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Abstract

Rigid Scene Flow Estimation and Prediction on Temporal LiDAR for Autonomous Driving

by

David Deng

Master of Science in Electrical Enginnering and Computer Science

University of California, Berkeley

Professor Avideh Zakhor, Chair

With the prevalence of LiDAR and depth sensors, 3D point clouds have been in increas-
ingly prevalent form of visual data, especially in the field of autonomous driving. As such,
there is a need for algorithms that can process raw, unlabelled sequences of point clouds.
In this report, we present two such methods for processing temporal LiDAR data: 1. a
method for multi-body rigid scene flow and segmentation, and 2. a novel neural network for
3D point cloud prediction. Our prediction network is based on FlowNet3D and trained to
minimize the Chamfer Distance (CD) and Earth Mover’s Distance (EMD) to the next point
cloud. Compared to directly using state of the art existing methods such as FlowNet3D,
our proposed architectures achieve CD and EMD nearly an order of magnitude lower on
the nuScenes dataset. In addition, we show that our predictions generate reasonable scene
flow approximations without using any labelled supervision. Our second work exploits the
multi-body rigidity present in dynamic scenes encountered in autonomous driving by pa-
rameterizing scene flow as the composition a global ego-motion and a set of bounding boxes
associated with their own rigid motions. We construct a novel loss function and differentiable
bounding box formulation to optimize these parameters. Our approach achieves state of the
art accuracy on the KITTI Scene Flow benchmark, outperforming all previous approaches
without using any annotated labels. Additionally, we demonstrate the effectiveness of our
approach on motion segmentation and ego-motion estimation and produce visualizations of
our predictions to corroborate our results.



i

To Ossie Bernosky

And exposition? Of go. No upstairs do fingering. Or obstructive, or purposeful. In the
glitter. For so talented. Which is confines cocoa accomplished. Masterpiece as devoted.
My primal the narcotic. For cine? To by recollection bleeding. That calf are infant. In
clause. Be a popularly. A as midnight transcript alike. Washable an acre. To canned,

silence in foreign.



ii

Contents

Contents ii

List of Figures iv

List of Tables viii

1 Introduction 1
1.1 Rigid Scene Flow Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Point Cloud Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 4
2.1 Deep Learning on Point Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Voxel Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Non-Voxel Based Approaches . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Deep Temporal Learning on Point Sets . . . . . . . . . . . . . . . . . 5

2.1.3.1 Temporal Learning with Neural Networks . . . . . . . . . . 5
2.1.3.2 Deep Temporal Learning on Point Sets . . . . . . . . . . . . 5

2.2 Scene Flow Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Supervised Scene Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Self-Supervised Scene Flow . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2.1 Scene Flow Optimization . . . . . . . . . . . . . . . . . . . 6
2.2.3 Object Scene Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Rigid Scene Flow 7
3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Motion Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Differentiable Bounding Boxes . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.5 Auxillary Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.6 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.6.1 Scene Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 12



iii

3.1.6.2 Motion Segmentation . . . . . . . . . . . . . . . . . . . . . . 12
3.1.7 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Scene Flow Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.5 Ego-Motion Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.6 Motion Segmentation Evaluation . . . . . . . . . . . . . . . . . . . . 18
3.2.7 Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.8 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Temporal LiDAR Frame Prediction for Autonomous Driving 30
4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Architecture Framework . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Feature Extractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 Downsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.4 Proposed Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.5 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.6 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.4 Scene Flow Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusion and Future Work 46
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 47



iv

List of Figures

3.1 Overview of our loss function for a single bounding box. Terms in blue blocks
are optimizable scene flow parameters b: bounding box parameters, T: bounding
box’s rigid transformation, Tego: ego-motion transformation, c: box’s confidence
score, and the plot refers to our differentiable bounding box approximation. From
P1, we differentiably select the points inside the bounding box and transform them
using T and Tego. Then we compute the nearest neighbor distance between the
two transformed point sets and P2. Lastly, we weight the two nearest neighbor
distance by c and 1− c respectively and sum them to compute the loss. . . . . . 8

3.2 Visualizations of non-differentiable vs differentiable bounding boxes on 1 and 3
dimensions: (a) non-differentiable 1D bounding line (b) differentiable 1D bound-
ing line (c) non-differentiable 3D bounding box (d) differentiable 3D bounding
box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Initial bounding boxes during optimization. . . . . . . . . . . . . . . . . . . . . 13
3.4 Visualization of scene flow predictions for our method, NSFP, and the PointPWC-

Net loss function under direct optimization on a scene in KITTI. Color indicates
the EPE of the prediction, with red indicating high error and purple indicating
low error. For StereoKITTI, the colorscale ranges from 0-0.5 m error, while for
LidarKITTI, it ranges from 0-1 m. In this scene, the ego vehicle is moving for-
ward as two cars approach from the opposite direction. Our approach is able
to accurately predict the flow on both cars in the stereo setting, and the closer
one in the LiDAR setting. NSFP struggles on moving objects, while PointPWC
predicts locally smooth, but incoherent flow. . . . . . . . . . . . . . . . . . . . 19

3.5 Visualization of scene flow predictions for our method, NSFP, and the PointP-
WCNet loss function under direct optimization on another scene in KITTI. Color
indicates the EPE of the prediction, with red indicating high error and purple
indicating low error. For StereoKITTI, the colorscale ranges from 0-0.5 m error,
while for LidarKITTI, it ranges from 0-1 m. In this scene, a van is driving ahead
of the moving ego vehicle. Our method and NSFP are able to accurately predict
the flow on this scene in both settings, although our method is slightly more
accurate. PointPWC also generally performs well but struggles in the sparser
regions of the point cloud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



v

3.6 Visualization of scene flow predictions for our method, NSFP, and the PointP-
WCNet loss function under direct optimization on two scenes in nuScenes. Color
indicates the EPE of the prediction, with red indicating 1 m and purple indicating
0 m EPE. In scene 1, the ego vehicle is driving forward along with two cars ahead
of it and one behind it. Our method is able to predict the motion of all cars
but the one behind, due to the sparsity of points on that car. NSFP struggles
with two of the moving cars and also falsely predicts the motion of a parked car.
PointPWC’s prediction exhibits a lot of artifacts, especially at the boundary of
the scene. In scene 2, the ego vehicle approaches an intersection as another car
drives close behind. In the other lane, three cars move in the opposite direction.
Another car moves along the perpendicular street of the intersection, totalling
five dynamic vehicles in this scene. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7 Scene 1 Visualizations. (a) shows StereoKITTI predictions and (b) show LidarK-
ITTI predictions on the same scene. The left visual in the first row of each
subfigure shows the 3D end-point-error of our predictions, similar to Figures 3.4,
3.5, 3.6. The color can be interpreted using the same colorbar as the compara-
tive visualizations, but with purple corresponding to 0 m and red corresponding
to 0.75 m. The middle visual shows the magnitude of the predicted scene flow
vectors using the same colorbar, with purple corresponding to 0 m and red cor-
responding to 2.5 m. The right visual shows the predicted bounding boxes using
arbitrary colors. Lastly, the bottom visual projects a convex hull of the segmented
points onto the image plane for each detected moving object, performing moving
object instance segmentation on images. These colors are also arbitrary. This
figure displays the same scene as 3.4. . . . . . . . . . . . . . . . . . . . . . . . 24

3.8 Scene 2 Visualizations. Same as Figure 3.7. In this scene, the ego vehicle is
moving fast on a main street as an oncoming car approaches on the other side
of the road. Our method is able to identify the moving car in the stereo setting,
but in the LiDAR setting, the points on the car are extremely sparse, making it
difficult for our method to identify it. . . . . . . . . . . . . . . . . . . . . . . . 25

3.9 Scene 3 Visualizations. Same as Figure 3.7. In this scene, the ego vehicle drives
forward slowly on a narrow street as another car approaches in the opposite lane.
Our method is able to accurately predict the flow on the dynamic car in both
settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.10 Scene 4 Visualizations. Same as Figure 3.7. This figure displays the same scene
as 3.5. Note that there is a biker in the scene. These points are cropped out in
StereoKITTI as they don’t posses ground truth scene flow annotations, but with
LidarKITTI, we utilize the entire point cloud, so our method is able to detect the
biker, as shown by the empty green box. . . . . . . . . . . . . . . . . . . . . . . 27

3.11 Scene 5 Visualizations. Same as Figure 3.7. In this scene, the ego vehicle is driving
behind another car as two cars approach from the opposite lane. Our method
predicts all three moving cars in the stereo setting, but misses the furthest car in
the LiDAR setting due to its sparsity. . . . . . . . . . . . . . . . . . . . . . . . 28



vi

3.12 Scene 6 Visualizations. Same as Figure 3.7. In this scene, the ego vehicle is
stopped at a stop light at an intersection while a car and a motorcyclist cross the
intersection and approach from the other side of the street. Additionally, another
car coming from the same direction makes a left turn at the intersection. Our
method is able to identify both moving cars in both settings. Similar to 3.11, the
points of the motorcyclist are not present in the stereo setting but are present in
the LiDAR setting, and our method successfully identifies at, as indicated by the
empty red box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Generic architecture framework. Our framework takes in the past 4 frames
and generates motion vectors to predict the next frame. The specific architecture
is determined by which feature extractor is used and whether or not downsampling
is used. The refinement module may use any of the previous learned features, as
indicated by the dashed lines. For specific architecture details refer to 4.3. . . . 30

4.2 Average Chamfer Distance and Earth Mover’s Distance of our method
and baselines. Plotted over 5 frames. FN3DOOB was omitted to make the
other methods more distinguishable. . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Distribution of Chamfer Distance and Earth Mover’s Distance. His-
tograms of errors for each method over 4000+ test samples. Each data point is
the average of the error over a 5 frame sequence. The first two plots are have
outliers removed and the other two show the entire distribution with the x-axis
adjusted to range from 0 to the largest data point. . . . . . . . . . . . . . . . . 38

4.4 Visualizations. Error visualizations for (a) FN3DOOB, (b) FN3DA, (c) PN++
w/ DS, (d) PN++ w/o DS, (e) EC w/ DS, (f) EC w/o DS, (g) Identity on t+1.
For each method, the middle picture shows the ground truth in green and the
prediction in red; the left picture zooms in on a region of interest in the middle
picture; the right picture shows the squared distance between each point in the
prediction and its nearest neighbor in the ground truth point cloud, with the color
bar in (h) indicating the scale of the error. Refer to the identity visualization for
scene context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Visualization of predictions for t+ 5 on the same scene shown in Figure 4.4. (a)
FN3DOOB, (b) FN3DA, (c) PN++ w/ DS, (d) PN++ w/o DS, (e) EC w/ DS,
(f) EC w/o DS, (g) Identity, (h) error scale. . . . . . . . . . . . . . . . . . . . . 42

4.6 Visualization of predictions for t+ 1 on an additional scene. (a) FN3DOOB, (b)
FN3DA, (c) PN++ w/ DS, (d) PN++ w/o DS, (e) EC w/ DS, (f) EC w/o DS,
(g) Identity, (h) error scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.7 Visualization of predictions for t+ 5 on the same scene shown in Figure 4.6. (a)
FN3DOOB, (b) FN3DA, (c) PN++ w/ DS, (d) PN++ w/o DS, (e) EC w/ DS,
(f) EC w/o DS, (g) Identity, (h) error scale. . . . . . . . . . . . . . . . . . . . . 44



vii

4.8 Flow visualization. Predicted motion vectors for (a) FN3DOOB, (b) PN++
w/ DS, (c) EC w/ DS, (d) FN3DA, (e) PN++ w/o DS, (f) EC w/o DS. The
arrows in the visualization indicate our model’s predicted motion vectors, and
the color corresponds to the magnitude, as indicated by the color bar in (g).
Vectors beyond the range of the color bar are omitted. . . . . . . . . . . . . . . 45



viii

List of Tables

3.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Evaluation on KITTI Scene Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Ego-Motion Estimation Evaluation on SemanticKITTI. . . . . . . . . . . . . . 18
3.5 Ablation study over various loss terms and design choices on StereoKITTI. ∇b

refers to whether we use differentiable or non-differentiable bounding boxes. . . 22

4.1 Downsampling vs. No Downsampling. Architectural comparison between
downsampling and non downsampling models. SR = sampling rate, Upconv refers
to the Set Upconv module introduced in [35], and FeatProp refers to the feature
propagation module from [51]. For additional architecture details, refer to 4.3. . 32

4.2 Architecture classification. Primary architectural differences between our
proposed architectures and FlowNet3D [35]. . . . . . . . . . . . . . . . . . . . . 33

4.3 Architecture details. r = ball query radius, k used in KNN grouping, SR =
sampling rate, SS = sampling space, feat and flow refer to the output of the
corresponding layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Accuracy and complexity of methods. The table shows the average CD and
EMD across the first 5 future frames, as well as the size, runtime, and memory
usage of the models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



ix

Acknowledgments

Bovinely invasive brag; cerulean forebearance. Washable an acre. To canned, silence in
foreign. Be a popularly. A as midnight transcript alike. To by recollection bleeding. That
calf are infant. In clause. Buckaroo loquaciousness? Aristotelian! Masterpiece as devoted.
My primal the narcotic. For cine? In the glitter. For so talented. Which is confines cocoa
accomplished. Or obstructive, or purposeful. And exposition? Of go. No upstairs do
fingering.



1

Chapter 1

Introduction

Understanding the 3D structure and dynamics of a scene is an essential problem in au-
tonomous driving. Consequently, LiDAR and point cloud processing have become a critical
component of autonomous driving systems. In recent years, there has been extensive research
towards developing algorithms that process individual frames of LiDAR, but only recently
has more work been done towards processing sequences of LiDAR and understanding them
temporally. Additionally, the increasing prevalence of LiDAR and depth sensors means an
increase in the abundance of raw, unlabelled point cloud data and the need for algorithms to
process them. While supervised learning for 3D point clouds have been studied extensively,
researchers have only just begun to explore self-supervised point cloud processing. In this
report, we present two methods for processing unlabelled, temporal LiDAR data: 1. a novel
method for multi-body rigid scene flow between two successive LiDAR frames, and 2. a
neural network architecture for 3D point cloud prediction.

1.1 Rigid Scene Flow Optimization

3D scene flow is a low-level motion representation, characterized as a 3D motion field over
all points in the scene. With the increasing prevalence of LiDAR and depth sensors, scene
flow estimation from point clouds has become an increasingly important problem. Advances
in deep feature learning on point sets [50, 51, 10, 77, 30] have recently given rise to deep
learning approaches to scene flow estimation [35, 66, 17, 69, 76, 16, 70, 46, 3, 45]. However,
because real-world scene flow annotations are prohibitively expensive to acquire, many of
these approaches depend on labels generated from synthetic datasets [42] and often do not
generalize well to real world data, especially LiDAR scans. Additionally, most of these works
predict scene flow fail to exploit the rigidity present in most scenes i.e. the dynamics of most
scenes can be decomposed into the motion of multiple rigidly moving objects such as cars
and cyclists. They predict unconstrained, pointwise motion vectors, resulting in inaccurate
and physically inconsistent predictions.

In light of these shortcomings, our first project is a novel object-level scene flow estima-
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tion approach that jointly optimizes a global ego-motion and a set of bounding boxes with
their own rigid motions, without using any annotated labels. To optimize this new scene
flow parameterization using gradient methods, we develop a novel loss function and a dif-
ferentiable bounding box formulation. We demonstrate the effectiveness of our approach in
several autonomous driving settings. In particular, our method outperforms the state of the
art on the KITTI Scene Flow dataset by a large margin, achieving 2x lower end-point-error
than the current state of the art.

In summary, our main contributions are that:

• We propose a novel objective function to optimize object-level rigid scene flow without
any annotated labels.

• We develop a differentiable 3D bounding box formulation to optimize our scene flow
parameters.

• Our method produces physically plausible and interpretable scene flow by constraining
the predicted motion to be rigid.

• Our approach accurately detects moving objects at an instance level without labeled
supervision.

• Our approach significantly outperforms the state of the art approaches on the KITTI
Scene Flow benchmark.

1.2 Point Cloud Prediction

Several autonomous driving companies such as nuTonomy, Waymo, and Lyft have recently
released large scale datasets [8, 56, 21] with high resolution LiDAR point clouds and numer-
ous annotations. Perhaps more interestingly, they provide high frequency temporal LiDAR
frames, or LiDAR “videos”, opening doors to the use of temporal information in LiDAR
point cloud analysis. Our first project aims to take advantage of the temporal data offered
by the newly released datasets and tackles the point cloud prediction task using deep learn-
ing methods, that is, given a sequence of past point cloud frames, to predict future frames.
While this task can easily be applied to other contexts, we implement and evaluate our mod-
els specifically in the context of autonomous driving and LiDAR. Much of the autonomous
driving problem has to do with helping cars anticipate events and avoid collisions. To this
end, predicted point clouds could be used to enhance object tracking pipelines, or to gen-
erate preliminary region proposals for future detections. Furthermore, no data labelling is
required for this task; the supervision signal is the next frame of the LiDAR sequence, so
our networks can be trained in a self-supervised fashion.

Extracting temporal information from point clouds is a difficult task and little work
has been done in this area. Conventional architectures for sequential data such as LSTMs
cannot be applied directly to point clouds due to their irregular structure. Voxelizing the
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point cloud could work around this, but it reduces the resolution of the point cloud and
introduces quantization artifacts into the prediction. We explore a number of end to end
architectures that operate directly on point clouds to extract temporal features and predict
future frames. In particular, we design a general architecture framework and implement and
evaluate several of its variations. Through experiments we evaluate the performance and
complexity of our models and assess the tradeoffs of various architectural design choices.

The outline of this report is as follows: in Chapter 2 we discuss relevant prior work for
these two projects, in Chapter 3 and 4 we discuss the methods, experiments, results, and
visualizations of our scene flow and prediction approach, and in Chapter 5 we summarize
our findings and discuss the implications of our work.
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Chapter 2

Related Work

2.1 Deep Learning on Point Sets

2.1.1 Voxel Based Approaches

Early attempts at learning on point clouds involved converting them to voxels and using
CNN backbones to extract features. Works such as [41, 77] are able to achieve reasonable
results on classification and detection. Voxel based approaches continue to be popular in the
autonomous driving domain, with architectures such as [30], [71], [74] achieving strong accu-
racy with real time inference. Additionally, sparse convolution libraries such as Minkowski
Engine [10] that allow for efficient processing of voxelized point clouds have recently become
popular, general-purpose feature extractors.

2.1.2 Non-Voxel Based Approaches

In 2017, Qi et al. proposed PointNet [50], the first deep learning architecture that operated
directly on point clouds by utilizing symmetric functions such as max pooling to make the
network invariant to input permutations. Later works [51, 57, 34] would take advantage of
the local structures in point clouds to learn local feature descriptors. Dynamic Graph CNN
(DGCNN) [65] is a special case among these in that while most architectures group points
and learn features based on Euclidean distance, DGCNN dynamically groups them based on
their distance in the feature space, allowing greater expressive power and more useful local
features. We take advantage of these properties in our proposed architectures for point cloud
prediction.
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2.1.3 Deep Temporal Learning on Point Sets

2.1.3.1 Temporal Learning with Neural Networks

Recurrent networks are well studied and known for their application on sequential data.
In the past decade they have been applied to the task of video prediction [39], which is
conceptually similar to our task. However, recently feedforward networks have been shown to
perform just as well, if not better than recurrent networks on sequential data [2]. They do not
suffer from vanishing gradients and other training instabilities common in recurrent networks,
tend to be faster and more parallelizable, and typically require less memory during training.
Similar to recurrent networks, feedforward models have also been applied to temporal video
processing and prediction tasks [75]. Inspired by this, we choose to use feedforward networks
for our point cloud prediction architectures.

2.1.3.2 Deep Temporal Learning on Point Sets

[52] is among the first papers applying deep learning to temporal point cloud, doing so in the
context of object detection for LiDAR in autonomous driving. The first general framework
for deep, temporal point cloud processing is [36], which introduced a PointNet++ style
architecture to group points temporally as well. [12] and [13] extend [20] and [60] to the
point cloud domain. Lastly, [68] is the first work tackling the point cloud prediction task
applying it to trajectory forecasting in autonomous driving.

2.2 Scene Flow Estimation

2.2.1 Supervised Scene Flow

The term scene flow was first introduced in [61]. Traditional methods primarily predicted
scene flow from stereo and RGB-D [22, 67, 27, 18, 53, 63, 64, 62], although some used LiDAR
[59]. Following the rise of deep learning, neural networks became a prevalent tool for scene
flow estimation on images [26, 73, 72, 23, 24]. [35] pioneered deep scene flow estimation on
point clouds by combining the FlowNet architecture [11, 25] with advances in deep point
cloud feature learning [50, 51]. They trained their model in a supervised manner on synthetic
data [42] and generalized it to real world data [15]. Subsequent works on supervised scene
flow estimation from point clouds followed this training framework. [17] and [69] developed
faster and more accurate network architectures using sparse permutohedral lattices and cost
volumes respectively. [76] predicted scene flow as a global ego-motion and a set of residual
flow vectors. [49] framed scene flow estimation as a correspondence problem by borrowing
ideas from optimal transport. [32] utilized high-order CRFs to constrain the scene flow
output to be locally smooth and rigid. Lastly, [70] used a recurrent network to iteratively
refine scene flow predictions.
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2.2.2 Self-Supervised Scene Flow

Because of the domain shift from synthetic to real world datasets, as well as the difficulty of
acquiring scene flow annotations for real LiDAR scans, recent works on scene flow estimation
from point clouds have explored self-supervision. [45] was the first to do so, utilizing a nearest
neighbor and cycle-consistency loss. [55] and [48] both developed loss functions that use a
combination of Chamfer Distance, and smoothness and shape constraints. [70, 76, 3] all use
loss functions similar to these, but [70] uses a recurrent network architecture, while [76, 3]
predict a global ego-motion in addition to flow vectors. None of these approaches exploit
the multi-body rigid nature of dynamic scenes.

2.2.2.1 Scene Flow Optimization

Rather than of predicting scene flow in real time, recently a few works have used offline
optimization approaches to estimate scene flow. In particular, [48] directly optimizes its
self-supervised loss function over each point cloud at inference time, and [33] trains a neural
network over a single pair of point clouds to predict scene flow, using the network as an
implicit smoothness regularizer. Our scene flow approach to be described in Section 3 falls
within this category, but unlike the previous works, we optimize scene flow at the object
level.

2.2.3 Object Scene Flow

While multi-body rigidity is a commonly used prior in scene flow estimation, most existing
works require some form of annotation. [47, 54, 40, 72] predicted object-level scene flow
from stereo, images, or RGB-D. [54, 40, 72] required annotated segmentation labels, and
[47] focused on object detection. [46] was the first work to predict object level scene flow
from point clouds, but it required scene flow, object detection, and ego-motion labels. More
recently, [16] proposed a weakly supervised approach to object-level scene flow estimation
that only requires ego-motion and foreground/background labels. All of the aforementioned
approaches except [47] require annotated labels at training time. Our scene flow approach
is the first to leverage the rigidity of dynamic scenes in scene flow estimation while also
requiring no labelled supervision.
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Chapter 3

Rigid Scene Flow

In this chapter we detail our work on optimizing rigid scene flow from liDAR without labels.
In section 3.1 we discuss the details of our approach, particularly our scene flow parameteri-
zation, optimization objective, and inference. In section 4.2 we show and discuss our results
and visualizations and conduct an ablation study to validate our design choices.

3.1 Method

The objective of 3D scene flow estimation is, given a pair of point clouds P1 ∈ R3×N1 , P2 ∈
R3×N2 , to predict the scene flow between them, defined as a set of vectors F ∈ R3×N1 that
indicate the motion of the points in P1 to their corresponding location in P2. Note that there
may not be direct correspondences between the two point clouds.

3.1.1 Motion Representation

Previous works usually predict scene flow directly, parameterized as a set of pointwise mo-
tion vectors. However, this parameterization is highly unconstrained and fails to exploit
the underlying rigidity present in most scenes. We instead parameterize scene flow as the
composition of a global ego-motion and a set of bounding boxes containing moving objects,
each with their own rigid motions. Specifically, our objective is to compute a global ego-
motion Tego = {Rego ∈ SO(3), tego ∈ R3} ∈ SE(3); a set of k bounding boxes B = {bi}k
parameterized as b = (c, x, y, z, w, l, h, θ) where c is a confidence score indicating whether or
not the box contains a moving object, x, y, z is the center of the bounding box, w, l, h are
the box’s dimensions, and θ is a heading angle; and a set of k rigid transformations each
with the form Ti = {Ri ∈ SO(3), ti ∈ R3} ∈ SE(3), one for each bounding box. Because
we focus specifically on autonomous driving settings, we assume the boxes have zero pitch
and roll. Additionally, in practice we find that confining Ti to SE(2) on the ground plane
produces more consistently accurate scene flow predictions.
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Figure 3.1: Overview of our loss function for a single bounding box. Terms in blue blocks are optimizable
scene flow parameters b: bounding box parameters, T: bounding box’s rigid transformation, Tego: ego-
motion transformation, c: box’s confidence score, and the plot refers to our differentiable bounding box
approximation. From P1, we differentiably select the points inside the bounding box and transform them
using T and Tego. Then we compute the nearest neighbor distance between the two transformed point sets
and P2. Lastly, we weight the two nearest neighbor distance by c and 1 − c respectively and sum them to
compute the loss.

We choose to parameterize objects as bounding boxes rather than using segmentation
masks as in previous works because, similar to pointwise flow vectors, segmentation masks
are highly unconstrained and can represent incoherent objects e.g. an object with one point
on one side of the scene and another point completely detached from it on the other. On
the other hand, bounding boxes constrain objects to physically plausible point sets. In our
context of autonomous driving datasets, one can typically convert between the two repre-
sentations, as objects occupy their own exclusive region in 3D space and do not penetrate
each other as they often do in image pixels.

3.1.2 Overview

An overview of our proposed objective function is shown in Figure 3.1. To compute our
scene flow parameters without any labelled supervision, we optimize them over a novel loss
function that reflects the nearest neighbor distance (NND) from P1 to P2 after applying
our scene flow parameters. Given a bounding box bi, we select the points inside it using a
differentiable bounding box approximation. We then transform these points using Ti and
Tego and compute the NND between the two transformed point sets and P2. We call these
terms the foreground and background loss, respectively. Finally, we multiply the foreground
and background loss by ci and 1 − ci respectively and add these together to compute the
loss total for bi. The final loss is the sum of all per-box losses. To compute scene flow
parameters, we simply minimize this loss function using gradient-based optimization. As a
clarifying note, we do not use any neural networks in this approach and are only interested
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(a) (b) (c) (d)

Figure 3.2: Visualizations of non-differentiable vs differentiable bounding boxes on 1 and 3 dimensions: (a)
non-differentiable 1D bounding line (b) differentiable 1D bounding line (c) non-differentiable 3D bounding
box (d) differentiable 3D bounding box.

in directly optimizing the scene flow parameters. In the following sections, we explain each
of the components of this loss function in detail.

3.1.3 Differentiable Bounding Boxes

Our proposed loss function takes the NND of transformed points in P1 to P2, where pointwise
NND is defined as:

Dnn(P1, P2)[i] = min
p2∈P2

||p2 − P1[i]||22 (3.1)

However, the NND to P2 of points in P1 inside a bounding box bi, written asNND(bi(P1), P2),
is a step function with respect to bi and therefore non-differentiable. In order to optimize bi
over the NND, we propose a novel, differentiable bounding box approximation.

Fundamentally, a bounding box is a membership function in 3D space. Each point along
the function is assigned either a 1 or 0 depending on whether it is inside or outside the box.
In the simplified case of a 1 dimensional bounding box or “bounding line”, the membership
function would be the difference of two shifted unit step functions, as shown in Figure
3.2a. To make this function differentiable, we can replace the step functions with sigmoid
approximations, shown in Figure 3.2b, resulting in a 1D differentiable bounding box:

box1D(x) =
1

1 + ek(x+
w
2
)
− 1

1 + ek(x−
w
2
)

(3.2)

where w is the width of the box and k is a parameter controlling the sharpness of the sigmoid
slope.

To generalize to 3D, we take the product of 1D bounding lines along each of the three
axes of the bounding box, resulting in a bounding box membership density field shown in
Figure 3.2d. To compute the membership weights of each point, we first transform them
into the local coordinate frame of the box. Given the center of the bounding box x, y, z and
the heading angle θ, the transformed points can be computed as:

pbox = Rbox(p− tbox) (3.3)
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where p is the input point, pbox is the transformed point, tbox is the center of the bounding
box, and Rbox is the following rotation matrix parameterized by the yaw angle of the box, θ:

Rbox =

−sin(θ) cos(θ) 0
cos(θ) sin(θ) 0

0 0 1

 (3.4)

The membership weights can then be written as:

box3D(x, y, z) =
∏

d∈{xb,yb,zb}

(
1

1 + ek(d+
wd
2
)
− 1

1 + ek(d−
wd
2
)
) (3.5)

where xb, yb, zb are x, y, z transformed into the local coordinate frame of the bounding box,
and wd is the width of the box along dimension d.

3.1.4 Loss Function

Our proposed loss function is the sum of independently computed per-box losses, so for
simplicity we will focus on the loss of a single box b, written as:

Lnn = c

N1∑
i=1

ŵi ∗ (Dnn(Rpi + t, P2) + ϵ)

+(1− c)

N2∑
i=1

ŵi ∗Dnn(Regopi + tego, P2)

= cLfg + (1− c)Lbg

(3.6)

where c is the confidence score of the box. ŵi is the ith element of ŵ, a normalized
vector of weights produced by the smooth bounding box approximation for b computed
using Equation 3.5 over P1, pi is the i

th point in P1, R and t are b’s associated rotation and
translation, N1 and N2 indicated the number of points in P1 and P2, and ϵ is a constant
penalty, to be described shortly. Lastly, Lfg and Lbg denote foreground and background loss,
respectively.

Intuitively, this loss function minimizes the NND to P2 after applying the scene flow
parameters to to P1. The inner product of the pointwise NND and ŵ results in a differentiable
approximation of the NND of points inside b; both the foreground and background loss can
be written in this form. Therefore, the foreground loss describes the NND of points inside
the box under the assumption that they belong to a dynamic rigid object. Similarly, the
background loss, describes the NND under the assumption that they belong to a static
object. We refer to these two assumptions as the foreground and background hypotheses.

In practice, it is unknown whether a box contains a moving or static object, so to model
this uncertainty, we write the loss as the weighted sum of the NND under the two hypotheses,
weighted by c and 1−c, where c ∈ (0, 1). If the foreground loss is lower than the background
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loss, the box likely contains a dynamic object, and to minimize the overall loss, c will
tend towards 1. Likewise, if the background loss is lower than the foreground loss, the
box probably belongs to the static background and c will tend towards 0. Conversely, if
the confidence is high, the loss from this box will primarily propagate gradients towards
optimizing T, and if it is low, the loss will contribute to optimizing Tego. During inference,
we can threshold c to determine which boxes contain moving objects.

Since the ego-motion is shared among all bounding boxes, it is more constrained than the
per-box rigid motions. When a bounding box contains a static part of the scene, we often
find that the foreground rigid motion is nearly identical to the ego-motion, but converges to a
barely smaller loss. This results in many static background objects having a high confidence.
To address this, we add a small constant penalty ϵ to the foreground term. This value can be
interpreted as the minimum distance an object needs to traverse to be classified as a moving
object.

3.1.5 Auxillary Terms

In addition to the main loss function described above, we also incorporate a few auxillary
terms. Since we narrow our use case specifically to autonomous driving datasets, we broadly
assume that the detected moving objects are cars, and construct certain auxillary terms
based on this assumption.

Box Dimension Regularization We apply a small penalty Lshape to the bounding box
shape that constrains it to be about the size of an average car:

Lshape = ∆2
w +∆2

l +∆2
h (3.7)

where ∆w,∆l,∆h are the underlying parameters to the width, length, and height of the
boxes, described in Section 3.1.7.

Heading Term Because cars face the direction they are moving, we apply a consistency
loss Lheading that forces the heading of bounding boxes to point in the same direction as their
motion.

Lheading = ||θxy − txy||22 (3.8)

where θxy is a 2D vector parameterizing the heading, as described in Section 3.1.7, and txy
are the x and y components of t on the ground plane.

Angle Term Moving cars do not experience large rotations, so we apply a small penalty
Langle on the magnitude of the rotation angle θ due to R.

Langle = θ2 (3.9)

Mass Term We also apply a mass term Lmass that encourages the bounding boxes to
maximize the number of points inside them. If the box contains a moving object, this term
encourages them to converge around it entirely. If it does not contain a moving object, it is
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still helpful for the boxes to contain many background points in order to make the ego-motion
estimation more robust.

Lmass = −
N1∑
i=1

wi (3.10)

where wi is the ith element of w, the unnormalized vector of membership weights from the
differentiable bounding box.

Combining these terms, our final per-box loss is

L = Lnn + λshapeLshape + λheadingLheading + λangleLangle + λmassLmass (3.11)

where each λ is a hyperparameter that controls the influence of the corresponding loss.

3.1.6 Inference

3.1.6.1 Scene Flow

To select the boxes containing moving objects, we first filter out any bounding boxes that
contain fewer than nmin points, where nmin is a dataset dependant threshold. Then we apply
non-maximum-suppression and keep boxes with a score of 0.85 or above. We classify these
boxes as dynamic. With the dynamic boxes, we segment P1 by assigning each point to the
most confident box it is in, as there may still be some overlap between boxes. Finally, we
apply each box’s rigid transformation to its points, and the ego-motion to the remaining
background points to compute the scene flow as

fi = Ripi + ti − pi (3.12)

where pi is the i
th point in P1, fi is its scene flow prediction, and Ri and ti are its associated

rotation and translation.

3.1.6.2 Motion Segmentation

We found that our described approach performs well on scene flow metrics, but that this
performance was not reflected in the motion segmentation metrics. LiDAR scans often
contain regions that are very sparse and therefore have poor correspondences. In these
regions, our method sometimes predicts a dynamic object with a minute motion. To address
this, we filter out any positive predictions that move less than 0.2 meters, corresponding
to about 4.5 miles per hour, which we assume to be the minimum speed of a dynamic car
or cyclist). Additionally, we found that our method would predict false positives at the
boundaries of the scene or in occluded regions, where objects fade in and out of the scene.
To address this, we introduce a cycle consistency check. Specifically, for every bounding box
bi, we optimize an additional SE(3) transform T i

i and confidence parameter cii minimizing the
loss function, but this time using the NND from P2 to P1 and computing the differentiable
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Figure 3.3: Initial bounding boxes during optimization.

box weights using bi transformed according to its forward transform Ti. During inference, we
only keep boxes where both confidence scores are above the threshold. Additionally, we assert
that the two rigid transforms must be similar to each other. We measure their similarity by
transforming the corners of the box by T i

i Ti and computing the average displacement of the
corners, removing any predictions where the average displacement exceeds 0.2 m. We found
this check mitigates false positives stemming from the aforementioned reasons.

3.1.7 Implementation Details

Our code is implemented using PyTorch for automatic differentiation. We use Adam [28]
with a learning rate of 0.015 over 500 epochs to optimize the parameters. Optimizing 36
bounding boxes over a single pair of point clouds with 40,000 points each takes about 1.7
minutes and uses 1.4 GB on a Nvidia Titan RTX GPU.

Before optimization, the bounding boxes are initialized to a grid of anchor boxes dis-
tributed in a grid over the xy ground plane. In the stereo setting, the grid cells are 4 m wide
and 8 m long, while for LiDAR they are instead 6 m long. Every other column is shifted
forward by half the length of the grid cell, forming a diamond grid pattern. Following [30],
we initialize template anchor boxes to 2×34.9×31.9 m with a heading angle of 0 and vertical
displacement of -1 m, as shown in figure 3.3. The rotations and translations are initialized
to the identity and zero respectively.

Some of our scene flow parameters cannot be optimized directly and need to be computed
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Table 3.1: Hyperparameters

Dataset k ϵ(m) λshape λheading λangle λmass nmin

StereoKITTI 8 0.01 8 1000 0.01 0.001 500
StereoKITTI Downsampled 8 0.02 8 1000 0.05 0.002 80
LidarKITTI/SemanticKITTI 8 0.03 8 1000 0.25 0.002 50

nuScenes 8 0.04 8 1000 0.25 0.01 20

from latent parameters. Inspired by [31], we represent rotations as 3×3 matrices and project
them onto SO(3) via SVD. The confidences are computed by applying a sigmoid function
to latent logits. The latent variables for the bounding box dimensions are exponentiated
and then multiplied by the default anchor box dimensions to compute the true dimensions
of the bounding box. Lastly, the heading is parameterized by a 2D vector and converted to
an angle via atan2.

When computing the NND, in practice, we concatenate point cloud normals to the xyz
coordinates and compute the NND in 6 dimensions to draw better correspondences. Point
cloud normals are computed using [58], which finds the main principal vector for a local
region around each point. In our case, we use the 30 nearest neighbors.

To improve efficiency, when computing the differentiable bounding box weights, we only
keep points with weight above 1e− 6. Additionally, we only compute the loss on boxes that
contain points with weight above this threshold i.e. they are not empty.

In Table 3.1, we list the hyperparameters we use on our various datasets. See section
3.2.1 for details on the datasets. Hyperparameters are primarily adjusted to account for the
sparsity of point clouds in the dataset. Sparser point clouds require larger ϵ and λmass but
smaller nmin.

3.2 Results

We evaluate our method both quantitatively and visually on various datasets for scene flow
estimation, moving object detection, and ego-motion estimation and compare them with the
current state of the art. Additionally, we explore the effects of our various design choices
with an ablation study.

3.2.1 Datasets

KITTI Scene Flow [43, 44, 14] We evaluate our scene flow predictions on the KITTI
Scene Flow Dataset, a real world autonomous driving dataset containing 142 pairs of point
clouds annotated with scene flow vectors. Pedestrians and cyclists are removed, so the
only moving objects are cars. The dataset has two settings: StereoKITTI and LidarKITTI.
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Table 3.2: Datasets

Dataset
median

number of points
flow ego-motion segmentation correspondences

StereoKITTI 25218.5 ✓ ✓ ✓ ✓
LidarKITTI 4388.5 ✓ ✓ ✓

SemanticKITTI 67532.5 ✓ ✓
nuScenes 6727.5 ✓ ✓ ✓

StereoKITTI is the traditional setting in which the point clouds are generated from stereo
disparity maps and therefore have correspondences. Most of the existing methods evaluate on
this setting. LidarKITTI is a more challenging setting in which the point clouds are captured
by a Velodyne 64-beam LiDAR. They are sparser and do not have direct correspondences.
The ground truth scene flow vectors are assigned by projecting the LiDAR points onto
the StereoKITTI disparity map and using the associated scene flow annotations. Both
datasets also contain segmentation masks, which we use to evaluate our motion segmentation
accuracy.

For a fair comparison, we adopt the common data preprocessing step introduced by [17]
of removing ground points via naive thresholding at 1.4 m below the sensor, and cropping
any points further than 35 m from the sensor. We use this step on all our datasets and
experiments. Due to memory constraints during training, most prior learning-based ap-
proaches also downsample their point clouds to 8,192 points. [3] found that increasing the
point density for these approaches during evaluation actually decreases performance due to
the domain shift. Our efficient implementation enables us to use the entire point cloud, so
on StereoKITTI, we report our performance using both 8,192 points, and all points.

On LidarKITTI, we optimize our scene flow parameters over the entire LiDAR scan and
evaluate it on the points in front of the vehicle with scene flow annotations. We found that
only optimizing over points in front of the vehicle in LiDAR scans results in false positive
detections at the point cloud boundary due to cropping. This problem is somewhat mitigated
when using the entire 360°point cloud.

nuScenes [8] nuScenes is a more challenging dataset than KITTI, consisting of sparser
LiDAR sweeps and more complex driving scenarios. We use a subset of nuScenes released
by [33], consisting of 310 point cloud pairs with ground points removed using RANSAC. The
ground truth flow vectors are drawn using track annotations.

SemanticKITTI [4] We evaluate our segmentation and ego-motion predictions on Se-
manticKITTI, a large scale autonomous driving dataset curated from the KITTI odometry
dataset. It consists of 21 sequences of LiDAR frames annotated with instance segmentation
labels and ego-motions. Both vehicles and pedestrians are present. Due to the size of the
dataset, we only evaluate on a random subset of 500 point cloud pairs.
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RawKITTI [15] RawKITTI consists of the approximately 38,000 raw LiDAR scans from
the KITTI dataset. [3] uses this for self-supervised training.

FlyingThings3D (FT3D) [42] FlyingThings3D is a large synthetic dataset consisting of
stereo pairs with scene flow annotations generated from CAD models moving randomly in
space. While our approach does not make use of FT3D, previous supervised approaches use
it for training.

3.2.2 Evaluation Metrics

To evaluate scene flow, we use the standard metric of 3D end-point error metric (EPE3D),
which is the average l2 distance between the predicted and ground truth scene flow. We also
adopt the following metrics from [35, 17]: strict accuracy (Acc3DS): the percentage of points
with EPE3D < 0.05 m or relative error < 5%; relaxed accuracy (Acc3DR): the percentage of
points with EPE3D < 0.1 m or relative error < 10%; and Outliers: the percentage of points
with EPE3D > 0.3 m or relative error > 10%.

To evaluate motion segmentation, we group all moving points as a single class and report
the intersection-over-union (IoU) on this class, the mean intersection-over-union (mIoU),
and the segmentation accuracy, each defined as

IoU =
TP

TP + FP + FN
(3.13)

mIoU = 0.5(
TP

TP + FP + FN
+

TN

TN + FP + FN
) (3.14)

Accuracy =
TP + TN

TP + FP + FN + TN
(3.15)

We only consider moving vehicles and cyclists, as pedestrians move too slowly and non-
rigidly for our method to detect. For ego-motion estimation, we report the average rotation
and translation errors of our predictions in degrees and meters, as well as the rotation and
translation accuracy, defined as the percentage of scenes where the rotation error < 0.5◦ and
the translation error < 0.1 m.

3.2.3 Baselines

We compare our work against the following state of the art approaches in both supervised
and self-supervised scene flow estimation: FlowNet3D [35], HPLFlownet [17], PointPWCNet
[69], FLOT [49], EgoFlow [76], FlowStep3D [70], HCRF-Flow [32], WeaklyRigidFlow [16],
SLIM [3], and NSFP [33]. Additionally, we directly optimize scene flow vectors over two
representative state of the art self-supervised loss functions: (i) the Chamfer Distance, used
in [48, 70] (ii) the self-supervised loss from [69], which adds a smoothness and laplacian term
to the Chamfer Distance. We compare motion segmentation results against LiDAR MOS
[9], a state-of-the-art supervised approach, and SLIM [3], a state-of-the-art self-supervised
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Table 3.3: Evaluation on KITTI Scene Flow.

Method
Supervision/
Approach

Training
Data

EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

StereoKITTI

FlowNet3D [35] Full FT3D 0.177 0.374 0.668 0.527
HPLFlowNet [17] Full FT3D 0.117 0.478 0.778 0.410
PointPWCNet [69] Full FT3D 0.069 0.728 0.888 0.265
FLOT [49] Full FT3D 0.056 0.755 0.908 0.242
EgoFlow [76] Full FT3D 0.069 0.670 0.879 0.404
FlowStep3D [70] Full FT3D 0.055 0.805 0.925 0.149
HCRF-Flow [32] Full FT3D 0.053 0.863 0.944 0.180
WeaklyRigidFlow [16] Full FT3D 0.042 0.849 0.959 0.208

PointPWCNet [69] Self FT3D 0.255 0.238 0.496 0.686
EgoFlow [76] Self FT3D 0.415 0.221 0.372 0.810
FlowStep3D [70] Self FT3D 0.102 0.708 0.839 0.246
SLIM [3] Self RawKITTI 0.1207 0.5178 0.7956 0.4024

SLIM*[3] Self RawKITTI 0.0668 0.7695 0.9342 0.2488

Chamfer* Optimization - 0.991 0.056 0.071 0.942
PointPWCNet [69] Optimization - 0.657 0.357 0.405 0.72
NSFP [33] Optimization - 0.036 0.912 0.961 0.154

NSFP*[33] Optimization - 0.034 0.914 0.962 0.151
Ours Optimization - 0.035 0.932 0.971 0.146

Ours* Optimization - 0.017 0.973 0.989 0.096

LidarKITTI

PointPWCNet [69] Full FT3D 0.390 0.387 0.550 0.653
FLOT [49] Full FT3D 0.653 0.155 0.313 0.837

WeaklyRigidFlow [16] Weak SemKITTI 0.094 0.784 0.885 0.314

Chamfer* Optimization - 0.944 0.022 0.057 0.992
PointPWCNet [69] Optimization - 0.734 0.248 0.347 0.845

NSFP*[33] Optimization - 0.142 0.688 0.826 0.385

Ours* Optimization - 0.085 0.883 0.929 0.239

nuScenes

Chamfer* Optimization - 0.879 0.035 0.082 0.976

PointPWCNet*[69] Optimization - 0.615 0.199 0.328 0.86

NSFP *[33] Optimization - 0.177 0.374 0.668 0.527

Ours * Optimization - 0.107 0.717 0.862 0.321

* methods that use the entire point cloud. All other methods downsample to 8,192 points.

approach. Both methods predict binary motion segmentation masks, classifying each point
as static or dynamic. LiDAR MOS preprocesses its point clouds differently and does not
exclude pedestrians in its evaluation. For ego-motion estimation, we use ICP [7] as a baseline.
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Table 3.4: Ego-Motion Estimation Evaluation on SemanticKITTI.

Method
Rotation
Error (◦) ↓

Translation
Error (m) ↓

Rotation
Accuracy ↑

Translation
Accuracy ↑

ICP [7] 0.244 0.122 0.906 0.878
Ours 0.235 0.107 0.916 0.94

3.2.4 Scene Flow Evaluation

We report our results on StereoKITTI, LidarKITTI, and nuScenes in Table 3.3, as well as
the baselines. Without relying on any annotated data, our method significantly outperforms
the state of the art supervised and self-supervised baselines in all metrics on both datasets.
In particular, when utilizing all points on StereoKITTI, our approach achieves a 1.8x lower
EPE3D than the previous state of the art supervised approach and 4x lower EPE3D than
the state of the art self-supervised approach. Even when using 8,192 points, our approach
significantly outperforms all baselines on all metrics. Similarly, in the LidarKITTI setting,
we outperform the current state-of-the-art supervised and weakly-supervised approaches by
a substantial margin. From Table 3.3, it is clear that the supervised approaches are unable
to generalize to LiDAR data. Lastly, despite being a more challenging dataset, our method
performs well on nuScenes, achieving an average error of 0.109 m, significantly outperforming
[33].

3.2.5 Ego-Motion Evaluation

Our ego-motion results on SemanticKITTI are shown in Table 3.4. We outperform ICP on
all metrics, achieving an average of 0.235◦ rotation error and 0.107 m translation error. As a
note, we observed that ICP performs unusually well on SemanticKITTI due to the already
close alignment of the LiDAR scans, as well as the absence of moving objects in several of
the scenes.

3.2.6 Motion Segmentation Evaluation

Our method achieves 92.9% accuracy and 86.6% mIoU on StereoKITTI, significantly outper-
forming SLIM’s 60.1% accuracy and 42.9% mIoU. On SemanticKITTI, our method achieves
34.5% IoU, reliably detecting large, fast-moving objects. LiDAR MOS, achieves 56% IoU,
performing significantly better. However, it requires ground-truth segmentation masks, while
our approach does not require any labels.
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(a) Ours StereoKITTI (b) Ours LidarKITTI

(c) NSFP StereoKITTI (d) NSFP LidarKITTI

(e) PointPWCNet StereoKITTI (f) PointPWCNet LidarKITTI

(g) Error Colorbar

Figure 3.4: Visualization of scene flow predictions for our method, NSFP, and the PointPWCNet loss function
under direct optimization on a scene in KITTI. Color indicates the EPE of the prediction, with red indicating
high error and purple indicating low error. For StereoKITTI, the colorscale ranges from 0-0.5 m error, while
for LidarKITTI, it ranges from 0-1 m. In this scene, the ego vehicle is moving forward as two cars approach
from the opposite direction. Our approach is able to accurately predict the flow on both cars in the stereo
setting, and the closer one in the LiDAR setting. NSFP struggles on moving objects, while PointPWC
predicts locally smooth, but incoherent flow.
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(a) Ours StereoKITTI (b) Ours LidarKITTI

(c) NSFP StereoKITTI (d) NSFP LidarKITTI

(e) PointPWCNet StereoKITTI (f) PointPWCNet LidarKITTI

(g) Error Colorbar

Figure 3.5: Visualization of scene flow predictions for our method, NSFP, and the PointPWCNet loss function
under direct optimization on another scene in KITTI. Color indicates the EPE of the prediction, with red
indicating high error and purple indicating low error. For StereoKITTI, the colorscale ranges from 0-0.5
m error, while for LidarKITTI, it ranges from 0-1 m. In this scene, a van is driving ahead of the moving
ego vehicle. Our method and NSFP are able to accurately predict the flow on this scene in both settings,
although our method is slightly more accurate. PointPWC also generally performs well but struggles in the
sparser regions of the point cloud.
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(a) Ours Scene 1 (b) Ours Scene 2

(c) NSFP Scene 1 (d) NSFP Scene 2

(e) PointPWCNet Scene 1 (f) PointPWCNet Scene 2

(g) Error Colorbar

Figure 3.6: Visualization of scene flow predictions for our method, NSFP, and the PointPWCNet loss function
under direct optimization on two scenes in nuScenes. Color indicates the EPE of the prediction, with red
indicating 1 m and purple indicating 0 m EPE. In scene 1, the ego vehicle is driving forward along with
two cars ahead of it and one behind it. Our method is able to predict the motion of all cars but the one
behind, due to the sparsity of points on that car. NSFP struggles with two of the moving cars and also
falsely predicts the motion of a parked car. PointPWC’s prediction exhibits a lot of artifacts, especially
at the boundary of the scene. In scene 2, the ego vehicle approaches an intersection as another car drives
close behind. In the other lane, three cars move in the opposite direction. Another car moves along the
perpendicular street of the intersection, totalling five dynamic vehicles in this scene.
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Table 3.5: Ablation study over various loss terms and design choices on StereoKITTI. ∇b refers to whether
we use differentiable or non-differentiable bounding boxes.

∇b Lshape Lmass Lheading Langle EPE3D ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

✓ ✓ ✓ 0.284 0.74 0.759 0.319
✓ ✓ ✓ ✓ 0.218 0.473 0.678 0.457
✓ ✓ ✓ ✓ 0.401 0.66 0.663 0.406
✓ ✓ ✓ ✓ 0.024 0.959 0.984 0.116
✓ ✓ ✓ ✓ 0.017 0.974 0.989 0.096
✓ ✓ ✓ ✓ ✓ 0.017 0.973 0.989 0.096

3.2.7 Visualizations

We qualitatively compare our method against NSFP [33] and the PointPWCNet [69] loss
function, two state-of-the-art optimization methods, by visualizing the predictions on two
scenes from KITTI in Figures 3.4 and 3.5 and one scene from nuScenes in Figure 3.6. On all
scenes we find that our method produces the most accurate predictions. In particular, NSFP
struggles to accurately predict the flow for dynamic objects, as shown in 3.4. Meanwhile,
PointPWCNet can typically generate locally smooth predictions, but they are very noisy and
fail to exhibit object level coherence. This is especially apparent in Figure 3.4 as well, where
the predicted motion seems to change in different regions of the moving cars and there are a
lot of noisy predictions near the boundaries of the scene. Despite the fact that the primary
supervisory signal for all three approaches is the NND, our approach achieves more accurate
predictions by directly constraining the scene flow to be rigid and physically consistent.

For a more exhaustive visualization of just our method, we also display our predictions
over six scenes from StereoKITTI and LidarKITTI, visualized in 4 different ways, shown
in Figures 3.7, 3.8, 3.9, 3.10, 3.11, 3.12,. Our method is able to predict accurate scene
flow and segmentation masks on all scenes using both stereo and LiDAR, although the
stereo predictions are slightly more accurate. This is evidenced in that while the LiDAR
predictions successfully detect most moving objects, the stereo predictions detect all of them,
illustrated in Figures 3.7 and 3.11. As a note, in Scenes 4 and 6, there are moving bikers
and motorcyclists. These points are cropped out in StereoKITTI, but with LidarKITTI, we
utilize the entire point cloud, so our method detects these moving objects. They are shown
as empty boxes in the third visualization on Scenes 4 and 6.

3.2.8 Ablation Study

To evaluate our design choices, we conduct an ablation study, shown in Table 3.5. We
find that the differentiable bounding boxes, shape regularization, and mass term contribute
significantly to our performance. Without differentiable bounding boxes, the shape and
position of the boxes are not updated. Without the shape regularizer, the mass term causes
bounding boxes to grow too large. Without the mass term, the boxes tend to favor empty
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space over regions with points. The heading and angle terms also provide slight increases
in accuracy. On StereoKITTI, we actually find that the angle term slightly decreases the
accuracy, but generally, and especially in LiDAR settings, it improves optimization stability.
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(a) StereoKITTI

(b) LidarKITTI

Figure 3.7: Scene 1 Visualizations. (a) shows StereoKITTI predictions and (b) show LidarKITTI predictions
on the same scene. The left visual in the first row of each subfigure shows the 3D end-point-error of our
predictions, similar to Figures 3.4, 3.5, 3.6. The color can be interpreted using the same colorbar as the
comparative visualizations, but with purple corresponding to 0 m and red corresponding to 0.75 m. The
middle visual shows the magnitude of the predicted scene flow vectors using the same colorbar, with purple
corresponding to 0 m and red corresponding to 2.5 m. The right visual shows the predicted bounding boxes
using arbitrary colors. Lastly, the bottom visual projects a convex hull of the segmented points onto the
image plane for each detected moving object, performing moving object instance segmentation on images.
These colors are also arbitrary. This figure displays the same scene as 3.4.
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(a) StereoKITTI

(b) LidarKITTI

Figure 3.8: Scene 2 Visualizations. Same as Figure 3.7. In this scene, the ego vehicle is moving fast on a
main street as an oncoming car approaches on the other side of the road. Our method is able to identify
the moving car in the stereo setting, but in the LiDAR setting, the points on the car are extremely sparse,
making it difficult for our method to identify it.
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(a) StereoKITTI

(b) LidarKITTI

Figure 3.9: Scene 3 Visualizations. Same as Figure 3.7. In this scene, the ego vehicle drives forward slowly
on a narrow street as another car approaches in the opposite lane. Our method is able to accurately predict
the flow on the dynamic car in both settings.
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(a) StereoKITTI

(b) LidarKITTI

Figure 3.10: Scene 4 Visualizations. Same as Figure 3.7. This figure displays the same scene as 3.5. Note
that there is a biker in the scene. These points are cropped out in StereoKITTI as they don’t posses ground
truth scene flow annotations, but with LidarKITTI, we utilize the entire point cloud, so our method is able
to detect the biker, as shown by the empty green box.
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(a) StereoKITTI

(b) LidarKITTI

Figure 3.11: Scene 5 Visualizations. Same as Figure 3.7. In this scene, the ego vehicle is driving behind
another car as two cars approach from the opposite lane. Our method predicts all three moving cars in the
stereo setting, but misses the furthest car in the LiDAR setting due to its sparsity.
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(a) StereoKITTI

(b) LidarKITTI

Figure 3.12: Scene 6 Visualizations. Same as Figure 3.7. In this scene, the ego vehicle is stopped at a
stop light at an intersection while a car and a motorcyclist cross the intersection and approach from the
other side of the street. Additionally, another car coming from the same direction makes a left turn at the
intersection. Our method is able to identify both moving cars in both settings. Similar to 3.11, the points of
the motorcyclist are not present in the stereo setting but are present in the LiDAR setting, and our method
successfully identifies at, as indicated by the empty red box.
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Chapter 4

Temporal LiDAR Frame Prediction
for Autonomous Driving

In this chapter we detail our work on LiDAR prediction. In section 4.1 we discuss the details
of our approach, including the network architecture, loss function and training details. In
section 4.2 we show and discuss our results and visualizations.

Figure 4.1: Generic architecture framework. Our framework takes in the past 4 frames and generates
motion vectors to predict the next frame. The specific architecture is determined by which feature extractor
is used and whether or not downsampling is used. The refinement module may use any of the previous
learned features, as indicated by the dashed lines. For specific architecture details refer to 4.3.
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4.1 Method

Our work aims to predict future point cloud frames given previous ones. In this section we
introduce our architecture framework, describe several variants of this framework, and share
our training details.

4.1.1 Architecture Framework

Our generic architecture framework is illustrated in Figure 4.1. Given the past 4 frames of
point clouds xt−3, ..., xt, our network generates x∗

t+1, the prediction for xt+1. While 2 frames is
sufficient for recovering the velocity of objects in a scene, we condition on 4 frames because at
least 3 is required to recover second order dynamics i.e. acceleration, and additional frames
provide contextual information. At each stage of the network, we first extract pointwise
features from every frame and then learn the dynamics of the scene using the flow embedding
layer introduced in [35]. After two such stages, we extract features on the single remaining
point cloud and push the features through a refinement module. The refinement layers output
a motion vector for each point in xt. We add these predicted vectors to xt to generate x∗

t+1.
We chose to reformulate our task into a motion prediction problem rather than directly
regressing the output point cloud because this adds more interpretability to the output of
our model, and we found it to be easier to optimize as well. Point clouds in the more distant
future can be predicted by applying the model recursively ie. by feeding x∗

t+1 back into the
model as a pseudo groundtruth for xt+1, using this to predict x∗

t+2, and so on.
We explore two approaches of modulating the framework to create different architectures.

The first approach is the choice of feature extractor. In this paper we experiment with the
PointNet++ layer [51] and the EdgeConv layer from [65]. The second approach is whether
or not to downsample the features throughout the initial stages of the network and upsample
back to the original resolution in the refinement stage. We discuss these in further detail in
sections 4.1.2, 4.1.3, 4.1.4.

4.1.2 Feature Extractors

PointNet++ Layer The PointNet++ layer takes an input point cloud {p1, p2, ..., pn}, pi ∈
R3 and its features {f1, f2, ..., fn}, fi ∈ Rc, and outputs a new set of features {f ′

1, f
′
2, ..., f

′
n′}, f ′

i ∈
Rc′ . For each point, it groups its neighbors within a given radius and applies the PointNet
operation to that local region, producing a new feature vector. More specifically:

f ′
i = max

j| ||pj−pi||≤r
hθ(fj, pj − pi) (4.1)

where r is the radius of the ball query, hθ is a multilayer perceptron (MLP) with weights
θ and input and output dimensions Rc+3 and Rc′ respectively, and max is the element-wise
maximum function
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Module Downsampling No Downsampling

Feature Extraction 1 SR=0.25×, mlp=[128, 128] mlp=[32, 32]
Flow Embedding 1 SR=1×, mlp=[128] mlp=[32]
Feature Extraction 2 SR=0.25×, mlp=[256, 256] mlp=[64, 64]
Flow Embedding 2 SR=1×, mlp=[256] mlp=[64]
Feature Extraction 3 SR=0.2×, mlp=[512] mlp=[128]
Refinement Upconv1: SR=5×, mlp1=[512], mlp2=[512] mlp: [512, 256, 128, 3]

Upconv2: SR=4×, mlp1=[512], mlp2=[512]
FeatProp: SR=4×, mlp=[256]
mlp: [256, 128, 3]

Table 4.1: Downsampling vs. No Downsampling. Architectural comparison between downsampling
and non downsampling models. SR = sampling rate, Upconv refers to the Set Upconv module introduced in
[35], and FeatProp refers to the feature propagation module from [51]. For additional architecture details,
refer to 4.3.

EdgeConv Layer The EdgeConv layer takes in only the point features {f1, f2, ..., fn}, fi ∈
Rc, and outputs a new set of features {f ′

1, f
′
2, ..., f

′
n′}, f ′

i ∈ Rc′ . For each point, it finds its k
nearest neighbors (KNN) in the feature space and applies a MLP across the point’s original
feature and the difference between it and its neighbor’s features. It then groups all k feature
vectors with max pooling. More specifically:

f ′
i = max

j=1...k
hθ(f

j
i − fi, fi) (4.2)

where f j
i is the feature of the jth nearest neighbor of fi in the feature space, hθ is a MLP

with input and output dimensions R2c and Rc′ respectively, and all other symbols are defined
as in Eq. 4.1.

These two feature extractors are computationally quite similar; they compute local fea-
tures and achieve permutation invariance using the symmetric max pooling function. The
main difference lies in how they define locality. The PointNet++ layer groups points in the
original Euclidean space whereas the EdgeConv layer groups points dynamically in the com-
puted feature space. This allows the EdgeConv layers to have an effectively larger receptive
field and compute potentially more descriptive local features, giving it the upper hand in
terms of point cloud classification and segmentation performance.

4.1.3 Downsampling

In the original papers, the EdgeConv layer maintains the size of the point cloud while the
PointNet++ layer downsamples point clouds by sampling a subset of the points with iter-
ative furthest point sampling (FPS) and computing features for these points alone. Since
our model predicts motion vectors for each point, downsampled features need to be up-
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Downsampling No Downsampling
PointNet++ FlowNet3D [35], PN++ w/ DS PN++ w/o DS

EdgeConv EC w/ DS EC w/o DS

Table 4.2: Architecture classification. Primary architectural differences between our proposed architec-
tures and FlowNet3D [35].

sampled back to size of the original point cloud. [35] accomplishes this using the Set Up-
conv layer. Given a lower resolution point cloud {p1, p2, ..., pn′}, pi ∈ R3 and its features
{f ′

1, f
′
2, ..., f

′
n′}, fi ∈ Rc, as well as a previously computed higher resolution point cloud

{p1, p2, ..., pn}, pi ∈ R3 with its features {f1, f2, ..., fn}, fi ∈ Rc, the Set Upconv layer applies
the PointNet++ operation to each point in the higher resolution point cloud by grouping
the points from the lower resolution point cloud. These features are then further processed
with an additional MLP. More precisely:

f ∗
i = hθ2( max

j| ||pj−pi||≤r,
pj∈p′

hθ1(fj, pj − pi), fi) (4.3)

where p′ indicates the set of points in the lower resolution point cloud. At the final upsam-
pling layer, [35] uses the Feature Propagation layer from [51], which replaces the first MLP
with an inverse distance weighted average interpolation. We also adopt this upsampling
strategy in our PointNet++ based architectures.

Although EdgeConv has not been used with downsampling, we also investigate this ar-
chitecture configuration for point cloud prediction and develop novel downsampling and
upsampling modules. To do this, we draw parallels between EdgeConv and the PointNet++
layer and design the sampling scheme in the spirit of these parallels. To downsample the
points, rather than using FPS in Euclidean space, we compute it in the feature space. To up-
sample, we utilize the Set Upconv layer, but similarly, we group the points in the previously
computed feature space rather than Euclidean space.

Downsampling is beneficial because it helps reduce the computational complexity of the
network. However it also reduces the resolution of the features and creates ambiguity when
upsampling. Thus networks that use downsampling need to be larger in order to resolve
these ambiguities and have sufficient feature content at the architecture bottleneck. For a
comparison between downsampling and non downsampling architectures, refer to Table 4.1.

4.1.4 Proposed Architectures

Modulating the feature extractor and sampling strategy of our framework results in four
different architectures as seen in Table 4.2: PointNet++ with downsampling (PN++ w/
DS), PointNet++ without downsampling (PN++ w/o DS), EdgeConv with downsampling
(EC w/ DS) and EdgeConv without downsampling (EC w/o DS). Specific architecture details
are shown in Table 4.3. The radii of the ball queries in the PointNet++ models were chosen
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Module PN++ w/
DS

PN++ w/o
DS

EC w/ DS EC w/o DS

Feature
Extraction 1

PointNet++:
r = 0.5,
SR=0.25×,
mlp=[128,128]

PointNet++:
r=0.7, SR=1×,
mlp=[32,32]

EdgeConv:
k=16,
SR=0.25×,
mlp=[128,128]

EdgeConv:
k=16, SR=1×,
mlp=[32,32]

Flow
Embedding 1

PointNet++:
r = 1.5,
SR=1×,
mlp=[128]

PointNet++:
r=1, SR=1×,
mlp=[32]

EdgeConv: k
= 16, SR=1×,
mlp=[128]

EdgeConv: k
= 16, SR=1×,
mlp=[32]

Feature
Extraction 2

PointNet++:
r = 1,
SR=0.25×,
mlp=[256,256]

PointNet++:
r = 0.7,
SR=1×,
mlp=[64,64]

EdgeConv: k
= 16,
SR=0.25×,
mlp=[256,256]

EdgeConv: k
= 16, SR=1×,
mlp=[64,64]

Flow
Embedding 2

PointNet++:
r = 3, SR=1×,
mlp=[256]

PointNet++:
r = 1, SR=1×,
mlp=[64]

EdgeConv: k
= 16, SR=1×,
mlp=[256]

EdgeConv: k
= 16, SR=1×,
mlp=[64]

Feature
Extraction 3

PointNet++:
r = 2,
SR=0.2×,
mlp=[512]

PointNet++:
r = 0.7,
SR=1×,
mlp=[128]

EdgeConv: k
= 16,
SR=0.2×,
mlp=[512]

EdgeConv: k
= 16, SR=1×,
mlp=[128]

Refinement Upconv1: k =
16, SR=5×,
SS=XYZ,
mlp1=[512],
mlp2=[512]

mlp: input =
(feat1, feat2,
feat3), widths
= [512, 256,
128, 3]

Upconv1: k =
16, SR=5×,
SS=flow2,
mlp1=[512],
mlp2=[512]

mlp: input =
(feat1, feat2,
feat3), widths
= [512, 256,
128, 3]

Upconv2: k =
16, SR=4×,
SS=XYZ,
mlp1=[512],
mlp2=[512]

Upconv2: k =
16, SR=4×,
SS=flow1,
mlp1=[512],
mlp2=[512]

FeatProp:
SR=4×,
SS=XYZ,
mlp=[256]

FeatProp:
SR=4×,
SS=XYZ,
mlp=[256]

mlp: [256, 128,
3]

mlp: [256, 128,
3]

Table 4.3: Architecture details. r = ball query radius, k used in KNN grouping, SR = sampling rate, SS
= sampling space, feat and flow refer to the output of the corresponding layer.
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to be commensurate to the receptive field of their EdgeConv counterparts parameterized by
k. As shown in Table 4.3, we extend our architectures’ choice of feature extractor to its flow
embedding layers as well.

4.1.5 Loss Functions

For our loss, we need a function that measures the similarity between two point clouds P
and Q. Following [19], we use Chamfer Distsance (CD) and Earth Mover’s Distance (EMD):

LCD(P,Q) =
1

2
(
∑
p∈P

min
q∈Q

||q − p||22 +
∑
q∈Q

min
p∈P

||p− q||22) (4.4)

LEMD(P,Q) = min
ϕ∈P→Q

∑
p∈P

||p− ϕ(p)||2 (4.5)

where ϕ indicates a bijection.
As in [19], we utilize a parallelizable approximation of the true EMD [6]. [1] notes that

CD does not always remain true to finer, visual similarities between point clouds, and that
when optimized, it may overpopulate regions where points are more likely to appear in the
ground truth. EMD more accurately captures visual similarity; however, CD still works
well at capturing coarser, structural similarities, and we find that is an easier function to
optimize. In our loss function, we use a combination of both:

L(P,Q) = αLCD(P,Q) + βLEMD(P,Q) (4.6)

where α and β are parameters chosen with cross validation.

4.1.6 Training Details

There exist two popular approaches for training generative, temporal networks: curriculum
approaches [5] and teacher-forcing [29]. In teacher-forcing, the model is trained using only
ground truth inputs. However, this prevents the model from learning how to use its own
predictions as inputs as it does during test time. Instead, we use a curriculum based approach
by training the model with its own predictions as inputs. We first train the model to predict
x∗
t+1, and once that converges, we train on x∗

t+2, feeding in our predicted x∗
t+1 back into

the model. This way, we slowly increase the difficulty as the model becomes capable of
learning harder tasks. We repeat this process until the validation loss no longer decreases
upon training the next time step.

We train our models on the nuScenes dataset [8], a recently released large scale au-
tonomous driving dataset. It contains over 320,000 point clouds from rotating LiDAR scans
captured at 20 Hz with over 34,000 points each. However, many of these points are detecting
the roof of the ego vehicle, which is of little interest. In addition, the outer most points are
extremely sparse and less relevant to potential downstream driving decisions. So we pre-
process the point clouds by selecting an annular region of points between the 12,000th and
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Model CD (m2) EMD (m) Model Size (MB) Runtime (s) Memory(MB)

Identity .2472 34.88 - - -
FN3DOOB [35] 1.2084 91.68 14.9 .2946 669.6

FN3DA .1399 33.94 14.9 .2946 669.6
PN++ w/ DS .1381 33.14 22.1 .2635 783.5
PN++ w/o DS .1813 37.63 3.7 .5079 1007.2

EC w/ DS .1837 35.49 10.2 .2591 907.9
EC w/o DS .1450 34.23 3.9 .6198 721.3

Table 4.4: Accuracy and complexity of methods. The table shows the average CD and EMD across
the first 5 future frames, as well as the size, runtime, and memory usage of the models.

34,000th point from the origin. This adequately filters out the ego vehicle and fringes of
the point cloud. We keep the point clouds in the original coordinate frame from the LiDAR
scanner rather than of transforming them to the static global frame, choosing only to operate
with the raw sensor data. However, an interesting avenue of future work could investigate
how utilizing this transformation affects prediction accuracy.

Our models use leaky ReLU activations with slope 0.2 followed by batch normalization,
except for the layer directly preceding the output. To train them we use the AdamW opti-
mizer [37] with decoupled weight decay and L2 regularization and employ a cosine annealing
learning rate scheduler with restarts each time we advance to the next time step [38]. We
chose values of 1 and 0.02 for α and β in the loss function, respectively. For t+ 1, we use a
max learning rate of .001 and find that the models converge in 2 epochs, and for all other
time steps we use a max learning rate of .0001 and find they typically converge after 1 epoch.
We train until t+ 3, after which the loss no longer decreases.

One of the challenges of working with large point clouds is the computational cost. For
t + 1 we used a batch size of 4; however, training future time steps linearly increases the
memory usage, dropping the batch size and making our batch normalization layers ineffective.
To address this, we trained with regular batch normalization for t + 1, but for future time
steps we instead normalize our features using the learned, running estimates of the mean
and variance from the first time step. When training on time steps beyond t+1, the weights
of the network do not change as much as they do during the initial step. Thus, the learned
statistics from t + 1 are still adequate estimates beyond t + 1, allowing us to train with
smaller batch sizes while preserving accuracy.

4.2 Experiments

In this section we evaluate the performance of our models against several competitive base-
lines. We provide quantitative analysis on the accuracy and complexity of our model, as well
as qualitative visualizations.
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Figure 4.2: Average Chamfer Distance and Earth Mover’s Distance of our method and baselines.
Plotted over 5 frames. FN3DOOB was omitted to make the other methods more distinguishable.

4.2.1 Baselines

Identity Our first, and most naive baseline, is to use xt as our prediction for xt+1. We call
this the identity baseline.

FlowNet3D Out of the Box (FN3DOOB) This baseline takes FlowNet3D [35] from the
original paper trained on FlyingThings3D [42], computes the scene flow from xt to xt−1, and
subtracts that from xt to generate a prediction for xt+1. Note that predicting the scene flow
is not the same as predicting motion vectors that minimize the distance between two point
clouds. Each point in the first point cloud plus its flow vector may not necessarily correspond
to a point in the second point cloud; rather it results in the corresponding location of the
first point in the time frame of the second point cloud. However, given dense enough point
clouds, predicting scene flow approximates minimizing the distance between the two point
clouds.

FlowNet3D Adapted (FN3DA) We also take the FlowNet3D [35] architecture and train
it directly on our task. FlowNet3D only takes in two point clouds, so we train it on xt−1, xt to
predict xt+1. This network falls under the category of PointNet++ with downsampling and
can be seen as the two frame version of PN++ w/ DS. We use the same training procedure
that we use for our models.

4.2.2 Quantitative Results

We evaluate our models on the nuScenes test set, consisting of about 70,000 frames pre-
processed the same way as our training data. To measure the accuracy of our predictions,
we use the CD and EMD between the predicted point clouds and the ground truth. Our
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(a) Outliers removed

(b) With outliers

Figure 4.3: Distribution of Chamfer Distance and Earth Mover’s Distance. Histograms of errors for
each method over 4000+ test samples. Each data point is the average of the error over a 5 frame sequence.
The first two plots are have outliers removed and the other two show the entire distribution with the x-axis
adjusted to range from 0 to the largest data point.
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results are shown in Figure 4.2 and Table 4.4. FN3DOOB performs far worse than the other
methods and skews the scale of Figure 4.2, so we omit it to make the plot more interpretable.
Additionally, we visualize the distribution of errors for each method in Figure 4.3.

Among all the approaches, we find that FN3DA, PN++ w/ DS, and EC w/o DS achieve
the lowest CD and EMD, with PN++ w/ DS performing marginally better. So for Edge-
Conv, not downsampling is important for strong performance, while for PointNet++, down-
sampling is actually more beneficial. We speculate this is due to the inherent difference
in expressivity between the two architectures. The PointNet++ architecture benefits from
downsampling because the memory efficiency allows it to utilize wider layers and learn more
complex, hierarchical features. Indeed, with about the same memory consumption, our
downsampling networks are 4 times wider than their non-downsampling counterparts. How-
ever, the EdgeConv architecture is already able to learn complex features on its own with
smaller layers and therefore does not benefit as much from a larger network. On the other
hand, the feature ambiguity caused by downsampling may be more harmful to EdgeConv,
because resolving these ambiguities and upsampling in the feature space is more challenging
than in Euclidean space.

Although PN++ w/o DS and EC w/ DS perform better than the identity baseline in
terms of CD, they have slightly higher EMD values. This is likely due to EMD’s strong
correlation with visual similarity. While our deep networks may learn point cloud dynamics,
they often exhibit artifacts and struggle to replicate the clean appearance of a raw LiDAR
scan. nuScenes high frame rate results in smaller motion between each frame. This allows
the identity baseline to have exceptionally low EMD, as it maintains the clean appearance
of a raw point cloud while not being penalized harshly for neglecting the dynamics of the
scene.

Lastly, we find that FN3DOOB is actually a destructive operation, increasing the CD
and EMD more than the identity baseline. We believe this is due to the domain transfer
from the synthetic FlyingThings3D dataset to real LiDAR scans, as well as the fundamental
difference between the point cloud prediction and scene flow problem.

We also show the size, runtime, and memory usage of our models in Table 4.4. Our
models are implemented with PyTorch and tested on an Nvidia Titan RTX. The runtime
and max memory allocated values are acquired with a batch size of 1, predicting t + 1, on
a point cloud with 22,000 points. The downsampling models tend to be significantly faster
yet larger than their non downsampling counterparts.

Based on this, we conclude that PN++ w/ DS and EC w/o DS are the most viable models.
They both demonstrate high accuracy, but offer different computational advantages. PN++
w/ DS’s runtime is about 2x faster, while EC w/o DS’s model size is about 6x smaller. So if
inference speed is more important, PN++ w/ DS should be used, but if model size is more
important, then EC w/o DS should be used.

While FN3DA performs competitively, PN++ w/ DS surpasses it in terms both speed
and accuracy, so FN3DA offers no notable advantages. However, it achieves comparable
accuracy to PN++ w/ DS while using only two frames, indicating that additional frames
may only slightly improve performance. We speculate that conditioning on even more frames
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would improve accuracy by negligible amounts.

4.2.3 Visualizations

We visualize our predictions for t + 1 and t + 5 on two scenes in Figures 4.4, 4.5, 4.6, 4.7.
In the first scene shown in figures 4.4 and 4.5, the ego vehicle is driving past a truck parked
next to a line of v-shaped columns. In the magnified portion of the visualization, the truck
is in the top right, and the columns are along the left side. Among all the methods, PN++
w/ DS and EC w/o DS most accurately predict the dynamics of the truck and columns. The
performance is corroborated in the error visualizations, which show green or yellow regions
around the truck and columns for all the methods except for PN++ w/ DS and EC w/o DS.
These methods instead show a nearly entirely purple point cloud, indicating close to 0 error.

In the second scene shown in figures 4.6 and 4.7, the ego vehicle is making a left turn
at an intersection. At the top left of the the zoomed in view there is a van driving in front
of the vehicle, while at the bottom left pedestrians cross the street behind it. This complex
movement of the ego coordinate frame combined with the irregular geometries present make
this second scene more challenging. PN++ w/ DS best predicts the position of the large
barrier to the right of the vehicle, and while all of our methods seem to make reasonable
predictions of the van and pedestrians, EC w/ DS seems to do it the most accurately.
Interestingly, we noticed that EC w/ DS tends to preserve the orderly appearance of a raw
LiDAR scan despite generally having higher EMD, as seen in figures 4.5 and 4.7.

While we only visualize two scenes here, we have done extensive qualitative testing on
the entire nuScenes mini dataset (10 scenes) and have verified that on average, PN++ w/
DS and EC w/o DS outperform the other methods, corroborating our quantitative analysis.

4.2.4 Scene Flow Estimation

We also show that our model is able to reasonably estimate scene flow. In Figure 4.8, we
visualize motion vectors predicted by our models and baselines for the same scene shown
in Figure 4.4, specifically highlighting the columns and the truck. Because the ego vehicle
is moving forward, the columns and truck have motion vectors pointing backward. PN++
w/ DS and EC w/o DS perform the best, producing smooth, accurate scene flow, whereas
FN3DOOB and PN++ w/o DS exhibit incoherent flow, and FN3DA, EC w/o DS underesti-
mate the magnitude, corroborating Figure 4.4. More flow visualizations in diverse scenarios
are available in the supplementary material.

We would like to highlight that our self-supervised scene flow estimation is nontrivial.
As mentioned before, minimizing the CD and EMD between two point clouds is not the
same as minimizing scene flow. Directly learning self-supervised scene flow between time t
and t+ 1 using point cloud similarity metrics would result in degenerate outputs where the
predicted vectors merely connect the points. In fact, there are a number of recent papers
in the literature that try to regularize this ill-conditioned problem by adding smoothness
constraints or cycle consistency [69, 45]. Our work addresses this by instead utilizing prior
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Figure 4.4: Visualizations. Error visualizations for (a) FN3DOOB, (b) FN3DA, (c) PN++ w/ DS, (d)
PN++ w/o DS, (e) EC w/ DS, (f) EC w/o DS, (g) Identity on t+ 1. For each method, the middle picture
shows the ground truth in green and the prediction in red; the left picture zooms in on a region of interest
in the middle picture; the right picture shows the squared distance between each point in the prediction and
its nearest neighbor in the ground truth point cloud, with the color bar in (h) indicating the scale of the
error. Refer to the identity visualization for scene context.
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Figure 4.5: Visualization of predictions for t+5 on the same scene shown in Figure 4.4. (a) FN3DOOB, (b)
FN3DA, (c) PN++ w/ DS, (d) PN++ w/o DS, (e) EC w/ DS, (f) EC w/o DS, (g) Identity, (h) error scale.
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Figure 4.6: Visualization of predictions for t + 1 on an additional scene. (a) FN3DOOB, (b) FN3DA, (c)
PN++ w/ DS, (d) PN++ w/o DS, (e) EC w/ DS, (f) EC w/o DS, (g) Identity, (h) error scale.
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Figure 4.7: Visualization of predictions for t+5 on the same scene shown in Figure 4.6. (a) FN3DOOB, (b)
FN3DA, (c) PN++ w/ DS, (d) PN++ w/o DS, (e) EC w/ DS, (f) EC w/o DS, (g) Identity, (h) error scale.
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Figure 4.8: Flow visualization. Predicted motion vectors for (a) FN3DOOB, (b) PN++ w/ DS, (c) EC
w/ DS, (d) FN3DA, (e) PN++ w/o DS, (f) EC w/o DS. The arrows in the visualization indicate our model’s
predicted motion vectors, and the color corresponds to the magnitude, as indicated by the color bar in (g).
Vectors beyond the range of the color bar are omitted.

frames. Because the network is no longer given t + 1, it cannot produce the degenerate
solution. However, it is still given sufficient information on the scene’s dynamics in the prior
frames to predict scene flow. Therefore, besides FN3DOOB, which is a trivial extension of
FlowNet3D, the remaining approaches we describe are novel in the sense that they regularize
the self-supervised scene flow problem in a new way. Here, we only qualitatively evaluate
our estimated scene flow as a proof of concept; however, future work could build on this idea
and produce more rigorous, quantitative analysis.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this report, we introduce the first scene flow estimation approach that exploits the multi-
body rigidity of dynamic scenes without requiring annotated labels. Our approach achieves
state of the art performance on the KITTI and nuScenes Scene Flow Benchmark and achieves
strong results on the SemanticKITTI dataset for moving object segmentation and ego-motion
estimation. Additionally, we explore the task of point cloud prediction by designing a novel
class of neural network architectures and training framework. We show that our top models
(PN++ w/ DS and EC w/o DS) can generate convincing predictions of future point clouds,
and that they are competitive with several strong baselines. Our visualizations help verify
our findings and indicate that our models can be used to produce scene flow approximations.
Our work has the potential to be applied to numerous downstream tasks such as object
tracking and vehicle control. Additionally, neither of our projects require any annotations
or labels, and with the growing prevalence of depth sensors and LiDAR, our work will be
useful for processing the raw, unlabelled point clouds they generate.

5.2 Future Work

In the future, we hope to improve upon our prediction method by incorporating additional
terms like a perceptual loss or smoothness constraint into our self-supervised loss function.
For our scene flow estimation approach, we hope to combine our approach with learning for
real time inference, and to generalize to arbitrary 3D scenes. Lastly, for both methods there
is the potential route improving performance via fusion with camera data.
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