
Temporal LiDAR Frame Prediction for Autonomous Driving

David Deng Avideh Zakhor
UC Berkeley

{davezdeng8, avz}@berkeley.edu

Abstract

Anticipating the future in a dynamic scene is critical
for many fields such as autonomous driving and robotics.
In this paper we propose a class of novel neural network
architectures to predict future LiDAR frames given previous
ones. Since the ground truth in this application is simply
the next frame in the sequence, we can train our models
in an self-supervised fashion. Our proposed architectures
are based on FlowNet3D and Dynamic Graph CNN. We
use Chamfer Distance (CD) and Earth Mover’s Distance
(EMD) as loss functions and evaluation metrics. We train
and evaluate our models using the newly released nuScenes
dataset, and characterize their performance and complex-
ity with several baselines. Compared to directly using
FlowNet3D, our proposed architectures achieve CD and
EMD nearly an order of magnitude lower. In addition, we
show that our predictions generate reasonable scene flow
approximations without using any labelled supervision.

1. Introduction
Several autonomous driving companies such as nuTon-

omy, Waymo, and Lyft have recently released large scale
datasets [5, 22] with high resolution LiDAR point clouds
and numerous annotations. Perhaps more interestingly, they
provide high frequency temporal LiDAR frames, or LiDAR
“videos”, opening doors to the use of temporal information
in LiDAR point cloud analysis. This paper aims to take
advantage of the temporal data offered by the newly re-
leased datasets and tackles the point cloud prediction task
using deep learning methods, that is, given a sequence of
past point cloud frames, to predict future frames. While
this task can easily be applied to other contexts, we imple-
ment and evaluate our models specifically in the context of
autonomous driving and LiDAR. Much of the autonomous
driving problem has to do with helping cars anticipate
events and avoid collisions. To this end, predicted point
clouds could be used to enhance object tracking pipelines,
or to generate preliminary region proposals for future de-

tections. Furthermore, no data labelling is required for this
task; the label is the next frame of the LiDAR sequence, so
our networks can be trained in a self supervised fashion.

Extracting temporal information from point clouds is a
difficult task and little work has been done in this area. Con-
ventional architectures for sequential data such as LSTMs
cannot be applied directly to point clouds due to their ir-
regular structure. Voxelizing the point cloud could work
around this, but it reduces the resolution of the point cloud
and introduces quantization artifacts into the prediction. In
this paper, we explore a number of end to end architectures
that operate directly on point clouds to extract temporal fea-
tures and predict future frames. In particular, we design a
general architecture framework and implement and evaluate
several of its variations. Through experiments we evaluate
the performance and complexity of our models and assess
the tradeoffs of various architectural design choices.

2. Related Work
2.1. Deep Learning on Point Sets

Feature Extraction Early attempts at learning on point
clouds involved converting them to voxels and using CNNs
to extract features. Works such as [16, 28] are able to
achieve reasonable results on classification and detection.
However, these methods tend to be limited by their high
computation costs and quantization artifacts. In 2017, Qi et
al. proposed PointNet [19], the first deep learning architec-
ture that operated directly on point clouds by utilizing sym-
metric functions such as max pooling to make the network
invariant to input permutations. Later works [20, 23, 10]
would take advantage of the local structures in point clouds
to learn local feature descriptors. Dynamic Graph CNN
(DGCNN) [24] is a special case among these. While most
architectures group points and learn features based on Eu-
clidean distance, DGCNN dynamically groups them based
on their distance in the feature space, allowing greater ex-
pressive power and more useful local features. We take ad-
vantage of these properties in our proposed architectures.

Generative Models Recently, generative models such as
GANs and autoencoders have been applied to point clouds.

Figure 1: Generic architecture framework. Our framework takes in the past 4 frames and generates motion vectors to
predict the next frame. The specific architecture is determined by which feature extractor is used and whether or not down-
sampling is used. The refinement module may use any of the previous learned features, as indicated by the dashed lines. For
specific architecture details refer to Section 3 and the supplementary material.

This introduces the need for a point cloud similarity met-
ric. [8] proposes two such metrics, i.e. Chamfer Distance
(CD) and Earth Mover’s Distance (EMD). We train our net-
works to minimize these distance functions over our pre-
dicted point clouds and the ground truth.

2.2. Temporal Learning on Point Sets

Temporal Learning with Neural Networks Recurrent
networks are well studied and known for their application
on sequential data. In the past decade they have been ap-
plied to the task of video prediction [15], which is concep-
tually similar to our task. However, recently feedforward
networks have been shown to perform just as well, if not
better than recurrent networks on sequential data [2]. They
do not suffer from vanishing gradients and other training in-
stabilities common in recurrent networks, tend to be faster
and more parallelizable, and typically require less memory
during training. Similar to recurrent networks, feedforward
models have also been applied to temporal video processing
and prediction tasks [27]. Inspired by this, we choose to use
feedforward networks for our proposed architectures.

Temporal Learning on Point Sets In 2018, Liu et al.
published Flownet3D [11], which takes two point clouds
and predicts the scene flow from one to another. Our pro-
posed architectures are inspired by FlowNet3D but are tai-
lored more specifically to the prediction task and leverage
more modern feature extractors. In the short time follow-
ing FlowNet3D, a handful of other works tackled the point
cloud scene flow problem as well [7, 12], while others uti-
lized temporal information in object detection [21]. Re-
cently, a few papers have tackled point cloud prediction. [6]

introduces a recurrent architecture which operates directly
on point clouds, while [25] extracts global feature vectors
from the point clouds, uses an LSTM to learn temporal pat-
terns, and decodes the LSTM output into the predicted point
cloud.

3. Method
Our work aims to predict future point cloud frames given

previous ones. In this section we introduce our architecture
framework, describe several variants of this framework, and
share our training details.

3.1. Architecture Framework

Our generic architecture framework is illustrated in Fig-
ure 1. Given the past 4 frames of point clouds xt�3; :::; xt,
our network generates x�t+1, the prediction for xt+1. While
2 frames is already sufficient for recovering the velocity of
objects in a scene, we condition on 4 frames because at least
3 is required to recover second order dynamics i.e. accelera-
tion, and additional frames provide contextual information.
At each stage of the network, we first extract pointwise fea-
tures from every frame and then learn the dynamics of the
scene using the flow embedding layer introduced in [11].
After two such stages, we extract features on the single re-
maining point cloud and push the features through a refine-
ment module. The refinement layers output a motion vector
for each point in xt. We add these predicted vectors to xt to
generate x�t+1. We chose to reformulate our task into a mo-
tion prediction problem rather than directly regressing the
output point cloud because this adds more interpretability
to the output of our model, and we found it to be easier to

optimize as well. Point clouds in the more distant future can
be predicted by applying the model autoregressively ie. by
feeding x�t+1 back into the model as a pseudo groundtruth
for xt+1, using this to predict x�t+2, and so on.

We explore two approaches of modulating the frame-
work to create different architectures. The first approach
is the choice of feature extractor. In this paper we exper-
iment with the PointNet++ layer [20] and the EdgeConv
layer from [24]. The second approach is whether or not
to downsample the features throughout the initial stages of
the network and upsample back to the original resolution in
the refinement stage. We discuss these in further detail in
the following sections.

3.2. Feature Extractors

PointNet++ Layer The PointNet++ layer takes an in-
put point cloud fp1; p2; :::; png; pi 2 R3 and its features
ff1; f2; :::; fng; fi 2 Rc, and outputs a new set of features
ff 01; f 02; :::; f 0n′g; f 0i 2 Rc

′
. For each point, it groups its

neighbors within a given radius and applies the PointNet
operation to that local region, producing a new feature vec-
tor. More specifically:

f 0i = max
jj jjpj�pijj�r

h�(fj ; pj � pi) (1)

where r is the radius of the ball query, h� is a multilayer per-
ceptron (MLP) with weights � and input and output dimen-
sions Rc+3 and Rc

′
respectively, and max is the element-

wise maximum function

EdgeConv Layer The EdgeConv layer takes in only the
point features ff1; f2; :::; fng; fi 2 Rc, and outputs a new
set of features ff 01; f 02; :::; f 0n′g; f 0i 2 Rc

′
. For each point,

it finds its k nearest neighbors (KNN) in the feature space
and applies a MLP across the point’s original feature and
the difference between it and its neighbor’s features. It then
groups all k feature vectors with max pooling. More specif-
ically:

f 0i = max
j=1:::k

h�(f
j
i � fi; fi) (2)

where f ji is the feature of the jth nearest neighbor of fi in
the feature space, h� is a MLP with input and output di-
mensions R2c and Rc

′
respectively, and all other symbols

are defined as in Eq. 1.

These two feature extractors are computationally quite
similar; they compute local features and achieve permuta-
tion invariance using the symmetric max pooling function.
The main difference lies in how they define locality. The
PointNet++ layer groups points in the original Euclidean
space whereas the EdgeConv layer groups points dynami-
cally in the computed feature space. This allows the Edge-
Conv layers to have an effectively larger receptive field and
compute potentially more descriptive local features, giving

Module Downsampling No
Downsampling

Feature
Extraction 1

SR=0.25�,
mlp=[128, 128]

mlp=[32, 32]

Flow
Embedding 1

SR=1�,
mlp=[128]

mlp=[32]

Feature
Extraction 2

SR=0.25�,
mlp=[256, 256]

mlp=[64, 64]

Flow
Embedding 2

SR=1�,
mlp=[256]

mlp=[64]

Feature
Extraction 3

SR=0.2�,
mlp=[512]

mlp=[128]

Refinement Upconv1: SR=5�,
mlp1=[512],
mlp2=[512]

mlp: [512, 256,
128, 3]

Upconv2: SR=4�,
mlp1=[512],
mlp2=[512]
FeatProp: SR=4�,
mlp=[256]
mlp: [256, 128, 3]

Table 1: Downsampling vs. No Downsampling. Archi-
tectural comparison between downsampling and non down-
sampling models. SR = sampling rate, Upconv refers to the
Set Upconv module introduced in [11], and FeatProp refers
to the feature propagation module from [20]. For additional
architecture details, refer to the supplementary.

it the upper hand in terms of point cloud classification and
segmentation performance.

3.3. Downsampling

In the original papers, the EdgeConv layer maintains
the size of the point cloud while the PointNet++ layer
downsamples point clouds by sampling a subset of the
points with iterative furthest point sampling (FPS) and
computing features for these points alone. Since our
model predicts motion vectors for each point, down-
sampled features need to be upsampled back to size of
the original point cloud. [11] accomplishes this us-
ing the Set Upconv layer. Given a lower resolution
point cloud fp1; p2; :::; pn′g; pi 2 R3 and its features
ff 01; f 02; :::; f 0n′g; fi 2 Rc, as well as a previously computed
higher resolution point cloud fp1; p2; :::; png; pi 2 R3 with
its features ff1; f2; :::; fng; fi 2 Rc, the Set Upconv layer
applies the PointNet++ operation to each point in the higher
resolution point cloud by grouping the points from the lower
resolution point cloud. These features are then further pro-
cessed with an additional MLP. More precisely:

f�i = h�2(max
jj jjpj�pijj�r;

pj2p′

h�1(fj ; pj � pi); fi) (3)

Downsampling No Downsampling
PointNet++ FlowNet3D [11],

PN++ w/ DS
PN++ w/o DS

EdgeConv EC w/ DS EC w/o DS

Table 2: Architecture classification. Primary architec-
tural differences between our proposed architectures and
FlowNet3D.

where p0 indicates the set of points in the lower resolution
point cloud. At the final upsampling layer, [11] uses the
Feature Propagation layer from [20], which replaces the
first MLP with an inverse distance weighted average in-
terpolation. We also adopt this upsampling strategy in our
PointNet++ based architectures.

Although EdgeConv has not been used with downsam-
pling, we also investigate this architecture configuration for
point cloud prediction and develop novel downsampling
and upsampling modules. To do this, we draw parallels be-
tween EdgeConv and the PointNet++ layer and design the
sampling scheme in the spirit of these parallels. To down-
sample the points, rather than using FPS in Euclidean space,
we compute it in the feature space. To upsample, we uti-
lize the Set Upconv layer, but similarly, we group the points
in the previously computed feature space rather than Eu-
clidean space.

Downsampling is beneficial because it helps reduce the
computational complexity of the network. However it also
reduces the resolution of the features and creates ambigu-
ity when upsampling. Thus networks that use downsam-
pling need to be larger in order to resolve these ambiguities
and have sufficient feature content at the architecture bot-
tleneck. For a comparison between downsampling and non
downsampling architectures, please refer to Table 1.

3.4. Proposed Architectures

Modulating the feature extractor and sampling strategy
of our framework results in four different architectures as
seen in Table 2: PointNet++ with downsampling (PN++ w/
DS), PointNet++ without downsampling (PN++ w/o DS),
EdgeConv with downsampling (EC w/ DS) and EdgeConv
without downsampling (EC w/o DS). The exact architecture
details are described in the supplementary material.

3.5. Loss Functions

For our loss, we need a function that measures the sim-
ilarity between two point clouds P and Q. Following [8],
we use CD and EMD:

LCD(P;Q) =
1

2
(
∑
p2P

min
q2Q
jjq � pjj22 +

∑
q2Q

min
p2P
jjp� qjj22)

(4)

LEMD(P;Q) = min
�2P!Q

∑
p2P
jjp� �(p)jj2 (5)

where � indicates a bijection.
As in [8], we utilize a parallelizable approximation of the

true EMD [4]. [1] notes that CD does not always remain
true to finer, visual similarities between point clouds, and
that when optimized, it may overpopulate regions where
points are more likely to appear in the ground truth. EMD
more accurately captures visual similarity; however, CD
still works well at capturing coarser, structural similarities,
and we find that is an easier function to optimize. In our
loss function, we use a combination of both:

L(P;Q) = �LCD(P;Q) + �LEMD(P;Q) (6)

where � and � are parameters chosen with cross validation.

3.6. Training Details

There exist two popular approaches for training gener-
ative, temporal networks: curriculum approaches [3] and
teacher-forcing [9]. In teacher-forcing, the model is trained
using only ground truth inputs. However, this prevents the
model from learning how to use its own predictions as in-
puts as it does during test time. Instead, we use a curriculum
based approach by training the model with its own predic-
tions as inputs. We first train the model to predict x�t+1, and
once that converges, we train on x�t+2, feeding in our pre-
dicted x�t+1 back into the model. This way, we slowly in-
crease the difficulty as the model becomes capable of learn-
ing harder tasks. We repeat this process until the validation
loss no longer decreases upon training the next time step.

We train our models on the nuScenes dataset [5], a re-
cently released large scale autonomous driving dataset. It
contains over 320,000 point clouds from rotating LiDAR
scans captured at 20 Hz with over 34,000 points each. How-
ever, many of these points are detecting the roof of the ego
vehicle, which is of little interest. In addition, the outer
most points are extremely sparse and less relevant to po-
tential downstream driving decisions. So we preprocess
the point clouds by selecting an annular region of points
between the 12,000th and 34,000th point from the origin.
This adequately filters out the ego vehicle and fringes of
the point cloud. We keep the point clouds in the original
coordinate frame from the LiDAR scanner instead of trans-
forming them to the static global frame, choosing only to
operate with the raw sensor data. However, an interesting
avenue of future work could investigate how utilizing this
transformation affects prediction accuracy.

Our models use leaky ReLU activations with slope 0.2
followed by batch normalization, except for the layer di-
rectly preceding the output. To train them we use the

Model CD (m2) EMD (m) Model Size (MB) Runtime (s) Max Memory Allocated (MB)
Identity .2472 34.88 - - -

FN3DOOB [11] 1.2084 91.68 14.9 .2946 669.6
FN3DA .1399 33.94 14.9 .2946 669.6

PN++ w/ DS .1381 33.14 22.1 .2635 783.5
PN++ w/o DS .1813 37.63 3.7 .5079 1007.2

EC w/ DS .1837 35.49 10.2 .2591 907.9
EC w/o DS .1450 34.23 3.9 .6198 721.3

Table 3: Accuracy and complexity of methods. The table shows the average CD and EMD across the first 5 future frames,
as well as the size, runtime, and memory usage of the models.

Figure 2: Average Chamfer Distance and Earth Mover’s Distance of our method and baselines. Plotted over 5 frames.
FN3DOOB was omitted to make the other methods more distinguishable.

AdamW optimizer [14] with decoupled weight decay and
L2 regularization and employ a cosine annealing learning
rate scheduler with restarts each time we advance to the next
time step [13]. We chose values of 1 and 0.02 for � and �
in the loss function, respectively. For t + 1, we use a max
learning rate of .001 and find that the models converge in 2
epochs, and for all other time steps we use a max learning
rate of .0001 and find they typically converge after 1 epoch.
We train until t+3, after which the loss no longer decreases.

One of the challenges of working with large point clouds
is the computational cost. For t + 1 we used a batch size
of 4; however, training future time steps linearly increases
the memory usage, dropping the batch size and making our
batch normalization layers ineffective. To address this, we
trained with regular batch normalization for t+1, but for fu-
ture time steps we instead normalize our features using the
learned, running estimates of the mean and variance from
the first time step. When training on time steps beyond t+1,
the weights of the network do not change as much as they
do during the initial step. Thus, the learned statistics from
t+ 1 are still adequate estimates beyond t+ 1, allowing us

to train with smaller batch sizes while preserving accuracy.

4. Experiments

In this section we evaluate the performance of our mod-
els against several competitive baselines. We provide quan-
titative analysis on the accuracy and complexity of our
model, as well as qualitative visualizations.

4.1. Baselines

Identity Our first, and most naive baseline, is to use xt as
our prediction for xt+1. We call this the identity baseline.

FlowNet3D Out of the Box (FN3DOOB) This baseline
takes FlowNet3D from the original paper trained on Fly-
ingThings3D [17], computes the scene flow from xt to
xt�1, and subtracts that from xt to generate a prediction
for xt+1. Note that predicting the scene flow is not the
same as predicting motion vectors that minimize the dis-
tance between two point clouds. Each point in the first point
cloud plus its flow vector may not necessarily correspond to

