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Abstract— We present a new 3D probabilistic occupancy
map representation for robotics applications by relaxing the
commonly-assumed constraint that space must be perfectly
tessellated. We replace the regular structure of 3D grids with
an unstructured collection of non-overlapping, equally-sized
spheres, which we call “atoms.” Abandoning the grid structure
allows a more accurate representation of space directly tangent
to surfaces, which facilitates a number of applications such
as high fidelity surface reconstruction and surface-guided path
planning. Maps composed of atoms can distinguish between
free, occupied, and unknown space, support computationally
efficient insertions and collision queries, provide free space
planning guarantees, and achieve state-of-the-art memory effi-
ciency over large volumes. This is achieved while simultaneously
reducing quantization effects in the vicinity of surfaces and
defining a useful implicit surface representation.

I. INTRODUCTION

Many areas of interest in the field of mobile robotics rely
on the ability to handle several core tasks, including localiza-
tion and mapping, obstacle avoidance, motion planning, and
exploration. Common among these tasks is the need to fuse
sensor measurements together into a volumetric map which
not only represents the raw range sensor data but also the
volume carved out by that data.

For simplicity, 3D space is traditionally discretized and
represented as a regular grid, where each voxel in the grid
is independently considered either occupied or free, with
occupancy probability estimated from range measurements.
Formally, this data structure is called an occupancy grid [7].
The most obvious benefit of this cubic partition is tractability:
rather than representing occupancy at each infinitesimal point
in space, occupancy grids quantize the space into a finite
and tunable number of regular voxels. This quantization,
however, implies an important shortcoming: lacking the
ability to place units of space arbitrarily, grid-type maps
introduce significant errors near surfaces. In many robotics
applications, e.g. obstacle avoidance, it is critically important
to model the space near surfaces correctly.

In this paper we present an alternative representation,
AtomMap, which replaces the regular grid of cube-shaped
voxels with an unordered collection of non-overlapping,
equally-sized spheres. Figure 1 demonstrates the AtomMap
concept in 2D. In Fig. 1a an AtomMap is generated from
simulated laser scans of a curved surface, emanating from a

All authors are with the Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley. D.
Fridovich-Keil is supported by the NSF GRFP. The authors
also acknowledge support from NSF grant no. CMMI-1427096
{dfk,eanelson,avz}@eecs.berkeley.edu

(a) (b) (c)

Fig. 1: AtomMaps (a) may be interpolated (b) to preserve
the continuous nature of surfaces in the environment more
accurately then grid-based map data structures (c).

point source. Each sphere stores an estimate of its occupancy
probability, which is interpolated across the space in Fig.
1b according to the method described in Sec. III-E. For
comparison, Fig. 1c shows the result of inserting the same
laser scan into an occupancy grid.

Because they use arbitrary-depth k-d trees as their un-
derlying data structure, AtomMaps enjoy memory efficiency
commensurate with octree representations, and likewise sup-
port comparably efficient insertions and spatial queries. By
construction, AtomMaps are able to represent surfaces more
accurately than existing methods, promising to facilitate
surface-based exploration strategies and high-quality render-
ings. Moreover, AtomMaps still support popular algorithms
such as A∗ path planning and abstractions such as signed dis-
tance fields [15], which are useful for a variety of graphics-
related applications.

Our presentation of AtomMaps proceeds as follows. We
begin with a survey of related representations from robotics
and computer graphics in Sec. II. Section III introduces the
AtomMap framework, detailing the usage of spherical atoms
as a unit of construction, a probabilistic method for inserting
information from range sensor measurements, and imple-
mentation details for achieving computational and memory
efficiency. Section III-F presents an application of AtomMap
to occupancy-based surface reconstruction. We then describe
the optional addition of signed distance estimation within
atoms in Sec. IV, and show how signed distance can be used
to guide path planning in Sec. IV-A. We close with Sec. V,
which presents timing and memory comparisons against a
standard grid map representation [10], empirical map quality
metrics, and visualizations of several large environments
reconstructed as AtomMaps from collected LiDAR data.



II. RELATED WORK

Initially proposed in the late 1980s for use in 2D mapping
with sonar [12, 7], occupancy grids have become the ac-
cepted standard in mobile robotics for mapping, exploration,
and planning.

In two dimensions, it is possible to represent a large
environment with a densely-allocated grid [8]. Although
this approach has been demonstrated in three dimensions
[18, 13], the maximum map size is severely limited by the
available memory on standard computers used for mobile
robotics applications. For example, in [13] the authors are
only able to map out an area that is 6 × 6 × 2 feet at
roughly 0.3 inch resolution using a 256 × 256 × 64 grid.
Of course, Moore’s law scaling has dramatically increased
memory capacities since the introduction of occupancy grids;
unfortunately, the memory usage of a dense 3D grid quickly
becomes prohibitive even on modern computers.

There have been many attempts to improve the memory
performance of occupancy grids in 3D. One of the first ideas
to emerge was based on the 2.5D assumption, i.e. that the
environment can be fully modeled by a floor plan labelled
with surface heights above the ground plane. In [9] the
authors design a legged extraterrestrial rover that represents
the environment with an elevation map that stores exactly
one value in each cell of a 2D grid that represents the height
of the surface at that location. In [21] the authors extend
the elevation map concept to account for the possibility of
multiple surfaces above each 2D grid cell. This is similar to
the idea behind multi-volume occupancy grids, proposed in
[6]. The major disadvantage of such 2.5D representations is
that they are poorly suited to irregular outdoor geometries,
which do not always conform to the 2.5D assumption.

A major breakthrough in memory-efficient true 3D occu-
pancy grid mapping came in the form of OctoMap, which
partitions the 3D volume using an octree [10]. OctoMap
demonstrated a dramatic memory improvement over existing
methods, achieved by only allocating memory as needed at
run-time and optionally by pruning the tree during operation
to remove redundancy at the cost of speed.

One of the most important features of occupancy grids
is that they distinguish between unknown and free space.
The distinction is unnecessary for some applications, e.g.
planning paths around obstacles, but it is critical for tasks
that guide robots toward unexplored areas. For example,
[23] uses a 2D dense occupancy grid to find frontiers –
voxels in free space that border unexplored space – which are
then used to guide autonomous exploration of an unknown
scene. Increasingly popular information-theoretic approaches
to autonomous exploration, e.g. [3, 4], also necessarily rely
on the direct modeling of free, unknown, and occupied
space. In particular, we draw attention to the approach
taken in [24], in which a UAV navigates toward frontiers
that lie on surfaces in the voxel grid. Such frontiers are
subject to quantization error bounded by the maximum voxel
dimension.

In addition, there is a rich mathematical theory of gen-

eral lattices [5]. In [2] the authors show that the body-
centered cubic lattice structure is an optimal quantizer in
three dimensions, in the mean-squared sense under a uniform
data distribution. Building on these results, in [20, 19] the
authors investigate the use of non-cubic lattices specifically
for occupancy mapping. In [20] the authors dismiss out of
hand the possibility of using circular or spherical voxels
since they cannot tessellate the space. In this paper, we
solve this problem by revising the traditional formulation for
probabilistic occupancy updates, as described in Sec. III-E.

To our knowledge, there is no existing work which uses
spheres as the basis for an occupancy map structure. How-
ever, we do acknowledge that spheres have been used as the
geometric building blocks for UAV path planning. In [22],
the authors create a graph of connected overlapping spheres
of radius equal to the distance to the nearest obstacle, and
plan paths through this graph so that the vehicle is always
contained in the “tunnels” between spheres. Our work is
closely related, although we restrict spheres, which we call
“atoms,” to be non-overlapping and of uniform size, and we
also compute explicit occupancy probability.

There is also a great deal of existing work related to signed
distance fields (SDFs), both with application to surface
modeling in computer graphics, and as a map representation
for autonomous robotics. Generally, the Euclidean signed
distance (ESDF) to the nearest surface is approximated on
a grid, where the zero-crossings of the resulting scalar field
represent the surface manifold. Various approximations are
used: in particular, the Truncated SDF (TSDF) approximates
the distance to the nearest surface along the scan ray rather
than the distance to the nearest surface in any direction. The
KinectFusion project [14] uses TSDFs to model surfaces
using RGBD data, for example. Recent work [15] blends
TSDFs and ESDFs for superior performance in on-line map-
building and planning. Although the focus of this paper re-
mains occupancy grid mapping, for completeness AtomMap
does support a variant of the TSDF, as explained in Sec. IV.

III. ATOM MAPPING FRAMEWORK

We begin in Sec. III-A by formulating the mathematical
problem which AtomMaps are designed to solve. Section
III-B then explains how AtomMaps use non-overlapping,
equally-sized spheres as the fundamental unit of space.

Algorithm 1 provides an overview of how an AtomMap
is generated. Upon receiving a sensor pose x and a scan z,
the scan is transformed into world coordinates and surface
normals are estimated at each scan point. Each scan point is
then processed via several steps of raytracing described in
Sec. III-C, which generates a set of candidate atoms to be
inserted into the AtomMap. However, before insertion, these
candidate atoms are first preprocessed by a temporary buffer
in order to remove redundant information. Section III-D
describes the mechanics of this preprocessing step in detail.
Finally, the remaining candidate atoms are inserted into the
AtomMap using a probabilistic update scheme described in
Sec. III-E.



Algorithm 1 AtomMap Creation

1: map← new AtomMap()
2: while map.incomplete() do
3: x← sensorPose()
4: z ← newScan()
5: z ← transformScan(z, x)
6: n← estimateNormals(z)
7: buffer ← new Buffer()
8: for all pi, ni ∈ (z, n) do
9: atoms← traceRays(x, pi, ni)

10: buffer.insert(atoms)
11: map.merge(buffer)

A. Problem Formulation

In this section, we present a formal description of the
occupancy mapping problem.

Consider a robot moving through a continuous
environment E along a discrete-time trajectory
(x1, x2, x3, ..., xn), xi ∈ E . Each point in E is labelled by a
function ω : E −→ {0, 1} either “occupied,” namely 1, or
“free,” namely 0. At each time index i, the robot receives
sensor measurement zi consisting of a set of points that lie
on the boundary between free and occupied space in E , i.e.
on a surface. The occupancy mapping problem is to estimate
the occupancy probability `(p) , P{ω(p) = 1|x1:n, z1:n} at
all points p in the space.

Additionally, define a signed distance function sdf : E −→
R which maps each point in the environment to a scalar
whose sign represents whether the point is occupied or not,
and whose magnitude corresponds to the Euclidean distance
to the nearest surface.

In this work, we support separately estimating occupancy
probability ` and signed distance field sdf , in “occupancy
mode” and “signed distance mode” respectively.

B. Spherical Atoms as a Unit

Non-overlapping spherical “atoms” of fixed radius are the
basic unit of our maps. These spheres are stored in a k-d
tree, rather than an octree as is commonly used in voxel-
grid representations. As with octrees, k-d trees are commonly
used in computer graphics for efficiently indexing points in
multidimensional spaces; one major difference is that k-d
trees do not impose a regular cubic partition of space.

As noted in [20], one consequence of using non-
overlapping spheres to represent E is that they are unable
to partition the space fully. This does not pose a problem,
however, since it is possible to model obstacles that lie
entirely between atoms by a slight reformulation of the
classical occupancy grid probabilistic update, as described
in Sec. III-E.

Using spherical atoms is beneficial for two major reasons:

1) Spheres can be located anywhere in space and not just at
lattice points, which makes it possible to model surfaces
more precisely than can be done with a voxel grid.
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Fig. 2: Illustration of candidate atom generation for a single
scan point.

2) AtomMaps do not prefer any particular directions over
others: in voxel grids, the diagonals are sampled at a
lower spatial frequency than the cardinal axes which
reduces the effective resolution of the map.

Point 1 is critical, and bears repeating. The key contribu-
tion of this work is that we represent space with spherical
units whose locations are determined at run-time, as dictated
by each incoming scan. This is a sharp contrast with grid
methods where space is represented by cubic units whose
locations are determined at compile-time.

C. Candidate Atom Generation

Atoms are inserted along two different rays, either along
the ray from the sensor to the scan point, or along the surface
normal at the scan point. Raycasting is done in three stages,
the last two of which contribute separately to estimating
occupancy probability ` and signed distance sdf .

Figure 2 illustrates these three steps for a single scan point
on a planar surface observed by the sensor along the line
labelled “scan ray.” The steps are enumerated below:
(A) One atom is generated behind and tangent to the surface.

It is labelled “occupied,” and colored red accordingly.
(B) In occupancy mode, atoms are generated along the ray

from the scan point to the sensor and labelled “free.”
The first of these blue-colored atoms is constrained to
be tangent to the surface.

(C) In signed distance mode, atoms are generated along
the surface normal, starting from the scan point and
extending up to a fixed, user-specified distance into
free space. By construction, these atoms trace the local
gradient of the signed distance field, which means that
they provide a more accurate local estimate of sdf than
candidate atoms generated in step (B) would.

Caution must be used, however, to avoid placing the
atoms in step (C) too far from the scan point, as they may
inadvertently intersect an as-yet unobserved surface in the
environment. Also, note that in Fig. 2 an atom inserted in step



Fig. 3: Estimating k for the darkly-shaded atom. In this
example, both of the lightly-shaded atoms intersect the
darkly-shaded atom, so k = 3.

(C) intersects one inserted in step (B). In practice, however,
only one of these steps is performed.

D. Preprocessing Candidate Atoms

In principle, each atom generated from a scan point could
be incorporated immediately into the AtomMap. However,
that would waste a significant amount of computational effort
on processing the redundant information contained in over-
lapping atoms. Since range sensors acquire measurements
radially during each scan, the resulting set of candidate atoms
is most dense in the vicinity of the sensor: the space close
to the sensor is thus highly oversampled.

When working with voxel grids, a common approximation
is to allow each voxel in the map to be updated at most
once by an incoming point cloud [10]. In an octree or
voxel-grid representation, this can be enforced efficiently
by spatial hashing; this does not work for atoms, however,
whose locations are only determined at run-time. Therefore,
AtomMap relaxes this strict constraint to a probabilistic
statement: candidate atoms are pre-filtered so that existing
atoms are updated approximately once per scan on the
average. This is accomplished by randomly retaining each
candidate atom a independently, with a probability γ(a) that
depends on its distance from the sensor, and discarding with
probability 1−γ(a). Specifically, γ(a) must be roughly equal
to the reciprocal of k(a) = card(S), where the set S contains
a as well as all other candidate atoms that intersect a. Thus,
on average exactly one of the atoms in S will remain to
update the AtomMap.

As shown in Fig. 3, we can we can approximate k using
the law of cosines for a particular radius-r atom a distance
δ from a 2D radial sensor with angular resolution α.

k ≈ 2

⌈
1

α
arccos

(
1− 2r2

δ2

)⌉
+ 1 (1)

This k-value is only a lower bound in 3D; a tighter bound
could be achieved for a specific sensor, given knowledge of
its 3D angular sampling pattern.

For any given pair (k, γ), exactly one candidate atom in
S will remain with probability kγ(1− γ)k−1; however, the
probability that none remain is (1− γ)k. If none remain,
then the AtomMap may have a hole at this location. In
order to minimize this probability while still maximizing
the probability of inserting exactly one atom, we solve
the following regularized non-convex optimization problem
parameterized by cost λ. The solution is derived by setting
the derivative in γ to zero, and it is globally optimal for
k ≥ 2:

γ∗ = argmax
0≥γ≥1

kγ(1− γ)k−1 − λ(1− γ)k =
1 + λ

k + λ
(2)

This process of computing an estimated k(a) for each
candidate atom a and then randomly discarding it with
probability 1 − γ(a) effectively randomizes and interleaves
atoms from different rays – for this reason, we call it
“stochastic angular interleaving.” The parameter λ may be
set anywhere in the interval [0,∞). As λ −→∞, γ∗ −→ 1
converges to the no-interleaving case. We typically set λ = 1.

Further downsampling of the candidate atoms is also pos-
sible. One particularly simple method is to apply a standard
voxel-grid filter to the candidate atoms that remain after
stochastic angular interleaving. Although further downsam-
pling is not strictly necessary, it is often convenient and may
have the effect of improving computational performance at
the cost of slightly decreased map quality.

E. Atom Insertion and Probabilistic Map Updates

This section describes the procedure for inserting new
candidate atoms into the AtomMap, updating the estimated
occupancy probability for existing atoms, and interpolating
occupancy probability across the space.

While merging the buffer of candidate atoms generated
by a single scan into the AtomMap, new atoms are inserted
directly into the map if and only if they do not collide
with any existing atoms. If there is a collision, e.g. between
existing atom a and new atom b, we update the log-odds ratio
L(a) , log (`(a)/(1− `(a)) of occupancy of the existing
atom weighted according to its fractional overlap w(a, b)
with the new atom. An atom’s log-odds ratio of occupancy
is positive if it is most likely to be occupied, negative if it
is most likely to be free, and zero otherwise.

L(a)←− L(a) + w(a, b)L(b) (3)

The “overlap fraction” w(a, b) is defined to be the fraction
of atom a that is included in atom b, and is calculated in
closed form as follows where r is the atomic radius and
d ∈ [0, 2r] is the distance between the centers of the two
atoms.

w = 1− d

4r3

(
3r2 − d2

4

)
∈ [0, 1] (4)

Traditionally, log-odds updates are defined exactly as in
Eq. 3 except that there is no overlap term scaling the update
value [7]. Incorporating w(a, b) has the effect of “trusting”
atoms b that share a large amount of volume with atom a
more than those which share only a small volume.



The notion of scaling the log-odds ratio L according to
an overlap term w suggests a simple means of interpolating
log-odds across E . For any point p ∈ E , we estimate L(p)
as the average of the log-odds values at all nearby atoms
a ∈ A , {a : ‖center(a) − p‖2 < 2r}, weighted according
to w(a, p), the overlap fraction of atom a with a hypothetical
atom centered at p:

L(p) =

∑
a∈A w(a, p)L(a)∑
a∈A w(a, p)

(5)

Interpolating in this manner, AtomMap is able to solve the
occupancy mapping problem posed in Sec. III-A far more
accurately than grid-based methods. Results are shown in
Sec. V-C.

F. Surface Reconstruction

In most mobile robotics applications, it is not necessary to
represent surfaces explicitly; e.g. in Sec. IV-A, path planning
is done on an implicit graph of connected atoms. However,
there are applications such as virtual reality for which a
surface representation is useful. In a standard occupancy
grid, surfaces are the boundary between occupied and free
grid cells, i.e. the zero-isocontour of log-odds L. Although
in principle one could interpolate L across a voxel grid,
e.g. by trilinear interpolation, in practice such “implicit
surfaces” are often computed from signed distance fields,
e.g. [14]. Although AtomMap does support signed distance
estimation as discussed in Sec. IV, here we present an
occupancy-based implicit surface reconstruction technique.
We emphasize that this technique is not intended to compete
with or replace traditional SDF-based methods. Our intent
is rather to illustrate the main contribution of AtomMap,
namely that placing units of space tangent to surfaces at
run-time is a precise representation of underlying continuous
geometry.

Equation 5 in Sec. III-E presents a method for efficient
multilinear interpolation of log-odds ratios across the space.
In principle, this is sufficient to compute an implicit surface;
in practice however, it is too sensitive to noise in the locations
of atoms to yield a visually realistic surface. In this section,
we propose a Gaussian Process (GP) Regression-based in-
terpolation technique specifically for generating noise-robust
implicit surfaces from occupancy data. This idea is similar
in spirit to approaches such as [16] and [11], the major
difference being that in our work, the GP is trained on atoms.

We interpolate the log-odds ratio of occupancy at an
arbitrary point in space by assuming that log-odds is a GP.
Following [17], we define “training” points x and “query”
points x∗ with respective log-odds ratios L and L∗, and
kernel function κ : R3 × R3 −→ R+.

[
L
L∗

]
∼ N

(
0,

[
Σxx Σxx∗

Σx∗x Σx∗x∗

])
(6)

where [Σxx]ij , κ(xi, xj) (7)

Following [17], we use a radial basis function as the
kernel, i.e. κ(xi, xj) = exp(−α‖xi − xj‖22). The resulting

(a) (b) (c)

Fig. 4: Three views (a) front, (b) oblique, and (c) side of
an implicit surface, colored according to variance where
darker means lower variance. Atoms are colored according
to estimated occupancy, from blue (free) to red (occupied).

regression problem is solved using Gaussian conditioning.
Note that we have assumed that the training data is corrupted
by isotropic noise of variance σ2

n for the sake of robustness.

L∗|L ∼ N (Σx∗x(Σxx + σ2
nI)−1L,

Σx∗x∗ − Σx∗x(Σxx + σ2
nI)−1Σxx∗) (8)

In practice, AtomMap estimates L at a each query point
x∗ by training on the N nearest atoms, centered at x.
Results are shown in Fig. 4, where the query points x∗ lie
on a grid of resolution 0.25 m, which is smaller than the
0.3 m atomic radius. The surface is visualized by meshing
the zero-isocontour of the grid using the marching cubes
algorithm. The estimated surface mesh is colored according
to the variance output in Eq. 8. As shown, the reconstructed
surface effectively partitions atoms which are measured to be
“occupied” (red) and “free” (blue). The figure was generated
by setting N = 20, noise variance σ2

n = 2.0 and length scale
α = 1.

IV. SIGNED DISTANCE FIELD

In this section, we discuss the signed distance field sdf
optionally maintained by the AtomMap, and present an
application to surface-guided path planning (Sec. IV-A).

We assume that the robot operates inside of a closed
volume as in [24], and also adopt the convention that the
signed distance field is positive inside the bounding surface,
negative outside, and zero on the surface. In order to estimate
sdf on-line, each candidate atom stores the distance between
itself and the scan point which generated it, measured along
the local surface normal as described in Sec. III-C, steps (A)
and (C).

When inserting candidate atoms into the AtomMap, it is
necessary to fuse sdf estimates from overlapping atoms. In
the absence of noise, the best way to fuse these estimates
would be to keep the value of minimum magnitude, since
by definition the sdf represents the distance to the nearest
surface. In the presence of noise, however, some smoothing is
required. An empirically satisfactory heuristic is to compute
a weighted average of estimated signed distance values



Fig. 5: Part of an A∗ shortest path in green overlaid on the
occupied subset of the AtomMap, in red.

sdf(a) and sdf(b) for existing atom a and overlapping
atom b, where the weights are larger for sdf -values of
smaller magnitude. Moreover, since repeated updates should
decrease the uncertainty of estimate sdf(a), each atom also
stores and updates a measure of that uncertainty, σ2, which
may be interpreted as the approximate variance of sdf . The
equations are given below, and parameterized by ξ > 0
for numerical stability. In practice, we find that ξ = 0.5
is satisfactory.

σ2(b) =
sdf(b)2

ξ + w(a, b)
, ξ > 0 (9)

sdf(a)←− sdf(a) +
σ2(a)

σ2(b) + σ2(a)
(sdf(b)− sdf(a))

(10)

σ2(a)←− σ2(a)

(
1− σ2(a)

σ2(b) + σ2(a)

)
(11)

Note that σ2(b) is initialized to be inversely proportional
to the overlap fraction w(a, b) defined in Sec. III-E. This has
the effect of not only “trusting” smaller measurements more
than larger ones as is optimal in the noiseless case, but also
trusting closer atoms more than distant ones.

A. Surface Guided Path Planning

One of the benefits of voxel grids is that adjacent voxels
are connected spatially, and therefore define an implicit
graph. This is useful for tasks such as path planning, which
is often done with algorithms such as A∗ search and Djik-
stra’s shortest path. In a similar vein, we define an implicit
graphical structure on the AtomMap by considering an atom
to be connected to its free neighbors within a fixed radius.

Figure 5 shows the A∗ shortest path between two arbitrary
points in space, traversing the implicit graph of an AtomMap
where free-space atoms are considered “connected” if their
centers lie within four atomic radii.
A∗ search makes use of a distance measure which by

design must underestimate optimal path lengths. Tradition-
ally, this measure is the total path length up to a particular
point plus the Euclidean distance between that point and the
goal. However, our on-line computation of sdf allows us to
regularize such distance measures so that they penalize paths
which do not remain a fixed distance away from the nearest
surface, i.e. on a level set of sdf .

(a)

(b)

Fig. 6: AtomMap colored according to height in (a) (CMU
dataset) and signed distance to the nearest surface in (b)
(LBNL dataset). In each case, we only show the subset of
atoms either occupied (a) or within ∼ 1 m of a surface (b).
Atomic radius is 0.25 m.

We implement this “surface-guided planning” scheme by
setting the distance measure D(a, b, g, q) as follows, for a
path originating at atom a and passing through atom b,
moving toward goal atom g along the level set of sdf defined
by a distance q from the nearest surface. µ is an arbitrary
non-negative regularization parameter.

D(a, b, g, q) =

L(a→ b) + ‖g − center(b)‖2 + µ||sdf(b)| − q| (12)

where L(a → b) is the accumulated path length for a path
with endpoints at atoms a and b. Increasing the value of µ
forces the planner to choose paths that stay closer to the
desired level set, at the cost of increasing path length.

V. EXPERIMENTAL RESULTS

A. Implementation

Atom Mapping is implemented as a package for Robot
Operating System (ROS) [1], written in C++.1 Figure 6
shows two examples of full AtomMaps generated from real
data collected using a Velodyne VLP-16 LiDAR sensor,
where we only show atoms near surfaces for clarity.

1https://github.com/ucberkeley-vip/atom_mapping

https://github.com/ucberkeley-vip/atom_mapping


B. Speed and Memory Usage
We measure the efficiency of our implementation by

recording both total memory consumption and average pro-
cessing time per scan, and compare against OctoMap.2 For
a fair comparison, we set OctoMap’s voxel resolution such
that each voxel contains the same volume as each atom –
i.e. voxel side length is r(4π/3)1/3, where r is the atomic
radius. The experiment is run on two datasets acquired with
a Velodyne VLP-16 LiDAR sensor, each evaluated at an
atomic radius of 0.5 and of 1.0 m. All tests were performed
on a 2011 MacBook Pro with 8 GB of RAM and a 2.0
GHz quad-core Intel Core i7 processor. For a meaningful
comparison, we turn off octree pruning in OctoMap and
we record separate results for AtomMap in occupancy and
signed distance modes. We set OctoMap’s maximum tree
depth to 16, and assume a maximum sensor range of 25 m
beyond which measurements are discarded. Additionally, we
apply stochastic angular interleaving as in Sec. III-D with
λ = 1 and a postprocessing grid-filter of resolution equal to
one atomic diameter. Table I summarizes these results.

TABLE I: Empirical Memory Usage and Processing Time
per Scan for AtomMap (AM) and OctoMap (OM)

Dataset CMU LBNL
Map dimensions (m) 168× 90× 35 68× 65× 17

Atomic Radius 0.5 1.0 0.5 1.0
OM mem. (MB) 26.4 18.0 20.2 12.1

AM mem. occ mode (MB) 32.3 15.7 18.9 12.1
AM mem. sdf mode (MB) 24.4 13.9 16.8 11.6

OM time (ms) 34.7 10.5 13.2 3.6
AM time occ mode (ms) 56.2 14.4 20.0 5.7
AM time sdf mode (ms) 28.8 10.1 13.0 4.3

As shown, AtomMap uses less memory than OctoMap in
almost all trials, while processing scans either slightly faster
(in signed distance mode) or slower (in occupancy mode).
Both occupancy and signed distance modes are still real-time
for reasonable frame rates, i.e. on the order of 10-20 Hz.
Predictably, processing time increases as the atomic radius
decreases – this is a consequence of the increasing number of
atoms and hence k-d tree depth. Interestingly, however, we
note that our implementation performs significantly better on
both metrics in signed distance mode compared to occupancy
mode. This may be explained by referring back to Sec. III-
C, where it is stated that, in signed distance mode, atoms
are only inserted along the normal direction as in steps (A)
and (C), not along the scan ray as in step (B). As the scan
ray is typically much longer than the distance traced along
the normal vector in signed distance mode (∼ 2 m in these
experiments), the map tends to include fewer atoms in signed
distance mode, leading to greater efficiency.

We emphasize that both OctoMap and AtomMap are
sufficiently fast and memory-efficient that they can run in
real-time on large datasets, at reasonable resolution. The
difference is that AtomMap represents the environment with
far greater precision, as shown in Figs. 1, 7, 8, and 9.

2Downloaded from http://wiki.ros.org/octomap_server on
Feb. 11, 2016.
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Fig. 7: Comparison of map quality in the vicinity of surfaces,
for rotated and axis-aligned cubic environments.

C. Map Quality

It is difficult if not impossible to measure metric ac-
curacy of map representations such as AtomMap on real
data, without ground truth. In this section, we characterize
the performance of AtomMap in several small simulated
environments. Results are shown in Fig. 7 for a cube-shaped
environment of side-length 2.0 m (both axis-aligned and
rotated), and in Fig. 8 for a spherical environment of radius
1.0 m. In all experiments, atoms are of radius 0.1 m and
voxels’ volume is the same as that of each atom.

For any closed environment of the kind described in Sec.
IV, we define the quantity Vε as the volume of the region
of E that lies within a distance ε of the surface on the same
side as the sensor, i.e. the interior. We estimate this quantity
using Monte Carlo integration and divide by the true value
to compute the following quality metric:

Qε , V̂ε/Vε (13)

Intuitively, Qε measures the fraction of the space near the
surface which is correctly classified as free space. In the
limit ε −→ 0, Qε may be interpreted as a direct measure of
surface quality. For larger ε, Qε contains information about
space slightly farther from the surface, which is relevant for
some robotics applications, e.g. path planning in the vicinity
of surfaces.

As shown in Figs. 7 and 8, AtomMap outperforms the
voxel grid in all of the simulated environments by a signifi-
cant margin. The comparison is particularly striking for the
axis-aligned cubic environment, as we expect the voxel grid
to be particularly well-suited to that geometry.

Additionally, we wish to highlight a major qualitative dif-
ference between AtomMap and voxel-based methods which
occurs when processing surfaces viewed at oblique angles,
such as the ground. Observe the difference in Fig. 9, where
the AtomMap accurately samples the ground, and the voxel
grid has large, regularly spaced holes. These holes occur
because voxels initially labelled occupied are later updated
to be free by rays that intersect the surface in an adjacent
voxel farther from the sensor. The holes occur in long
columns because the ground is sloped. AtomMap solves this

http://wiki.ros.org/octomap_server
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for a spherical environment.

Fig. 9: Overlaid OctoMap (multi-colored, resolution 0.4
m) and AtomMap (red, atomic radius 0.25 m). AtomMap
reconstructs the ground more faithfully than the voxel grid.

problem by placing atoms tangent to surfaces, which grid-
based methods are fundamentally incapable of doing.

VI. CONCLUSION

We proposed a novel occupancy map representation for
use in mobile robotics applications. Instead of relying on a
regular, cubic voxel grid, we store an unordered collection of
non-overlapping spheres. By doing so, we are able to lever-
age surface normal information and place spheres directly
tangent to surfaces, leading to a dramatic increase in map
quality. Additionally, AtomMap supports a separate signed
distance field mode, which may be useful for applications
such as surface-guided path planning. This is all achieved
in run-time and memory usage roughly comparable to the
current state of the art.
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