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Overview of our loss function for a single bounding box. Terms in blue blocks are optimizable scene flow parameters. b: bounding box parameters, T: bounding
box’s rigid transformation, T, ,: €go-motion transformation, c: box’s confidence score, and the plot refers to our differentiable bounding box approximation. From
P,, we differentiably select the points inside the bounding box and transform them using T and T,,,. Then we compute the nearest neighbor distance (NND)
between the two transformed point sets and P,. Lastly, we weigh the two NNDs by ¢ and 1—-c respectively and sum them to compute the loss. Our total loss is the
sum of per box losses in addition to shape, heading, angle, and mass auxiliary losses.
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i i i i f r Table 1: Scene flow evaluation.
Given a pair of 3D point clouds, predict > A ff
the scene flow between them without an ”
y « Dataset Method Supervision/ | Traming | popan 0 AC3DS 1t Ace3DRT Outliers |
labels. — Approach Data
4 FlowNet3D [27] Full FT3D 0.177 0.374 0.668 0.527
Image taken from [1]. HPLFlowNet [13] Full FT3D 0.117 0.478 0.778 0.410
flow: 3 PointPWCNet [50] Full FT3D 0.069 0.728 0.888 0.265
scene Ilow: ny X FLOT [36] Full FT3D 0.056 0.755 0.908 0.242
Bac kg round EgoFlow [54] Full FT3D 0.069 0.670 0.879 0.404
. : FlowStep3D [51] Full FT3D 0.055 0.805 0.925 0.149
» Self-supervised scene flow from point clouds HCRE-Flow [39] Full FT3D 0.053 0.863 0.944 0.180
«  Minimize NND over pointwise motion vectors WeaklyRigidFlow [12] Full FT3D 0.042 0.849 0.959 0.208
« Smoothness and geometry regularization, cycle consistency StereoKITTI | PointPWCNet [50] Self FT3D 0.255 0.238 0.496 0.686
. Optimization based h EgoFlow [54] Self FT3D 0.415 0.221 0.372 0.810
ptimizafion based approaches FlowStep3D [51] Self FT3D 0.102 0.708 0.839 0.246
* Neural Scene Flow Prior [2] trains a DNN for each scene, SLIM ,{” Self RawKITTI | 0.121 0.518 0.796 0.402
L : . : SLIMT1] Self RawKITTI 0.067 0.77 0.934 0.249
using it as an implicit regularizer RigidFlow [24] Self FT3D 0.062 0.724 0.892 0.262
Chamfer” Optimization 0.991 0.056 0.071 0.942
PointPWCNet [50] Optimization 0.657 0.357 0.405 0.72
NSFP [25] Optimization 0.036 0.912 0.961 0.154
NSFP25] Optimization 0.034 0.914 0.962 0.151
Ours Optimization 0.035 0.932 0.971 0.146
Ours” Optimization 0.017 0.973 0.989 0.096
PointPWCNet [50] Full FT3D 0.390 0.387 0.550 0.653
(a) Without the graph Laplacian (b) With the graph Laplacian FLOT [36] Full FI3D 0.653 0.155 0.313 0.837
Lidark 1Ty | WeaklyRigidFlow [12] Weak SemKITTI 0.094 0.784 0.885 0.314
Image taken from [3] ExploitingRigidity [8] Weak SemKITTI 0.071 0.824 0.913 0.295
Chamfer Optimization 0.944 0.022 0.057 0.992
Ap proac h PointPWCNet [50] Optimization 0.734 0.248 0.347 0.845
e : : : .. NSFPT25] Optimization 0.142 0.688 0.826 0.385
Observation: scenes are comprised of independently moving rigid Ours’ Optimization 0.085 0.883 0.929 0.239
objects -
- . . Chamfer Optimization 0.879 0.035 0.082 0.976
Instead of pointwise vectors, we parameterize scene flow at the - PointPWCNet 50] Optimization 0.615 0.199 0.328 0.86
object level and parameterize objects as bounding boxes NSFP 25] Optimization 0.177 0.374 0.668 0.527
Ours ~ Optimization 0.107 0.717 0.862 0.321

« Lower dimension optimization space
« Constrains scene flow to be physically coherent

" methods that use the entire point cloud. All other methods downsample to 8,192 points.

« Solve for parameters by optimizing them over the NND with Table 2: Motion segmentation results on StereoKITTI. Table 3:  Ego-Motion Estimation Evaluation on Se-
: manticKITTT.
gradient methods

Method | mloU®  Accuracy 1 — ——— —— ——

- - - otation ranslation otation ranslation

D |ffe rentl ab I e BOU nd | ng BOXGS SLIM [1] 42.9 60.1 Method Error (o) |  Error (m)]  Accuracy T  Accuracy 1
. : Ours 86.6 22.9 ICP [3] 0.244 0.122 0.906 0.878
Ours 0.235 0.107 0.916 0.94

Visualizations

(a) (b)

(c) (d)

Visualizations of non-differentiable vs differentiable bounding
boxes in 1 and 3 dimensions: (a) non-differentiable 1D bounding
line; (b) differentiable 1D bounding line; (c) non-differentiable
3D bounding box; (d) differentiable 3D bounding box.

Inference
Post processing: prune empty boxes, non-maximum
suppression, assign points to objects

(a) Ours StereoKITTI

(d) Ours LidarKITTI

(b) NSFP StereoKITTI

(e) NSFP LidarKITTI

(f) PointPWCNet LidarKITTI

(g) Error Colorbar

Visualization of scene flow predictions for our method, NSFP, and the PointPWCNet loss
function under direct optimization on a scene in KITTI. Color indicates the EPE3D of the
prediction, with red indicating high error and purple indicating low error. For StereoKITTI,
the colorscale ranges from 0-0.5 m error, while for LidarKITT]I, it ranges from 0-1 m.

scene flow:  f; = R;p; + t;
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Conclusion

We propose a novel method for optimizing object-level rigid scene flow without labels.
Our method achieves state-of-the-art accuracy by constraining the scene flow to be
physically consistent, and it simultaneously detects moving objects and computes ego-
motion without any labels.

References

1] Xingyu Liu, Charles R Qi, and Leonidas J Guibas. Flownet3d: Learning scene flow in
3d point clouds. In In Computer Vision and Pattern Recognition (CVPR), 2019.

2] Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey. Neural scene flow prior.
Advances In Neural Information Processing Systems, 34, 2021.

3] Jhony Kaesemodel Pontes, James Hays, and Simon Lucey. Scene flow from point
clouds with or without learning. International Conference on 3D Vision (3DV), 2020.




