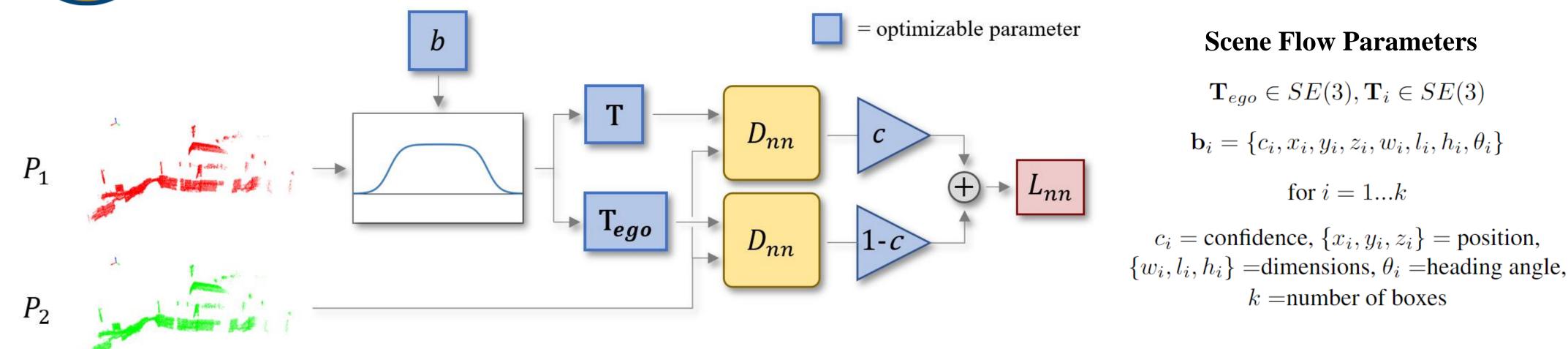


# **RSF: Optimizing Rigid Scene Flow From 3D Point Clouds Without Labels**

David Deng and Avideh Zakhor University of California, Berkeley

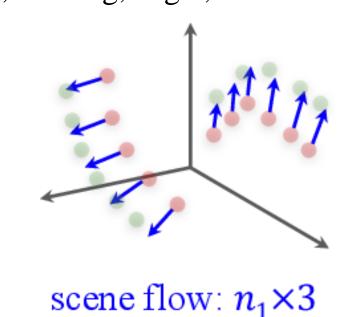


Overview of our loss function for a single bounding box. Terms in blue blocks are optimizable scene flow parameters. b: bounding box parameters, T: bounding box's rigid transformation, T<sub>ego</sub>: ego-motion transformation, c: box's confidence score, and the plot refers to our differentiable bounding box approximation. From  $P_1$ , we differentiably select the points inside the bounding box and transform them using **T** and  $T_{ego}$ . Then we compute the nearest neighbor distance (NND) between the two transformed point sets and P<sub>2</sub>. Lastly, we weigh the two NNDs by c and 1-c respectively and sum them to compute the loss. Our total loss is the sum of per box losses in addition to shape, heading, angle, and mass auxiliary losses.

### Problem

Given a pair of 3D point clouds, predict the scene flow between them without any labels.

Image taken from [1].



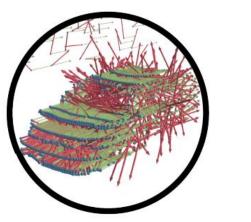
Results

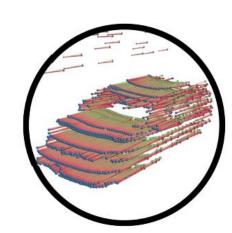
Table 1: Scene flow evaluation.

| Dataset     | Method                 | Supervision/<br>Approach | Training<br>Data | EPE3D↓ | Acc3DS ↑ | Acc3DR↑ | Outliers |
|-------------|------------------------|--------------------------|------------------|--------|----------|---------|----------|
|             | FlowNet3D [27]         | Full                     | FT3D             | 0.177  | 0.374    | 0.668   | 0.527    |
| StereoKITTI | HPLFlowNet [13]        | Full                     | FT3D             | 0.117  | 0.478    | 0.778   | 0.410    |
|             | PointPWCNet [50]       | Full                     | FT3D             | 0.069  | 0.728    | 0.888   | 0.265    |
|             | FLOT [36]              | Full                     | FT3D             | 0.056  | 0.755    | 0.908   | 0.242    |
|             | EgoFlow [54]           | Full                     | FT3D             | 0.069  | 0.670    | 0.879   | 0.404    |
|             | FlowStep3D [51]        | Full                     | FT3D             | 0.055  | 0.805    | 0.925   | 0.149    |
|             | HCRF-Flow [39]         | Full                     | FT3D             | 0.053  | 0.863    | 0.944   | 0.180    |
|             | WeaklyRigidFlow [12]   | Full                     | FT3D             | 0.042  | 0.849    | 0.959   | 0.208    |
|             | PointPWCNet [50]       | Self                     | FT3D             | 0.255  | 0.238    | 0.496   | 0.686    |
|             | EgoFlow [54]           | Self                     | FT3D             | 0.415  | 0.221    | 0.372   | 0.810    |
|             | FlowStep3D [51]        | Self                     | FT3D             | 0.102  | 0.708    | 0.839   | 0.246    |
|             | SLIM [1]               | Self                     | RawKITTI         | 0.121  | 0.518    | 0.796   | 0.402    |
|             | SLIM <sup>*</sup> [1]  | Self                     | RawKITTI         | 0.067  | 0.77     | 0.934   | 0.249    |
|             | RigidFlow [24]         | Self                     | FT3D             | 0.062  | 0.724    | 0.892   | 0.262    |
|             | Chamfer*               | Optimization             | -                | 0.991  | 0.056    | 0.071   | 0.942    |
|             | PointPWCNet [50]       | Optimization             | -                | 0.657  | 0.357    | 0.405   | 0.72     |
|             | NSFP [25]              | Optimization             | -                | 0.036  | 0.912    | 0.961   | 0.154    |
|             | NSFP <sup>*</sup> [25] | Optimization             | -                | 0.034  | 0.914    | 0.962   | 0.151    |
|             | Ours                   | Optimization             | -                | 0.035  | 0.932    | 0.971   | 0.146    |
|             | Ours <sup>*</sup>      | Optimization             | -                | 0.017  | 0.973    | 0.989   | 0.096    |
| LidarKITTI  | PointPWCNet [50]       | Full                     | FT3D             | 0.390  | 0.387    | 0.550   | 0.653    |
|             | FLOT [36]              | Full                     | FT3D             | 0.653  | 0.155    | 0.313   | 0.837    |
|             | WeaklyRigidFlow [12]   | Weak                     | SemKITTI         | 0.094  | 0.784    | 0.885   | 0.314    |
|             | ExploitingRigidity [8] | Weak                     | SemKITTI         | 0.071  | 0.824    | 0.913   | 0.295    |
|             | Chamfer*               | Optimization             | -                | 0.944  | 0.022    | 0.057   | 0.992    |
|             | PointPWCNet [50]       | Optimization             | -                | 0.734  | 0.248    | 0.347   | 0.845    |
|             | NSFP <sup>*</sup> [25] | Optimization             | -                | 0.142  | 0.688    | 0.826   | 0.385    |
|             | Ours <sup>*</sup>      | Optimization             | -                | 0.085  | 0.883    | 0.929   | 0.239    |
| nuScenes    | Chamfer*               | Optimization             | -                | 0.879  | 0.035    | 0.082   | 0.976    |
|             | PointPWCNet*[50]       | Optimization             | -                | 0.615  | 0.199    | 0.328   | 0.86     |
|             | NSFP *[25]             | Optimization             | -                | 0.177  | 0.374    | 0.668   | 0.527    |
|             | Ours <sup>*</sup>      | Optimization             | _                | 0.107  | 0.717    | 0.862   | 0.321    |

### Background

- Self-supervised scene flow from point clouds
  - Minimize NND over pointwise motion vectors
  - Smoothness and geometry regularization, cycle consistency
- Optimization based approaches
  - Neural Scene Flow Prior [2] trains a DNN for each scene, using it as an implicit regularizer





(a) Without the graph Laplacian

(b) With the graph Laplacian

Image taken from [3]

## Approach

Observation: scenes are comprised of independently moving rigid objects

Instead of pointwise vectors, we parameterize scene flow at the object level and parameterize objects as bounding boxes

- Lower dimension optimization space
- Constrains scene flow to be physically coherent
- Solve for parameters by optimizing them over the NND with gradient methods

#### **Differentiable Bounding Boxes**



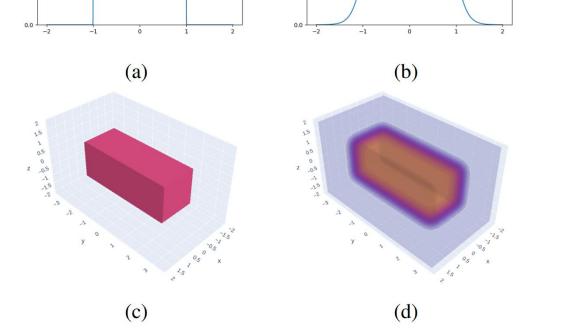
\* methods that use the entire point cloud. All other methods downsample to 8,192 points.

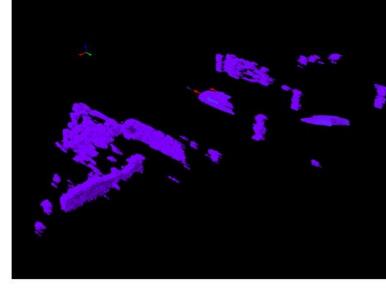
Table 2: Motion segmentation results on StereoKITTI. Table 3: Ego-Motion Estimation Evaluation on SemanticKITTI.

| 42.9 60.1   86.6 92.9 |
|-----------------------|
| 2                     |

| Method  | $\begin{vmatrix} \text{Rotation} \\ \text{Error } (\circ) \downarrow \end{vmatrix}$ | Translation Error (m) $\downarrow$ | Rotation<br>Accuracy ↑ | Translation<br>Accuracy ↑ |
|---------|-------------------------------------------------------------------------------------|------------------------------------|------------------------|---------------------------|
| ICP [3] | 0.244                                                                               | 0.122                              | 0.906                  | 0.878                     |
| Ours    | 0.235                                                                               | <b>0.107</b>                       | <b>0.916</b>           | <b>0.94</b>               |

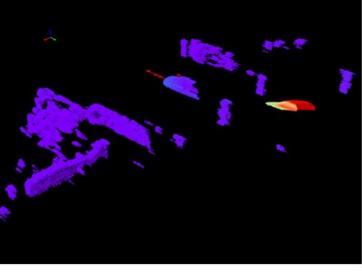
## **Visualizations**



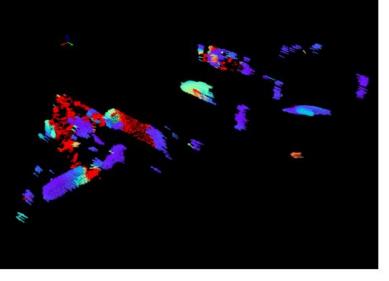


(a) Ours StereoKITTI

(d) Ours LidarKITTI

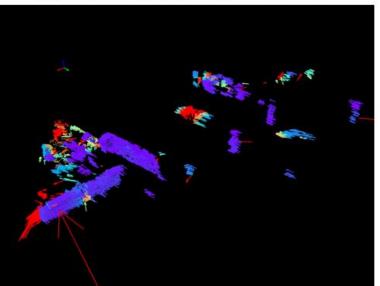


(b) NSFP StereoKITTI



WAIKOLOA HAWAII JAN 3-7 • 2023

(c) PointPWCNet StereoKITTI



(f) PointPWCNet LidarKITTI



(e) NSFP LidarKITTI



Visualization of scene flow predictions for our method, NSFP, and the PointPWCNet loss function under direct optimization on a scene in KITTI. Color indicates the EPE3D of the prediction, with red indicating high error and purple indicating low error. For StereoKITTI, the colorscale ranges from 0-0.5 m error, while for LidarKITTI, it ranges from 0-1 m.

#### Conclusion

We propose a novel method for optimizing object-level rigid scene flow without labels. Our method achieves state-of-the-art accuracy by constraining the scene flow to be physically consistent, and it simultaneously detects moving objects and computes egomotion without any labels.

#### **References**

Visualizations of non-differentiable vs differentiable bounding boxes in 1 and 3 dimensions: (a) non-differentiable 1D bounding line; (b) differentiable 1D bounding line; (c) non-differentiable 3D bounding box; (d) differentiable 3D bounding box.

#### Inference

**Post processing**: prune empty boxes, non-maximum suppression, assign points to objects

Scene flow: 
$$\mathbf{f}_i = \mathbf{R}_i \mathbf{p}_i + \mathbf{t}_i - \mathbf{p}_i$$

