]

introduces a recurrent architecture which operates directly
on point clouds, while [25] extracts global feature vectors
from the point clouds, uses an LSTM to learn temporal pat-
terns, and decodes the LSTM output into the predicted point
cloud.

3. Method
Our work aims to predict future point cloud frames given

previous ones. In this section we introduce our architecture
framework, describe several variants of this framework, and
share our training details.

3.1. Architecture Framework

Our generic architecture framework is illustrated in Fig-
ure 1. Given the past 4 frames of point clouds xt−3, ..., xt,
our network generates x∗t+1, the prediction for xt+1. While
2 frames is already sufficient for recovering the velocity of
objects in a scene, we condition on 4 frames because at least
3 is required to recover second order dynamics i.e. accelera-
tion, and additional frames provide contextual information.
At each stage of the network, we first extract pointwise fea-
tures from every frame and then learn the dynamics of the
scene using the flow embedding layer introduced in [11].
After two such stages, we extract features on the single re-
maining point cloud and push the features through a refine-
ment module. The refinement layers output a motion vector
for each point in xt. We add these predicted vectors to xt to
generate x∗t+1. We chose to reformulate our task into a mo-
tion prediction problem rather than directly regressing the
output point cloud because this adds more interpretability
to the output of our model, and we found it to be easier to



optimize as well. Point clouds in the more distant future can
be predicted by applying the model autoregressively ie. by
feeding x∗t+1 back into the model as a pseudo groundtruth
for xt+1, using this to predict x∗t+2, and so on.

We explore two approaches of modulating the frame-
work to create different architectures. The first approach
is the choice of feature extractor. In this paper we exper-
iment with the PointNet++ layer [20] and the EdgeConv
layer from [24]. The second approach is whether or not
to downsample the features throughout the initial stages of
the network and upsample back to the original resolution in
the refinement stage. We discuss these in further detail in
the following sections.

3.2. Feature Extractors

PointNet++ Layer The PointNet++ layer takes an in-
put point cloud {p1, p2, ..., pn}, pi ∈ R3 and its features
{f1, f2, ..., fn}, fi ∈ Rc, and outputs a new set of features
{f ′1, f ′2, ..., f ′n′}, f ′i ∈ Rc

′
. For each point, it groups its

neighbors within a given radius and applies the PointNet
operation to that local region, producing a new feature vec-
tor. More specifically:

f ′i = max
j| ||pj−pi||≤r

hθ(fj , pj − pi) (1)

where r is the radius of the ball query, hθ is a multilayer per-
ceptron (MLP) with weights θ and input and output dimen-
sions Rc+3 and Rc

′
respectively, and max is the element-

wise maximum function

EdgeConv Layer The EdgeConv layer takes in only the
point features {f1, f2, ..., fn}, fi ∈ Rc, and outputs a new
set of features {f ′1, f ′2, ..., f ′n′}, f ′i ∈ Rc

′
. For each point,

it finds its k nearest neighbors (KNN) in the feature space
and applies a MLP across the point’s original feature and
the difference between it and its neighbor’s features. It then
groups all k feature vectors with max pooling. More specif-
ically:

f ′i = max
j=1...k

hθ(f
j
i − fi, fi) (2)

where f ji is the feature of the jth nearest neighbor of fi in
the feature space, hθ is a MLP with input and output di-
mensions R2c and Rc

′
respectively, and all other symbols

are defined as in Eq. 1.

These two feature extractors are computationally quite
similar; they compute local features and achieve permuta-
tion invariance using the symmetric max pooling function.
The main difference lies in how they define locality. The
PointNet++ layer groups points in the original Euclidean
space whereas the EdgeConv layer groups points dynami-
cally in the computed feature space. This allows the Edge-
Conv layers to have an effectively larger receptive field and
compute potentially more descriptive local features, giving

Module Downsampling No
Downsampling

Feature
Extraction 1

SR=0.25×,
mlp=[128, 128]

mlp=[32, 32]

Flow
Embedding 1

SR=1×,
mlp=[128]

mlp=[32]

Feature
Extraction 2

SR=0.25×,
mlp=[256, 256]

mlp=[64, 64]

Flow
Embedding 2

SR=1×,
mlp=[256]

mlp=[64]

Feature
Extraction 3

SR=0.2×,
mlp=[512]

mlp=[128]

Refinement Upconv1: SR=5×,
mlp1=[512],
mlp2=[512]

mlp: [512, 256,
128, 3]

Upconv2: SR=4×,
mlp1=[512],
mlp2=[512]
FeatProp: SR=4×,
mlp=[256]
mlp: [256, 128, 3]

Table 1: Downsampling vs. No Downsampling. Archi-
tectural comparison between downsampling and non down-
sampling models. SR = sampling rate, Upconv refers to the
Set Upconv module introduced in [11], and FeatProp refers
to the feature propagation module from [20]. For additional
architecture details, refer to the supplementary.

it the upper hand in terms of point cloud classification and
segmentation performance.

3.3. Downsampling

In the original papers, the EdgeConv layer maintains
the size of the point cloud while the PointNet++ layer
downsamples point clouds by sampling a subset of the
points with iterative furthest point sampling (FPS) and
computing features for these points alone. Since our
model predicts motion vectors for each point, down-
sampled features need to be upsampled back to size of
the original point cloud. [11] accomplishes this us-
ing the Set Upconv layer. Given a lower resolution
point cloud {p1, p2, ..., pn′}, pi ∈ R3 and its features
{f ′1, f ′2, ..., f ′n′}, fi ∈ Rc, as well as a previously computed
higher resolution point cloud {p1, p2, ..., pn}, pi ∈ R3 with
its features {f1, f2, ..., fn}, fi ∈ Rc, the Set Upconv layer
applies the PointNet++ operation to each point in the higher
resolution point cloud by grouping the points from the lower
resolution point cloud. These features are then further pro-
cessed with an additional MLP. More precisely:

f∗i = hθ2( max
j| ||pj−pi||≤r,

pj∈p′

hθ1(fj , pj − pi), fi) (3)



Downsampling No Downsampling
PointNet++ FlowNet3D [11],

PN++ w/ DS
PN++ w/o DS

EdgeConv EC w/ DS EC w/o DS

Table 2: Architecture classification. Primary architec-
tural differences between our proposed architectures and
FlowNet3D.

where p′ indicates the set of points in the lower resolution
point cloud. At the final upsampling layer, [11] uses the
Feature Propagation layer from [20], which replaces the
first MLP with an inverse distance weighted average in-
terpolation. We also adopt this upsampling strategy in our
PointNet++ based architectures.

Although EdgeConv has not been used with downsam-
pling, we also investigate this architecture configuration for
point cloud prediction and develop novel downsampling
and upsampling modules. To do this, we draw parallels be-
tween EdgeConv and the PointNet++ layer and design the
sampling scheme in the spirit of these parallels. To down-
sample the points, rather than using FPS in Euclidean space,
we compute it in the feature space. To upsample, we uti-
lize the Set Upconv layer, but similarly, we group the points
in the previously computed feature space rather than Eu-
clidean space.

Downsampling is beneficial because it helps reduce the
computational complexity of the network. However it also
reduces the resolution of the features and creates ambigu-
ity when upsampling. Thus networks that use downsam-
pling need to be larger in order to resolve these ambiguities
and have sufficient feature content at the architecture bot-
tleneck. For a comparison between downsampling and non
downsampling architectures, please refer to Table 1.

3.4. Proposed Architectures

Modulating the feature extractor and sampling strategy
of our framework results in four different architectures as
seen in Table 2: PointNet++ with downsampling (PN++ w/
DS), PointNet++ without downsampling (PN++ w/o DS),
EdgeConv with downsampling (EC w/ DS) and EdgeConv
without downsampling (EC w/o DS). The exact architecture
details are described in the supplementary material.

3.5. Loss Functions

For our loss, we need a function that measures the sim-
ilarity between two point clouds P and Q. Following [8],
we use CD and EMD:

LCD(P,Q) =
1

2
(
∑
p∈P

min
q∈Q
||q − p||22 +

∑
q∈Q

min
p∈P
||p− q||22)

(4)

LEMD(P,Q) = min
φ∈P→Q

∑
p∈P
||p− φ(p)||2 (5)

where φ indicates a bijection.
As in [8], we utilize a parallelizable approximation of the

true EMD [4]. [1] notes that CD does not always remain
true to finer, visual similarities between point clouds, and
that when optimized, it may overpopulate regions where
points are more likely to appear in the ground truth. EMD
more accurately captures visual similarity; however, CD
still works well at capturing coarser, structural similarities,
and we find that is an easier function to optimize. In our
loss function, we use a combination of both:

L(P,Q) = αLCD(P,Q) + βLEMD(P,Q) (6)

where α and β are parameters chosen with cross validation.

3.6. Training Details

There exist two popular approaches for training gener-
ative, temporal networks: curriculum approaches [3] and
teacher-forcing [9]. In teacher-forcing, the model is trained
using only ground truth inputs. However, this prevents the
model from learning how to use its own predictions as in-
puts as it does during test time. Instead, we use a curriculum
based approach by training the model with its own predic-
tions as inputs. We first train the model to predict x∗t+1, and
once that converges, we train on x∗t+2, feeding in our pre-
dicted x∗t+1 back into the model. This way, we slowly in-
crease the difficulty as the model becomes capable of learn-
ing harder tasks. We repeat this process until the validation
loss no longer decreases upon training the next time step.

We train our models on the nuScenes dataset [5], a re-
cently released large scale autonomous driving dataset. It
contains over 320,000 point clouds from rotating LiDAR
scans captured at 20 Hz with over 34,000 points each. How-
ever, many of these points are detecting the roof of the ego
vehicle, which is of little interest. In addition, the outer
most points are extremely sparse and less relevant to po-
tential downstream driving decisions. So we preprocess
the point clouds by selecting an annular region of points
between the 12,000th and 34,000th point from the origin.
This adequately filters out the ego vehicle and fringes of
the point cloud. We keep the point clouds in the original
coordinate frame from the LiDAR scanner instead of trans-
forming them to the static global frame, choosing only to
operate with the raw sensor data. However, an interesting
avenue of future work could investigate how utilizing this
transformation affects prediction accuracy.

Our models use leaky ReLU activations with slope 0.2
followed by batch normalization, except for the layer di-
rectly preceding the output. To train them we use the



Model CD (m2) EMD (m) Model Size (MB) Runtime (s) Max Memory Allocated (MB)
Identity .2472 34.88 - - -

FN3DOOB [11] 1.2084 91.68 14.9 .2946 669.6
FN3DA .1399 33.94 14.9 .2946 669.6

PN++ w/ DS .1381 33.14 22.1 .2635 783.5
PN++ w/o DS .1813 37.63 3.7 .5079 1007.2

EC w/ DS .1837 35.49 10.2 .2591 907.9
EC w/o DS .1450 34.23 3.9 .6198 721.3

Table 3: Accuracy and complexity of methods. The table shows the average CD and EMD across the first 5 future frames,
as well as the size, runtime, and memory usage of the models.

Figure 2: Average Chamfer Distance and Earth Mover’s Distance of our method and baselines. Plotted over 5 frames.
FN3DOOB was omitted to make the other methods more distinguishable.

AdamW optimizer [14] with decoupled weight decay and
L2 regularization and employ a cosine annealing learning
rate scheduler with restarts each time we advance to the next
time step [13]. We chose values of 1 and 0.02 for α and β
in the loss function, respectively. For t + 1, we use a max
learning rate of .001 and find that the models converge in 2
epochs, and for all other time steps we use a max learning
rate of .0001 and find they typically converge after 1 epoch.
We train until t+3, after which the loss no longer decreases.

One of the challenges of working with large point clouds
is the computational cost. For t + 1 we used a batch size
of 4; however, training future time steps linearly increases
the memory usage, dropping the batch size and making our
batch normalization layers ineffective. To address this, we
trained with regular batch normalization for t+1, but for fu-
ture time steps we instead normalize our features using the
learned, running estimates of the mean and variance from
the first time step. When training on time steps beyond t+1,
the weights of the network do not change as much as they
do during the initial step. Thus, the learned statistics from
t+ 1 are still adequate estimates beyond t+ 1, allowing us

to train with smaller batch sizes while preserving accuracy.

4. Experiments

In this section we evaluate the performance of our mod-
els against several competitive baselines. We provide quan-
titative analysis on the accuracy and complexity of our
model, as well as qualitative visualizations.

4.1. Baselines

Identity Our first, and most naive baseline, is to use xt as
our prediction for xt+1. We call this the identity baseline.

FlowNet3D Out of the Box (FN3DOOB) This baseline
takes FlowNet3D from the original paper trained on Fly-
ingThings3D [17], computes the scene flow from xt to
xt−1, and subtracts that from xt to generate a prediction
for xt+1. Note that predicting the scene flow is not the
same as predicting motion vectors that minimize the dis-
tance between two point clouds. Each point in the first point
cloud plus its flow vector may not necessarily correspond to



Figure 3: Visualizations. Error visualizations for (a) FN3DOOB, (b) FN3DA, (c) PN++ w/ DS, (d) PN++ w/o DS, (e) EC
w/ DS, (f) EC w/o DS, (g) Identity on t + 5. For each method, the middle picture shows the ground truth in green and the
prediction in red; the left picture zooms in on a region of interest in the middle picture; the right picture shows the squared
distance between each point in the prediction and its nearest neighbor in the ground truth point cloud, with the color bar in
(h) indicating the scale of the error. Refer to the identity visualization for scene context.

a point in the second point cloud; rather it gives the corre-
sponding location of the first point in the time frame of the
second point cloud. However, given dense enough point
clouds, predicting scene flow approximates minimizing the
distance between the two point clouds.

FlowNet3D Adapted (FN3DA) We also take the
FlowNet3D architecture and train it directly on our task.
FlowNet3D only takes in two point clouds, so we train it on
xt−1, xt to predict xt+1. This network falls under the cat-
egory of PointNet++ with downsampling and can be seen



Figure 4: Flow visualization. Predicted motion vectors for (a) FN3DOOB, (b) PN++ w/ DS, (c) EC w/ DS, (d) FN3DA, (e)
PN++ w/o DS, (f) EC w/o DS. The arrows in the visualization indicate our model’s predicted motion vectors, and the color
corresponds to the magnitude, as indicated by the color bar in (g). Vectors beyond the range of the color bar are omitted.

as the two frame version of PN++ w/ DS. We use the same
training procedure that we use for our models.

4.2. Quantitative Results

We evaluate our models on the nuScenes test set, con-
sisting of about 70,000 frames preprocessed the same way
as our training data. To measure the accuracy of our predic-
tions, we use the CD and EMD between the predicted point
clouds and the ground truth. Our results are shown in Fig-
ure 2 and Table 3. FN3DOOB performs far worse than the
other methods and skews the scale of Figure 2, so we omit
it to make the plot more interpretable.

Among all the approaches, we find that FN3DA, PN++
w/ DS, and EC w/o DS achieve the lowest CD and EMD,
with PN++ w/ DS performing marginally better. So for
EdgeConv, not downsampling is important for strong per-
formance, while for PointNet++, downsampling is actually
more beneficial. We speculate this is due to the inherent dif-
ference in expressivity between the two architectures. The
PointNet++ architecture benefits from downsampling be-

cause the memory efficiency allows it to utilize wider layers
and learn more complex, hierarchical features. Indeed, with
about the same memory consumption, our downsampling
networks are 4 times wider than their non-downsampling
counterparts. However, the EdgeConv architecture is al-
ready able to learn complex features on its own with smaller
layers and therefore does not benefit as much from a larger
network. On the other hand, the feature ambiguity caused
by downsampling may be more harmful to EdgeConv, be-
cause resolving these ambiguities and upsampling in the
feature space is more challenging than in Euclidean space.

Although PN++ w/o DS and EC w/ DS perform better
than the identity baseline in terms of CD, they have slightly
higher EMD values. This is likely due to EMD’s strong
correlation with visual similarity. While our deep networks
may learn point cloud dynamics, they often exhibit artifacts
and struggle to replicate the clean appearance of a raw Li-
DAR scan. nuScenes high frame rate results in smaller mo-
tion between each frame. This allows the identity baseline
to have exceptionally low EMD, as it maintains the clean



appearance of a raw point cloud while not being penalized
harshly for neglecting the dynamics of the scene.

Lastly, we find that FN3DOOB is actually a destructive
operation, increasing the CD and EMD more than the iden-
tity baseline. We believe this is due to the domain transfer
from the synthetic FlyingThings3D dataset to real LiDAR
scans, as well as the fundamental difference between the
point cloud prediction and scene flow problem.

We also show the size, runtime, and memory usage of
our models in Table 3. Our models are implemented with
PyTorch and tested on an Nvidia Titan RTX. The runtime
and max memory allocated values are acquired with a batch
size of 1, predicting t + 1, on a point cloud with 22,000
points. The downsampling models tend to be significantly
faster yet larger than their non downsampling counterparts.

Based on this, we conclude that PN++ w/ DS and EC
w/o DS are the most viable models. They both demonstrate
high accuracy, but offer different computational advantages.
PN++ w/ DS’s runtime is about 2x faster, while EC w/o
DS’s model size is about 6x smaller. So if inference speed is
more important, PN++ w/ DS should be used, but if model
size is more important, then EC w/o DS should be used.

While FN3DA performs competitively, PN++ w/ DS sur-
passes it in terms both speed and accuracy, so FN3DA of-
fers no notable advantages. However, it achieves compara-
ble accuracy to PN++ w/ DS while using only two frames,
indicating that additional frames may only slightly improve
performance. We speculate that conditioning on even more
frames would improve accuracy by negligible amounts.

4.3. Visualizations

We visualize some of our predictions for t + 5 in Fig-
ure 3. In this scene, the ego vehicle is driving past a truck
parked next to a line of v-shaped columns. In the magnified
portion of the visualization, the truck is in the top right, and
the columns are along the left side. Among all the meth-
ods, PN++ w/ DS and EC w/o DS most accurately predict
the dynamics of the truck and columns. The performance is
corroborated in the error visualizations, which show green
or yellow regions around the truck and columns for all the
methods except for PN++ w/ DS and EC w/o DS. These
methods instead show a nearly entirely purple point cloud,
indicating close to 0 error. While we only visualize one
scene here, we have done extensive qualitative testing on the
entire nuScenes mini dataset (10 scenes) and have verified
that on average, PN++ w/ DS and EC w/o DS outperform
the other methods, corroborating our quantitative analysis.
We include some of these visualizations in the supplemen-
tary section.

4.4. Scene Flow Estimation

We also show that our model is able to reasonably esti-
mate scene flow. In Figure 4, we visualize motion vectors

predicted by our models and baselines for the same scene
shown in Figure 3, specifically highlighting the columns
and the truck. Because the ego vehicle is moving forward,
the columns and truck have motion vectors pointing back-
ward. PN++ w/ DS and EC w/o DS perform the best, pro-
ducing smooth, accurate scene flow, while the other meth-
ods either exhibit incoherent flow (FN3DOOB and PN++
w/o DS), or underestimate the magnitude (FN3DA, EC w/o
DS), corroborating Figure 3. More flow visualizations in di-
verse scenarios are available in the supplementary material.

We would like to highlight that our self-supervised scene
flow estimation is nontrivial. As mentioned before, mini-
mizing the CD and EMD between two point clouds is not
the same as minimizing scene flow. Directly learning self-
supervised scene flow between time t and t+ 1 using point
cloud similarity metrics would result in degenerate outputs
where the predicted vectors merely connect the points. In
fact, there are a number of recent papers in the literature
that try to regularize this ill-conditioned problem by adding
smoothness constraints or cycle consistency [26, 18]. Our
work addresses this by instead utilizing prior frames. Be-
cause the network is no longer given t+1, it cannot produce
the degenerate solution. However, it is still given sufficient
information on the scene’s dynamics in the prior frames to
predict scene flow. Therefore, besides FN3DOOB, which is
a trivial extension of FlowNet3D, the remaining approaches
we describe are novel in the sense that they regularize the
self-supervised scene flow problem in a new way. Here,
we only qualitatively evaluate our estimated scene flow as a
proof of concept; however, future work could build on this
idea and produce more rigorous, quantitative analysis.

5. Conclusion

In this paper we explore the task of point cloud predic-
tion by designing a novel class of neural network architec-
tures and training framework. We show that our top models
(PN++ w/ DS and EC w/o DS) can generate convincing pre-
dictions of future point clouds, and that they are competitive
with several strong baselines. Our visualizations help ver-
ify our findings and indicate that our models can be used to
produce scene flow approximations.

Our work has numerous applications and extensions, in-
cluding self-supervised scene flow prediction, object track-
ing, temporal object detection, and vehicle control. Our
use of CD and EMD loss functions may be improved by
incorporating additional terms such as a perceptual loss or
smoothness constraint. Lastly, our prediction accuracy can
be further refined using RGB sensor fusion techniques.
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6. Supplementary

Here we show our architecture details, the distribution of
errors among each method, as well as additional visualiza-
tions of our models’ prediction error and flow on different
scenes and time steps. Both the distributions and the vi-
sualizations make it apparent that our models are able to
outperform existing methods such as FlowNet3DOOB.

6.1. Architecture Details

We describe the specific architecture details in Table 4.
The radii of the ball queries in the PointNet++ models were
chosen to be commensurate to the receptive field of their
EdgeConv counterparts (parameterized by k). As shown,
we extend our architectures’ choice of feature extractor to
its flow embedding layers as well.

6.2. Error Distribution

In Figure 5, we can see that among all the methods,
PN++ w/ DS and EC w/o DS have the highest concentra-
tion of points near 0 error and contain no prominent outliers.
On the other hand, FN3DOOB performs far worse than the
identity operation and contains some extreme outliers, espe-
cially in CD, although these points may not be discernible
on the plot due to the scaling of the y-axis.

6.3. Error Visualization

In Figure 6, we show the same scene from Figure 3, but
predicted for t + 1, and in Figures 7 and 8, we show t + 1
and t + 5 on another scene. In Figures 7 and 8, the ego
vehicle is making a left turn at an intersection. At the top
left of the the zoomed in view there is a van driving in front
of the vehicle, while at the bottom left pedestrians cross the
street behind it. This complex movement of the ego coordi-
nate frame combined with the irregular geometries present
make this second scene more challenging. PN++ w/ DS
best predicts the position of the large barrier to the right of
the vehicle, and while all of our methods seem to make rea-
sonable predictions of the van and pedestrians, EC w/ DS
seems to do it the most accurately. Interestingly, we noticed
that EC w/ DS tends to preserve the orderly appearance of
a raw LiDAR scan despite generally having higher EMD.

6.4. Scene Flow Visualization

In Figures 9, 10, 11, and 12 we show some additional
flow visualizations. Specific comments on the visualiza-
tions can be found in the captions. These scenes were taken
from the nuScenes Mini Dataset and show that on average,
PN++ w/ DS produces the most coherent predictions, with
EC w/o DS also performing well, corroborating our quanti-
tative analysis.

6.5. Code

Our code will be released at
https://github.com/davezdeng8/tlfpad. EC w/o DS is
implemented based on the official PyTorch implementation
of DGCNN, and the other models are implemented based
on a PyTorch implementation of FlowNet3D. While one
would expect EC w/ DS to use less memory than EC w/o
DS, due to the implementation difference, EC w/o DS uses
less memory as indicated in Table 3.



Module PN++ w/ DS PN++ w/o DS EC w/ DS EC w/o DS
Feature Extraction 1 PointNet++: r = 0.5,

SR=0.25×,
mlp=[128,128]

PointNet++: r=0.7,
SR=1×, mlp=[32,32]

EdgeConv: k=16,
SR=0.25×,
mlp=[128,128]

EdgeConv: k=16,
SR=1×, mlp=[32,32]

Flow Embedding 1 PointNet++: r = 1.5,
SR=1×, mlp=[128]

PointNet++: r=1,
SR=1×, mlp=[32]

EdgeConv: k = 16,
SR=1×, mlp=[128]

EdgeConv: k = 16,
SR=1×, mlp=[32]

Feature Extraction 2 PointNet++: r = 1,
SR=0.25×,
mlp=[256,256]

PointNet++: r = 0.7,
SR=1×, mlp=[64,64]

EdgeConv: k = 16,
SR=0.25×,
mlp=[256,256]

EdgeConv: k = 16,
SR=1×, mlp=[64,64]

Flow Embedding 2 PointNet++: r = 3,
SR=1×, mlp=[256]

PointNet++: r = 1,
SR=1×, mlp=[64]

EdgeConv: k = 16,
SR=1×, mlp=[256]

EdgeConv: k = 16,
SR=1×, mlp=[64]

Feature Extraction 3 PointNet++: r = 2,
SR=0.2×, mlp=[512]

PointNet++: r = 0.7,
SR=1×, mlp=[128]

EdgeConv: k = 16,
SR=0.2×, mlp=[512]

EdgeConv: k = 16,
SR=1×, mlp=[128]

Refinement Upconv1: k = 16,
SR=5×, SS=XYZ,
mlp1=[512],
mlp2=[512]

mlp: input = (feat1,
feat2, feat3), widths
= [512, 256, 128, 3]

Upconv1: k = 16,
SR=5×, SS=flow2,
mlp1=[512],
mlp2=[512]

mlp: input = (feat1,
feat2, feat3), widths
= [512, 256, 128, 3]

Upconv2: k = 16,
SR=4×, SS=XYZ,
mlp1=[512],
mlp2=[512]

Upconv2: k = 16,
SR=4×, SS=flow1,
mlp1=[512],
mlp2=[512]

FeatProp: SR=4×,
SS=XYZ, mlp=[256]

FeatProp: SR=4×,
SS=XYZ, mlp=[256]

mlp: [256, 128, 3] mlp: [256, 128, 3]

Table 4: Architecture details. r = ball query radius, k = k for KNN grouping, SR = sampling rate, SS = sampling space, feat
and flow refer to the output of the corresponding layer.



(a) Outliers removed

(b) With outliers

Figure 5: Distribution of Chamfer Distance and Earth Mover’s Distance. Histograms of errors for each method over
4000+ test samples. Each data point is the average of the error over a 5 frame sequence. The first two plots are have outliers
removed and the other two show the entire distribution with the x-axis adjusted to range from 0 to the largest data point.



Figure 6: Visualization of predictions for t+ 1 on the same scene shown in Figure 3. (a) FN3DOOB, (b) FN3DA, (c) PN++
w/ DS, (d) PN++ w/o DS, (e) EC w/ DS, (f) EC w/o DS, (g) Identity, (h) scale of error as described in Figure 3.



Figure 7: Visualization of predictions for t + 1 on an additional scene. (a) FN3DOOB, (b) FN3DA, (c) PN++ w/ DS, (d)
PN++ w/o DS, (e) EC w/ DS, (f) EC w/o DS, (g) Identity, (h) scale of error as described in Figure 3.



Figure 8: Visualization of predictions for t + 5 on an additional scene. (a) FN3DOOB, (b) FN3DA, (c) PN++ w/ DS, (d)
PN++ w/o DS, (e) EC w/ DS, (f) EC w/o DS, (g) Identity, (h) scale of error as in Figure 3.



Figure 9: Additional flow visualization. (a) FN3DOOB, (b) FN3DA, (c) PN++ w/ DS, (d) PN++ w/o DS, (e) EC w/ DS,
(f) EC w/o DS. The vectors are colored on the same scale as the visualization in the main paper. In this scene, the ego
vehicle is stationary while a truck approaches from behind. The only moving object is the truck, so the true flow vectors
would indicate the truck moving forward while all other points have no motion. EC w/ DS and FN3DOOB most accurately
capture the motion of the truck. However, FN3DOOB overestimates the motion of the car next to the truck and exhibits flow
discontinuities, shown by the yellow patch at the top left corner of the truck and the decreasing magnitude near the ground.



Figure 10: Additional flow visualization. (a) FN3DOOB, (b) FN3DA, (c) PN++ w/ DS, (d) PN++ w/o DS, (e) EC w/ DS, (f)
EC w/o DS. The vectors are colored on the same scale as the visualization in the main paper. In this scene, the ego vehicle
is driving forward while a car, located in the bottom left of the image, follows it from behind at the same speed. So the
background should have moderate backward motion vectors, while the trailing car should show little movement. PN++ w/
DS, EC w/ DS, and EC w/o DS are able to reasonably capture this. FN3DA fails to capture the small relative motion of the
trailing car.



Figure 11: Additional flow visualization. (a) FN3DOOB, (b) FN3DA, (c) PN++ w/ DS, (d) PN++ w/o DS, (e) EC w/ DS, (f)
EC w/o DS. The vectors are colored on the same scale as the visualization in the main paper. In this scene, the ego vehicle
is driving past a full parking lot, shown in the visualization. The true flow vectors would show the cars moving backward
relative to the ego vehicle. Here, PN++ w/ DS performs the best, producing smooth, accurate motion vectors for the parked
cars.



Figure 12: Additional flow visualization. (a) FN3DOOB, (b) FN3DA, (c) PN++ w/ DS, (d) PN++ w/o DS, (e) EC w/ DS, (f)
EC w/o DS. The vectors are colored on the same scale as the visualization in the main paper. In this scene, the ego vehicle
is making a left turn while cars coming from its left turn right, making the same turn but in the opposite direction. Three of
these cars are shown moving from left to right across the visualizations. Note this scene is in Singapore, where vehicles drive
on the left side of the road. At the same time, some cars are stopped behind the ego vehicle, one of which is shown near the
bottom right of the visualization. FN3DA, PN++ w/ DS, and EC w/o DS are all able to predict the motion of the right turning
cars, while producing small motion vectors for the stopped cars.


